
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE CRYSTAL CONSORTIUM. NEITHER THIS
DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED BY ANY
MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE CESAR
CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE
RESEARCH LEADING TO THESE RESULTS HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S SEVENTH
FRAMEWORK PROGRAM (FP7/2007-2013) FOR CRYSTAL – CRITICAL SYSTEM ENGINEERING ACCELERATION JOINT
UNDERTAKING UNDER GRANT AGREEMENT N° 332830 AND FROM SPECIFIC NATIONAL PROGRAMS AND / OR FUNDING
AUTHORITIES.

CRitical SYSTem Engineering AcceLeration

Specification, Development and

Assessment for System Analysis and

Exploration - V1

D603.011

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 2 of 79

DOCUMENT INFORMATION

Project CRYSTAL

Grant Agreement No. ARTEMIS-2012-1-332830

Deliverable Title
Specification, Development and Assessment for System Analysis and
Exploration - V1

Deliverable No. D603.011

Dissemination Level CO

Nature R

Document Version V2.00

Date 2014-01-30

Contact Andrea Leitner

Organization VIF

Phone

E-Mail Andrea.leitner@v2c2.at

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 3 of 79

AUTHORS TABLE

Name Company E-Mail

Andrea Leitner VIF Andrea.leitner@v2c2.at

Jos Langen Verum jos.langen@verum.com

Valeria Vittorini FEDII valeria.vittorini@unina.it

Stefano Marrone SUN stefano.marrone@unina2.it

Arjan Mooij TNO arjan.mooij@tno.nl

Rubén Juan ITI rjuan@iti.es

Nadja Marko ViF nadja.marko@v2c2.at

Marco Bozzano FBK bozzano@fbk.eu

Alexander Hanzlik AIT alexander.hanzlik.fl@ait.ac.at

Matthias Tichy Chalmers matthias.tichy@cse.gu.se

Aleksander Lodwich ITKE Aleksander.Lodwich@itk-
engineering.de

Gerald Stieglbauer AVL Gerald.stieglbauer@avl.com

Kurt-Lennart Lundbäck

ARCT kurt.lundback@arcticus-
systems.com

Dominique Segers BARCO Dominique.segers@barco.com

Christian Webel Fraunhofer IESE Christian.webel@iese.fraunhofer
.de

Grischa Liebel Chalmers Grischa@chalmers.se

CHANGE HISTORY

Version Date Reason for Change
Pages

Affected

1 20.12.2013 First harmonized version

mailto:Andrea.leitner@v2c2.at
mailto:jos.langen@verum.com
mailto:valeria.vittorini@unina.it
mailto:stefano.marrone@unina2.it
mailto:arjan.mooij@tno.nl
mailto:rjuan@iti.es
mailto:nadja.marko@v2c2.at
mailto:bozzano@fbk.eu
mailto:alexander.hanzlik.fl@ait.ac.at
mailto:matthias.tichy@cse.gu.se
mailto:Aleksander.Lodwich@itk-engineering.de
mailto:Aleksander.Lodwich@itk-engineering.de
mailto:Gerald.stieglbauer@avl.com
mailto:kurt.lundback@arcticus-systems.com
mailto:kurt.lundback@arcticus-systems.com
mailto:Dominique.segers@barco.com
mailto:Christian.webel@iese.fraunhofer.de
mailto:Christian.webel@iese.fraunhofer.de
mailto:Grischa@chalmers.se

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 4 of 79

CONTENT

SPECIFICATION, DEVELOPMENT AND .. I
ASSESSMENT FOR SYSTEM ANALYSIS AND .. I
EXPLORATION - V1 .. I
D603.011 .. I

1 INTRODUCTION .. 6

1.1 ROLE OF DELIVERABLE ... 6
1.2 RELATIONSHIP TO OTHER CRYSTAL DOCUMENTS .. 6
1.3 STRUCTURE OF THIS DOCUMENT ... 6

2 ACTIVITIES FOCUSING ON METHODOLOGY BRICKS .. 7

2.1 B3.1 - MODEL-BASED SYSTEM ANALYSIS AND EXPLORATION.. 7
2.1.1 Description .. 7
2.1.2 Use Case coverage and application .. 20
2.1.3 General improvement .. 20
2.1.4 Integration and interoperability ... 21

2.2 B3.7 - MODEL-BASED REQUIREMENTS ENGINEERING ... 21
2.2.1 Description .. 21
2.2.2 Use Case coverage and application .. 25
2.2.3 General improvement .. 27
2.2.4 Integration and interoperability ... 27

2.3 B4.7 - GUARANTEEING REAL-TIME EXECUTION OF CRITICAL FEATURES ... 28
2.3.1 Description .. 28
2.3.2 Use Case coverage and application .. 29
2.3.3 General improvement .. 30
2.3.4 Integration and interoperability ... 31

3 ACTIVITIES FOCUSING ON TOOL BRICKS ... 32

3.1 SYSTEM DESIGN AND ANALYSIS .. 32
3.1.1 B3.28 - Sparx Enterprise Architect .. 32
3.1.2 B3.71 - AVL Cruise/Boost ... 35
3.1.3 B3.65 - Rubus ICE ... 39
3.1.4 DTFSim – Data Time Flow Simulator .. 40
3.1.5 B3.79 - ARTISAN Studio (Task 6.3.15 – FhG) .. 44
3.1.6 B4.14 - Functional and performance analysis.. 45

3.2 ARCHITECTURE ANALYSIS AND EXPLORATION ... 48
3.2.1 B3.70 - ASD:Suite .. 48
3.2.2 B4.9 - Rapid design analysis (POOSL) .. 49
3.2.3 B4.1 - NobiVR ... 51
3.2.4 Static code analysis ... 53
3.2.5 B3.51 - AbsInt ... 53
3.2.6 B3.47 - Mathworks Polyspace .. 55
3.2.7 B4.15 - Interoperable architectural analysis ... 56
3.2.8 B2.55 - Scheduling requirement analysis ... 58

4 TERMS, ABBREVIATIONS AND DEFINITIONS ... 60

5 REFERENCES ... 61

6 ANNEX .. 67

6.1 ANNEX I: SURVEY QUESTIONS .. 67

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 5 of 79

Content of Figures

Figure 1-1: Relation between Tasks (Bricks) and UC using these bricks .. 6
Figure 2-1: Schema of macro-activity phases .. 11
Figure 2-2: MBT phases ... 13
Figure 2-3: Model Transformation schema (from http://help.eclipse.org) .. 16
Figure 2-4 - System Design vs. Test Design [Dai, 2004] ... 17
Figure 2-5: Model Based Testing overview [Zander, 2011] .. 19
Figure 2-6: Research method ... 21
Figure 2-7: Papers reporting on industrial application .. 23
Figure 2-8: Most popular modelling languages .. 23
Figure 2-9: Most popular modeling aspects ... 23
Figure 2-10: Example for boilerplate based requirement ... 24
Figure 2-11: WLTP requirements overview .. 26
Figure 2-12: WLTP test equipment requirement kinds ... 26
Figure 2-13: Typical Medical Display Image Pipeline. .. 28
Figure 2-14: Software Display System Process ... 30
Figure 3-1: Linking requirements to CRUISE model elements... 37
Figure 3-2: Reuse of simulation and calibration data from office to test bed phase .. 37
Figure 3-3: Development Frontloading through early vehicle simulation and calibration iterations 38
Figure 3-4: Event chain for timing analysis... 41
Figure 3-5: DTFSim model of a CAN network segment ... 41
Figure 3-6: DTFSim design and analysis workflow .. 42

Content of Tables

Table 4-1: Terms, Abbreviations, and Definitions .. 60

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 6 of 79

Introduction

1.1 Role of deliverable
This document aims to show the results of the first requirement elicitation phase for work package 603.

Since this deliverable is due at a very early stage of the project, it mainly aims to introduce the different

bricks in this WP and shows how they are planned to be used at this stage of the project.

This document can be understood as a living document. For some bricks, the use case needs have not been

defined in detail until now. A detailed description will therefore be given in the next version of this document.

1.2 Relationship to other CRYSTAL Documents
This workpackage is quite complex and therefore has many relations to other deliverables. We will not list all

deliverables here, but instead show how the bricks are related to use cases (UC).

Since bricks are always dedicated to one or more UC there is a natural relation between this document and

the different UC description deliverables. This relation is described in Figure 0-1.

SP2 SP5

UC2.5 UC3.1 UC3.2 UC3.3 UC3.4 UC3.7 UC4.1 UC4.4 UC4.5 UC4.6 UC5.1

Task 6.3.1 Model-based system analysis x x

Task 6.3.2 System design and analysis with Sparx Enterprise Architect x x

Task 6.3.3 Model-based requirements engineering x x

Task 6.3.4 Architecture analysis and validation with the ASD:Suite x

Task 6.3.5 System design and analysis with AVL Cruise x x

Task 6.3.6 Rapid design analysis (POOSL & NobiVR) x

Task 6.3.7 Design, analysis, and exploration using Mathworks Polyspace x

Task 6.3.8 System analysis using AbsInt x

Task 6.3.9 System design, analysis, and synthesis using Rubus ICE x

Task 6.3.10 System and performance analysis with DTFSim x

Task 6.3.11 Guaranteeing real-time execution of critical features x x

Task 6.3.12 Interoperable architectural analysis x

Task 6.3.13 Functional and performance analysis x x

Task 6.3.14 Scheduling requirement analysis x

Task 6.3.15 System analysis using ARTISAN Studio x

SP3 SP4

Figure 0-1: Relation between Tasks (Bricks) and UC using these bricks

1.3 Structure of this document
A brick in Crystal could either be a tool, a tool extension, or a methodology. The structure of this document

takes this definition and is therefore separated in two chapters: Chapter 2 describes the activities on

methodology bricks and Chapter 3 focuses on tool-related bricks.

The common structure for all brick descriptions is as follows:

1. General description

a. For tools: the purpose and functionality

b. For methods: state-of-the-art (SoA)

2. Application in CRYSTAL

a. Requirements from the UC.

b. What will be implemented/provided in the CRYSTAL project?

c. How will this brick be integrated in the UC

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 7 of 79

2 Activities focusing on Methodology Bricks

2.1 B3.1 - Model-based system analysis and exploration

2.1.1 Description

Name: Model-based system analysis and exploration (B3.1)

Contact: Nadja.marko@v2c2.at

Dependencies

License

Additional
information

2.1.1.1 State of Practice analysis

Aim of the model-based system analysis task is the coordination and consolidation of activities within this

work package in order to develop an overall Crystal system analysis and exploration approach including all

engineering domains. In order to get the overall approach focused on industrial needs, we wanted to know

the State of Practice (SoP) as well as the needs from industry regarding model-based engineering and

model-based system analysis methods. An online survey was created for this reason which has been

distributed to all Crystal partners, to partners from other EU projects, such as SafeCer
1
, MBAT

2
, VeteSS

3
 etc,

as well as to contacts from WP603 partners. The completed surveys are made anonymous and the results

will be made available to all participants.

In this deliverable the survey and expected results are described. As the survey results have to be analyzed

first, the detailed results of the survey will be part of the next deliverable.

2.1.1.1.1 Research questions to be answered

With the survey we want to answer some research questions. The main questions we wanted to have

answered are:

 Which modeling techniques, modeling languages and modeling tools are used in industrial practice

and why?

 In which phases of the software development process is model-based engineering used?

 How much time of the overall system and software development work is spent on model-based

engineering?

 Which methods exploiting models are used for validation and verification?

 Which positive and negative effects result from the adoption of model-based engineering?

 What are the differences on the use and assessment of model-based engineering in different

subclasses of companies and users?

1
 http://safecer.eu/

2
 https://www.mbat-artemis.eu/

3
 http://vetess.eu/

mailto:Nadja.marko@v2c2.at

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 8 of 79

2.1.1.1.2 Survey content

The survey was developed by partners from ViF, CTH, ITK, Verum, FBK, FED-II, and SUN. Every partner

proposed questions which have been of interest for him. As a result an extensive list of questions was

obtained which has been harmonized and shortened with respect to the research questions to be answered.

The final outcome is a survey that consists of 24 questions and should take approximately 15 minutes to

answer. It targets on software architects, developers, project managers, system engineers, etc. from OEMs

and suppliers from the embedded systems domain.

Questions are asked providing possible answers (multiple choice, single choice, ratings) as the survey
should not take too much time. Nevertheless, the answers are not limited to the provided answers. The
survey participant can fill in his own answers as well.

Mainly, the survey consists of 4 parts:

 General context

 Model-based engineering background

 Applied approaches (SoP)

 Advantages/challenges of model-based engineering

The complete survey can be found in Annex I.

2.1.1.1.2.1 General context

First part of the survey is target at the context of the survey participant. It should give us information about

the domain, the products being developed, the company size as well as the working tasks of the participant.

Context questions are for example:

 Is your company a Small and Medium-sized Enterprises (SME, <= 250 employees) or a large
company (or part of)?

 In which domain do you work?

 What are your main working tasks?

2.1.1.1.2.2 Model-based engineering background

In addition to the general context questions, some context questions regarding model-based engineering

activities are asked. With these questions we want to find out the experiences of both the survey participant

and the company regarding model-based engineering. Questions of this part are for example:

 Please rate your experience with model-based engineering.

 What is the product you are targeting with model-based engineering?

 How relevant were the following reasons for introducing model-based engineering in your
division/department?

 In which phases of the development process are you using model-based engineering?

2.1.1.1.2.3 Applied approaches

In order to get an impression of the SoP, the applied approaches (modeling languages, methods and tools)

are asked with questions such as:

 Which modeling environment do you use personally and which one is used in your
division/department?

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 9 of 79

 Which modeling language(s) do you use personally and which one(s) are used in your
division/department?

 How would you compare your usage and the usage within your division/department of model-based
and non model-based tools for performing engineering activities?

 For which purpose does your division/department currently use models and what do you personally
think models should be used for?

2.1.1.1.2.4 Advantages and challenges

The last part of the questionnaire addresses the advantages and challenges that come along with model-

based engineering. With this part we wanted to gain insight into shortcomings which could be subject for

improvements within the Crystal project:

 What were the effects of introducing model-based engineering in your division/department?

 To what extent do the following potential shortcomings apply to the applied modeling approach?

2.1.1.1.3 Expected results

The survey results should give information about cross-domain needs regarding model-based engineering.

This should include needs about:

 Modeling approaches

 Tools

 Data integration mechanisms

The results should help us to guide activities within WP6.3. More detailed results will be part of Deliverable
D_603.012.

2.1.1.2 Model-based system analysis using model-driven techniques and gray-box
testing

The dynamic verification (by simulation) that a system in its whole behaves as expected, i.e. it respects its

functional requirements (including safety related ones), is known as functional testing or behavioral testing

[Myers, 2004].

Model-Based Testing (MBT) is mainly used to generate functional tests. It is a testing approach based on the

construction of an accurate model both of the system under test (SUT) and of its external environment,

which is derived from the requirements specification. MBT is usually considered a form of black-box testing,

because tests are generated from a model and information about the internal structure of the SUT is not

used [Utting, 2007].

The main advantage of functional testing techniques is that they are relatively easy to implement; the main

disadvantage consists in the difficulty of balancing test effectiveness and efficiency.

As effectiveness is difficult to predict, a thorough and extensive (thus costly and time consuming) test

specification and execution process is usually performed on critical systems. Given the high number of

variables involved, the required simulations (or test-runs) are prohibitive; thus the process is necessarily

either unfeasible or incomplete, with possible risks on system safety. It can be proven that exhaustive black-

box testing is impossible to achieve with no information about system implementation [Myers, 2011].

Test adequacy can only be assessed by means of empirical techniques, e.g. when errors/test curve flattens

out [1020 WG, 1987]. Another important - though often neglected - limitation is that black-box testing

approaches are based on a system specification, which is usually expressed in natural language and

destined to be corrected, integrated and refined several times during system life cycle. Therefore, its

completeness and coherence are far to be guaranteed, and this is especially true for complex systems.

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 10 of 79

This is because gray-box approaches are necessary for critical systems. Gray-box testing approaches

support functional testing in allowing test engineers to fine tune the test-set with the aim of an effective

coverage of functionalities with the minimum effort in time. The result is a significant reduction in test-set

complexity while maintaining or improving test-effectiveness.

On the other hand, the model driven way could become a new paradigm for systems development in

industrial settings, since it could have a strong positive impact in reducing time to market and improving the

quality of the product. Model Driven Testing (MDT) addresses the optimization of the verification process by

bringing Model Driven concepts and techniques into testing. Nevertheless, these two practices are not fully

integrated, they are not really perceived as the two sides of the same coin.

