
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE CRYSTAL CONSORTIUM. NEITHER THIS
DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED BY ANY
MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE CESAR
CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE
RESEARCH LEADING TO THESE RESULTS HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S SEVENTH
FRAMEWORK PROGRAM (FP7/2007-2013) FOR CRYSTAL – CRITICAL SYSTEM ENGINEERING ACCELERATION JOINT
UNDERTAKING UNDER GRANT AGREEMENT N° 332830 AND FROM SPECIFIC NATIONAL PROGRAMS AND / OR FUNDING
AUTHORITIES.

CRitical SYSTem Engineering AcceLeration

Specification, Development and Assessment for Safety
Engineering - V1

D604.011

D604.011
Specification, Development
and Assessment for Safety

Engineering - V1

Version Nature Date Page

V1.0 P 2014-02-07 2 of 125

DOCUMENT INFORMATION

Project CRYSTAL

Grant Agreement No. ARTEMIS-2012-1-332830

Deliverable Title Specification, Development and Assessment for Safety Engineering - V1

Deliverable No. D604.011

Dissemination Level CO

Nature P

Document Version V1.00

Date 2014-02-07

Contact Rupert Schlick

Organization AIT

Phone +43 50 550 – 4124

E-Mail rupert.schlick@ait.ac.at

mailto:rupert.schlick@ait.ac.at

D604.011
Specification, Development
and Assessment for Safety

Engineering - V1

Version Nature Date Page

V1.0 P 2014-02-07 3 of 125

AUTHORS TABLE

Name Company E-Mail

Rupert Schlick AIT rupert.schlick@ait.ac.at

Thomas Gruber AIT thomas.gruber@ait.ac.at

Egbert Althammer AIT egbert.althammer@ait.ac.at

Frédérique Vallée All4Tec frederique.vallee@all4tec.net

Elie Soubiran ALSTOM Elie.Soubiran@transport.alstom.com

Vidal-delmas Tchapet-Nya ALSTOM
vidal-delmas.tchapet-nya-
ext@transport.alstom.com

Andreas Mitschke EADS IW G Andreas.Mitschke@eads.net

Marco Bozzano FBK bozzano@fbk.eu

Stefano Tonetta FBK tonettas@fbk.eu

Soeren Kemmann Fraunhofer IESE Soeren.Kemmann@iese.fraunhofer.de

Santiago Velasco Fraunhofer IESE santiago.velasco@iese.fraunhofer.de

Maria del Carmen Lomba Sorrondegui GMV mclomba@gmv.com

Elena Alaña GMV ealana@gmv.com

Serrie Chapman Infineon UK serrie.chapman@infineon.com

Aleksander Lodwich ITK Engineering aleksander.lodwich@itk-engineering.de

Daniel Sauter ITK Engineering daniel.sauter@itk-engineering.de

Jiri Barnat MU barnat@fi.muni.cz

Susana Pérez Sanchez Tecnalia susana.perezsanchez@tecnalia.com

mailto:rupert.schlick@ait.ac.at
mailto:thomas.gruber@ait.ac.at
mailto:egbert.althammer@ait.ac.at
mailto:frederique.vallee@all4tec.net
mailto:Elie.Soubiran@transport.alstom.com
mailto:vidal-delmas.tchapet-nya-ext@transport.alstom.com
mailto:vidal-delmas.tchapet-nya-ext@transport.alstom.com
mailto:Andreas.Mitschke@eads.net
mailto:bozzano@fbk.eu
mailto:tonettas@fbk.eu
mailto:Soeren.Kemmann@iese.fraunhofer.de
mailto:santiago.velasco@iese.fraunhofer.de
mailto:mclomba@gmv.com
mailto:ealana@gmv.com
mailto:serrie.chapman@infineon.com
mailto:aleksander.lodwich@itk-engineering.de
mailto:daniel.sauter@itk-engineering.de
mailto:barnat@fi.muni.cz
mailto:susana.perezsanchez@tecnalia.com

D604.011
Specification, Development
and Assessment for Safety

Engineering - V1

Version Nature Date Page

V1.0 P 2014-02-07 4 of 125

CHANGE HISTORY

Version Date Reason for Change
Pages
Affected

0.01 05.11.2013 Initial document structure All

0.02 10.12.2013
Initial inputs from AIT, All4Tec, Alstom, FBK, GMV, ITKE,
MU, IESE, Tecnalia; integration/consolidation

All

0.03 02.01.2014
Integrated updates, consolidated layout, ready for WP
internal review

All

0.04 14.01.2014 ITKE input merged, review remarks for the whole document All

0.05 20.01.2014
Integrated EADS and IESE input and responses to review
remarks from WP internal review

All

0.06 05.02.2014
Integrated responses to review remarks from WP external
review

All

1.00 06.02.2014 Finalization (Layout etc.) All

D604.011
Specification, Development
and Assessment for Safety

Engineering - V1

Version Nature Date Page

V1.0 P 2014-02-07 5 of 125

CONTENT

1 INTRODUCTION .. 12

1.1 ROLE OF DELIVERABLE ... 12
1.2 OVERVIEW OF THE WORK PACKAGE .. 12
1.3 RELATIONSHIP TO OTHER CRYSTAL DOCUMENTS .. 14
1.4 STRUCTURE OF THIS DOCUMENT ... 14

2 WEFACT ... 16

2.1 OVERVIEW .. 16
2.1.1 General Description ... 16
2.1.2 Related Use Cases .. 17

2.2 SPECIFICATION ... 18
2.2.1 Requirements from the UCs ... 18
2.2.2 How will this brick be integrated in the UC ... 19
2.2.3 Requirements fulfilled by initial tool/method version ... 20
2.2.4 What will be implemented/provided in the CRYSTAL project ... 20

2.3 IMPLEMENTATION/ELABORATION.. 21
2.4 EVALUATION .. 21

3 MB RAMS ... 22

3.1 OVERVIEW .. 22
3.1.1 General Description ... 22
3.1.2 Related Use Cases .. 23

3.2 SPECIFICATION ... 23
3.2.1 Requirements from the UCs ... 23
3.2.2 How will this brick be integrated in the UC ... 24
3.2.3 Requirements fulfilled by initial tool/method version ... 25
3.2.4 What will be implemented/provided in the CRYSTAL project ... 25

3.3 IMPLEMENTATION/ELABORATION.. 28
3.4 EVALUATION .. 28

4 MOMUT::UML .. 29

4.1 OVERVIEW .. 29
4.1.1 General Description ... 29
4.1.2 Related Use Cases .. 32

4.2 SPECIFICATION ... 33
4.2.1 Requirements from the UCs ... 33
4.2.2 How will this brick be integrated in the UC ... 35
4.2.3 Requirements fulfilled by initial tool/method version ... 35
4.2.4 What will be implemented/provided in the CRYSTAL project ... 35

4.3 IMPLEMENTATION/ELABORATION.. 37
4.4 EVALUATION .. 38

5 MOMUT::SCADE ... 39

5.1 OVERVIEW .. 39
5.1.1 General Description ... 39
5.1.2 Related Use cases ... 39

5.2 SPECIFICATION ... 39
5.2.1 Requirements from the UCs ... 39
5.2.2 How will this brick be integrated in the UC ... 39
5.2.3 Requirements fulfilled by initial tool/method version ... 40

D604.011
Specification, Development
and Assessment for Safety

Engineering - V1

Version Nature Date Page

V1.0 P 2014-02-07 6 of 125

5.2.4 What will be implemented/provided in the CRYSTAL project ... 40
5.3 IMPLEMENTATION/ELABORATION.. 41
5.4 EVALUATION .. 41

6 FT+ BRICK INTEGRATION INTO RATIONAL RHAPSODY ... 42

6.1 OVERVIEW .. 42
6.1.1 General Description ... 42
6.1.2 Related Use cases ... 42

6.2 SPECIFICATION ... 42
6.2.1 Requirements from the UCs ... 42
6.2.2 How will this brick be integrated in the UC ... 44
6.2.3 Requirements fulfilled by initial tool/method version ... 50
6.2.4 What will be implemented/provided in the CRYSTAL project ... 50

6.3 IMPLEMENTATION/ELABORATION.. 50
6.4 EVALUATION .. 51

7 NUSMV .. 52

7.1 OVERVIEW .. 52
7.1.1 General Description ... 52
7.1.2 Related Use cases ... 52

7.2 SPECIFICATION ... 53
7.2.1 Requirements from the UCs ... 53
7.2.2 How will this brick be integrated in the UC ... 54
7.2.3 Requirements fulfilled by initial tool/method version ... 56
7.2.4 What will be implemented/provided in the CRYSTAL project ... 56

7.3 IMPLEMENTATION/ELABORATION.. 57
7.4 EVALUATION .. 57

8 C²FT ... 58

8.1 OVERVIEW .. 58
8.1.1 General Description ... 58
8.1.2 Related Use cases ... 58

8.2 SPECIFICATION ... 59
8.2.1 Requirements from the UCs ... 59
8.2.2 How will this brick be integrated in the UC ... 59
8.2.3 Requirements fulfilled by initial tool/method version ... 59
8.2.4 What will be implemented/provided in the CRYSTAL project ... 60