MDT is sometimes considered synonymous of “Model Based Testing using UML”. Using UML diagrams

(state machine diagrams, use-case diagrams, sequence diagrams, etc.) to generate test cases is just one of

the well-known model-based testing techniques, but MDT could be more than this. MDT enables the

definition of processes for the automatic generation of test cases, based on model transformation

techniques, and links may be also defined between the MDT activities and the Model Driven Architecture

steps in the development cycle of the system [Dai, 2004].

UNIFEDII and SUN will develop in Crystal a methodology brick addressing the V&V activities in the

development of safety-critical embedded systems. Specifically, the methodology will support the automatic

generation of test cases for gray-box testing at system level by using model-based and model-driven

techniques. General issues about the modeling approach, generation techniques, and languages are

addressed in the context of WP603 and described in the present document. Their instantiation to the UC501

is performed within WP501; the development of the methodology will be carried out within WP612. The brick

will be integrated in the UC501.

Hence, the final contribution of UNIFEDII and SUN to this deliverable document is twofold:

- A methodology for test cases generation is defined and described, starting from an initial

description of its definition process;

- A background related to the main themes addressed by the research activities is provided; a

state of the art on specific topics is also planned, taking into account the consolidated survey

results and the availability of input from WP501 and WP612.

2.1.1.2.1 Test Cases Generation Methodology: overview of the definition process

The main macro-activities that we have planned to perform in order to meet the goal are introduced in Figure

2-1. The concrete development of them depend on some choices made on the basis of the input provided by

the partners mainly involved into the UC501 requirement specifications, as well as the implementation of the

tool-chain (interoperability issues).

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 11 of 79

Figure 2-1: Schema of macro-activity phases

A first macro-activity (DSML definition) requires that a modeling language is defined to represent the system

behavior and the test properties. The language must allow for easy modeling of a set of domain specific

concepts from UC501 or from the application domain of interest (i.e. it has to be a Domain-Specific Modeling

Language (DSML)); it must have a formal semantics in order to avoid ambiguities and to provide a basis for

the application of formal verification techniques. It is a state-based language as the system behavior and

requirements of a critical system are usually specified in the form of state-transition machines and/or tables.

The meta-language to be used in order to define this language must meet the interoperability requirements.

The second macro-activity (MT development) requires the definition and implementation of proper Model

Transformations (MT) in order to generate the artifacts needed in the test generation step from the models

represented by means of the DSML. Thus, the target language(s) has (have) to be identified, the sets of

transformation rules have to be defined, and the transformations must be implemented according to the

selected test generation techniques. The technology used in developing the MT is also chosen on the basis

of interoperability issues.

The third macro-activity (MG Definition) concerns the definition of Modeling Guidelines (both for system and

test properties). The guidelines aim at supporting the system modeler in understanding the best way to

represent system aspects; on the other hand the guidelines will support the test engineer in specifying the

input for the automatic test case generation process. This macro activity will explore the state of the art in the

definition of best practices, patterns & anti-patterns and model development methodologies.

Finally, the fourth macro-activity (UC Integration) addresses the integration of the resulting model driven

process and tools into existing and assessed V&V processes as they are adopted by industries. This activity

will first study the integration according to the three levels previous defined (DSML language, MTs and

modeling guidelines). Some of the topics that will be investigated are: requirements traceability, coverage

measurement, support to test execution, log analysis and reporting.

The oriented arcs in Figure 2-1 represent the input/output relationships between the macro-activities. Hence

DSML definition has to be completed before starting MT development and MG definition which, in turn, may

be performed in parallel and both have to be completed in order to perform UC integration.

With regards to these research activities, here a birds-eye view is provided of the mainstream background

topics: Gray-Box Testing, Model Based Testing, Model Driven Testing and Techniques and Automatic Test

Generation Techniques. Future versions of this document will provide a deeper state of the art about specific

issues, centered on topics which will be relevant in the development of the macro-activities.

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 12 of 79

2.1.1.2.2 Test Case Generation Methodology: background.

This section describes the background of the research activities, namely Gray-Box Testing, Model Based

Testing, Model Driven Testing and Techniques and Automatic Test Generation Techniques.

This Section is intended to be the reference for concepts, methods and approaches we need to cite or refer

to in the development of the generation methodology. As we make large usage of concepts from model-

driven engineering, a special attention is given to model-driven terminology, concepts and techniques.

2.1.1.2.2.1 Gray-Box Testing

Since early years, the software engineering community has addressed several approaches in testing

complex software and systems. One possible classification is the one that focus on the degree of knowledge

the system tester has on the internal dynamics of the SUT [Meyers, 2004]. Such classification mainly detects

two strategies: the black box-testing (also called input-output testing) and the white-box testing (also called

logic-driven testing) strategies. The first is based on a “zero-knowledge” approach considering a complex

system as an opaque box and testing the SUT by verifying that the expected and the actual output of the

systems given a generic input are equals. On the other hand, white box testing concentrates on the internal

structure of the SUT focusing on the verification of the internal behavior with respect to the requirements: it

can be defined as a “full-knowledge” approach.

Gray box testing approaches combine the advantages of white-box and black-box tests strategies. Reason

for adopting gray-box approaches in V&V processes have been explained in the introduction.

Several gray box testing approaches are present in the scientific literature focusing at different testing levels

(i.e. the kind of software artifacts under test: unit, integration, system or user/acceptance testing).

While the knowledge of white-box testing is clear (for software intensive systems it is the source code), it is

not clear what the form/nature is of knowledge at the base of gray-box testing approaches. There are a lot of

heterogeneous approaches in the scientific literature: some of them start from a formalized specification of

the system or of its components [Baharom, 2008], others are able to generate test cases for software

starting from contract-based specification techniques [Dadeau, 2011], and others exploit Finite State

Machines [Petrenko, 1995].

In the rest of this paragraph, we focus on system level testing and in particular on how gray box testing

improves the quality of system testing still remaining a feasible solution. System testing “is concerned with

testing the behavior of an entire system” [Abran, 2004]. Effective unit and integration testing will have

identified many of the software defects”. Notwithstanding, unit and integration testing are often conducted by

means of invasive methods (drivers and stubs are some the most common of them); the rationale for system

testing is the necessity to have a level of testing where all the components interact in the same way in which

they would interact during the operational phase of the software/system.

For this reasons, system level testing has been traditionally accomplished by means of black-box testing.

This approach expresses its limitations in case of safety-critical systems; in fact limiting to the observation of

the mere interfaces can prevent the testing engineer to observe the possible passage through some

hazardous states. International safety and quality standards prescribe methodologies and techniques to use

in order to achieve to high integrity systems [IEC, 1998], [CENELEC, 2004]. For many of such standards,

system level testing phase with a limited or full knowledge of the system is often mandatory since black-box

techniques. Complex systems, on the other hand, can have internal emergent dynamics that must be known

and controlled during the testing phase and system testing is the first moment when these dynamics start to

appear.

Such problem is worsening in case of critical systems where emergent behaviors can bring the system into

unexpected hazardous states: thus black-box testing is considered as not sufficient to eliminate all the

possible system hazards. Some approaches are present in literature of gray-box testing of (safety-) critical

systems [De Nicola, 2005], [Piper, 2012]. Since UNIFEDII and SUN will contribute in Crystal developing V&V

methodological bricks mainly inside the UC 501, gray box testing approaches are of paramount importance

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 13 of 79

due to both the safety critical nature of the system and the system level of the testing activities to perform

inside this UC.

In order to accomplish perform gray box (system) testing, hence having “limited knowledge” about the SUT,

a model of the system behavior is needed: indeed, gray box testing approaches are quite always model

based-testing approaches, too. Many approaches that exploit models for gray box testing are present in

the scientific literature, for example in [Linzhang, 2004] where UML activity diagrams are used to generate

test cases, [Petrenko, 1995] where FMS are used to understand about the internal behavior of the system,

[Dong, 2009] where architectural models are used (AADL language).

2.1.1.2.2.2 Model-Based Testing

The term “model-based” applied to testing is used with several meanings [Utting, 2007]:

 Generation of test input data from information about the domains of the input values (domain model).

This reduces hand-made work but does not provide any information to know whether a test has

passed or failed;

 Generation of test cases from an environment model. A model represents the environment of SUT.

This approach does not provide information on testing outcome, too;

 Generation of tests cases from a behavioral model. A model describes the expected behavior of the

SUT. This approach needs oracle information to compare outcomes;

 Generation of test scripts from abstract representation of tests. Models describe test cases. From

them proper transformations generate machine-readable tests.

Our research activities focuses on the third meaning of model-based testing, but in Crystal we address the

modeling, the test requirement and the test generation phases, according to the general schema in Figure

2-2. We do not deal with oracles and test execution. The generation of tests cases from a behavioral model

of the SUT is mainly applied to functional black-box testing. As already explained, we want to apply it to

gray-box testing, in order to cope with specific issues posed by critical systems.

Figure 2-2: MBT phases

Several taxonomies and surveys have been published on MBT; they provide a deep inside of the most

meaningful model-based methods and approach according to possibly different point of views. We cite some

works and collections which are representative of four different perspectives which are pertinent to our

research activities: general review, tools, embedded systems, and so called “model-driven testing”. Perhaps

the most famous taxonomy of MBT is the one provided by Utting, Pretschner, and Legeard [Utting, 2012]. It

is broad taxonomy based on three classes: 1) Models, i.e. the models applied in the MBT process; 2) Test

Generation, i.e. the approaches on which the test generation process is based, depending on the test

selection criteria, generation technology, and the expected generation results; and 3) Test Execution, i.e. the

execution options, depending on the test platform.

The book authored by Utting and Legeard [Utting, 2007] focuses on model-based testing tools to generate

test suites and the practice of functional black-box testing.

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 14 of 79

The collection in [Zander, 2011] contains a work from Zander, Schieferdecker, and Mosterman which

proposes to extend this taxonomy in the context of embedded systems and several case studies from

different domains as medicine, automotive, control engineering, telecommunication, entertainment, and

aerospace. A survey on model-driven testing techniques is in [Mussa, 2009]. Indeed, model-driven testing is

considered to be a kind of model-based testing which makes use of UML and model transformations. Some

clarifications must be given to avoid that ambiguities may arise in adopting the model-driven terminology.

2.1.1.2.2.3 Model-driven techniques

Model-Driven Engineering (MDE) is a promising approach that is able to cope with the increasing complexity
of platforms. More in general, model-driven techniques bring together two important aspects:

 DSMLs, which formalize the application structure, behavior, and requirements within a specific

domain;

 Transformation engines and generators that analyze certain aspects of models and synthesize

different types of artifacts, such as source code, simulation inputs, XML deployment descriptors, or

representation of models.

The MDE initiative proposes a process definition wider and not limited to the development as for other

approaches (Model Driven Architecture [OMG, 2003], Model Driven Software Development [Mellor, 2003]).

MDE methods and techniques are applicable to general purpose software systems as well as to critical

systems. In particular, in this last case, the effort must be oriented to support the qualitative and quantitative

analyses since the verification of system properties plays a crucial role for the system success. Great

benefits may derive from the adoption of MDE in the development of critical systems: the paradigm of

systems design “construct-by-correction”, typical of processes based on testing and verification of the late-

time properties of a system, can be replaced by paradigms “correct-by-construction” where, by verifying the

correctness of both initial system model and model transformation, one can assure the correctness of the

final model. The effort of verification can thus be concentrated in the initial stages of the system lifecycle.

Within the quantitative evaluation, outlined above, and within the scope of the techniques and methods of the

MDE, a first scenario of application of these techniques to critical systems is clearly defined: there is the

possibility to increase the spread of formal methods in industrial development processes in real systems. In

fact, the ability to define high-level languages closer to the user (for abstraction and ease of use) as well as

the ability to generate automatically models (formal models for quantitative analysis) from the first allows the

usage of formal methods in a “transparent” way.

Domain-Specific Modeling (DSM) means a set of procedures and modeling artifacts that are specific to a

given application domain [Kelly, 2008]. They are different from existing general purpose techniques since

they directly use concepts in the modeling that belong to the application domain. These concepts and

methodologies have been introduced to increase the level of abstraction with respect to the current

programming languages. With the term application domain is intent both a technical domain such as

persistence, user interface, communications, transactions, and a functional domain as a business domain of

telecommunications, banking, insurance or retail sales. In particular the formers can be addressed as

“horizontal” domains while the latter as “vertical”. In practice, each DSM solution focuses on very small

domains because, in doing so, one has a better chance to automate procedures.

At the base of a DSML approach is the definition of a language. A language provides an abstraction for the

development and it is the most visible artifact for developers. In DSM it is used to define specifications that

manual programmers would treat as source code. If the language is built correctly, it allows one to apply

terms and concepts of a particular domain. This means that a domain-specific language is probably useless

in other domains. For domain-specific languages, the same definitions that are adapted to languages in

general can be applied. The modeling languages are composed of syntax and semantics. On the syntax,

one can further distinguish between abstract and concrete syntax. The first indicates the structure and

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 15 of 79

grammar rules of the language, while the second defines symbols of the notation and form of representation

of the language. To increase the abstraction and to generate more complete code, it is usually necessary to

extend both syntax and semantics.

The Unified Modeling Language (UML) [OMG, 2011] is a well known general purpose standardized modeling

language for software system specifications. UML can be extended through the profiling mechanism that

allows customizing UML for a particular domain or platform; this mechanism is defined in the UML

Infrastructure. The UML profiling is actually a lightweight meta-modeling technique to extend UML, since the

standard semantics of UML model elements can be refined in a strictly additive manner. Since this extension

mechanism is part of the standard UML, it can be supported by the tool for UML. This feature is one of the

main advantages of UML profiles compared to the other mechanisms of customization of UML that are not

part of the standard UML and therefore are not supported by the UML tool. Another important advantage of

the profiling mechanism UML is that it avoids redefining concepts already defined in UML. A UML profile is

represented by a UML package stereotyped by tag “profile”. There are three extension mechanisms used to

define a UML profile: stereotypes, tagged value and OCL rules [Fuentes, 2004]:

 stereotypes are the main constructs for the specification of a UML profile. A stereotype is a particular

type of UML class (actually it is a specialization of the class meta-class from the UML meta-model);

 tagged values are properties (specialization of the property meta-class) that belong to one or more

stereotypes;

 OCL rules are defined by the Object Constraint Language [OMG, 2012]: they express constraints the

profiled models must be subject to.

UML can be extended through the profiling mechanism that allows customizing UML for a particular domain

or platform; this mechanism is defined in the UML Infrastructure. The UML profiling is actually a lightweight

meta-modeling technique to extend UML, since the standard semantics of UML model elements can be

refined in a strictly additive manner. Since this extension mechanism is part of the standard UML, it can be

supported by the tool for UML. This feature is one of the main advantages of UML profiles compared to the

other mechanisms of customization of UML that are not part of the standard UML and therefore are not

supported by the UML tool. Another important advantage of the profiling mechanism UML is that it avoids

redefining concepts already defined in UML. A UML profile is represented by a UML package stereotyped by

tag “profile” [Giachetti, 2009], [Selic, 2007].

Transformations of models are a key concept in the MDE context. They allow obtaining a model

automatically from another, for example they are useful to change the formalism and to generate a formal

model starting from a UML model. The OMG’s MDE standards specify the need for change to move from

platform-independent models to platform-specific models, raising the level of abstraction during the modeling

phase, and then reducing it for a specific platform, during the development stages. Model transformations

can be grouped into two categories.

Model-to-Model (M2M) transformations: M2M transformations aim at transforming source models in other

models, also expressed in different formalisms. The main motivation of their need is that the new model

enables to perform analyses that are not feasible in the previous formalism. An example of language used to

write M2M and Model-to-Text (M2T) transformation is the ATLAS Transformation Language (ATL) defined in

the ATLAS Model Management Architecture (AMMA) platform [Jouault, 2006]. ATL is a hybrid language, i.e.

it is both a declarative language and imperative one.

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 16 of 79

Figure 2-3: Model Transformation schema (from http://help.eclipse.org)

In the pattern depicted in Figure 2-3, a source model Ma is transformed into a target model Mb, according to

the rules defined in the transformation Mt. The transformation can be seen as model since it is software.

Source and target models, as well as the transformation definition are conforming to their respective meta-

models: MMa, MMb and MMt. All meta-models in this example are conforming to MOF meta-meta-model

(obviously this relationship is not strictly necessary; other meta-meta-models are of course usable). This

schema is general enough to be adopted by all other transformation languages. ATL, as mentioned before,

is a mixed language which contains declarative and imperative parts, nevertheless, the ATL philosophy

encourages the use of the declarative style in specifying transformations. However, sometimes it is difficult to

provide a solution completely declarative in a transformation problem. In this case it is possible to use

characteristics of the imperative language. ATL transformations are unidirectional, source models are read-

only and the transformations produce write-only destination models. The implementation of a bidirectional

transformation makes it necessary to realize a pair of transformations, one for each direction.

M2T transformations: M2Ts are able to generate text directly from a model (conformant to a specific meta-

model). M2Ts have a paramount importance in model driven software development processes since

automatic code generation represent a final but a necessary step in such processes. In a wider perspective,

M2Ts can be used to generate text, reports, configuration files or to instantiate abstract models according to

a specific concrete syntax. This last case can be used when a formal model, expressed as example into an

Ecore based language, can be translated into a specific data format understandable by existing solvers.

M2Ts can be divided into two categories according to the constituting principles:

 Visitor-Based Approaches: the source model is explored and, during the exploration, text is

serialized into an output channel (a file). An example is constituted by ATL query [Jouault, 2006];

 Template-Based Approaches: the text is organized into templates where “hot-spots” (points that are

subject to change according to model structure or values) are calculated by query on the model

itself. A widespread example of this technology is constituted by Acceleo [Obeo, 2013].

2.1.1.2.2.4 Model-driven testing and model-driven test techniques

MDT is the application of Model Driven Architecture (MDA) principles to system testing. According to MDA

the system is first specified from the functional point of view without any reference to the platform on which it

will be deployed. This model is named Platform Independent Model (PIM). Using a transformation language

PIM is transformed into a Platform Specific Model (PSM) which contains more detail of technology platform.

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 17 of 79

Finally, source code is generated from PSM using transformational rules. According to MDA, models are the

main artifacts which guide the whole system development cycle.

MDT applies the same approach to testing activities. Two levels of transformation steps are present: vertical
transformations and horizontal transformations. Vertical transformations are defined inside the test design
process, from an abstract test description, named Platform Independent Test. This kind of transformation
allows obtaining a Platform Specific Test (PST) and to generate a test code for a specific technology
platform.
Horizontal transformations are defined across the system and the test design steps. This is a very innovative
point because horizontal transformations allow performing testing activities early in software development
cycle. The first transformation step builds an abstract description of the test suite from an abstract description
of the system, without its platform specific model. The transformation between PSM and PST has the same
rational; it allows producing a concrete test suite before the system code is available. Figure 2-4 summarizes
the two-way approach of MDT taken from [DAI, 2004].
Hence, MDT has two main advantages: 1) testing activities may start early in the development process,
because a platform independent test is produced with (or even before) PIM; 2) testing activities are better
supported by tools and languages during the whole development cycle.

Figure 2-4 - System Design vs. Test Design [Dai, 2004]

A common language used to support MDT based approaches is UML and its extensions. An example is the

UML Testing Profile (UTP) from OMG. UTP introduces concepts like test components or test control which

are used to realize the test behavior of the system.

Some approaches are able to generate a high level representation of a test suite (and then executable test

code) starting from an UTP model of a SUT. MDT has been used in several industrial domains. In [Hecker,

2003] an example of the application of MDT to web-based distributed services architecture is described and

[Guelfi, 2008] shows an interesting application of MDT within the automotive domain. This work describes an

application of MDT to the testing of the safety control of airbag systems. Despite these and other examples,

the application of MDT is far to being considered an assessed practice in industrial settings.

Several model based approaches are founded on techniques taken from MDE. Even if they are often

considered as “model driven testing”, they just use one or more MDT features, such as DSMLs, UML

profiling, model transformations, etc.

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 18 of 79

We distinguish between the MDT process described above and such approaches we refer “model driven

testing techniques” since they are a sub-set of MBT.

Some relevant works show the advantages of model-driven testing techniques within software development.

One of the most common ways to establish MDE principles in software development is the use of UML

diagrams (like Class Diagrams, Sequence diagrams etc); they are often associated to OCL constraints in

order to generate automatically executable test cases. An example of this approach can be found in

[Bouquet, 2007] in which the authors use a subset of UML diagrams constrained with OCL to generate test

cases. The use of OCL constraints is necessary to prevent ambiguous behaviors. This point is very important

in model driven approaches because it is necessary to have a clear understanding of syntax and semantics

of source and target models in order to be able to perform model transformations [Sendall, 2003].

Another language often used is Testing and Test Control Notation version 3 (TTCN-3) which is a strongly

typed test scripting language used to automatically determine whether a system fulfils its requirements. An

example of TTCN-3 applications in testing can be found in [Tomasson, 2013] in which MDE principles are

used for testing in ICT domains.

A wide literature can be found that describe model driven techniques in test automation. [Javed, 2007]
proposes an approach using sequence diagrams. In this approach, the authors start with modeling the
system using sequence diagrams and they use a chain of M2M and M2T transformations to obtain test
cases. [Crichton, 2007] also starts from UML models to generate test cases. In [Mingsong, 2006] an
approach is presented to test case generation from UML activity diagrams: in this approach the authors
randomly generate abundant test cases from a SUT written in Java code. By running the program with the
generated test cases the corresponding program execution traces are obtained, they are compared with the
activity diagrams according to specific coverage criteria to build a reduced test case set which meets the
coverage criteria. A survey of model driven testing techniques can be found in [Mussa, 2009].

2.1.1.2.2.5 Test Case Generation Techniques

In the following test case generation techniques existing in the literature of model based approaches are
overviewed. A good taxonomy of model based testing approach for embedded systems is present in
[Zander, 2011]. Figure 2-5 graphically depicts this taxonomy.

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 19 of 79

Figure 2-5: Model Based Testing overview [Zander, 2011]

In the rest of this contribution, the focus is set on test generation technology giving further details on some of
these techniques:

 Random generation: this approach targets on the production of random test data as input for the
SUT. The benefits of random testing techniques are mainly its inexpensiveness, its capability to be
applied in the evaluation of software reliability level and its capability to be exploited to perform
stress testing. The disadvantages are that there is no assurance for full code coverage and that it
needs an automatic log verification phase due to the huge size of produced logs;

 Path-Oriented Methods: this approach generates test cases from control flow graphs or finite state
machines by finding paths in models. The analysis could be static or dynamic. In first case test case
generation is made without program execution. A well-known technique in this approach is symbolic
execution. Symbolic execution executes a program using symbolic values of variables instead of
actual values. With this method it is possible to obtain inequalities that describe the conditions
necessary to cross the path. In general, path-oriented testing is NP-hard, but with linear constraints
it’s possible to use linear programming techniques. The way to overcome these problems is to use a
dynamic approach in which the analysis is made during run-time of program under test. Program
execution flow is monitored during run-time and, if there are some deviations from expected flow,
some heuristic or meta-heuristic techniques like simulated annealing [McMinn, 2004] or backtracking
are used to identify the problem. The major disadvantages of this technique derive from program
execution because many iterations are often needed to generate a test suite;

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 20 of 79

 Model checking is a technique used to analyze a finite-state representation of a system for property
violations. The main component, a model checker, analyses all reachable states and if it detects no
violations, then the property will be true. Instead, if the model checker finds any violations it returns a
“counterexample”, which is a sequence of reachable states beginning with a valid state and ending
with state that produces a violation. Model checking in automation testing context is used for two
reasons [Gargantini, 1999]: first, the model checker can be used as an oracle for test outcomes
evaluation and second, the model checker is able to generate counterexamples that are used to
construct test sequences. This is the major challenge for testing based on model checking because
it is necessary to force the model checker to construct a test sequence. [Gargantini, 1999] proposes
a method to generate tests case from properties. In case we have to verify property P, we have to
translate it in a temporary logic (e.g. CTL) and we have to give it to a model checker. However, our
goal is to generate test cases, so we give the negation of P to the model checker. In order to
demonstrate violation, the model checker produces a counterexample which is a trace of steps that
represents a single test of a test suite.

2.1.1.3 Model-based system analysis using NuSMV

FBK will integrate in Crystal the extended version of the NuSMV model checker, namely a tool suite
including the following tools: nuXmv, xSAP and OCRA. The suite supports the development and verification
of complex, possibly safety-critical, embedded systems, covering different phases of system development. It
implements a model-based approach for validation and verification, and supports several engineering
activities, such as:

 Requirements validation:

To check the quality (consistency, completeness) of a set of requirements

 Verification of functional correctness:

To check the compliance of a system model with respect to a set of properties

 Safety analysis:

To analyze the robustness of a system with respect to faults; it includes techniques such as Fault
Tree Analysis and Failure Modes and Effects Analysis

 Contract-based architectural design:

To drive the architectural decomposition of a system using contract-based design, and verify it using
compositional verification techniques

The extended version of the NuSMV model checker will be developed by FBK, and adapted to Crystal
needs, in order to support the IOS specification, and to integrate it in the Crystal RTP. New interfaces will be
developed and integrated, according to users’ needs and as a consequence of requirements coming from
the UCs. In particular, new formats will be defined in order to exchange verification data (e.g., traces and
fault trees). Moreover, the following issues are of interest for NuSMV, and will be considered when during the
design of the IOS: linking requirements and contracts with models, and supporting traceability of artifacts
(e.g., tracing verification and safety artifacts to models).

The development will be carried out in a dedicated task in sub-project WP6.4, namely Task 6.4.6 (NuSMV
brick development). For more details on the development and the capabilities of NuSMV to be integrated in
Crystal, we refer to Deliverable D604.011.

2.1.2 Use Case coverage and application

This brick is indented as a consolidation brick. Specific use case needs will be identified in the next phase of
the project

2.1.3 General improvement

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 21 of 79

TBD

Link to internal working
documents:

2.1.4 Integration and interoperability

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

2.2 B3.7 - Model-based requirements engineering

2.2.1 Description

Name: Model-based requirements engineering

Contact: Christian.webel@iese.fraunhofer.de

Dependencies

License

Additional
information

2.2.1.1 State of the art in model-based requirements engineering

2.2.1.1.1 Results from Systematic Mapping Study

In order to assess the state of the art in model-based requirements engineering for automotive systems, a
systematic mapping study was performed. Particularly, we focused on approaches which model functional
behavior and have been validated in industrial case studies.

We present in the following the research method, the presented modeling formalisms and which aspects can
be modeled.

1) Define Research
Questions

2) Conducting Search 3) Filtering 4) Data Extraction

Figure 2-6: Research method

Figure 2-6 shows the employed research method. First, we defined the research questions to guide our
research. In the second step, we conducted the search using keyword search on different literature
databases. The resulting papers were filtered based on inclusion and exclusion criteria in step 3. We extract
the data from the papers with respect to our research questions in the final step.

mailto:Christian.webel@iese.fraunhofer.de

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 22 of 79

Research questions
RQ1: Which model-based requirements engineering approaches exist targeting automotive or embedded
software?

RQ2: Which modeling languages are used in the different approaches?

RQ3: Which aspects of the software can be modeled by the different approaches?

RQ4. What is the level of industrial maturity?

Conducting search
The data collection was performed on IEEE Xplore and the ACM digital library (which also includes papers
from SpringerLink, the digital library of Springer) with the following query:

(automotive OR embedded)

AND (intitle:requirement)

AND (model OR modeling OR formal OR executable)

The first part of the search string restricts the papers to those which include the term embedded and
automotive as these are our domains of interest. The second part of the search string restricts the results to
those which have requirement in the title. We restricted the search term ``requirement'' to appear in the
paper's title since the term is used in many unrelated papers in the body text. Furthermore, it showed during
definition of the search term that papers which deal with model-based requirements engineering used the
term requirement in the title. Finally, we restricted the search to those papers which use the terms ``model'',
``modeling'', ``formal'' and ``executable'' in order to find only those papers which deal with model-based
requirements engineering. The search resulted in 266 papers on IEEE Xplore and 298 papers in the ACM
Digital Library.

Filtering
Based on the search results, we manually filtered each paper by inclusion and exclusion criteria. The
inclusion criteria were: ``behavioral models, automotive or embedded systems focus, requirements
engineering''. The exclusion criteria: ``focusing only on tracing, unrelated to model-driven development,
focusing only on variability, focusing only on non-functional properties.''.

The filtering was done on the abstracts of the papers initially and additionally on the papers themselves in
case of doubts and all papers which were finally included. As a result of the filtering, we found 40 relevant
papers in the ACM digital library search results and 74 relevant papers in the IEEE Xplore results.

Data Extraction
All selected papers were classified according to different categories with respect to the research questions.
As a pre-defined fixed set of categories was not sufficient to handle the diversity of modelling languages
used as well as validation and verification activities, the list of categories was extended during the data
extraction phase.

We define ``industrially relevant papers'' as those, which report about the application of an approach to an
industrial system or to a standard like the European Train Control System (ETCS), which on the one hand
has a considerable complexity and also will be implemented by companies.

Results

In the following, we present an overview of the results from the mapping study. We show the number of all
relevant papers and additionally give references for those that report on industrial application as they are the
most relevant to Crystal (See Figure 2-7, Figure 2-8, and Figure 2-9).

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 23 of 79

Figure 2-7: Papers reporting on industrial application

Figure 2-8: Most popular modelling languages

Figure 2-9: Most popular modeling aspects

From our initial results, 20% were relevant with respect to our research questions but only 4% reported on
experiences in an industrial setting. The majority of the papers were published in the last five years.

The papers, which report about industrial use cases, use mainly state machines and sequence charts for
behavioral modeling with a clear focus on discrete, event-based systems. Interestingly, there is less support
for continuous and hybrid modeling of requirements and timing constraints. However, automotive systems
clearly include both continuous as well as discrete behavior and must satisfy hard real-time requirements.

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 24 of 79

Finally, a publication about an empirical assessment of a model-based requirements engineering approach
in an industrial setting could not be identified, i.e., there is no evidence that the proposed methods and
modeling languages for requirements engineering are better than existing requirements engineering
techniques.

2.2.1.1.2 Model-based requirements engineering using Controlled Natural Language

Using Controlled Natural Language (CNL) for requirements specification is one possibility to represent
requirements in a model-based, textual form. CNL is a subset of natural language that has a restricted
grammar and vocabulary. It can be used to bridge the gap between natural language and formal languages.
Boilerplates are a popular way of using CNL for requirements. Boilerplates are predefined sentence
templates (fixed structure) that contain variable parts (placeholders) that have to be filled by the
requirements engineer. These variable parts can be restricted by using only language elements of a
glossary. Figure 2-10 shows an example for a boilerplate and a corresponding boilerplate based
requirement. More information regarding boilerplates and processing boilerplate requirements can be found
in [Hull, 2011]. Further boilerplate-based requirements languages are described in [Videira, 2005], [Denger,
2003] and [Daramola, 2012].

Figure 2-10: Example for boilerplate based requirement

The application of boilerplates for requirements engineering is a good instrument to improve the quality of
requirements. As the requirements are specified consistently with defined terms, the ambiguity of
requirements can be reduced. Further, the semi-formal notation of requirements makes it possible to
automate some processing steps. Two possible approaches are described below.

Checking boilerplate based requirements

The prototype tool DODT, implemented in the CESAR project, has been used for early validations of
boilerplate requirements. Using boilerplates in combination with a domain ontology enables checks for
completeness, consistency, unambiguity and so on. Linking the domain ontology to attributes (placeholders)
of boilerplates enables automated reasoning in order to perform these checks. More information regarding
this approach can be found in [Farfeleder, 2011a] and [Farfeleder, 2011b].

In the CESAR use case, the semi-formal boilerplate requirements have been converted into formal pattern
requirements [Reinkemeier, 2011] in order to perform some more detailed analyses on the requirements. A
similar approach will be part of WP607.

Generating models from boilerplate based requirements

In [Holtmann, 2010] and [Holtmann, 2011] boilerplates are used to generate graphical models. Text-to-model
and model-to-model transformation techniques enable the generation of SysML models from textual
requirements. Depending on the used set of boilerplates, models like statecharts or block diagrams can be
created.

For the generation of behavioral models like statecharts, activity diagrams or sequence diagrams the
combination of use case based descriptions with boilerplates makes sense as well. Use cases are a well-
known method for specifying the intended behavior of a system. Hence, a textual behavior description
facilitates the generation of behavioral models as the sequence of activities is already described.

Boilerplate:
The <system> shall <function> every <quantity> <unit>.

Corresponding requirement:
The HCU shall check SOC every 1 ms.

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 25 of 79

In [Yue, 2011] several transformation approaches between requirements and models are described. Among
others, boilerplate based requirements are used for the transformation of textual requirements into graphical
models.