8.3 IMPLEMENTATION/ELABORATION.. 61
8.4 EVALUATION .. 61

9 SAFETY FOR AVIONIC DESIGN AND ANALYSIS FRAMEWORK .. 62

9.1 OVERVIEW .. 62
9.1.1 General Description ... 62
9.1.2 Related Use cases ... 62

9.2 SPECIFICATION ... 63
9.2.1 Requirements from the UCs ... 63
9.2.2 How will this brick be integrated in the UC ... 67
9.2.3 Requirements fulfilled by initial tool/method version ... 67
9.2.4 What will be implemented/provided in the CRYSTAL project ... 67

9.3 IMPLEMENTATION/ELABORATION.. 67
9.4 EVALUATION .. 67

10 CLAIMS LANGUAGE BOILERPLATE .. 68

10.1 OVERVIEW .. 68

D604.011
Specification, Development
and Assessment for Safety

Engineering - V1

Version Nature Date Page

V1.0 P 2014-02-07 7 of 125

10.1.1 General Description ... 68
10.1.2 Related Use cases ... 68

10.2 SPECIFICATION ... 69
10.2.1 Requirements from the UCs ... 69
10.2.2 How will this brick be integrated in the UC ... 70
10.2.3 Requirements fulfilled by initial tool/method version ... 71
10.2.4 What will be implemented/provided in the CRYSTAL project ... 71

10.3 IMPLEMENTATION/ELABORATION.. 71
10.4 EVALUATION .. 71

11 DAD DATA ANALYSER DASHBOARD .. 72

11.1 OVERVIEW .. 72
11.1.1 General Description ... 72
11.1.2 Related Use cases ... 72

11.2 SPECIFICATION ... 72
11.2.1 Requirements from the UCs ... 72
11.2.2 How will this brick be integrated in the UC ... 73
11.2.3 Requirements fulfilled by initial tool/method version ... 74
11.2.4 What will be implemented/provided in the CRYSTAL project ... 74

11.3 IMPLEMENTATION .. 75
11.4 EVALUATION .. 75

12 RECOMMENDED METHODOLOGY ACCORDING ISO 26262 .. 76

12.1 OVERVIEW .. 76
12.1.1 General Description ... 76
12.1.2 Related Use Cases .. 78

12.2 SPECIFICATION ... 78
12.3 IMPLEMENTATION .. 78
12.4 EVALUATION .. 78

13 RISK ASSESSMENT AND HAZARD ANALYSIS.. 79

13.1 OVERVIEW .. 79
13.1.1 General Description ... 79
13.1.2 Related Use Cases .. 80

13.2 SPECIFICATION ... 80
13.3 IMPLEMENTATION .. 80
13.4 EVALUATION .. 81

14 FTA, FMEA AND FMEDA (ITKE) ... 82

14.1 OVERVIEW .. 82
14.1.1 General Description ... 82
14.1.2 Related Use Cases .. 82

14.2 SPECIFICATION ... 83
14.2.1 Requirements from the UC ... 83

14.3 IMPLEMENTATION .. 86
14.4 EVALUATION .. 86

15 FEATURE DOCUMENTATION IN MODEL BASED SOFTWARE .. 87

15.1 OVERVIEW .. 87
15.2 SPECIFICATION ... 88
15.3 IMPLEMENTATION .. 88
15.4 EVALUATION .. 88

16 ISOGRAPH FAULTTREE+ .. 89

D604.011
Specification, Development
and Assessment for Safety

Engineering - V1

Version Nature Date Page

V1.0 P 2014-02-07 8 of 125

16.1 OVERVIEW .. 89
16.2 SPECIFICATION ... 89
16.3 IMPLEMENTATION .. 89
16.4 EVALUATION .. 89

17 SAFETY ARCHITECT (ALL4TEC) ... 90

17.1 OVERVIEW .. 90
17.1.1 General Description ... 90
17.1.2 Related Use cases ... 91

17.2 SPECIFICATION ... 91
17.2.1 Requirements from the UCs ... 91
17.2.2 How will this brick be integrated in the UC ... 93
17.2.3 Global process .. 94
17.2.4 Requirements fulfilled by initial tool/method version ... 98
17.2.5 What will be implemented/provided in the CRYSTAL project ... 98

17.3 IMPLEMENTATION/ELABORATION.. 102
17.4 EVALUATION .. 102

18 MU SAFETY ANALYSIS TOOL (MUSAT) .. 103

18.1 OVERVIEW .. 103
18.1.1 General Description ... 103
18.1.2 Related Use cases ... 103

18.2 SPECIFICATION ... 104
18.2.1 Requirements from the UCs ... 104
18.2.2 How will this brick be integrated in the UC ... 104
18.2.3 Requirements fulfilled by initial tool/method version ... 104
18.2.4 What will be implemented/provided in the CRYSTAL project ... 104

18.3 IMPLEMENTATION/ELABORATION.. 105
18.4 EVALUATION .. 105

19 SAFETY-ANALYSIS FOR AEROSPACE (ESA STANDARDS) ... 106

19.1 OVERVIEW .. 106
19.1.1 General Description ... 106
19.1.2 Related Use cases ... 111

19.2 SPECIFICATION ... 112
19.2.1 Requirements from the UCs ... 112
19.2.2 How will this brick be integrated in the UC ... 113
19.2.3 Requirements fulfilled by initial tool/method version ... 113
19.2.4 What will be implemented/provided in the CRYSTAL project ... 114

19.3 IMPLEMENTATION/ELABORATION.. 114
19.4 EVALUATION .. 114

20 AUTONOMOUS FAULT TOLERANT SYSTEM DESIGN METHODOLOGY (AFTS DM)................... 115

20.1 OVERVIEW .. 115
20.1.1 General Description ... 115
20.1.2 Related Use cases ... 118

20.2 SPECIFICATION ... 118
20.2.1 Requirements from the UCs ... 118
20.2.2 How will this brick be integrated in the UC ... 119
20.2.3 Requirements fulfilled by initial tool/method version ... 120
20.2.4 What will be implemented/provided in the CRYSTAL project ... 120

20.3 IMPLEMENTATION/ELABORATION.. 121
20.4 EVALUATION .. 121

21 SUMMARY .. 122

D604.011
Specification, Development
and Assessment for Safety

Engineering - V1

Version Nature Date Page

V1.0 P 2014-02-07 9 of 125

22 TERMS, ABBREVIATIONS AND DEFINITIONS ... 123

23 REFERENCES ... 125

D604.011
Specification, Development
and Assessment for Safety

Engineering - V1

Version Nature Date Page

V1.0 P 2014-02-07 10 of 125

List of Figures

Figure 2-1: Overall organization of the WEFACT framework ... 16
Figure 2-2: Dependencies of V&V management on other artefacts ... 17
Figure 2-3: Processing of a V&V activity in WEFACT .. 19
Figure 3-1: Data Flow for MB-RAMS activities ... 25
Figure 4-1: Mutation-based test case generation is at the heart of MoMuT::UML ... 30
Figure 4-2: Usage variants of mutation-based TCG tools .. 30
Figure 4-3: Screenshot of the MoMuT::UML tool ... 31
Figure 4-4: Automatic test case generation and related data flows ... 32
Figure 7-1: Failure Conditions retrieval. ... 54
Figure 7-2: NuSMV invocation. ... 55
Figure 7-3: Failure Components are sent back. ... 55
Figure 7-4: Generation of Fault Trees. ... 56
Figure 8-1: C

2
FT ... 59

Figure 8-2: Open Safety Model (OSM) ... 60
Figure 9-1: Avionic Design and Analysis Framework ... 63
Figure 9-2: Core of Avionic Design and Analysis Framework .. 64
Figure 9-3: Possible extensions of the Safety for Avionic Design and Analysis Framework 65
Figure 9-4: Extension of the framework to cover UC2.1b .. 66
Figure 10-1: Quality gateway .. 69
Figure 10-2: DODT ... 69
Figure 10-3: Manual Quality flow to be replaced .. 70
Figure 14-1. Example of an X-ray system developed in use-case 4.2 ... 83
Figure 14-2: Overview of interrelations between parts of the safety risk management process. 84
Figure 17-1 Relations between the requirements management process and design modelling process 93
Figure 17-2 Requirements analysis process .. 95
Figure 19-1: ECSS standards hierarchy ... 107
Figure 20-1: Partial Reconfiguration concept ... 116
Figure 20-2: Software engineering process.. 120
Figure 20-3: Dual-FPGA board potential lay-out .. 121

D604.011
Specification, Development
and Assessment for Safety

Engineering - V1

Version Nature Date Page

V1.0 P 2014-02-07 11 of 125

List of Tables

Table 1-1: Bricks Overview ... 14
Table 1-2: Related Deliverables ... 14
Table 2-1: UC5.2 requirements addressed by WEFACT ... 19
Table 2-2: UC5.2 requirements already fulfilled by current WEFACT version ... 20
Table 2-3: General improvement requirements for WEFACT .. 20
Table 2-4: Interoperability and integration requirements for WEFACT .. 21
Table 3-1: UC5.2 requirements addressed by MB RAMS .. 24
Table 3-2: General improvement requirements for MB RAMS... 27
Table 3-3: Interoperability and integration requirements for MB RAMS ... 28
Table 4-1: UC5.2 requirements addressed by MoMuT::UML... 34
Table 4-2: Requirements already fulfilled by current MoMuT::UML version .. 35
Table 4-3: General improvement requirements for MoMuT::UML.. 36
Table 4-4: Interoperability/Integration requirements for MoMuT::UML .. 37
Table 5-1: UC5.2 requirements fulfilled by current MoMuT::SCADE version .. 40
Table 5-2: General improvement requirements for MoMuT::SCADE ... 40
Table 5-3: Interoperability and integration requirements for MoMuT::SCADE ... 41
Table 17-1 System analysis process .. 96
Table 17-2 Safety analysis process .. 97
Table 17-3 Hazard log .. 98
Table 17-4 SHA format in Safety Architect ... 101
Table 19-1: Software criticality categories .. 109
Table 19-2: Criticality classification (extracted from ECSS-Q-ST-40C) ... 109
Table 19-3: SFMEA template ... 113
Table 22-1: Terms, Abbreviations and Definitions ... 124

D604.011
Specification, Development
and Assessment for Safety

Engineering - V1

Version Nature Date Page

V1.0 P 2014-02-07 12 of 125

1 Introduction

1.1 Role of deliverable

In this deliverable, all bricks are documented that are developed in the work package WP6.4 “Tools for
Safety Engineering”. There will be three iterations of the deliverable corresponding to the milestones of the
CRYSTAL project. Therefore the brick documentations in this document represent an evolutionary process
of continuous development and enhancement of the CRYSTAL solutions.

The final iteration of the deliverable will contain the specification, development, and use case independent
assessment of all bricks of the work package. This first iteration only contains the initial specifications for the
bricks. In the next iteration, there will also be work related to commonalities of and synergies between the
bricks, especially related to the interoperability aspects.

1.2 Overview of the Work Package

As all the CRYSTAL work packages 6.3-6.13, the purpose of this work package is to develop general
improvements and interoperability extensions for a group of CRYSTAL bricks. The bricks collected in this
work package are either directly targeting steps in the safety process (methods and tools) or support the
verification and validation of systems with a focus on safety critical systems (e.g. because the increased
effort can only be argued for mission or safety critical systems).
The respective CRYSTAL main objective is to provide tools and methods for safety analysis and early safety
validation of systems and their components. These methods and tools are prepared for the integration into
the RTP and for the use in the CRYSTAL use cases.
The work package supports cost-effective and standards-compliant cross-domain re-use of components for
safety-relevant systems. The innovations from the bricks shall support incremental cross-domain safety
certification for whole systems and their components satisfying the system dependability requirements
common to safety standards like DO 178B, DO 178C, DO 254, ARP4754, ARP4761, EN 50126-1, EN
50128, EN 50129, IEC 61508, ISO 26262, or the ESA standard ECSS-Q-ST-30C.
The final result of WP6.4 is to provide innovative and efficient methods and tools integrated in the RTP,
which are ready for demonstration in the respective use cases and subsequent industrial application in
production environments.
Table 1-1 on the next page lists the bricks of the work package and the respective use cases they are
applied in. The bricks can be grouped into categories as follows:

 Safety methodology (6 Bricks): general and safety standard specific procedures and methods for
managing safety

 Safety analysis tools (6 Bricks): tools explicitly addressing support for manual safety analysis

 Safety requirements engineering (1 Brick): expressing/formalizing safety requirements

 Verification management (2 Bricks): planning, execution and result analysis of verification tasks

 Test case generators (2 Bricks): model based test case generation, automatically deriving tests from
test or implementation models

 Safety analysis automation and verification (2 Bricks): tools for automated derivation and automated
verification of safety requirements

D604.011
Specification, Development
and Assessment for Safety

Engineering - V1

Version Nature Date Page

V1.0 P 2014-02-07 13 of 125

 Use Cases (names shortened)

U
C

2
.1

E

n
v
ir

o
n

m
e
n

ta
l
C

o
n

tr
o

l
S

y
s
te

m
s

U
C

2
.3

M

is
s
io

n
 S

u
p
p
o
rt

 E
q
u
ip

m
e

n
t

U
C

2
.5

S

p
a
c
e
 T

o
o
ls

e
t

a
p
p
lie

d
 t

o
 A

v
io

n
ic

s
 E

C
U

U
C

2
.6

M

u
lt
i-
M

o
d
e
 N

a
v
ig

a
ti
o

n
 S

y
s
te

m

U
C

2
.8

 P

u
b
lic

 U
s
e
 C

a
s
e
 A

E
R

O
S

P
A

C
E

U
C

3
.1

 F
u

n
c
ti
o

n
 d

e
v
e
lo

p
m

e
n
t
fo

r
h
e
a
v
y
 v

e
h
ic

le
s

U
C

3
.2

S

a
fe

ty
 r

e
la

te
d
 a

s
s
is

ta
n
c
e
 s

y
s
te

m

U
C

3
.3

F

u
n
c
ti
o

n
a
l
p
o
w

e
r

tr
a
in

 d
e
v
e
lo

p
m

e
n
t

U
C

4
.2

S

a
fe

ty
 l
a

y
e
r

o
f

in
te

rv
e
n
ti
o

n
a
l
X

-r
a
y
 s

y
s
te

m

U
C

5
.1

E

R
T

M
S

/E
T

C
S

 I
n
te

ro
p
e
ra

b
le

 t
e
s
ti
n

g

U
C

 5
.2

In

te
g
ra

te
d
 m

o
d
e
lli

n
g
 o

f
T

A
S

 P
la

tf
o
rm

U
C

5
.3

T

ra
c
ti
o

n
 S

y
s
te

m
s

Task
1
 Brick ID

2
 Brick Name Provider

 Safety methodology

6.4.20 B2.53
Safety-analysis for
Aerospace (ESA
Standards)

GMV X

6.4.21 B2.54
Autonomous Fault Tolerant
System Design
Methodology (AFTS DM)

Tecnalia X

6.4.12 B3.04
Recommended
methodology according
ISO26262

ITKE X X

6.4.13 B3.05
Risk assessment and
hazard analysis

ITKE X X

6.4.14 B3.06 FTA, FMEA and FMEDA ITKE X

6.4.16 B3.10
Feature documentation in
model based software

ITKE X

 Safety analysis tools

6.4.5 B2.22
FT+ brick integration into
Rational Rhapsody

EADS
IW-G

 X

6.4.17 B3.55 Isograph FaultTree+ ITKE X

6.4.2 B5.6 MB RAMS AIT X

6.4.18 B5.10 SAFETY ARCHITECT ALL4TEC X

6.4.7 B3.97 C²FT
FhG
IESE

 X

6.4.9 B2.41
Safety for Avionic Design
and Analysis Framework

EADS
IW-G

X

 Safety requirements engineering

6.4.10 (B3.99)
Claims Language
Boilerplate

IFX-UK X

 Verification management

6.4.11 B3.91a
DaD - Data Analyser
Dashboard

IFX-UK X

6.4.1 B5.9 WEFACT AIT X X

 Test case generation

6.4.4 B5.7 MoMuT::SCADE
3
 AIT

6.4.3 B5.8 MoMuT::UML AIT X X X

 Safety analysis automation and verification

6.4.6 B2.43 NuSMV FBK X X

6.4.19 B2.52 MU Safety Analysis Tool MU X

1
 Bricks are sorted by task number in this document, starting with task 6.4.1 – WEFACT in section 2

2
 Brick IDs as used in the CRYSTAL project proposal and description of work documents

3
 MoMuT::SCADE lost its use case and will either be dropped or assigned to a yet to find other use case.

D604.011
Specification, Development
and Assessment for Safety

Engineering - V1

Version Nature Date Page

V1.0 P 2014-02-07 14 of 125

Table 1-1: Bricks Overview

1.3 Relationship to other CRYSTAL Documents

The specifications in this deliverable build on the use case specifications for the use cases where the bricks
are applied. These are documented in the following deliverables:

Use Case Deliverable

Deliverable Name

UC2.1 Airbus Environmental
Control Systems

D201.011 ECS Use Case description and derived
requirements - V1

UC2.3 Mission Support Equipment D203.011 MSE Report - V1

UC2.5 CRYSTAL Space Toolset
applied to Avionics Control Unit

D205.010 Space Use Case Requirements

UC2.6 Multi-Mode Navigation
System

D206.010 Multi-Mode Navigation System Analysis,
Development Needs, and the Proposed Tool-
Chain Functionality

UC2.8 Public Use Case
AEROSPACE

D208.010 CRYSTAL aerospace use case description

UC3.1 Function development for
heavy vehicles

D301.010 Use case definition

UC3.2 Development of a safety
related assistance system

D302.011 Milestone Report - V1

UC3.3 Functional power train
architecture & control development

D303.011 Milestone Report - V1

UC4.2 Safety layer of an
interventional X-ray system

D402.010 Use Case definition

UC5.1ERTMS/ETCS Interoperable
testing

D501.020 Use Case Requirements Specifications

UC 5.2 Integrated modelling of
core algorithms in TAS Contol
Platform

D502.010 Use case definition

UC5.3 Traction Systems D503.010 Use case definition

Table 1-2: Related Deliverables

The deliverables documenting the building and assessment of the SEE (System Engineering Environment)
for use cases UC2.1, UC2.3, UC2.5, UC2.6, UC2.8, UC3.1, UC3.2, UC3.3, UC4.2, UC5.1, UC5.2, UC5.3 will
probably refer back to the iterations of this document.