2.2.1.1.3 Planned approach in Crystal

In Crystal, the boilerplate-based requirements should be used as a quality gateway to improve natural
language requirements and for the generation of models. The aim is to find a language that covers both the
possibility to specify different kinds of requirements and the generation of models. The application of the
restricted language should be guided within a prototype implementation which should support the
requirements engineer in easily applying the defined language. Moreover, the prototype should support the
generation of model elements, such as SysML blocks or states, as well as diagrams.

2.2.1.2 State of the practice in model-based requirements engineering

In order to assess the state of practice in model-based requirements engineering for automotive systems, an
interview study is currently being planned. The aim of the study is to add a detailed view on the state of
practice to the information obtained in the online survey (described in section 2.1) and to the information
obtained from the systematic mapping study (described in section 2.2.1.1). In particular, we want to identify
reasons, which prevent practitioners from using models within requirements engineering, and existing
solutions, in which models are used during requirements engineering. The study shall identify gaps in the
current body of knowledge and motivate future research activities within CRYSTAL.

So far, the research questions were formulated and the study format was planned. Right now, we are
approaching companies in order to schedule interviews for the study. We aim to start with two companies at
different positions within the value chain (e.g. one OEM and one 1st Tier supplier). Within those two
companies, we plan to perform at least four interviews covering at least two different roles (e.g. Project
Managers and Requirements Engineers). Based on the results of these interviews, the interview study could
then be extended to further interviewees, roles, or companies.

2.2.2 Use Case coverage and application

The brick is integrated with the Use Cases 3.1 and 3.4. In both use cases, we worked with real requirements
documents to identify requirements for the model-based requirements engineering approach, particularly in
our case requirements for extensions of Modal Sequence Diagrams. Modal Sequence Diagrams are an
extension of UML sequence diagrams that supports the manual and automatic simulation of a set of
sequence diagrams as well as the synthesis of an implementing state machine.

In Use Case 3.4, we worked on requirements for a draft document for the upcoming “Worldwide harmonized
Light vehicles Test Procedures (WLTP)” standard that contains requirements how fuel consumption testing
for vehicles has to be performed. The standard contains a variety of requirements addressing the human
operator, mechanical system parts as well as software parts. From the latter, we particularly focused on the
requirement for the shifting of gears. We developed a set of Modal Sequence Diagrams, which capture these
requirements. In Use Case 3.1, we worked similarly to 3.4 on the Volvo demonstrator – an adaptive speed
limit system.

The WLTP standard contains a variety of requirements addressing the human operator/vehicles (System
under Test), the test equipment as well as software parts (See Figure 2-11 and Figure 2-12).

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 26 of 79

class WLTP

Vehicles Test Procedures

Test Equipment

Figure 2-11: WLTP requirements overview

class Test Equipment

Cooling Fan Dynamometer Exhaust dilution

system

Emissions

measurement

equipment

Calibration

interv als amd

procedures

Reference gases

Test Equipment

The position of the fan shall be as follows:

(a) height of the lower edge above ground:

approximately 20 cm;

(b) distance from the front of the vehicle:

approximately 30 cm.

The dilution air sample shall not be contaminated by

exhaust gases from the mixing area.

The sampling rate for the dilution air shall be comparable to

that used for the dilute exhaust gases.

Figure 2-12: WLTP test equipment requirement kinds

In this brick, we focus on two things. First the structuring and formalization of the WLTP draft with focus on
the elicitation and modeling of (legal and system) constraints. This includes the implementation of a
UML/SysML profile in Artisan Studio (see brick ARTISAN studio). And second, we extend the work of CTH
(Modal Sequence Diagrams for Annex II of WLTP) by state machines capture the gear shift requirements, to
compare these two formal approaches.

In addition, in Use Case 3.4 the following activities are planned concerning boilerplate-based requirements:

1. The natural language requirements are transferred from HP Quality Center to the requirements semi-
formalization tool.

2. The natural language requirements are semi-formalized with defined boilerplates.

3. The boilerplate-based requirements are transferred to HP Quality Center and linked with the natural
language requirements.

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 27 of 79

4. The boilerplate-based requirements are transferred to the AVL V&V environment in order to
automatically check the test results against the requirements.

From the results for the work in the use cases, we identified different additional requirements for Model
Sequence Diagrams and the corresponding implementation in the eclipse-based ScenarioTools. First, there
is a need to integrate continuous behavior into ScenarioTools as for example the gearshift requirements
depend on whether the car is accelerating or decelerating. Second, time must be supported in different
ways, e.g., clock and time guards as in Timed Automata are required for specifying timing requirements
between gearshifts, as well as time periodic message exchange. Third, there is a need in the implementation
to support validation activities like using Model Sequence Diagrams as test oracles or generating test cases
for implementations. We are currently working on the corresponding implementations.

2.2.2.1 Identified requirements for extension

Regarding the formalization of the WLTP standard in general, and the modeling of Annex II (gear shift) with
state machines in particular, one big challenge is how to model the algorithms and definitions of WLTP
describing constraints, and how to trace and measure the impact e.g. on test equipment or procedures on
change. A constraint is a requirement that is non-negotiable e.g. conformance to legal regulations or physical
forces, and defines a hard boundary for a system. Second, also time has to be considered, as described
before.

Further, following extensions have to be made concerning boilerplate based requirements:

 Definition of limit values within the requirement language (needed for checking the test results)

 Provide appropriate output format to support automatic checks of test results

 IOS concept for

o exchanging requirements with requirements management tool

o exchanging glossary terms

2.2.3 General improvement

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

2.2.4 Integration and interoperability

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 28 of 79

2.3 B4.7 - Guaranteeing real-time execution of critical features

2.3.1 Description

Name: Guaranteeing real-time execution of critical features

Contact: dominique.segers@barco.com

Dependencies

License

Additional
information

There is ever increasing product variability and the need to speed up time-to-market and reduce
development time. This requires Barco to change their medical display platform from a hardware centric,
custom platform towards a flexible software centric, Commercial-off-the-Shelf (COTS) platform.

This software centric medical display platform is confronting us with some challenges regarding real-time
requirements, especially frame-rate guarantees.

Before a digital image reaches the eye of the viewer, a number of transformations have to be done in order

for the digital data to be viewable by the viewer. For this case only the display image pipeline is considered:

from an electrical input (typical DVI or Display Port) to pixels on the panel. Figure 2-13 shows a diagram that

gives a high-level overview of a medical display image pipeline.

Figure 2-13: Typical Medical Display Image Pipeline.

Medical displays typically have a very high resolution, ranging from 3MP (Mega Pixels) to 10MP and higher,
and a high pixel depth, 10-bit/channel or even higher. With a frame rate of 60Hz, this means a throughput of
at least 18Gb/s. Guaranteeing this throughput in a software-based system is a major challenge.

mailto:dominique.segers@barco.com

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 29 of 79

2.3.1.1 State of the art in real-time guarantees

The imaging pipeline of current medical displays is developed using FPGAs. Guaranteeing real-time
requirements is quite straightforward, as this is primarily a function of the FPGA size, clocks and available
bandwidth.
On the other hand, guaranteeing these constraints in a software-based system running on COTS hardware
is far from trivial. Those constraints not only depend on a real-time OS and the capabilities of the CPU, GPU,
memory bandwidth, and availability, …, but also on the design of the software itself (parallelism, cache
coherence, swapping, etc.) and the processes running alongside the own software (resource competition).
Current practices often involve simplistic benchmarking and trial-and-error.

2.3.2 Use Case coverage and application

In order to be valid for a medical image for diagnosis, the displayed image must adhere to a number of legal
requirements, such as no pixel loss, GDSF compliant, uniformity …
To this end, the digital input data is run through a number of transformations, the so-called medical image
pipeline, thereby keeping the frame rate at 60Hz (important for displaying time-series of medical images).
Doing this in software is far more unpredictable than in hardware (FPGA).

By using model-based engineering as described in UC4.4 and UC4.5 a methodology will be introduced to
design the software so that constraints, requirements and alternative architectures can be tackled and put
under control very early in the design process.

Figure 2-14 describes the desired development process used for a software-centric and cost-effective
replacement of the image pipeline. It is represented as series of activities (‘activity diagram’) that are
executed to deliver the product.

The figure includes the legend for all symbols that are used to describe this process. The activities are
represented by a rectangle. Each activity has a number of inputs and outputs that are represented by a
rectangle with a snipped corner. The start of our development process is indicated by an open circle. The
process ends with a completed product and is represented by a solid black circle.

The process is repetitive and uses an agile approach to come to the final product in series of refinement
steps, the dotted box surrounding step 3 till 8 indicates one sprint cycle in the agile process.

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 30 of 79

Figure 2-14: Software Display System Process

2.3.2.1 Requirements

The following requirements have been identified in the first planned CRYSTAL iteration (more to follow):

 Traceability of the requirements and constraints from a requirements tool into the modeling tools.

 Reusability of previous (successful) models.

 Continuous testability and versioning of the different models.

 Modeling of a virtual hardware platform (CPU, GPU, memory, concurrent processes).

2.3.3 General improvement

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 31 of 79

Description:

TBD

Link to internal working
documents:

2.3.4 Integration and interoperability

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 32 of 79

3 Activities focusing on Tool Bricks

3.1 System design and analysis
This chapter runs under two major terms: System Design and System Analysis. The following selections
describe tasks and activities performed under WP 6.3 which are listed here because they are considered to
support the two important steps in product development.

System Design and System Analysis are two closely related items. Every design decision builds on former
design decisions. The longer the list of unverified design decisions in sequence the higher the risk of having
it dropped because of errors, later. Designs must be tested for various reason, each being one of customer
requirements. They are not independent. System design is about resolving those interdependencies in a
balanced way. The tighter the loop between design and design evaluation (analysis) the better the overall
design. It is either containing fewer flaws or more features. Sometimes better design targets at better
maintainability (modularity, extensibility or down-time), improved revenue or increased safety. Especially
safety is considered to be difficult to provide without proper quality management and proper design.

In general, it can be observed that system design tools become more powerful. They support the engineers
and designers not only on a specific level of abstraction but also provide support design of lower abstractions
where needed. We can call this “deep architectures”. Despite the higher expressive power of deep schemes
the complexity for humans remains the same and hence the chance of error is the same. At one hand
engineers have to deal with fewer technical details under the hood but on the other hand the number of
features and requirements at various technical levels increases. The increasing diversity of requirements is
characteristic for modern and future engineering. This forces design tools to support engineers in keeping
track of all the design constraints and to develop “semi-intelligence”.

Semi-intelligence is when tools guide engineers during the design process by inferring propositions about
next steps. Systems making useful propositions and which simplify their execution a great deal can be used
to strengthen engineering best-practice on the grounds of what is easiest to do is also best. Such semi-
intelligence is heavily relying on well-connected data structures and project artifacts. Without this additional
information it is hard to imagine how project specific support of that kind could be realized by the tools. Semi-
intelligence is not as strong as expert systems design. It does not derive a full solution. However, semi-
intelligent development environments would significantly lower future investment into expert systems and
would give an edge over the competition, soon.

The strategy to connect artifacts and logical project items into a “big semantic map” via OSLC is exactly what
CRYSTAL is trying to do. It will improve the overview over a broader landscape of requirements and WP 6.3
will try to foster a stronger use of this information in all design process steps.

Deep architectures – deemed very powerful scheme of expression – are also susceptible to subtle errors
which come from the implicit interaction rules between the abstraction layers or the formalisms in use.
Sometimes issues of deficits are simply matters of tool-specific implementation. In order to catch such
glitches design must be analyzed at regular rates. The earlier and the faster the analysis can be executed
and the broader the choices are the smaller is the necessary design increment and the risk arising from it.
Therefore it is observed that analysis tools a) become integrated with design tools (eventually merging to the
point of becoming indistinguishable) and b) the variety of analysis tool is increasing in order to keep pace
with the diversity of requirements. This helps to build safer machines because safety requirements are very
broad by their nature. With a strong interoperability layer (as OLSC is thought to be) WP 6.3 can hope to
increase the diversity of tightly integrated analysis tools in any project.

3.1.1 B3.28 - Sparx Enterprise Architect

3.1.1.1 Description

Name: Sparx Enterprise Architect

Contact: Aleksander.Lodwich@itk-engineering.de

mailto:Aleksander.Lodwich@itk-engineering.de

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 33 of 79

Dependencies

License

Additional
information

UML is a standardized graphical language for expressing structural and temporal properties of a (mostly
computer-based) system. It fills a gap between the very generic graphs known from mathematics and
computer science and the very details of a solution in a computer system implementation (code &
configuration & distribution details).

By historical fact, UML was first designed to model the relationships between “objects” in relational
databases, “objects” in computer software driving them and “objects” in real environment which are often
human operators. It was observed that software architects sketch their ideas with some common symbolism
and this has become the first set of UML diagrams.

The collection of elements in UML clearly reveals its technical nature and application niche. The design
process for the various aspects of software requires fixating relevant technicalities in pictures, a feature that
was nowhere defined before for abstract concepts like the ones used in software.

With UML the modeling of software has drawn equal with other engineering disciplines where the simplified
definition of the so developed system has allowed increasing the overall complexity of produced systems.
Especially, UML allows to concentrate on capturing important aspects of the final design and to start with the
implementation of a complex system in a goal-oriented way. The success of UML has led to the introduction
of enhancements which help to model aspects of embedded systems (SysML). In general, “visual design”
has proved to be very convenient for humans. Development teams employing such technologies are
observed to work faster to commit to less risk of error.

UML and many other graphical modeling schemas are a genuine pencil and paper technologies for the
concept development phase. However, as products are maintained or improved the nature of the original
drawings become repetitively relevant for the more recent design decisions. From such re-use of diagrams it
has become more and more important to keep design and the implementation synchronized. As the
elements in the diagrams “interact” witch each other, navigation between the different design views (partial
models) has also become important. This is the point where on the one hand UML has grown beyond the
concept phase and on the other hand where a smart development environment was urgently needed in order
to accomplish the synchronization and navigation.

The Enterprise Architect (EA) from Sparx Systems is such a smart environment and has originally started as
a modeling tool for commercial development environments. Through the wide success of UML and its broad
application EA has grown to support development beyond mere UML modeling. Similar to Borland’s
Together or IBM Rational’s Rhapsody, it can generate boilerplate code, definitions and API from the
graphical model and helps to keep them synchronized during the complete life-cycle of the software. In fact,
EA supports a broad range of techniques and methods observed during a complete life-cycle. It will capture
requirements or support testing.

EA is an UML modeler. Models are considered good for engineering. Companies start to learn that drawing a
solution instead of writing it up is not necessarily or automatically raising product quality, reducing cost or
improving project success. That’s because there are two kinds of models that solve two different kinds of
problems. Improvements of quality, a better return on investment or a reduction of project risk only come
about when the right kind of models are used for the right thing. Tool chains must address this and guide
developers to make the right decisions.

The first kind of models is the “simplified domain representation”. This class of models is used to express the
essence of a setup. Such models adhere to natural concepts of human understanding and are typically much
more compact. As a consequence these models reduce the number of possibilities to introduce errors and
much better exploit available bandwidths in HMI communication. A tool allocated in this area is e.g. Simulink.
Simulink is an example of a graphical modeling technique but non-graphical models are also very popular
(think of algebra or custom 4G languages). Such models still have a 1:1 correspondence to what is modeled
but the expressions can be quickly manipulated and then re-evaluated. Obviously, the natural habitat of such
models is the concept phase or research phase where models of this kind stem from.

http://www.sparxsystems.de/uml/neweditions/
http://www.sparxsystems.de/

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 34 of 79

These models help to make faster cycles of statement and response and often enough new design patterns
emerge to experts which tend to make the whole design process more efficient. Therefore, the quick
discovery of a working solution is crucially depending on the right choice of the system of expression. The
option to mix these systems seems advantageous. Modelica takes a radical approach here.

The other kind of models is “meta knowledge” which describes “templates” to a solution. UML belongs to this
class of models. Such models describe families of solutions and how they develop and act over time.

By the very nature of embedded systems (fixed purpose, fixed environment, fixed resources, etc.) this is
obviously not a hot topic and modeling them with UML is cumbersome. In PC systems which are very
versatile, where solutions are generic, where communication units are complex and where time matters only
to the point of order, it is very important to provide descriptions about the principles of systems instead their
exact structure (every program instance might be very different in terms of used resources or internal
configuration). For this kind of models it is important to prove that the structural grammar will not create
illegal constellations or break assumptions.

However, as embedded systems become more networked, as they are equipped with more resources and
as they start employing principles from mainframe computing (concurrency, filesystems, plugins, drivers,
apps, etc.) a bridge is built between the two domains that establishes for an unusual flow of requirements
into both directions. In one direction we observe an inflow of requirements asking for structural versatility and
in the other direction we see an inflow of safety requirements. This combines to a new kind of question: How
can we assure that a family of configurations is safe? Temporarily this is difficult to prove.