1.4 Structure of this document

In the following, each brick is presented in a separate chapter. In later iterations, the safety related concepts
and aspects shared across bricks will be further harmonized and discussed in an own chapter.
The brick chapters are structured as follows:

X.1 Overview
X.1.1 General Description

 Use and features of the Brick
X.1.2 Related Use Cases

 Use cases where the Brick is applied and (short) role of the brick

X.2 Specification

D604.011
Specification, Development
and Assessment for Safety

Engineering - V1

Version Nature Date Page

V1.0 P 2014-02-07 15 of 125

X.2.1 Requirements from the Use Cases

 User requirements per originating use case

X.2.2 How will this brick be integrated in the UC

 Detailed interaction of the brick in the use case
X.2.3 Requirements already fulfilled by pre-existing tool/method version

 In case that the brick is not new, a list of requirements from the use cases already
fulfilled by the pre-existing brick.

X.2.4 What will be implemented/provided in the CRYSTAL project
X.2.4.1 General Improvements/Features

 Requirements regarding new and improved general functionality/methodology properties

X.2.4.2 Integration/Interoperability

 Requirements regarding integration and interoperation of the brick with other bricks and
existing development environments and processes.

X.3 Implementation/Elaboration

 To be filled and sub-structured in future iterations

X.4 Evaluation

 To be filled and sub-structured in future iterations

The document is concluded by a short summary section.

D604.011
Specification, Development
and Assessment for Safety

Engineering - V1

Version Nature Date Page

V1.0 P 2014-02-07 16 of 125

2 WEFACT

Provider: AIT

Task #: T6.4.1

Brick #: B5.9

Category: Verification management

2.1 Overview

2.1.1 General Description

WEFACT is a workflow-oriented tool controlling validation, verification and certification processes of critical
systems and components as a basis for automated safety cases. Using IBM Rational Doors requirements
management, WEFACT connects V&V tools and artifacts to be validated or certified with flexible
instantiations of generic validation plans for the individual standards and safety integrity levels (in CRYSTAL
for standards EN 50128, EN 50129 and ISO26262). The “Workflow Engine for Analysis, Certification and
Test” (WEFACT) has the goal to facilitate validation, verification and certification of safety-critical systems in
a modular manner.

WEFACT consists of the WEFACT framework which provides a flexible infrastructure for defining and
executing the V&V process and the external resources – external processes, tools and standards – which
are integrated into the WEFACT framework by well-defined interfaces. Additionally, an extensive on-line user
guide (“help file”) including a v-plan cook book (“How to develop a v-plan”) is available.

Figure 2-1: Overall organization of the WEFACT framework

The overall organization of the WEFACT framework is shown in Figure 2-1. The blue boxes show the
elements of the WEFACT framework, the grey boxes show the rest of the elements of the WEFACT
(belonging to the external systems), vertical alignments indicate ‘uses’ or ‘consists of’ relationships whereas
the arrows indicate major information flows.

Certification

Arguments

Validation

Report

Feedback to

Developer

External Tools

Other Sources

(e.g. Domains)

Standard(s)

Artefact

WEFACT Framework (implemented in DOORS)

Negative

Results

Positive

Results
V&V Tools

V&V

Methods

Incomplete

Results

V&V ActivitiesRequirements

V-Plans Evidence

Safety Case

AUT (Artefact

Under Test)

Instantiation

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 17 of 125

The safety case is an argumentation to convince a regulation authority that a product is “sufficiently safe”.
Typically a safety case comprises the necessary safety arguments which correspond to the validation plans
(v-plans) for each artefact under test (AUT) and the related evidence. Please note that depending on the
safety standard and the context, there might be a more specific understanding of the term, e.g. giving a
document structure and expected content for the safety case.

The WEFACT framework is implemented with IBM Rational DOORS which is based on distributed
client/server architecture. The data such as v-plans, V&V activities, and requirements is stored in the central
DOORS database whereas the documents such as evidence and reports are stored in a separate document
repository. Several access modes to these repositories are supported, one of them is OSLC Asset
Management, implemented when integrating WEFACT into the RTP of the Artemis project MBAT.In order to
setup the WEFACT framework for a user, he or she installs the DOORS client in order to have access to the
data and sets up the access to the document repository.

WEFACT supports intermediate results, which are observed for changes. If an input for a V&V activity
changes, its former output is treated as out of date. Chains of such dependencies make up the workflows in
WEFACT. There is also support for completeness analysis and report generation.

Data Flow

The WEFACT tool does not exchange data with other tools but rather manages links and references to
elements of other documents, data base records, model elements, etc.

Figure 2-2: Dependencies of V&V management on other artefacts

Based on the CRYSTAL IOS, the tool will interface with any other requirements management tool (not only
DOORS). It is planned to also make the V&V activities accessible via CRYSTAL IOS. This will be used in an
Eclipse plugin to integrate WEFACT into the development environment, but would also make integration into
IBM’s JAZZ platform possible – putting V&V activities a user is responsible for in the same list of tasks as the
tasks from issue management.

2.1.2 Related Use Cases

WEFACT is applied to the use cases UC3.3 (AVL) and 5.2 (TRAIL). See the respective deliverables: M9
report for WP 303 for UC3.3 and the deliverable D502.010 for UC5.2.

V&V File

V&V Management
(WEFACT)

Eclipse IDE
<<access>>

<<storage>>

RM Tools
<<access>>

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 18 of 125

2.2 Specification

2.2.1 Requirements from the UCs

The following requirements will be addressed by this brick, grouped by use case:

2.2.1.1 UC3.3 - Functional power train architecture & control development with
respect to integrated system, safety and requirements engineering (AVL)

Requirements from this use case are still under discussion, with the use case requirements only due M9.
Some brick requirements have been anticipated nonetheless. The finalized requirements from the use case
will be addressed here when they are available.

2.2.1.2 UC 5.2 - Integrated Modelling of Core Algorithms in TAS Control Platform
(TRAIL)

ID Title Description Priority

UC5.2-
GEN-01

Eclipse Integration Thales Austria aims for integration of as
many development related task types as
possible into their Eclipse based
development environment. The need for
switches to other tools/work environments
for the tasks addressed in the SEE shall
be minimized (within reasonable effort).

HIGH

UC5.2-
GEN-02

RM agnostic
integration

Integration with requirement management
shall be transparent with respect to the
used Requirements Management Tool
and the real location of the requirement for
other tools in the SEE.

HIGH

UC5.2-
GEN-03

Traceability
between MDE
artefacts and code

Traceability shall be granted for all levels
of requirements and associated artefacts
down to the source code level

HIGH

UC5.2-
VVM-01

V&V success
tracing

Trace successful V&V activities to fulfilled
(safety) requirements

HIGH

UC5.2-
VVM-02

V&V fail tracing Trace failed V&V activities to requirements HIGH

UC5.2-
VVM-03

TCG fail tracing Trace failed test cases to model elements
in the test model

HIGH

UC5.2-
VVM-04

Standards guidance Systematic guidance through
requirements of applicable CENELEC
standards

HIGH

UC5.2-
VVM-05

Hierarchical V&V
activities list

Creation and maintenance of a
hierarchical list of verification activities

HIGH

UC5.2-
VVM-06

Verification status
input

Edit verification status of each defined
activity

HIGH

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 19 of 125

ID Title Description Priority

UC5.2-
VVM-07

Creation of
traceability links

Create traceability links to elements of
other artefacts (paragraph in document,
test reports, etc.)

HIGH

UC5.2-
VVM-08

Detection of re-
validation need

Detect need for re-validation of documents
/ test results

HIGH

UC5.2-
VVM-09

Verification status
statistics

Generate overall statistics of verification
status

MEDIUM

UC5.2-
VVM-10

Artefact versioning Support versioning of associated artefacts HIGH

UC5.2-
VVM-11

V-plan version
control

Support version control of V-plan HIGH

UC5.2-
VVM-12

Traceability for
updated artefacts

Transfer link to new version of target
artefact

MEDIUM

Table 2-1: UC5.2 requirements addressed by WEFACT

2.2.2 How will this brick be integrated in the UC

WEFACT is initiating tasks fulfilled by/with other tools and collecting traceability information generated by
these tools. The supported integration levels for initiating tasks range from manual execution (where a user
is informed per email or in his task list, e.g. to perform a not automated task like measurement of electro-
magnetic emissions of a device) to full automation (facilitating OSLC Automation Specification and MBAT
IOS Traceability Tracking). Figure 2-3 illustrates the processing of a V&V activity in WEFACT. The status of
the V&V activity changes from “Not ready” to “Ready” when all input data is available. In the status
“Processing” it interacts with the V&V tool linked to it. If the processing is successful and the result is positive
(passed) the status changes to “Completed”. The traceability links are visible through the red and orange
triangles for out-links and in-link, respectively.

Figure 2-3: Processing of a V&V activity in WEFACT

V&V Activity Processing

V&V Tool

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 20 of 125

2.2.3 Requirements fulfilled by initial tool/method version

ID Title Description Priority

UC5.2-VVM-01 V&V success
tracing

Trace successful V&V activities to fulfilled
(safety) requirements

HIGH

UC5.2-VVM-02 V&V fail tracing Trace failed V&V activities to requirements HIGH

UC5.2-VVM-05 Hierarchical V&V
activities list

Creation and maintenance of a hierarchical list
of verification activities

HIGH

UC5.2-VVM-06 Verification status
input

Edit verification status of each defined activity HIGH

UC5.2-VVM-08 Detection of re-
validation need

Detect need for re-validation of documents /
test results

HIGH

UC5.2-VVM-09 Verification status
statistics

Generate overall statistics of verification status MEDIUM

Table 2-2: UC5.2 requirements already fulfilled by current WEFACT version

2.2.4 What will be implemented/provided in the CRYSTAL project

Below, refined requirements towards the tool/method/integration are given, grouped by general
improvements and interoperability/integration features.