To answer this, we’ll need both kinds of models combined. The boundaries between embedded systems and
general computing are ever more blurred. The mixing of the two types of models becomes also more
common and tool-chains should provide transparent handling of them in one frame of context. For industrial
purposes, the gap between the two has been narrowed with SysML. SysML was designed with respect to
the needs of embedded development to model timely behavior more pronouncedly.

From this natural flow of considerations we observe three lines of further engineering improvements
applicable to EA:

a. As more and more aspects of software development are found to be usefully modeled with graphical
means, modeling tools grow into complete ALM solutions. Some development suites are found to be
versatile enough in order to start designing non-technical systems or hybrid systems. This line of
improvement will require open interoperability in order to handle the diversity of development
environments.

b. Modern tools auto-code solutions from graphical descriptions. This makes development faster! In
order to support this well, more and more technical details can be annotated with the steadily
growing expressiveness of graphical languages. As manual extensions to auto-generated code
become less and less common, graphical descriptions slowly lose their representative or informative
character and turn into the actual code which must versioned, managed and evaluated. Therefore,
tools must provide stronger support for a life-cycle of graphical code. EA is already strong here but
cannot model own model variability.

c. Proving correctness of design is still manual work. Although static code analyzers and correctness
provers exist, it seems that they only work under many design constraints. They often require an
intermediate step of code production which becomes less and less of immediate interest. This is
where we see tools like ASD:Suite come in, trying to bring together the strength of models with the
strength of functional correctness proves. Since many companies already invested into UML models
(and many did so by buying EA) they would like to harness tools like ASD:Suite in parallel. This
implies some additional means of exchange or general interoperability. We would like to subsume
developments in this area under the term “Static Model Analysis (SMA)”.

3.1.1.2 Use Case coverage and application

We provide service to all use-cases and consulting to all work-packages in SP6 regarding the application
and interoperability improvements of EA. We have already observed that EA is used in non-conventional
constellations where models of models or tracking of templates for models would be desirable. We have
various weak confirmations that we will deal with EA in all three directions a, b & c.

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 35 of 79

3.1.1.3 General improvement

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

3.1.1.4 Integration and interoperability

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

3.1.2 B3.71 - AVL Cruise/Boost

3.1.2.1 Description

Name: AVL Cruise/Boost

Contact: andrea.leitner@v2c2.at

Dependencies

License

Additional
information

AVL Cruise is a powerful, robust and adaptable tool for vehicle system and driveline analysis based on
simulations. It supports everyday tasks in vehicle system and driveline analysis throughout different
development phases. This means that it supports driveline simulations in an early development stage as well
as the step-by-step deployment of physical parts (e.g. an engine may be coupled with the driveline
simulation and tested on a test-bed).

BOOST is an advanced and fully integrated "Virtual Engine Simulation Tool" with advanced models for
accurately predicting engine performance, acoustics and the effectiveness of exhaust gas after treatment
devices. It supports engine development such that for a given vehicle concept, the required torque and
power can be delivered in combination with optimized emissions, fuel consumption and passenger comfort
(acoustics and transient behavior).
AVL Solution
BOOST provides an engine simulation tool applicable from the concept phase up to ECU calibration,
addressing the needs of engine and powertrain simulation projects. It is applicable for the analysis of
individual components and all over systems simulation, with various modeling depth levels. It can easily be

mailto:andrea.leitner@v2c2.at

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 36 of 79

linked with CRUISE (Vehicle System and Driveline Analysis tool) for Vehicle Thermal Management System
optimization.
The highly flexible structure of CRUISE enables changing an existing driveline within minutes. Adding hybrid
components to a conventional vehicle can be done with a few mouse clicks, using electrical components
designed for HEVs. CRUISE can be easily linked with other simulation tools for sub-system integration of
vehicle thermal management systems, vehicle control systems, driving dynamics and handling tools,
components and sub-system test rigs and HiL systems.

Starting with only a few inputs in the early phases, the model matures during the development process
according to the continuously increasing simulation needs.
AVL CRUISE is typically used in powertrain and engine development to optimize the vehicle system
including cars, busses, trucks and hybrid vehicles, its components and control strategies with regard to:

 Fuel consumption and emissions for any driving cycle or profile.

 Driving performance for acceleration, hill climbing, traction forces, and braking.

AVL CRUISE is also used for tasks like:

 Evaluation of new vehicle concepts such as hybrid powertrain systems (e.g. regarding their
performance).

 Simulation and analysis of standard and new gear box layouts like DCT and AMT.

 Analysis of torsional vibrations of elastic drivelines (under dynamic load).

 Drive quality assessment of transient events such as gear shifting and launching.

 Simulation and analysis of vehicle thermal management.

 Energy flow analysis, analysis of power splits and losses within components.

3.1.2.2 Use Case coverage and application

AVL Cruise will mainly be used in UC3.4. The main purpose of the tool is an early validation of the
powertrain for vehicle simulations in an office environment as well as in an engine test bed environment.

UC 3.4 has defined the following requirements for this tool:

 Linking requirements (e.g. HP Quality Center) to AVL Cruise model elements.

 Integration of security aspects (e.g. who is allowed to change data).

 Reuse of simulation and calibration data from office to test bed phase.

 Development frontloading through early vehicle simulation and calibration iterations.

One main part of the integration is the support of traceability between different aspects (e.g. requirements,
security) and CRUISE model elements as illustrated in Figure 3-1. In the UC, the requirements will mainly be
stored in different representation and formalization levels (in tools such as HP Quality Center, PTC Integrity,
Artisan Studio using SysML models, Boilerplate tools, etc.) and should be linked to the respective technical
realization as for example CRUISE model elements. The interface should be open in order to be applicable
to different requirement management tools, but will be demonstrated using one of the aforementioned tools.
OSLC seems to be a suitable concept for the technical realization. The evaluation of the applicability of
OSLC and the implementation of the interface are an essential part of this task. Another aspect which is of
importance is the assignment of security information to model elements, to ensure that only authorized
persons are able to change them.

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 37 of 79

Figure 3-1: Linking requirements to CRUISE model elements

Figure 3-2: Reuse of simulation and calibration data from office to test bed phase

One core target in UC3.4 is the re-use of data across different development phases, whereas each phase is
based on its own tools, processes and data representations. The focus in this project will mainly be on
testing phase I, vehicle simulation, and phase II, engine testbed, as shown in Figure 3-2. The main
difference between these two development stages is the substitution of the engine model by a real engine.
This engine is interacting with the simulation model representing the drivetrain. The engine is operated on a
test bed and gets stimuli from the model and feeds back output signals.

If simulation is combined with calibration in an early vehicle development phase, the design space
exploration is enriched by additional possibilities: An advantage of this approach is for instance the possibility
to include the evaluation of an optimized powertrain design in the calibration process, which (due to the fact
that it is built in hardware later on) could not be done easily in a later development phase. Figure 3-3 gives
an overview of the affected tools and data as well as of the process of calibration iterations.

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 38 of 79

Within one iteration the results of a first simulation can be used as an input for an optimization and
calibration tool (such as AVL Cameo). Given some target values, AVL Cameo calculates an optimized
driveline calibration based on a calibration model. This calibration is evaluated by a simulation in the next
iteration round. Throughout several iterations the design can be adapted and optimized already in a virtual
environment.

Currently, one main drawback is the fact that calibration and parameterization data cannot be reused
straightforward in the subsequent development stages.

The realization of an AVL data backbone is intended to improve the reuse of simulation models, calibration
data (applied also on these models), and so on throughout the different phases of vehicle development.
CRUISE is one of the central vehicle simulation tools and therefore has to exchange information with
different other tools and databases, respectively. One key focus here will be the tight integration of CRUISE
with calibration tools such as AVL Creta/Cameo (see WP T6.10.7) in order to calibrate the driveline model.
These tools need to exchange calibration data (Cameo Cruise) and simulation results (Cruise Cameo)
via a defined interface. Since the data should not only be available in these tools, but also in other
development stages with their respective tools, it could be stored in a central database. All tools which need
to access the data would need to have an interface to this common database. Another possible solution
would be to use the concept of Linked Data to ensure traceability between different data representations or a
combination of both approaches.

The data backbone is part of WP613 and therefore described in more detail in the respective deliverable.
The integration of AVL CRUISE and this data backbone will be implemented in this task, but with a close
collaboration with WP613.

Figure 3-3: Development Frontloading through early vehicle simulation and calibration iterations

3.1.2.3 General improvement

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 39 of 79

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

3.1.2.4 Integration and interoperability

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

3.1.3 B3.65 - Rubus ICE

3.1.3.1 Description

Name: Rubus ICE

Contact: kurt.lundback@arcticus-systems.com

Dependencies

License

Additional
information

Arcticus offers Rubus Integrated Component Environment (Rubus-ICE) for component modeling, pre- and
post-runtime analysis and software synthesis. The IDE consists of a set of tools for design, analysis, and
synthesis of component-based real-time systems based on Rubus Component Model and is plugin-based
and possible to extend to other models and run-time frameworks.

Rubus-ICE and Rubus-RTOS products are in use and deployed in a number of successful projects by our
customers.

3.1.3.2 Use Case coverage and application

Adapt analysis methods and Rubus ICE to the actual needs of Software Engineering by enabling the
seamless combination of functional constraints and requirements with target environment such as resources.
Thus giving the software engineer one holistic analysis framework.

Arcticus participation will be based on the latest EAST-ADL specification including TADL2 timing model
aspects.

In this project Arcticus will adapt and extend Rubus-ICE to support EAST-ADL component model and
explore the possible pre-runtime timing analysis that can be performed given the available information from
EAST-ADL. The precision on a high-level model i.e. EAST-ADL timing-analysis is expected to differ from the

mailto:kurt.lundback@arcticus-systems.com

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 40 of 79

more exact timing-analysis performed in the tool today since the information is not available in a high level
system model.

The IOS integration will be implemented by reading and writing the standard EAXML file-format.

Based on the existing Rubus models and tools the EAST-ADL and the TADL2 models are integrated into the
tool chain. Currently we have a prototype of a graphic editor for these models. We want to investigate,
design and implement model transformation bi-directional and to improve our analysis model to adapt to
these models.

3.1.3.3 General improvement

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

3.1.3.4 Integration and interoperability

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

3.1.4 DTFSim – Data Time Flow Simulator

3.1.4.1 Description

Name: DTFSim – Data Time Flow Simulator

Contact: Alexander.Hanzlik.fl@ait.ac.at

Dependencies

License

Additional
information

The DTFSim is a discrete-event simulation environment which focuses on design and analysis of the network
architecture of electronic control systems. For this purpose, so-called event chains from sensors to
actuators are modeled and simulated.

mailto:Alexander.Hanzlik.fl@ait.ac.at

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 41 of 79

Figure 3-4: Event chain for timing analysis

Event chains are sequences of linked base elements, originating from sensors and ending up at actuators.
These base elements are provided by a modular assembly system.

Typical base elements are

 Sensor (model input),

 Actuator (model output),

 Processor (freely programmable, for dedicated functionalities like software component functions),

 Controller, Transfer, Line, Extractor (for modeling communication buses)

Each base element has the following properties:

 It has one input, one output and a propagation delay.

 It provides a dedicated functionality which relates to the transformation of input values to output
values.

 The output of a base element is the input of the next base element in the event chain.

 It is triggered by events. When a base element is triggered, it processes its input, generates an
output value according to its functionality, writes this value to its output and generates an event for
the next base element in the event chain.

Doing so, events and data propagate over time along event chains.

The DTFSim provides a template mechanism, so-called super elements. Super elements are constituted
from base elements and are used to build up complex structures like ECUs or communication buses. Once
created and stored, they can be used in different simulation models.

Figure 3-5: DTFSim model of a CAN network segment

For the modeling of communication networks which contain of one or more network segment(s), the DTFSim
uses four types of super-elements:

 TX ECUs which process sensor inputs and transmit frames on the Bus,

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 42 of 79

 Buses (CAN, FlexRay or Ethernet) which are responsible for message arbitration and frame
transmission,

 RX ECUs which receive frames from the Bus and process actuator outputs,

 Gateways which connect different network segments.

The sensor inputs of the DTFSim models are triggered by so-called event lists which describe typical
scenarios over time, e.g. the different positions of the brake pedal during a drive cycle. All events observed
during simulation are stored and used for subsequent analysis of the simulation results.

A typical DTFSim workflow comprises the following steps:

 Configuration
The following information is needed for creation of a DTFSim network model:

o System Architecture
ECUs and how they are connected

o Network Parameters
Communication protocol (CAN, FlexRay, Ethernet, …) used for communication between the
ECUs; bandwidth settings; message catalogue (messages sizes, message priorities,
message send periods, communication cycle duration)

o Component Parameters
Component functions (the input-output transformation functions for the base elements, like
software components); component latencies (the propagation delays of the base elements,
like the execution times of software components)

o Timing Requirements
The maximum signal propagation times from sensors to actuators.

Figure 3-6: DTFSim design and analysis workflow

 Drive Cycle (Event list) generation

The creation of event lists for stimulation of the sensor inputs.

 Simulation
Model execution according to the Configuration and the Drive Cycle.

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 43 of 79

 Post-Processing and Visualization
Analysis and visualization of the simulation results. In this step, the timing analysis takes place.

3.1.4.2 Use Case coverage and application

The DTFSim supports the VOLVO Use Case UC3.1. The two thematic priorities of the DTFSim application in
UC3.1 are

 Performance analysis of the communication network

 Timing analysis of time-critical event chains

According to the DTFSim workflow description, the following data will be needed for simulation of the system:

 Functional components and system topology (ECUs and their interconnection)

 End-to-end latency requirements on functional components (like WCETs of software components)

 Timing requirements (like maximum signal propagation times from sensors to actuators)

The ongoing integration into MBAT RTP will be updated to the CRYSTAL RTP and extended by integration
timing analysis tools defined by the use case. The requirements engineering and architecture model
integration already worked at in MBAT will be improved based on user feedback.

3.1.4.3 General improvement

AIT will improve and extend the brick DTFsim in task 6.3.10. The following improvements and extensions are
scheduled:

The tool shall be integrated with other timing analysis tools, thereby achieving a holistic timing analysis for a
system. Additionally, usability shall be improved by providing a graphical user interface, matching the
requirements of the use case partner Volvo. The main goal is to reach a maturity level of the integrated tool
fit for day to day application in industrial use.

The predefined network libraries (currently CAN and FlexRay) will be extended by Ethernet. In addition to the
existing reporting mode, a GUI for interactive analysis and result visualization will be added.

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

3.1.4.4 Integration and interoperability

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 44 of 79

Link to internal working
documents:

3.1.5 B3.79 - ARTISAN Studio (Task 6.3.15 – FhG)

3.1.5.1 Description

Name: ARTISAN Studio

Contact: Christian.webel@iese.fraunhofer.de

Dependencies

License

Additional
information

Fraunhofer IESE will implement its SysML profile for WLTP from Task 6.3.3 in Artisan Real-time Studio
(RTS). Further, we will support the integration of RTS into the CRYSTAL RTP along the corresponding IOS.
There are currently ongoing discussions with Artisan regarding the RTP integration with OLSC.

3.1.5.2 Use Case coverage and application

The definition of use case needs will be part of the next phase of the project.

3.1.5.3 General improvement

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

3.1.5.4 Integration and interoperability

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

mailto:Christian.webel@iese.fraunhofer.de

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 45 of 79

3.1.6 B4.14 - Functional and performance analysis

3.1.6.1 Description

Name: Functional and Performance Analysis

Contact: elluna@iti.es, rjuan@iti.es

Dependencies

License

Additional
information

Functional & Performance analysis tool provide features for analyzing the performance and functional
requirements at early stages of development. The analysis is based on timing and resource allocation for
evaluating the goodness and suitability of the proposed design. Therefore, this tool is centered in the
evaluation of the system behavior of the product.

3.1.6.2 Use Case coverage and application

This tool will be used in the use cases UC405 and UC406 of the healthcare domain.

 UC405 - SW centric scalable safety critical medical display platform

The use case provides the development of a medical display that as new feature moves current
functionality from hardware (FPGA) to a software centric platform based on GPUs. This new design
will give more flexibility and eases the inclusion of new functionalities, but it introduces new
challenges in development and design.

A performance analysis tool can be used in the design phase to help in the selection of the right
architecture to fulfill all the requirements

 UC406 - An intelligent infusion controller for Blood Pressure regulation in Operating Room

The goal of this use case is to incorporate tools to support the development process of an intelligent
infusion controller for facilitating certification processes.

The product to be obtained in this development process is a system that operates delivering
vasoactive drugs with the ultimate goal of reducing patient´s hypertension, and precisely controlling
blood pressure measurements in a patient undergoing surgical intervention in Operating Room or in
post cardiac surgery in ICU (intensive care unit).

In this case the performance analysis tool is used in the design phase to help in the selection of the
right architecture to fulfill all the requirements.

The UC405 and UC406 add the following requirements to the Performance Analysis tool:

 UC405/UC406: The tool shall provide a graphic modeler that supports rapid and assisted modeling
of the system.

 UC405: The tool shall support GPU architecture/behavior.

 UC405/UC406: Performance checks shall be based on timing and resource allocation.

 UC406: The tool shall detect functional and performance issues related to timing and resource
allocation, in order to avoid situations under which the obtained product does not guarantee the
established requirements.

mailto:elluna@iti.es
mailto:rjuan@iti.es

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 46 of 79

 UC405/UC406: The tool shall support the mapping of modeled components with the product
requirements. In this way the solution supports the identification of non-fulfilled requirements based
on the functional and performance issues detected.

 UC405/UC406: The tool shall generate reports with evaluation results. The report must identify the
detected functional and performance issues and possible potential issues.

 UC405/UC406: The tool shall be based on well-established languages and technologies in order to
avoid dependencies on obsolete and/or abandoned solutions that jeopardize its use and
maintenance.

 UC405/UC406: The tool shall be easy maintainable and provide a long-time period of maintenance.

 UC405/UC406: The tool shall run, at least, on Windows and Linux systems.

The UC405 IOS requirements are related to improve the architecture design by analyzing the performance of
the system architecture. UC406 IOS requirements are related to improve the requirements traceability during
the project, in order to ensure that all them are correctly covered and handled in the design stage

The following list details the currently identified requirements for both use cases:

 UC405: Basic IOS requirement: The tool shall be able to import requirements from a requirement
management tool. In this way the proposed brick must be able to connect to a requirement
management tool for importing the requirements relevant for the architecture design. The result is an
architecture design and therefore, the brick should provide functionality for linking the imported
requirement with the components in the architecture. This mapping must to perform a follow up of
the requirements fulfillment from a functional and performance point of view.

 UC406: Basic IOS requirement. The tool shall be able to import requirements from a requirement
management tool. In this way the proposed brick must be able to connect to a requirement
management tool for importing the current list of requirements. Moreover, the brick should provide
functionality for linking the imported requirement with the components in the model in charge of
satisfying them. This mapping must to perform a follow up of the requirements fulfillment from a
functional and performance point of view.

 UC405/UC406: As advanced IOS requirement the tool shall be able to generate status information
about the fulfillment of each functional and performance requirement and functionality for including
this information in the Requirements Management tool.

3.1.6.2.1 Integration into the Use Cases

This brick will be used in the “Architectural Design” phase of the development process of UC405. This phase
is done once a first Requirement Specification has been achieved, and before starting the “Detailed Design”
phase.

This brick will also be used in the “Rapid prototyping of architecture and design” phase of the V process
model of UC406. This phase is done once a first Requirement Specification has been achieved, and before
starting the “Modular Decomposition” phase.

3.1.6.3 General improvement

During the CRYSTAL project it will be implemented and provided the basic tool functionality and the IOS
basic required support.

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 47 of 79

TBD

Link to internal working
documents:

3.1.6.4 Integration and interoperability

Regarding tools integration, from IOS Requirements it is derived that this brick must be able to interact
through OSLC with a Requirements Management tool. Therefore, support for OSLC Core and Requirements
Management specification is needed.

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 48 of 79

3.2 Architecture analysis and exploration

3.2.1 B3.70 - ASD:Suite

Note: Verum has stepped out of the project right after this first phase of the project. Therefore, there will be
no update of this brick in future versions of this deliverable.

3.2.1.1 Description

Name: ASD Suite

Contact: jos.langen@verum.com

Dependencies

License

Additional
information

The ASD:Suite is a software design platform based upon Verum's patented Analytical Software Design

(ASD) technology. ASD makes it possible to create systems from mathematically verified components.

The ASD:Suite is used to define and (automatically) verify models, and to (automatically) generate fully

executable source code from these models. The (discrete event based) models specify both structure and

behavior of services, and of components that implement and use these services.

3.2.1.2 Use Case coverage and application

The objectives for the ASD:Suite in the light of the Crystal project can be summarized as:

 Interoperability of the ASD:Suite with other tools

 Improvements and/or extensions to the ASD:Suite supporting architecture analysis in terms of a/o
structure, complexity and functional correctness

 Improvements and/or extensions to the ASD:Suite supporting validation of components, next to the
existing automatic verification of components.

Next to WP603, Verum is also involved in WP301 that considers the Volvo use case. Within this use case,
the focus is on the interoperability objective.

The first version of this use case is now under review. It describes the system development process plus the
engineering methods that capture the detailed steps and the artifacts that are used and produced at each
step. This gives an idea of the type of information that is to be considered for interoperability requirements.

Verum’s role in the definition of this use case is, together with the other use case participants, to agree on
the place of the ASD:Suite in the overall system engineering process, and to define the engineering methods
and possible exchange of artifacts with other ‘bricks’ in the overall use case.

For the ASD:Suite, the interoperability requirements resulting from this use case are limited to requirements
traceability. The exact details of these requirements will become clear in the next reporting period.

3.2.1.3 General improvement

The usability and ‘reach’ of the ASD:Suite will be improved by:

 Extending it with (scripting) interfaces; this enables the interoperability with other tools, for instance
for linking model elements to external requirements or other system engineering artifacts.

mailto:jos.langen@verum.com

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 49 of 79

 Extending it with feedback mechanisms of the runtime execution behavior, for instance to enable
analysis of component interaction during runtime execution.

 Extending it with support for validation and simulation of components and (sub)systems; this enables
users to check that the component/system indeed behaves as intended.

 Better visualization of the model and component overview to aid in architecture analysis and design.

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

3.2.1.4 Integration and interoperability

Based on the Volvo use case, first the use case is analyzed and the corresponding requirements are
collected, harmonized and prioritized. Then these requirements are further developed and implemented into
the ASD:Suite using an iterative approach. The resulting extensions of the ASD:Suite are then fed back into
the Volvo use case for assessment and feedback. This will probably take a few cycles to arrive at an
implementation that adds value to the use case and its participants.

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

3.2.2 B4.9 - Rapid design analysis (POOSL)

3.2.2.1 Description

Name: Rapid design analysis – POOSL

Contact: arjan.mooij@tno.nl

Dependencies

License

Additional
information

mailto:arjan.mooij@tno.nl

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 50 of 79

POOSL is an object-oriented language for specifying system behavior including parallelism. POOSL is used
for rapid prototyping of functional system behavior as it enables the quick exploration of multiple design
alternatives. In addition, it enables the analysis of performance characteristics of architectures. POOSL is
currently supported by two tools:

 SHESim: model editor with a built-in interactive simulator;

 Rotalumis: high-performance simulation engine.

3.2.2.2 Use Case coverage and application

The requirements from the use cases in the health care domain are as follows:

 Improve clarity of requirements: currently, the requirements are described using informal text

documents. The goal is to improve their clarity by making more precise and more visual descriptions

of the requirements.

 Early feedback on requirements, architecture, and design: currently, the requirements,

architecture, and design are described using documents. The goal is to get early feedback on these

descriptions by making analyzable models that can be simulated.

 Early integration testing: currently, integration testing requires the availability of large amounts of

software and hardware. The goal is to enable early integration testing by using executable models of

the software and hardware that is not yet available.

 Reduce testing on physical hardware: currently, modifications of the software implementation

should be tested on all product (hardware) configurations. The goal is to reduce the amount of

testing on physical machines by testing the software in combination with hardware simulators.

3.2.2.3 General improvement

The usability of the POOSL tools will be improved by means of an Eclipse IDE. This includes early feedback
to language users based on static model analysis, such as type checking. Moreover, it includes
modularization techniques for managing the complexity of industrial scale models, and model conversions
for interoperability with other POOSL tools. In particular, it includes convenient and interactive access to
simulation results produced by the tool Rotalumis.

The tool Rotalumis will be extended with an external socket communication interface for interoperability
between a simulated POOSL model and models in external simulation tools, such as physics models and
visual simulations.

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

3.2.2.4 Integration and interoperability

POOSL will be used to create and simulate functional models of the software of an X-Ray scanner. Multiple
models will be made to clarify and analyze the requirements, architecture and design documents. These
models differ in the abstraction level, the parts of the system that are covered, and may take into account
multiple design alternatives.

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 51 of 79

We will integrate these ingredients in order to obtain executable simulations of the X-Ray scanner in early
development phases. A complete integration consists of the following parts that interoperate dynamically
while performing the simulation:

 Functional model of the software (POOSL);

 Physics model of the hardware (e.g., Matlab, Modelica, Blender, etc.);

 Visual simulation of the hardware (NobiVR).

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

3.2.3 B4.1 - NobiVR

3.2.3.1 Description

Name: NobiVR

Contact:

Dependencies

License

Additional
information

NobiVR is a tool to visualize and simulate functional 3D models, implemented on top of a virtual reality (VR)
layer. This VR layer can accommodate 3D motion tracking input for natural user interaction, and multiple
types of immersive 3D VR configurations. NobiVR is used to visualize 3D data, both volume and geometry.
Volume visualization is primarily applied to medical imaging data (CT/MRI/Ultrasound/etc), while geometry
visualization is applied to many types of data such as medical segmentations, 3D scanner output, CAD files,
etc. Any application which is based on the VR layer of NobiVR is configurable, allowing them to make use of
many different VR hardware components ranging from desktop workstations to large projection setups by
simply loading different configurations.

3.2.3.2 Use Case coverage and application

The requirements from the use cases in the health care domain are as follows:

 Improve clarity of requirements: currently, the requirements are described using informal text

documents. The goal is to improve their clarity by making more precise and more visual descriptions

of the requirements.

 Early feedback on requirements, architecture, and design: currently, the requirements,

architecture, and design are described using documents. The goal is to get early feedback on these

descriptions by making analyzable models that can be simulated.

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 52 of 79

 Early integration testing: currently, integration testing requires the availability of large amounts of

software and hardware. The goal is to enable early integration testing by using executable models of

the software and hardware that is not yet available.

 Reduce testing on physical hardware: currently, modifications of the software implementation

should be tested on all product (hardware) configurations. The goal is to reduce the amount of

testing on physical machines by testing the software in combination with hardware simulators.

3.2.3.3 General improvement

The visualization and VR functionality of NobiVR will be provided in this project. Improvements to these
functionalities will be done in this project, as well as the implementation of a remote rendering engine in
NobiVR

 to enable systems without powerful graphics hardware to use NobiVR, and

 to allow collaboration by multiple users at different locations on a shared instance of the VR layer.

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

3.2.3.4 Integration and interoperability

NobiVR will be used to create a visual simulation of the hardware of an X-Ray scanner. This environment
will be used during the requirements, architecture and design phases. This simulation tool can produce
visual output (images/videos) to support and/or replace the current textual recording of requirements.
We will integrate these ingredients in order to obtain executable simulations of the X-Ray scanner in early
development phases. A complete integration consists of the following parts that interoperate dynamically
while performing the simulation:

 Functional model of the software (POOSL);

 Physics model of the hardware (e.g., Matlab, Modelica, Blender, etc.);

 Visual simulation of the hardware (NobiVR).

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 53 of 79

3.2.4 Static code analysis

The term Static Code Analysis (SCA) has a broad meaning. It can encompass everything from syntax check
over style compliance over check of programming conventions to logical or dynamical implications for the
function. There are two bricks explicitly included in CRYSTAL for such purposes: Astrée and Polyspace. The
two have a different profile due to historical reasons. AbsInt tools concentrate on offering dominating
performance in analysis of logical and dynamical implications while Polyspace allocates some of its strength
in compliance tests. Depending on the goals of the use-case one or the other should be integrated into the
tool chain. However, it would be wrong to fully focus on these two tools alone.

3.2.4.1.1 Drawbacks of Conventional Tests

Businesses building mission/safety critical systems must assure themselves that certain qualities are good.
The conventional practice is to perform a complete test-set for the implemented functions under a large
variety of conditions. There are common characteristics to this approach:

 Tests become a significant financial burden.

 It is very difficult to test a specific conceptual middle ground because such tests become very
complex - potentially more complex than the DUT (device under test) itself. Developing special
purpose test suites can become a substantial task. Investments into this area must be protected
through intensive reuse.

 Algorithmic spaces for complex systems are simply vast. It is very difficult to cover them sincerely.

 A broad standing test-set (which is quite an investment) is often detrimental to the decision to
refactor you code in order to improve its architecture ("adverse effect of testing"). Something more
flexible is needed.

The problems experienced with testing have led to the idea that it would be more efficient to simply prove the
correctness of a given solution. But the property "correctness" is not an attribute of the code itself but rather
an attribute of the relationship between code and expectations. "Correctness" simply means a match
between expectations, assumptions and solution descriptions. When applying proving techniques a general
awareness of this fact should be maintained.

3.2.4.1.2 Alternatives to Testing

Static code analysis does not execute the program but looks into the source code for consequences. The
analysis is performed automatically by tools like Lint, Astree or Polyspace. SCA is the successor of the
classical code review which can be quite laborious and often impractical for large systems. The source code is
checked by a series of formal techniques, e.g. abstract interpretation, in order to find several types of errors.

In contrast to other test methods, static verification covers the complete use of value ranges of input signals,
parameters and maps. This can rule out run-time errors for various conditions. A limit analysis is also
automatically covered. However, static verification cannot replace functional testing but it can eliminate a
large body of tests designed to detect implementation weaknesses.

According to our experience a good mixture of static tests and functional tests will yield an excellent price
per feature and per achieved reliability. Introducing provers to your testing landscape makes the handling of
the processes even more difficult. If they can be made interoperable with other tools based on a common
technology like OSLC then it would become more attractive to use them.

3.2.5 B3.51 - AbsInt

3.2.5.1 Description

Name: AbsInt

Contact: Aleksander.Lodwich@itk-engineering.de

mailto:Aleksander.Lodwich@itk-engineering.de

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 54 of 79

Dependencies

License

Additional
information

AbsInt is offering a series of cutting-edge products for C-Code analysis. AbsInt analyzers are not model-
based but are sometimes used in tool-chains with models at their top. They help to verify the absence of run-
time errors and they help to estimate the amount of required resources on embedded systems.

AbsInt has become well known for his static code analyzer Astrée. The tool was designed with a zero false
warnings mindset. It is capable of providing hints to the analyzer from source code. The software engineer
can communicate detailed assumptions about his code without having programmed them out explicitly. This
helps Astrée to interpret the code appropriately without exaggerated caution. From our experience Astrée is
the fastest high quality analyzer to date and orders of magnitude faster than the immediate competitor
Polyspace.

AbsInt also offers tools for investigating timing relationships between software and hardware on real-time
systems (WCET analysis). Such tools are very helpful when trying to optimize systems for energy
consumption or for evaluating the effect of two different ECU platforms. For example the energy
consumption of an ECU could be reduced by lowering clock frequency but undesired deadlocks or errors
could result from bad timing. AbsInt analyzers help to estimate the lower bounds for clock speeds in such
case. Such estimates derived from code structure are far more solid than extensive tests and cheaper to do
so as well.

3.2.5.2 Use Case coverage and application

We provide service to all use-cases and consulting to all work-packages in SP6 regarding the application
and interoperability improvements of AbsInt tools. In the AbsInt brick ITK Engineering is predominantly
offering experiences made with Astrée. At the moment no demand has been formulated from use-cases.
Use-Case 3.2 has declared interest into static code analysis.

3.2.5.3 General improvement

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

3.2.5.4 Integration and interoperability

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 55 of 79

Description:

TBD

Link to internal working
documents:

3.2.6 B3.47 - Mathworks Polyspace

3.2.6.1 Description

Name: Mathworks Polyspace (B3.47)

Contact: Aleksander.Lodwich@itk-engineering.de

Dependencies

License

Additional
information

Mathworks’ Polyspace is a popular package for static code analysis of C/C++ and Ada-Code. Polyspace can
check code for its potential to produce run-time errors, overflows and the like. The tool offers reporting
functionality and it is frequently found in automated build processes in industry. Polyspace can compare
code with predefined coding rules and helps to track development progress. The tool can be extended with a
certification extension. With this extension it is possible to certify certain code revisions for meeting ISO
26262, IEC 61508 or DO-178B standards. This makes it a very popular tool in respective domains.