2.2.4.1 General Improvements

ID Title Description Priority UC requirements

B5.9-
F1

Import traceability
data

Support import of traceability information
from V&V tools

HIGH UC5.2-GEN-03,
UC5.2-VVM-03

B5.9-
F2

Query traceability
data

Provide query mechanism for
traceability information

HIGH UC5.2-GEN-03,
UC5.2-VVM-03

B5.9-
F3

Standards
guidance

Systematic guidance through
requirements of applicable CENELEC
standards

HIGH UC5.2-VVM-04

B5.9-
F4

Creation of
traceability links

Create traceability links to elements of
other artefacts (paragraph in document,
test reports, etc.)

HIGH UC5.2-VVM-07

B5.9-
F5

Artefact
versioning

Support versioning of associated
artefacts

HIGH UC5.2-VVM-10

B5.9-
F6

V-plan version
control

Support version control of V-plan HIGH UC5.2-VVM-11

B5.9-
F7

Traceability for
new artefacts

Transfer link to new version of target
artefact

MEDIUM UC5.2-VVM-12

Table 2-3: General improvement requirements for WEFACT

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 21 of 125

New and existing features shall be evaluated regarding their need for tool qualification in order to be
compliant with the respective safety standards applying to the use cases (CENELEC 50128 tool classes T1
to T3, ISO26262)

2.2.4.2 Interoperability/Integration

ID Title Description Priority UC requirements

B5.9-I1 WEFACT Web
Access

Make WEFACT available via a web
interface, to be used in a browser pane in
ECLIPSE

HIGH UC5.2-GEN-01

B5.9-I1 IOS
requirements
references

Support references to requirements in
another IOS connected RM manager

HIGH UC5.2-GEN-02

Table 2-4: Interoperability and integration requirements for WEFACT

2.3 Implementation/Elaboration

[This section is empty for this iteration of the document. In future iterations, it will give details on which
requirements are successfully implemented and how they can be used]

2.4 Evaluation

[This section is empty for this iteration of the document. In future iterations, it will give details on how they
fulfilment of the requirements was checked before integrating the brick into the SEE of the use case. For
interoperability features, this might be done by pairwise interaction between some bricks.]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 22 of 125

3 MB RAMS

Provider: AIT

Task #: T6.4.2

Brick #: B5.6

Group: Safety Analysis Tools

3.1 Overview

3.1.1 General Description

The MB RAMS brick contains both a partial safety process and a tool to support this process. It focuses on
model-based safety and risk analysis based on early system models (especially FMEA). The goal of the brick
is to integrate MB RAMS’ safety process with tools used for requirements engineering, design,
implementation and test/verification.

The partially known process will be further elaborated and existing tools mainly from project partners will be
evaluated for supporting it. A set of selected pre-existing or newly developed tools will be integrated using
the CRYSTAL IOS. Potential candidates are Eclipse Modelling Framework, SafetyArchitect® of All4Tec, the
shareware tool Papyrus Eclipse, the Event-B method based on the Rodin platform, the Eclipse plugin ProR,
OBEO Designer® of OBEO, WEFACT of AIT, DOORS® and Rhapsody® of IBM Rational, or RAM
Commander® of RELIASS.

The starting point of MB-RAMS is an architectural and functional system model expressed in UML/SYSML.
The FMEA shall be realized as a structured list, for which an appropriate tool will be selected. The Failure
Cause objects contained in this list will be associated with the respective attributes (according to the FMEA
process) and linked to requirements and SACs (safety application conditions). Together with fault
propagation properties, this represents the safety model. For safety modelling, adequate tool support shall
be provided, preferably by using and - if necessary - adapting existing tools. All relevant artefacts in this
model will be interlinked consistently by traceability references.

A minimum requirement to be implemented in the brick is a check function verifying completeness and
consistency between structural and functional system model and safety model. The ideal goal is to have one
united model composed of a system and a safety model, which contains the system specification and
detailed requirements about it, a functional system model, the corresponding design of the architecture and
safety properties like fault propagation or fault models. Different views on this comprehensive model (e.g.
safety viewpoint or architecture viewpoint) satisfy the needs of people responsible for the various activities in
the safety life cycle while the consistent model guarantees full traceability at any stage of system
development and operation. As far as possible, FMEA and FTA shall be supported by (semi-)automatic
functions using the consistent overall model for deriving the respective analyses. A possible outcome is a
UML/SysML safety profile.

General goals are transparent tool interconnections via OSLC and the IOS-compliant, transparent exposure
of architectural, functional as well as safety model elements. This shall also enable independence of the
concrete requirements repository. Another highly desirable feature is tool-based support for analysis of the
impact of changes in requirements, functional / architectural model or components used on the safety model.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 23 of 125

3.1.2 Related Use Cases

This brick is used in the Thales railway use case described in deliverable D502.010. It aims at a significant
efficiency improvement by enabling a transition from mainly manual safety processes to computer supported
processes allowing safety modelling based on system and fault models. The goal is a process based on a
consistent and stable database containing system and fault models as well as fault propagation properties,
which allows different perspectives on the data like a safety viewpoint or a logical architecture viewpoint. The
model furthermore allows deriving respective contributions to the safety case automatically.

During the entire process, traceability across all artefacts is maintained covering the system model, the fault
propagation model, SACs, single rows in the FMEA as well as the nodes and edges in the fault tree.
Changes are recognized by impact analysis so that respective revalidation activities can be triggered and
consistency can be re-established.

3.2 Specification

3.2.1 Requirements from the UCs

The following requirements will be addressed by this brick

3.2.1.1 UC 5.2 - Integrated Modelling of Core Algorithms in TAS Control Platform

Below are the requirements applying to MB-RAMS taken from D502.010.

ID Title Description Priority

GEN-01 Eclipse Integration Thales Austria aims for the integration of as
many development related task types as
possible into their Eclipse based
development environment. The need for
switches to other tools/work environments
for the tasks addressed in the SEE shall be
minimized (within reasonable effort).

HIGH

GEN-02 RM agnostic integration Integration with the requirements
management shall be transparent with
respect to the used Requirements
Management Tool and the real location of
the requirements for other tools in the SEE.

HIGH

GEN-03 Traceability between MDE
artefacts and code

Traceability shall be granted for all levels of
requirements and associated artefacts
down to the source code level

HIGH

MBR-01 Safety model tool support Tool support for creating the safety model HIGH

MBR-02 Safety model check Consistency and completeness check
between architectural/functional model and
safety model

HIGH

MBR-03 Safety model visualisation Visualization of the safety model (Safety
Viewpoint)

HIGH

MBR-04 FMEA structures Deriving structures for a qualitative FMEA
from system model and fault models.

HIGH

MBR-05 Safety model traceability Realize full traceability between (1) all items
in the safety model including safety

HIGH

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 24 of 125

ID Title Description Priority

properties and relations (2) functions and
components or elements in the system
model, (3) the safety requirements and (4)
objects of the FMEA and FTA.

MBR-06 FMEA generation Semi-automatic generation of qualitative
FMEA including effects, based on system
model, fault models and safety model

HIGH

MBR-07 FTA generation Semi-automatic generation of FTA for
treating effects of multiple faults based on
system model and fault models

MEDIUM

MBR-08 Impact analysis Tool-based support for analysing the impact
of changes in requirements,
functional/architectural model or
components used on the safety model

MEDIUM

MBR-09 Safety model generation Automatic creation of the safety model from
system model, FMEA, FTA and SACs.

LOW

MBR-10 Safety mechanisms tool Provide tool support for (a) checking
implemented safety mechanisms for
consistency with safety model and safety
requirements, or (b) proposing or creating
respective safety functions (barriers) to
cope with the safety requirements

LOW

Table 3-1: UC5.2 requirements addressed by MB RAMS

3.2.2 How will this brick be integrated in the UC

The safety analysis is interacting with the following other activities:

- Architecture/System modelling (input artefact, might need changes in feedback loop, introducing
additional model elements; FMEA artefacts link to model elements)

- Requirements Engineering (storage of derived safety requirements, together with relation to FMEA
artefacts)

Figure 3-1 shows the data flow for MB-RAMS activities and the tool types used in the MB-RAMS activities.

Wide arrows represent the data flows; dashed arrows show for which data flows or verification activities tools
are used.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 25 of 125

Figure 3-1: Data Flow for MB-RAMS activities

3.2.3 Requirements fulfilled by initial tool/method version

The building blocks for this brick (model editor, safety analysis tool) are still to be selected, so details about
which requirements are already fulfilled will be known after this selection process.

3.2.4 What will be implemented/provided in the CRYSTAL project

Currently, all required features are treated as new - this might change due to the selection of existing
components for building the overall solution, mentioned above in section 3.2.3.

The requirements lists below are also not final yet and might be updated in the next iteration of the
deliverable.

3.2.4.1 General Improvements

The following table lists the planned new features of the brick.

Logical
model

SysML/UML
modelling tool,
e.g. Rhapsody

List-oriented
modelling tool,
e.g. ProR

Safety
viewpoint

Logical
architecture

Safety
model

FMEA / FTA

VIEW

VIEW

Model
consistency
check

Safety modelling
tool, e.g. OBEO

Requirements

Fault models

Requirements
management tool, e.g.
WEFACT / DOORS

Safety Case

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 26 of 125

ID Title Description Priority UC
requireme
nts

B5.6-F1 Safety meta-model A dedicated safety meta-model (or
profile) for the safety viewpoint will be
designed, covering all relevant
properties like fault probabilities,
possible fault propagation, fault
detection, etc

HIGH MBR-01

B5.6-F2 Safety model editor Model editor to build a model
according to the safety meta model

HIGH MBR-01

B5.6-F3 Fault model editor Model editor to write down a fault
model

HIGH MBR-01

B5.6-F4 Safety model
seeding

Pre-fill a safety model / safety view
with artefacts from the architecture
model

HIGH MBR-01

B5.6-F5 Safety-Model
consistency check

Check a given safety model for
compliance with the meta model and
some basic internal consistency
checks

HIGH MBR-01

B5.6-F6 Model
synchronisation

Synchronize safety model/safety view
with architecture model

HIGH MBR-02

B5.6-F7 Inter-Model
consistency check

Check safety view and architecture
view for inconsistencies

HIGH MBR-02

B5.6-F8 Safety model
visualisation

Provide a visualization of the safety
model (Safety Viewpoint) in a way that
supports the tasks of the safety
engineer

HIGH MBR-03

B5.6-F9 FMEA editor Provide or select a way to edit FMEA HIGH MBR-04

B5.6-
F10

FMEA structures
pre-fill

Deriving structures for a qualitative
FMEA from system model and fault
models

HIGH MBR-04

B5.6-
F11

Traceability –
requirement ->
architecture model
element

Provide and maintain link from
requirements to architecture model

HIGH MBR-05

B5.6-
F12

Traceability –model
element ->
FMEA/FTA artefact

Provide and maintain link from
architecture or safety model to
FMEA/FTA artefact

HIGH MBR-05

B5.6-
F13

Traceability –
architecture model
element -> safety
model elements

Provide and maintain links between
architecture and safety model
elements

HIGH MBR-05

B5.6-
F14

Traceability –
FMEA/FTA artefact
-> derived safety
requirement

Provide and maintain link from safety
analysis artefacts/entries to derived
safety requirements

HIGH MBR-05

B5.6-
F15

FMEA generation Semi-automatically fill pre-seeded
qualitative FMEA with modes and
effects, based on system model, fault

HIGH MBR-06

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 27 of 125

ID Title Description Priority UC
requireme
nts

models and safety model

B5.6-
F16

FTA generation Semi-automatic generation of FTA for
treating effects of multiple faults based
on system model and fault models

MEDIUM MBR-07

B5.6-
F17

Impact analysis of
requirement
changes

Tool support for analysing the impact
of changes in requirements

MEDIUM MBR-08

B5.6-
F18

Impact analysis of
functional /
architectural model

Tool support for analysing the impact
of changes in functional/architectural
model

MEDIUM MBR-08

B5.6-
F19

Impact analysis of
safety model
changes

Tool support for analysing the impact
of changes in safety model

MEDIUM MBR-08

B5.6-
F20

Safety model
generation

Automatic creation of the safety model
from system model, FMEA, FTA and
SACs.

LOW MBR-09

B5.6-
F21

Safety mechanisms
tool

Provide tool support for (a) checking
implemented safety mechanisms for
consistency with safety model and
safety requirements, or (b) proposing
or creating respective safety functions
(barriers) to cope with the safety
requirements

LOW MBR-10

Table 3-2: General improvement requirements for MB RAMS

Generally, the model-based (MB) RAMS process shall be achieved mainly by re-using existing MB tools and
where necessary adapting them to the specific needs of the use case.

3.2.4.2 Interoperability/Integration

ID Title Description Priority UC
requirements

B5.6-I1 Connect to RM tool
(in particular also
WEFACT)

Store and link to derived safety
requirements, independent of the
concrete tool and the location of the
requirements repository.

HIGH GEN-02

B5.6-I2 Connect to safety
modelling tool

Store and link to derived safety
features in model

HIGH MBR-01

B5.6-I3 Integration with
modelling
environment

For this purpose using the shareware
tool Papyrus Eclipse is foreseen.
However, also UML/SYSML models
created and maintained with IBM
Rational Rhapsody shall be integrated.

HIGH GEN-01

B5.6-I4 Connect to V&V
management
(WEFACT)

The automated steps of the improved
safety process shall be integrated with
WEFACT by implementing them as V-

HIGH MBR-01 and
MBR-08

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 28 of 125

plans.

B5.6-I5 Safety model
traceability
interoperability

Expose safety model elements for
generic linking via IOS

HIGH GEN.03 and
MBR-05

B5.6-I6 Architecture model
traceability
interoperability

Expose/consume functional /
architecture model elements for
generic linking via IOS

HIGH GEN.03 and
MBR-05

B5.6-I7 Requirements
traceability
interoperability

Consume requirements for generic
linking via IOS

HIGH GEN.03 and
MBR-05

B5.6-I8 Requirements link
generation
interoperability

For derived safety requirements, use
IOS means to store them to a
requirements management system

HIGH GEN.03 and
MBR-05

Table 3-3: Interoperability and integration requirements for MB RAMS

3.3 Implementation/Elaboration

[This section is empty for this iteration of the document. In future iterations, it will give details on which
requirements are successfully implemented and how they can be used]

3.4 Evaluation

[This section is empty for this iteration of the document. In future iterations, it will give details on how they
fulfilment of the requirements was checked before integrating the brick into the SEE of the use case. For
interoperability features, this might be done by pairwise interaction between some bricks.]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 29 of 125

4 MoMuT::UML

Provider: AIT

Task #: T6.4.3

Brick #: B5.8

Category: Test case generation

(former brickTool name: UMMU)

4.1 Overview

4.1.1 General Description

MoMuT is the name of a family of test case generators from AIT which were developed in cooperation with
TUG. MoMuT::UML uniquely combines a powerful fault-based test case generation strategy with standard
techniques for assembling test cases. It delivers high quality test suites with an excellent cost/benefit ratio.
The heart of this technology is the concept of fault seeding or mutation. Figure 4-1 depicts our underlying
model-based mutation testing approach: MoMuT::UML uses customizable mutation operators to derive
mutated models from the original test model. A mutated model is an exact copy of the original except for a
small change introduced by the mutation operator. Given a mutant and the original specification, the
backend searches for a sequence of inputs and outputs that show that the mutant’s behaviour is in conflict
with the behaviour specified by the original model. It is in the nature of mutation-based test case generation
that one such sequence, i.e. test, finds (“kills”) multiple mutated models and, hence, has the ability to find
faults that are not directly modelled by a mutation operator.

Mutation-based test case generation is the most fine-grained and versatile test generation technique
available today. In principle, mutation-based test case generation can not only be used to test functional
properties of designs but also to generate tests that detect certain non-functional defects. It also allows
MoMuT::UML to know exactly which faults are caught by a particular test case, analyse or extend existing
test sets, and help localizing faults by

(a) automatically selecting a set of mutants that can explain faulty behaviour
(b) creating a test case providing a short path to a fault found during regression testing to help with

debugging (the original test case might test a lot of other things before exposing the fault).

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 30 of 125

Figure 4-1: Mutation-based test case generation is at the heart of MoMuT::UML

MoMuT::UML either uses the ioco (input-output conformance) relation or the refinement relation to verify if a
mutant complies with the specified behaviour in the original model. It translates UML to an internal
representation with clearly defined semantics (action systems). The tool set can connect to state-of-the-art
model checkers for further design verification and provides two test case generation methods (one working
enumerative and one working symbolic). The tool set also supports model animation features.

Figure 4-2: Usage variants of mutation-based TCG tools

As it is shown in Figure 4-2, there are multiple ways to use the tool:

a) generating the test cases for a mutant
b) checking the quality of test cases by checking which/how many mutants they kill
c) using the model as an oracle to decide which behaviours are compliant with the model.

Test
Case

Orig.
Model

Mutant Kill Check

Kill? Yes/No

Test
Case

Orig.
Model

Validate TC

Compliant?Yes/No Test
Case

Orig.
Model

Mutant

TCG

a) b) c)

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 31 of 125

By combining variants a) and b), pre-existing test cases can be evaluated for their mutation coverage and
only test cases for the missing mutants are created then. The pre-existing test cases can be legacy test
cases, can come from other tools (including white-box test case generators) or can come from prior system
iterations.

Figure 4-3 shows an example screenshot of the graphical user interface of MoMuT::UML, which was
produced with the symbolic TCG backend.

Figure 4-3: Screenshot of the MoMuT::UML tool

Data Flow

The following artefacts are involved in the envisaged data flow in model-based testing:

Input to TCG:

(1) Test model (System model including traceability from requirements to model objects)

(2) Test configuration (definition of model variables, instantiation, etc.)

(3) Pre-existing test cases (optional)

Output of TCG:

(4) Abstract test cases (sequences of input / output events)

(5) Traceability matrix test case to requirements

The role of these artefacts is depicted in the following data flow diagram:

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 32 of 125

Figure 4-4: Automatic test case generation and related data flows

The test execution may contain several stages, including

 test case translation (to specific test scenario and golden trace files)

 actual test run

 test result check (verdict)

 test report compilation

MoMuT::UML can be configured by means of a configuration file that controls the test case generation. This
file defines e.g. the mutation operators and the mutated elements.