Just like AbsInt analyzers, Polyspace is not a tool to be qualified as “model-based”. However, it is often
found in tool chains with models as the source. It will add trust to your project when a new compiler is used,
when refactoring was done or when generation parameters were changed.

However, Polyspace is defensive and will assume the worst during analysis. The consequence of this
approach is a large number of false warnings which have to be checked and tracked manually. As the
number of warnings can become very large, many tool-chain authorities shy its inclusion because of the
missing resources to handle the result validation. The reports have to be managed and effective report life-
cycle maintained. This proves to be not so convenient in real life but it could be greatly simplified by making
Polyspace interoperate with issue trackers. Unfortunately, since the warning and error generation details are
closed source some uncertainty remains in this approach. We would use our role as distinguished partner of
Mathworks to improve the situation here. Polyspace could for example generate id-codes from analyzed
structure which would make the process of tracking report entities easier.

3.2.6.2 Use Case coverage and application

We provide service to all use-cases and consulting to all work-packages in SP6 regarding the application
and interoperability improvements of Polyspace. ITK offers extensive practical experience with Polyspace.
At the moment no demand has been formulated from use-cases. Use-Case 3.2 has declared interest into
static code analysis.

3.2.6.3 General improvement

The definition of Technical Items will be part of the next phase of the project.

mailto:Aleksander.Lodwich@itk-engineering.de

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 56 of 79

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

3.2.6.4 Integration and interoperability

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

3.2.7 B4.15 - Interoperable architectural analysis

3.2.7.1 Description

Name: Interoperable architecture analysis

Contact: elluna@iti.es, rjuan@iti.es

Dependencies

License

Additional
information

Interoperable architectural analysis tool provide means to perform ICT interoperable architectural
requirements analysis at early stages through the modeling of the product. Thus, this tool allows evaluating
the ICT interoperability of the components of the product checking the existence of conflicting interfaces at
hardware and software level. In this way the tool provides means for guaranteeing the correct integration of
components (or new components) in (within) the product at early stages in the product development process.

3.2.7.2 Use Case coverage and application

The Interoperable Architectural Analysis tool will be used in UC406 for determining at early stages that
interoperability requirements between the infusion pump (provided by a supplier) and the other components
of the system can work together.

Use Case 4.06 is titled: “An intelligent infusion controller for Blood Pressure regulation in Operating Room
(OR)”, and its goal is to incorporate tools to support certain phases of the development of an intelligent
infusion controller.

mailto:elluna@iti.es
mailto:rjuan@iti.es

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 57 of 79

The product to be obtained in this process is a system that operates delivering vasoactive drugs with the
ultimate goal of reducing patient´s hypertension, and precisely controlling blood pressure measurements in a
patient undergoing surgical intervention in Operating Room or in postcardiac surgery in ICU (intensive care
unit).

The use case owner, RGB medical provides the following basic requirements:

 The tool shall detect ICT interoperable issues between different components of the product,
especially those existing issues between components developed internally and components
provided by suppliers. This detection must be done in the early stages of the development process
for minimizing costs derived from a late detection.

 The tool shall provide a graphic modeler that supports rapid and assisted modeling of the
components.

 The tool shall support the mapping of modeled components with the product requirements. In this
way the solution supports the identification of non-fulfilled requirements based on the ICT
interoperability issues detected.

 The tool shall generate reports with the obtained evaluation results. This report must identify the
detected ICT interoperability issues and possible potential issues.

 The tool shall be based on well-established languages and technologies in order to avoid
dependencies on obsolete and/or abandoned solutions that jeopardize its use and maintenance.

 The tool shall be easy maintainable and provide a long-time period of maintenance.

 The tool shall be able to run at least on Windows systems.

The preliminary IOS requirements from this use case point of view are related to improve the requirements
traceability during the project. The following list details the currently identified requirements:

 The basic IOS requirement consists in being able to import requirements from a requirement
management tool. This tool must be able to connect to a requirement management tool for importing
the current list of requirements. Later the tool should provide functionality for linking the imported
requirement with the components in the model in charge of satisfying them. This mapping must to
perform a follow up of the requirements fulfillment from an ICT interoperability point of view.

 As advanced IOS requirement, the tool shall be able to generate status information about the
fulfillment of each ICT interoperable requirement and functionality for including this information in the
Requirements Management tool.

3.2.7.3 General improvement

During the CRYSTAL project it will be implemented and provided the basic tool functionality and the IOS
basic required support.

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 58 of 79

3.2.7.4 Integration and interoperability

This brick will be used in the “Rapid prototyping of architecture and design” phase of the V process model of
their use case. This phase is done once a first Requirement Specification has been achieved, and before
starting the “Modular Decomposition” phase.

Regarding tools integration, from IOS Requirements it is derived that this brick must be able to interact
through OSLC with a Requirements Management tool. Therefore, support for OSLC Core and Requirements
Management specification is needed.

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

3.2.8 B2.55 - Scheduling requirement analysis

3.2.8.1 Description

Name: Scheduling requirement analysis

Contact: iripoll@iti.es, rjuan@iti.es

Dependencies

License

Additional
information

This brick will provide means to analyze timing requirements for complex systems. In order to achieve this it

will include a parser to manipulate AADL models which has been released by SAE as the aerospace

standard AS5506. It will also facilitate an editor and analysis feature that performs the scheduling analysis of

a partitioned system allowing working with incomplete models and allowing modification of the system

incrementally. Thus this tool provides means for performing simulation analysis at the early stages of the

product development in order to check the validity of the proposed solution from the scheduling requirements

perspective.

3.2.8.2 Use Case coverage and application

This tool will be used in the UC205 CRYSTAL Space Toolset applied to Avionics Control Unit Software
generation, test, V&V, and Certification.

This use case has as main goal is the implementation of the software for an Avionics Control Unit including
autonomous navigation features based on GPS, inertial and/or image acquisition inputs. This unit will be
based in a LEON architecture running in multicore configuration inside an FPGA.

In this development process usually are involved several actors. On one hand there is the hardware
manufacturer, which purchases the software embedded in his units from external suppliers and then
integrates it in the hardware. In this case, the hardware manufacturer remains responsible in front of the

mailto:iripoll@iti.es
mailto:rjuan@iti.es

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 59 of 79

customer of the quality and performances of the software embedded in the units. In addition to this all the
code generated has to undergo an Independent Software Verification and Validation process (ISVV) by a
third party company, typically selected and/or approved by the final customer.

The basic requirements provided by the use case are:

 The brick shall also include an editor and analysis feature that performs the scheduling analysis of a
partitioned system allowing working with incomplete models and allowing modification of the system
incrementally.

 The tool shall generate: a) Textual and graphical information system and generated plan, b)
Generate the XML configuration file (ARINC-653) containing the partition c) Build plans for the tasks
of each partition or scheduling priorities, and d) WCET and CPU budget.

 The tool shall be based on well-established languages and technologies in order to avoid
dependencies on obsolete and/or abandoned solutions that jeopardize its use and maintenance.

 The tool shall accept heterogeneous HW systems (including memory architecture).

 The tool shall be independent of the RTOS and/or the underlying application executive (if any).

 The tool should provide ARINC-653 services configuration.

 The tool should be easy to maintain and provide a long-time period of maintenance.

 The tool shall be able to run at least on Windows systems.

The preliminary IOS requirement coming from this UC is that the tool shall communicate to a test tool the
ARINC-653 services configuration to be tested (or another FDIR / safety tests schema TBD).

3.2.8.3 General improvement

During the CRYSTAL project it will be implemented and provided the basic tool functionality and the IOS

basic required support.

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

3.2.8.4 Integration and interoperability

This brick will be used in the design phase of the V process model of this use case. This phase is done once
a first Requirement Specification has been achieved, and before starting the “Modular Decomposition”
phase.

The definition of Technical Items will be part of the next phase of the project.

TI NAME:

TI_ID CRYSTAL_TI_x
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working
documents:

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 60 of 79

4 Terms, Abbreviations and Definitions

CRYSTAL CRitical SYSTem Enginieering AcceLeration

R Report

P Prototype

D Demonstrator

O Other

PU Public

PP Restricted to other program participants (including the JU).

RE Restricted to a group specified by the consortium (including the JU).

CO Confidential, only for members of the consortium (including the JU).

WP Work Package

SP Subproject

UC Use Case

SoP State of Practice

SoA State of the Art

MBT Model-Based Testing

SME Small and Medium-sized Enterprises

SUT System under Test

MDT Model-Driven Testing

MT Model Transformations

DSML Domain-Specific Modeling Language

DSM Domain-Specific Modeling

UML Unified Modeling Language

M2M Model-to-Model

M2T Model-to-Text

AMMA ATLAS Model Management Architecture

MDA Model Driven Architecture

MDE Model-Driven Engineering

PIM Platform Independent Model

PSM Platform Specific Model

PST Platform Specific Test

TTCN-3 Testing and Test Control Notation version 3

ETCS European Train Control System

CNL Controlled Natural Language

WLTP Worldwide harmonized Light vehicles Test Procedures

ICU Intensive Care Unit

Table 4-1: Terms, Abbreviations, and Definitions

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 61 of 79

5 References

[Utting, 2007] M. Utting, B. Legeard; Practical Model-Based Testing - a Tools Approach; Morgan
Kaufmann Publishers Inc. San Francisco, (2007)

[1020 WG,
1987]

ANSI/IEEE Std 1012-1986; IEEE Standard for Software Verification and Validation
Plans; The Institute of Electrical and Electronics Engineers, Inc., February 10, 1987.

[Dai, 2004] Z. Dai. Model-driven testing with UML 2.0; In Proceedings of the 2nd European
Workshop on Model Driven Architecture, 2004.

[Utting, 2012] M. Utting, A. Pretschner, B. Legeard; A taxonomy of model-based testing; STVR 22:5,
2012.

[Zander, 2011] J. Zander, I. Schieferdecker, and P. J. Mosterman; A Taxonomy of Model-Based
Testing for Embedded Systems; CRC Press, Boca Raton (2011)

[Mussa, 2009] M. Mussa, S. Ouchani, W. Al Sammane, A.Hamou-Lhadj; A Survey of Model-Driven
Testing Techniques; In IEEE Procs. of the 9th International Conference on Quality
Software (QSIC '09), pp.167-172, 2009.

[Nguyen, 2003] H. Q. Nguyen, et al.; Testing Applications on the Web: Test Planning for Internet-Based
Systems; John Wiley & Sons. 2003

[Abran, 2004] A. Abran et al., eds. Guide to the Software Engineering Body of Knowledge; IEEE
Computer Society, 2004

[Linzhang,
2004]

W. Linzhang, Y. Jiesong, Y. Xiaofeng, H. Jun, L. Xuandong, Z. Guoliang; Generating test
cases from UML activity diagram based on Gray-box method; Software Engineering
Conference, 2004. 11th Asia-Pacific , pp.284,291, 30 Nov.-3 Dec. 2004 doi:
10.1109/APSEC.2004.55

[Baharom,
2008]

S. Baharom, Z. Shukur; Module documentation based testing using Grey-Box approach;
Information Technology, 2008. ITSim 2008. International Symposium on , vol.2, pp.1,6,
26-28 Aug. 2008doi: 10.1109/ITSIM.2008.4631651

[Dadeau, 2011] F. Dadeau, F. Peureux; Grey-Box Testing and Verification of Java/JML; Software
Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE Fourth International
Conference on , pp.298,303, 21-25 March 2011 doi: 10.1109/ICSTW.2011.30

[Petrenko,
1995]

A. Petrenko, N. Yevtushenko, and R. Dssouli; Testing Strategies for Communicating
FSMs in Protocol Test Systems; IFIP — The International Federation for Information
Processing, 1995, doi=10.1007/978-0-387-34883-4_13

[Dong, 2009] Y.-W. Dong; G. Wang; H.-B. Zhao; A Model-Based Testing for AADL Model of
Embedded Software; Quality Software, 2009. QSIC '09. 9th International Conference on
, pp.185,190, 24-25 Aug. 2009 doi: 10.1109/QSIC.2009.33

[CENELEC,
2004]

CENELEC, EN50128 - Railway applications, communications, signalling and processing
systems - Software for railway control and protection systems, 2004

[IEC, 1998] IEC, IEC Publication 61508-3, Functional safety of electrical/electronic/programmable
electronic safety-related systems, Part 3: Software requirements, 1998

[De Nicola,
2005]

G. De Nicola, P. di Tommaso, R. Esposito, F. Flammini, P. Marmo, A. Orazzo; A Grey-
Box Approach to the Functional Testing of Complex Automatic Train Protection Systems;
Dependable Computing - EDCC 5, Lecture Notes in Computer Science Volume 3463,
2005, pp 305-317.

[Piper, 2012] T. Piper, S. Winter, P. Manns, N. Suri; Instrumenting AUTOSAR for dependability
assessment: A guidance framework; Dependable Systems and Networks (DSN), 2012
42nd Annual IEEE/IFIP International Conference on , vol., no., pp.1,12, 25-28 June
2012doi: 10.1109/DSN.2012.6263913

[OMG, 2003] Object Management Group; Model driven architecture; V. 1.0.1, 2003

[Mellor, 2003] S.J. Mellor, A.N. Clark, T. Futagami; Model-driven development - Guest editor's
introduction; Software, IEEE , vol.20, no.5, pp.14,18, Sept.-Oct. 2003 doi:
10.1109/MS.2003.1231145

http://dx.doi.org/10.1002/stvr.456

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 62 of 79

[Schmidt, 2006] D.C. Schmidt; Model-driven engineering; IEEE COMPUTER, 39(2):25, 2006.

[Kelly, 2008] S. Kelly and J.-P. Tolvanen; Domain-specific modeling: enabling full code generation;
Wiley-IEEE Computer Society Press, 2008.

[OMG, 2011] Object Management Group; UML2: Unified Modeling Language: Infrastructure and
Superstructure; May 2011. Version 2.4, formal/11-08-05.

[Fuentes, 2004] L. Fuentes-Fern ndez and A. Vallecillo-Moreno; An introduction to UML profiles; UML
and Model Engineering, 2, 2004.

[OMG, 2012] Object Management Group; OCL2: Object Constraint Language; January 2012. Version
2.3, formal/12-01-01.

[Giachetti,
2009]

G. Giachetti, B. Marin, and O. Pastor; Integration of domain-specific modeling languages
and UML through UML profile extension mechanism; International Journal of Computer
Science and Applications, 6(5):145–174, 2009.

[Selic, 2007] B. Selic; A systematic approach to domain-specific language design using UML; In
Object and Component-Oriented Real-Time Distributed Computing, 2007. ISORC’07.
10th IEEE International Symposium on, pages 2–9. IEEE, 2007.

[Jouault, 2006] F. Jouault and I. Kurtev; Transforming models with ATL; In Satellite Events at the
MoDELS 2005 Conference, pages 128–138. Springer, 2006.

[Obeo, 2013] Obeo; Acceleo; http://www.eclipse.org/acceleo

[Myers, 2011] G.J. Myers, C. Sandler, T. Badgett ; The Art of Software Testing; 3rd Edition, Wiley ,
ISBN: 978-1-118-03196-4, December 2011

[Dalal, 1999] S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M. Lott, G.C. Patton; Model-Based
Testing in Practice; Proceeding of ICSE'99 (ACM Press) (Proceedings of ICSE'99 (ACM
Press)), 1999.

[Tretmans,
2003]

J. Tretmans, E. Brinksma; TorX : Automated Model Based Testing; First European
Conference on Model-Driven Software Engineering, 2003: 31-43.

[Gargantini,
1999]

A. Gargantini, C. Heitmeyer; Using model checking to generate tests from requirements
specifications; ESEC/FSE-7 Proceedings of the 7th European software engineering
conference held jointly with the 7th ACM SIGSOFT international symposium on
Foundations of software engineering, 1999: 146-162 .

[Javed, 2007] A.Z. Javed, P.A. Strooper, G.N. Watson; Automated generation of test cases using
model driven architecture; In Proc. of the ICSE 2nd International Workshop on
Automation of Software Test (AST), 2007.

[Mingsong,
2006]

Mingsong C., Xiaokang Q., Xuandong L.; Automatic Test Case Generation from UML
Activity; In Proc. of the International Workshop on Automation of software test, 2006: 2-
8.

[Crichton, 2007] C. Crichton, A. Cavarra, J. Davies;Using UML for Automatic Test Generation; In Proc. of
the Automation of Software Testing, 2007.

[McMinn, 2004] P. McMinn; Search-based software test data generation : a survey; Software testing,
verification and reliability (STVR), 2004: 105-156.