Information about failing test cases can be fed back into the test case generator for generation of short test
cases to isolate the problem.

4.1.2 Related Use Cases

MoMuT::UML is used in:

- UC3.1
- UC5.1
- UC5.2

Test execution
(incl. converters, result check)

Abstract Test Cases

(input/output events)

Abstract Test Cases

(input/output events)

Abstract Test Cases

(input/output events)

Test Report

Test configuration

Test Case Generator
(MoMuT::UML)

Test model

(UML, SysML,…)

TC-REQ

Traceability Matrix

Pre-existing

Test Cases

Pre-existing

Test Cases

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 33 of 125

For Volvo, in UC3.1, MoMuT::UML will generate test cases from a design model, delivering test cases which
will not only be used for testing the simulated system as well as the real implementation, but will also be
used by brick B3.3 DTFsim for evaluating the communication bus and overall timing behavior.

At the time of writing, the exact setup of the Ansaldo use-case (UC5.1) was still under discussion. A tentative
idea for UC5.1 is to evaluate test cases from other sources for their mutation coverage and to generate all
missing mutants. The overall test model will be split into multiple sub-models, related to groups of
requirements. The test case generator shall be improved to take advantage of this decomposition
information.

In Thales Austria’s use case 5.2, MoMuT::UML interacts with WEFACT (B5.9) and possibly with another test
case generator yet to decide on. However, a clear division of responsibilities is possible. WEFACT will drive
the tool execution and collect the necessary traceability information. MoMuT:UML will either generate test
cases on its own or cross check the mutation coverage for tests generated by the alternative test case
generator and provide test cases for the missing mutants.

4.2 Specification

4.2.1 Requirements from the UCs

The following requirements will be addressed by this brick, grouped by use case:

4.2.1.1 UC3.1 - Function development for heavy vehicles (Volvo)

There are no individualized, numbered requirements in in D301.010 which were suitable for tabular
presentation but it contains descriptions of involved requirements which are cited verbatim hereafter.
Requirements for new features and integration derived from this further below are noted to be related to this
use case.

Test case generation in this use case involves the following steps:

1. Behavioural models, requirements, MSCs, MSDs, and functional components have been defined as
it is described in section ‘system behavioural modelling’ of deliverable D301.010

2. The models are made available to the test case generation tool (MoMuT::UML).

3. The system models are augmented with information needed for test case generation – possibly
using data from the sub-use case “AUTOSAR ECU integration and generation”; Corresponding
model elements in the test case tool are linked to the elements in the system modelling tool (e.g.
DCs).

4. Test cases are generated on DC and possibly integration level. Existing test cases from prior
iterations are reused as far as possible.

5. Test cases are linked to requirements, MSCs, MSDs, and/or behavioural models. Furthermore, the
full test cases are made available to SystemWeaver. Note that performing the actual tests is not in
the scope of this use case.

The interoperability challenges in the Volvo use case come in two forms:

i) establishing and maintaining data links across tools, and

ii) exchanging whole models or parts of models across tools.

The first form is necessary to enable traceability and consistency across tools. This means that it should be
possible to denote e.g. that two modelling entities in different tools in fact represent the same entity or that
they are related somehow. In a central information model these kinds of links are typically already present,

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 34 of 125

e.g. the SystemWeaver meta-model used in the Volvo use case contains many links already. The challenge
is to extend these links to also include other tools not using the SystemWeaver meta-model. However, this
form of interoperability assumes that the models in the different tools have been made independently from
each other. That is, before the links can be added, individual models must exist in the tools of interest.
Typically these models are manually constructed. In many cases it would be more efficient to be able to
generate a model skeleton from an already existing model. This would not only speed up the model
construction, it would also enforce consistency of the generated model with the existing. Moreover, the
generated model could be formed according to well-defined guidelines, which simplifies understanding of the
model and automated analysis. Therefore, the Volvo use case considers also the second form of
interoperability: model exchange. Since a large portion of the system data is already available in the
SystemWeaver meta-model, and this meta-model is based on an early version of EAST-ADL, our intention is
to use EAST-ADL as the exchange format between tools. For lower abstraction levels, AUTOSAR formats
will be used.

ID Title Description Priority

UC5.2-
GEN-01

Eclipse Integration Thales Austria aims for integration of as many
development related task types as possible into their
Eclipse based development environment. The need for
switches to other tools/work environments for the tasks
addressed in the SEE shall be minimized (within
reasonable effort).

HIGH

UC5.2-
GEN-02

RM agnostic integration Integration with requirement management shall be
transparent with respect to the used Requirements
Management Tool and the real location of the
requirement for other tools in the SEE.

HIGH

UC5.2-
GEN-03

Traceability between
MDE artefacts and code

Traceability shall be granted for all levels of
requirements and associated artefacts down to the
source code level

HIGH

UC5.2-
TCG-01

Generate test cases
from a UML test model

Generate test cases from a system test model in UML
(Black Box Testing)

HIGH

UC5.2-
TCG-02

Coverage selection Select coverage for test cases by mutation operators,
related requirements, and model elements.

HIGH

UC5.2-
TCG-03

Test model elements
traceability

Relate test model elements to requirements (safety or
not)

HIGH

UC5.2-
TCG-04

Test case - model
traceability

Relate test cases to model elements HIGH

UC5.2-
TCG-05

V&V activity - test case
traceability

Relate V&V activities to test cases

HIGH

UC5.2-
TCG-06

Generate component
test cases (Black Box
Testing)

Generate test cases from a component test model HIGH

UC5.2-
TCG-08

Incremental test case
generation

Extending component test cases to integration or
system test cases.

MEDIUM

Table 4-1: UC5.2 requirements addressed by MoMuT::UML

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 35 of 125

4.2.1.2 UC 5.1 - ERTMS/ETCS Interoperable testing New Way (ASTS)

Requirements from this use case are still under discussion at the time of writing. Some brick requirements
have been anticipated nonetheless and are noted to be related to this use case.

4.2.1.3 UC 5.2 - Integrated Modelling of Core Algorithms in TAS Control Platform
(TRAIL)

Requirements from UC5.2 addressed by MoMuT::UML are listed in Table 4-1

4.2.2 How will this brick be integrated in the UC

MoMuT::UML will be integrated in the use cases for test case evaluation (provide coverage information from
test model, existing test cases and mutation information i.e. mutation operators and mutation location
selection), for test case generation (provide test cases for a given (sub-) model with given mutation
information) and as a test oracle (evaluate consistency of given test cases with a given test model), as
depicted in Figure 4-2, parts a) to c).

4.2.3 Requirements fulfilled by initial tool/method version

ID Title Description Priority Remarks

UC5.2-
TCG-01

Generate test
cases from a UML
test model

Generate test cases from a system
test model in UML (Black Box
Testing)

HIGH Available, IOS integration
under development in
MBAT. Performance
improvements open.

UC5.2-
TCG-02

Coverage
selection

Select coverage for test cases by
mutation operators, related
requirements, and model elements.

HIGH Available, IOS integration
under development in
MBAT

UC5.2-
TCG-04

Test case - model
traceability

Relate test cases to model
elements

HIGH Available, IOS integration
under development in
MBAT

UC5.2-
TCG-06

Generate
component test
cases (Black Box
Testing)

Generate test cases from a
component test model

HIGH Available, IOS integration
under development in
MBAT. Performance
improvements open.

Table 4-2: Requirements already fulfilled by current MoMuT::UML version

4.2.4 What will be implemented/provided in the CRYSTAL project

Below, refined requirements towards the tool/integration are given, grouped by general improvements and
interoperability/integration features

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 36 of 125

4.2.4.1 General improvements

ID Title Description Priority UC
requirements

B5.8-F1 Improved UML TCG
performance (system
level)

Further reduce test case generation
times

HIGH UC5.2-TCG-01,
UC5.1 related,
UC3.1 related

B5.8-F2 Incremental test case
generation

Extending component test cases to
integration or system test cases.

MEDIUM UC5.2-TCG-08

B5.8-F3 Test model
animation

Provide animation features to
evaluate/plausibility check the test
model.

MEDIUM (usability, all use
cases)

B5.8-F4 Test model
consistency check

Improve test model validation
features to spot problems in the
model before trying to generate test
cases from it.

MEDIUM (usability, all use
cases)

B5.8-F5 Test coverage
visualisation

Provide features to visualise various
coverage criteria in relation to model
elements and test cases.

HIGH (usability, all use
cases)

B5.8-F6 Use composition
information

Take advantage of model
substructure for improving test case
generation times

HIGH UC5.1 related

B5.8-F7 Improve usability Usability shall be improved based on
user feedback

HIGH (usability, all use
cases)

Table 4-3: General improvement requirements for MoMuT::UML

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 37 of 125

4.2.4.2 Interoperability/Integration requirements

ID Title Description Priority UC requirements

B5.8-I1 Connect UML
elements to RM
tool

Provide traceability from UML elements to
requirements management system via
OSLC (depends on used UML editors,
might be split into one requirement per
UML editor

HIGH UC5.2-GEN-02,
UC5.2-GEN-03

B5.8-I2 Integration with
ECLIPSE
environment

Allow the following activities from within
the ECLIPSE development environment:

- Model editing

- Annotating models elements with
requirements

- Browse requirements

- Create requirements

- Select model elements for TCG

- Initiate TCG

- Browse test cases

HIGH UC5.2-GEN-01,
UC5.2-GEN-02,

UC5.2-GEN-03,

UC5.2-TCG-03

B5.8-I3 Expose test cases
via IOS

Make the generated test cases available
to WEFACT for referencing them in V&V
activities

HIGH UC5.2-TCG-05

B5.8-I4 IOS based test
target selection

Use IOS based references to model
elements for test target coverage
selection

HIGH UC5.2-TCG-02

B5.8-I5 Test model seeding Provide import from EAST-ADL model for
initial test models.