[Tonella, 2004] P., Tonella; Evolutionary testing of classess; ISSTA '04 : proceeding of the 2004 ACM
SIGSOFT international symposium on Software Testing and Analysis, 2004: 119.128.

[Fischer, 1982] K.F., Fischer; A test case selection method for the validation of software maintenance
modification; Proceedings COMPSAC82, 1982: 529-537.

[Mussa, 2009] M. Mussa, S. Ouchani, W. Al Sammane, A. Hamou-Lhadj; A Survey of Model-Driven
Testing Techniques; Quality Software, 2009. QSIC '09. 9th International Conference on

[Sendall 2003] Sendall, S. ; Kozaczynski, W. Model Transformation: the Heart and Soul of Model-Driven
Software Development Software, IEEE (Volume:20 , Issue: 5), Sept.-Oct. 2003

[Tómasson
2013]

H. Tómasson, H. Neukirchen; Distributed testing of cloud computing applications using
the TTCN-3-based Jata test framework; Proceeding NordiCloud '13 Proceedings of the
Second Nordic Symposium on Cloud Computing & Internet echnologies Pages 22-29

[Hecker 2003] R. Heckel, M. Lohmann; Towards Model-Driven Testing; Electronic Notes in Theoretical
Computer Science Volume 82, Issue 6, September 2003, Pages 33–43

[Guelfi, 2008] N. Guelfi, B. Ries; SESAME: A Model-Driven Test Selection Process for Safety-Critical

http://www.eclipse.org/acceleo

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 63 of 79

Embedded Systems; ERCIM News 2008

[Bouquet 2007] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N. Vacelet, and M. Utting; A subset
of precise UML for Model-based Testing; In Proc. of the 3rd International Workshop
Advances in Model Based Testing (AMOST), pp. 95-104, 2007.

[Myers, 1979] G. J. Myers; The Art of Software Testing; Wiley, New York (1979)

[Utting, 2007] M. Utting, B. Legeard; Practical Model-Based Testing - a Tools Approach; Morgan
Kaufmann Publishers Inc. San Francisco, (2007)

[IEEE, 1987] ANSI/IEEE Std 1012-1986; IEEE Standard for Software Verification and Validation
Plans; The Institute of Electrical and Electronics Engineers, Inc., February 10, 1987.

[DAI, 2004] Z. Dai. Model-driven testing with UML 2.0. In Proceedings of the 2nd European
Workshop on Model Driven Architecture, 2004.

[Utting, 2012] M. Utting, A. Pretschner, B. Legeard; A taxonomy of model-based testing; STVR 22:5,
2012.

[Zander, 2011] J. Zander, I. Schieferdecker, and P. J. Mosterman;A Taxonomy of Model-Based Testing
for Embedded Systems (2011)

[Mussa, 2009] M. Mussa, S. Ouchani, W. Al Sammane, A.Hamou-Lhadj; A Survey of Model-Driven
Testing Techniques, In IEEE Procs. of the 9th International Conference on Quality
Software (QSIC '09),pp.167-172, 2009.

[Nguyen, 2003] Nguyen, Hung Q, et al. Testing Applications on the Web: Test Planning for Internet-
Based Systems. John Wiley & Sons. 2003

[Abran, 2004] A.Abran et al., eds. Guide to the Software Engineering Body of Knowledge, IEEE
Computer Society, 2004

[Linzhang,
2004]

Wang Linzhang; Yuan Jiesong; Yu Xiaofeng; Hu Jun; Li Xuandong; ZhengGuoliang,
"Generating test cases from UML activity diagram based on Gray-box method," Software
Engineering Conference, 2004. 11th Asia-Pacific , vol., no., pp.284,291, 30 Nov.-3 Dec.
2004doi: 10.1109/APSEC.2004.55

[Baharom,
2008]

Baharom, S.; Shukur, Z., "Module documentation based testing using Grey-Box
approach," Information Technology, 2008. ITSim 2008. International Symposium on ,
vol.2, no., pp.1,6, 26-28 Aug. 2008doi: 10.1109/ITSIM.2008.4631651

[Dadeau, 2011] Dadeau, F.; Peureux, F., "Grey-Box Testing and Verification of Java/JML," Software
Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE Fourth International
Conference on , vol., no., pp.298,303, 21-25 March 2011doi: 10.1109/ICSTW.2011.30

[Petrenko,
1995]

Petrenko, A. and Yevtushenko, N. and Dssouli, R., Testing Strategies for
Communicating FSMs in Protocol Test Systems,IFIP — The International Federation for
Information Processing, 1995, doi=10.1007/978-0-387-34883-4_13

[Dong, 2009] Yun-wei Dong; Geng Wang; Hong-bing Zhao, "A Model-Based Testing for AADL Model
of Embedded Software," Quality Software, 2009. QSIC '09. 9th International Conference
on , vol., no., pp.185,190, 24-25 Aug. 2009doi: 10.1109/QSIC.2009.33

[CENELEC,
2004]

CENELEC, EN50128 - Railway applicationsCommunications, signalling and processing
systems - Software forrailway control and protection systems, 2004

[IEC, 1998s] IEC, IEC Publication 61508-3, Functional safety
ofelectrical/electronic/programmableelectronic safety-related systems, Part 3: Software
requirements, 1998

[De Nicola,
2005]

Giuseppe De Nicola, Pasquale di Tommaso, Esposito Rosaria, Flammini Francesco,
MarmoPietro, Orazzo Antonio, A Grey-Box Approach to the Functional Testing of
Complex Automatic Train Protection Systems, Dependable Computing - EDCC 5,
Lecture Notes in Computer Science Volume 3463, 2005, pp 305-317

[Piper, 2012] Piper, T.; Winter, S.; Manns, P.; Suri, N., "Instrumenting AUTOSAR for dependability
assessment: A guidance framework," Dependable Systems and Networks (DSN), 2012
42nd Annual IEEE/IFIP International Conference on , vol., no., pp.1,12, 25-28 June
2012doi: 10.1109/DSN.2012.6263913

[S1] S. Arora, A. Gadkari, and S. Ramesh. Scenario-Based Specification of Automotive

Requirements With Quantitative Constraints and Synthesis of SL/SF Monitors.

http://dx.doi.org/10.1002/stvr.456

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 64 of 79

Embedded Systems Letters, IEEE, 3(2):62–65, 2011.

[S2] T. Bauer, T. Beletski, F. Bohr, R. Eschbach, D. Landmann, and J. Poore. From

Requirements to Statistical Testing of Embedded Systems. In Proceedings of Fourth

International Workshop on Software Engineering for Automotive Sys- tems, 2007, pages

3–3. IEEE, 2007.

[S3] J.-L. Boulanger and V. Q. Dao. Requirements engineering in a model-based

methodology for embedded automotive software. In Proceedings of IEEE Inter- national

Conference on Research, Innovation and Vision for the Future, 2008, pages 263–268.

IEEE, 2008.

[S4] F. Bouquet, E. Jaffuel, B. Legeard, F. Peureux, and M. Utting. Requirements traceability

in automated test generation. ACM SIGSOFT Software Engineering Notes, 30(4):1, July

2005.

[S5] M. Cecconi and E. Tronci. Requirements formalization and validation for a

telecommunication equipment protection switcher. In Proceedings of HASE 2000 High

Assurance Systems Engineering, 2000, Fifth IEEE International Symposim on, pages

169–176. IEEE, 2000.

[S6] A. Cimatti, M. Roveri, A. Susi, and S. Tonetta. Validation of requirements for hybrid

systems. ACM Transactions on Software Engineering and Methodology, 21(4):1–34,

Nov. 2012.

[S7] S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D. Hamilton. Experiences

using lightweight formal methods for requirements modeling. Software Engineering,

IEEE Transactions on, 24(1):4–14, 1998.

[S8] A. El-Ansary. Requirements Definition of Safe Software Using the Behavioral Patterns

Analysis (PBA) Approach: The Railroad Crossing System. In Com- putational

Intelligence for Modelling, Control and Automation, 2006 and In- ternational Conference

on Intelligent Agents, Web Technologies and Internet Commerce, International

Conference on, pages 80–80. IEEE, 2006.

[S9] W. Fleisch. Applying use cases for the requirements validation of component-based

real-time software. In Proceedings of 2nd IEEE International Symposium on Object-

Oriented Real-Time Distributed Computing, 1999, pages 75–84. IEEE, 1999.

[S10] B. Fontan, L. Apvrille, P. De Saqui-Sannes, and J.-P. Courtiat. Real-Time and

Embedded System Verification Based on Formal Requirements. In Proceedings of

International Symposium on Industrial Embedded Systems, 2006, pages 1–10. IEEE,

2006.

[S11] R. Grosu, I. Kruger, and T. Stauner. Requirements specification of an automotive system

with hybrid sequence charts. In Proceedings of Fifth International Workshop on Object-

Oriented Real-Time Dependable Systems, 1999, pages 149–151. IEEE, 1999.

[S12] M. P. E. Heimdahl and N. G. Leveson. Completeness and consistency analysis of state-

based requirements. In Proceedings of the 17th international conference on Software

engineering - ICSE ’95, pages 3–14, New York, New York, USA, Apr. 1995. ACM Press.

[S13] C. Heitmeyer, J. Kirby, and B. Labaw. The SCR method for formally specifying, verifying,

and validating requirements. In Proceedings of the 19th international conference on

Software engineering - ICSE ’97, pages 610–611, New York, New York, USA, May

1997. ACM Press.

[S14] X. Jin, A. Donz´e, J. V. Deshmukh, and S. A. Seshia. Mining requirements from closed-

loop control models. In Proceedings of the 16th international conference on Hybrid

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 65 of 79

systems: computation and control - HSCC ’13, page 43, New York, New York, USA, Apr.

2013. ACM Press.

[S15] C. Knieke, M. Huhn, and M. Lochau. Modeling and Validation of Executable

Requirements Using Live Activity Diagrams. In Proceedings of Sixth International

Conference on Software Engineering Research, Management and Applications, 2008,

pages 51–58. IEEE, 2008.

[S16] S. Konrad and B. H. C. Cheng. Requirements patterns for embedded systems. In

Proceedings of IEEE Joint International Conference on Requirements Engi- neering,

2002, pages 127–136. IEEE, 2002.

[S17] J.-S. Lee and S.-D. Cha. Behavior verification of hybrid real-time requirements by

qualitative formalism. In Proceedings., Fourth International Workshop on Real-Time

Computing Systems and Applications, 1997, pages 127–134. IEEE, 1997.

[S18] K.-H. Lee, P.-G. Min, J.-H. Cho, and D.-J. Lim. Model-driven requirements validation for

automotive embedded software using UML. In Computing Technology and Information

Management (ICCM), 2012 8th International Conference on, pages 46–50. IEEE, 2012.

[S19] R. Löffler, M. Meyer, and M. Gottschalk. Formal scenario-based requirements

specification and test case generation in healthcare applications. In Proceedings of the

2010 ICSE Workshop on Software Engineering in Health Care - SEHC ’10, pages 57–

67, New York, New York, USA, May 2010. ACM Press.

[S20] F. Mallet, M.-A. Peraldi-Frati, and C. Andre. Marte CCSL to Execute East-ADL Timing

Requirements. In Proceedings of IEEE International Symposium on

Object/Component/Service-Oriented Real-Time Distributed Computing, 2009, pages

249–253. IEEE, 2009.

[S21] F. Merz, C. Sinz, H. Post, T. Gorges, and T. Kropf. Abstract Testing: Connecting Source

Code Verification with Requirements. In Quality of Information and Communications

Technology (QUATIC), 2010 Seventh International Conference on the, pages 89–96.

IEEE, 2010.

[S22] E. Nasr, J. McDermid, and G. Bernat. Eliciting and specifying requirements with use

cases for embedded systems. In Proceedings of the Seventh International Workshop on

Object-Oriented Real-Time Dependable Systems, 2002, pages 350–357. IEEE, 2002.

[S23] A. Post, J. Hoenicke, and A. Podelski. Vacuous real-time requirements. In Requirements

Engineering Conference (RE), 2011 19th IEEE International, pages 153–162. IEEE,

2011.

[S24] H. Post, C. Sinz, F. Merz, T. Gorges, and T. Kropf. Linking Functional Requirements

and Software Verification. In Proceedings of 17th IEEE International Requirements

Engineering Conference, 2009, pages 295–302. IEEE, 2009.

[S25] F. Schneider, S. Easterbrook, J. Callahan, and G. Holzmann. Validating requirements for

fault tolerant systems using model checking. In Proceedings of 1998 Third International

Conference on Requirements Engineering, 1998, pages 4–13. IEEE, 1998.

[S26] P. Shaker. Feature-oriented requirements modelling. In Software Engineering, 2010

ACM/IEEE 32nd International Conference on, pages 365–368. IEEE, 2010. [S27] S.

Siegl, K.-S. Hielscher, and R. German. Model Based Requirements Analysis and Testing

of Automotive Systems with Timed Usage Models. In Requirements Engineering

Conference (RE), 2010 18th IEEE International, pages 345–350. IEEE, 2010.

[S27] S. Siegl, K.-S. Hielscher, and R. German. Model Based Requirements Analysis and
Testing of Automotive Systems with Timed Usage Models. In Requirements Engineering
Conference (RE), 2010 18th IEEE International, pages 345-350. IEEE, 2010.

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 66 of 79

[S28] S. Siegl, K.-S. Hielscher, R. German, and C. Berger. Automated testing of embedded

automotive systems from requirement specification models. In Test Workshop (LATW),

2011 12th Latin American, pages 1–6. IEEE, 2011.

[S29] M. Winokur, J. Lavi, I. Lavi, and R. Oz. Requirements analysis and specification of

embedded systems using ESCAM-a case study. In Proceedings of the 1990 IEEE

International Conference on Computer Systems and Software Engineering CompEuro

’90, pages 80–89. IEEE, 1990.

[S30] S. Zafar and R. Dromey. Integrating safety and security requirements into design of an

embedded system. In Proceedings of 12th Asia-Pacific Software Engineer- ing

Conference, 2005, page 8 pp. IEEE, 2005.

[Daramola,
2012]

Daramola O., Sindre G., Stalhane T.; Pattern-Based Security Requirements
Specification Using Ontologies and Boilerplates, IEEE International Workshop on
Requirements Patterns, pp. 54-59, 2012

[Denger, 2003] Denger C., Berry D., Kamsties E.; Higher Quality Requirements Specifications through
Natural Language Patterns, In: Proc. of IEEE Conference on Software-Science,
Technology & Engineering, pp. 80-91, 2003

[Farfeleder,
2011a]

Farfeleder S., Moser T., Krall A., Stahlhane T., Zojer H., Panis C.; DODT: Increasing
requirements formalism using domain ontologies for improved embedded systems
development; In 14

th
 IEEE Symposium on DDECS, pp. 1-4, 2011

[Farfeleder,
2011b]

Farfeleder S., Moser T., Krall A., Stahlhane T., Omoronyia I., Zojer H.; Ontology-Driven
Guidance for Requirements Elicitation; In Proc. 8

th
 ESWC, vol. 6644, pp. 212.226, 2011

[Hull, 2011] Hull E., Jackson K., Dick J.; Requirements Engineering; Springer, 2011

[Holtmann,
2010]

Holtmann J.; Mit Satzmustern von textuellen Anforderungen zu Modellen; OBJEKT-
spektrum RE/2010, 2010

[Holtmann,

2011]

Holtmann J., Meyer J., von Detten M.; Automatic Validation and Correction of

Formalized, Textual Requirements, In: Proc. of 4
th
 IEEE Conference on Software

Testing, pp. 486-495, 2011

[Reinkemeier,

2011]

Reinkemeier P., Stierand I., Rehkop P., Henkler S.; A pattern-based requirement

specification language: Mapping automotive specific timing requirements; In: Proc. of

Software Engineering 2011, Lecture Notes in Informatics, pp.99-108; 2011

[Videira, 2005] Videira C., Rodrigues Da Silva A.; Patterns and metamodel for a natural-language-based

requirements specification language, In Proc. CaiSE’05, pp. 189-194, 2005

[Yue, 2011] Yue T., Briand L. C., Labiche Y.; A systematic review of transformation approaches

between user requirements and analysis models, In Requirements Engineering 16, pp.

75-99, Springer, 2011

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 67 of 79

6 Annex

6.1 Annex I: Survey questions

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 68 of 79

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 69 of 79

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 70 of 79

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 71 of 79

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 72 of 79

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 73 of 79

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 74 of 79

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 75 of 79

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 76 of 79

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 77 of 79

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 78 of 79

D603.011

Version Nature Date Page

V2.00 R 2014-01-30 79 of 79