HIGH UC3.1 related

B5.8-I6 Sync test model
with EAST-ADL
model

Provide automated sync or consistency
check between test model and
architecture model (EAST-ADL
/AUTOSAR)

MEDIUM UC3.1 related

B5.8-I7 New test model
format support

Support use of UML models built with the
model editor and modelling style used for
compositional modelling. (still to be
defined)

HIGH UC5.1 related

Table 4-4: Interoperability/Integration requirements for MoMuT::UML

4.3 Implementation/Elaboration

[This section is empty for this iteration of the document. In future iterations, it will give details on which
requirements are successfully implemented and how they can be used]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 38 of 125

4.4 Evaluation

[This section is empty for this iteration of the document. In future iterations, it will give details on how they
fulfilment of the requirements was checked before integrating the brick into the SEE of the use case. For
interoperability features, this might be done by pairwise interaction between some bricks.]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 39 of 125

5 MoMuT::SCADE

Provider: AIT

Task #: T6.4.4

Brick #: B5.7

Category: Test case generators

 (former brick name: SCAMU)

5.1 Overview

5.1.1 General Description

MoMuT is the name of a family of test case generators from AIT developed in cooperation with TUG. MoMuT
family members generate test suites from behaviour models achieving a given fault coverage with faults
represented by mutants of the original models.

MoMuT::SCADE is a model-based mutation testing application for the Esterel Techologies’ SCADE Suite.
Since the SCADE data flow models usually are implementation models, MoMuT::SCADE in contrast to the
other MoMuT variants is used for white box testing.

The resulting test cases are near-optimal for the targeted coverage. The tool set can be also used to
evaluate and extend existing test cases w.r.t. fault coverage, independent from their origin (manual design,
prior product iterations, other members of a product line, other test case generators).

The tool provides traceability between test model elements and test cases.

5.1.2 Related Use cases

MoMuT::SCADE was planned to be applied to UC5.2 - Integrated Modelling of Core Algorithms in TAS
Control Platform, which is described in D502.010. The brick has been dropped from the use case, because
SCADE will not be used in the use case anymore. At the time of writing, there is no decision taken yet, if
another use case can be adopted or if an additional, different test model formalism for MoMuT will be
integrated into UC 5.2.

5.2 Specification

5.2.1 Requirements from the UCs

Currently no use case defined – see section 5.1.2.

5.2.2 How will this brick be integrated in the UC

MoMuT::SCADE generates test cases from given models and provides traceability information from model
elements to test cases. It can also be used to analyse mutation coverage on a given test suite.

It can be integrated with WEFACT (see Section 2) by providing an interface to initiate automated test case
generation runs and by importing the traceability information into WEFACT. Test case inspection would be
done in SCADE itself.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 40 of 125

5.2.3 Requirements fulfilled by initial tool/method version

Although MoMuT::SCADE is no longer part of UC5.2, the requirements already fulfilled have been left here,
until a decision regarding the further approach for the brick has been taken.

ID Title Description Priority Remarks

UC5.2-
TCG-02

Coverage selection Select coverage for test cases by
mutation operators, related
requirements, and model elements.

HIGH

UC5.2-
TCG-04

Test case - model
traceability

Relate test cases to model elements HIGH Available, IOS
integration under
development in
MBAT

UC5.2-
TCG-05

V&V activity - test
case traceability

Relate V&V activities to test cases

HIGH Available, IOS
integration under
development in
MBAT

UC5.2-
TCG-07

Generate test
cases from an
implementation
model

Generate test cases from an
implementation model in SCADE

MEDIUM Available, IOS
integration under
development in
MBAT. Might need
improvements.

Table 5-1: UC5.2 requirements fulfilled by current MoMuT::SCADE version

5.2.4 What will be implemented/provided in the CRYSTAL project

Again, although the brick dropped from use case UC5.2, the requirements derived for it are retained here for
now.

5.2.4.1 General Improvements

ID Title Description Priority UC
requirements

B5.7-F1 Improve SCADE
TCG performance

If needed for the respective models,
improve TCG performance e.g. by
ordering mutants.

MEDIUM UC5.2-TCG-07

Table 5-2: General improvement requirements for MoMuT::SCADE

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 41 of 125

5.2.4.2 Interoperability/Integration

ID Title Description Priority UC
requirements

B5.7-I1 Connect SCADE
elements to RM
tool

Provide traceability from SCADE
elements to requirements
management system via OSLC
(possibly leveraging on the SCADE-
Doorslink-Integration

HIGH UC5.2-GEN-02,
UC5.2-GEN-03

B5.7-I2 TCG initiation from
ECLIPSE
environment

Allow starting test case generation
from within the ECLIPSE development
environment (SCADE System)

HIGH UC5.2-GEN-01

B5.7-I3 TCG initiation from
SCADE Suite

Allow starting test case generation
from within SCADE Suite

HIGH UC5.2-GEN-01,

Table 5-3: Interoperability and integration requirements for MoMuT::SCADE

5.3 Implementation/Elaboration

This section is empty for this iteration of the document. In future iterations, it will give details on which
requirements are successfully implemented and how they can be used]

5.4 Evaluation

[This section is empty for this iteration of the document. In future iterations, it will give details on how they
fulfilment of the requirements was checked before integrating the brick into the SEE of the use case. For
interoperability features, this might be done by pairwise interaction between some bricks.]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 42 of 125

6 FT+ brick integration into Rational Rhapsody

Provider: EADS IW-G

Task #: T6.4.5

Brick #: B2.22

Category: Safety analysis tools

6.1 Overview

6.1.1 General Description

The main objective of this brick is to enable the integration of the safety tool “Isograph FT+” with the design
tool “IBM Rational Rhapsody”. The deliverable D203.011 from EADS Cassidian provides a very detailed
dedicated chapter on the needs for this integration. Briefly summarizing these needs, the FT+ brick
integration into Rational Rhapsody shall fulfil the following needs:

- Export Functions with related data from a Design Model managed by Rhapsody into a Fault-tree

model managed by Isograph FT+ as libraries

o Note: An automatic creation of Fault-trees from the Rhapsody model is NOT envisaged

- Define traceability links between functions (in the Rhapsody models) and libraries in FT+

- Enable consistency checks between Rhapsody model elements and Isograph FT+ elements (e.g.

check if the functions and related data in Rhapsody are consistent with the respective libraries in

FT+)

- As an option, a Suspect Link feature should be implemented. It means that a link between a

Rhapsody element and an FT+ element should be marked as “suspect” if one of the linked elements

has changed.

- All features should be implemented such that their execution does not take so long that they

negatively impact the engineering work flow.

6.1.2 Related Use cases

This brick is related to the use case 2.3 from EADS Cassidian.

6.2 Specification

6.2.1 Requirements from the UCs

The Requirements for the FT+ brick integration into Rational Rhapsody have been taken from the Use Case
Description D203.011, Chapter 8.2 “Perform Functional Safety Analysis”.

EM202_01_01 - Transfer Model Data for Fault Tree Analysis

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 43 of 125

EADS-CAS-201

The SEE shall allow to trace from basic elements in a Fault Tree Analysis tool to use cases, blocks and
primitive operations of a SysML model.

EADS-CAS-202

The SEE shall allow to trace from failure cases in a Fault Tree Analysis tool to tagged values of use cases,
blocks and primitive operations of a SysML model.

EM202_01_02 - Check System Model and Fault Tree Consistency

EADS-CAS-203

The SEE shall provide safety analysis capabilities related to system design. The system design model shall
be the input and baseline for the analysis.

EADS-CAS-204

The SEE shall ensure consistency of the data between System and Fault Tree Analysis model. Duplication
of data shall be avoided.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 44 of 125

EADS-CAS-206

The SEE shall allow to compare baselines of system (SysML) model and faul tree models. The SEE shall
highlight inconsistencies using different colours. Per user setting, matching parts shall be suppressed.

EADS-CAS-205

The SEE shall provide cross system (SysML) model and fault tree model report and document generation
capabilities on the basis of a selected baselines.

6.2.2 How will this brick be integrated in the UC

Integration of the brick into the UC will be managed by EADS Innovation Works and EADS Cassidian. The
integration has been described in the deliverable D203.011, PA2012_01 Perform Functional Safety
Analysis, via Engineering Method description for the Engineering Methods “US202_Check System Model
and Fault Tree Consistency_EM202_01_02” and US202_Transfer Model Data for Fault Tree
Analysis_EM202_01_01.

PA202_01 - Perform Functional Safety Analysis (from EADS Cassidian Deliverable D_203.011):

Engineering Method: US202_Check System Model and Fault Tree Consistency_EM202_01_02

Purpose: Check that the functions, related failure cases and severitiy classification is consistent to the fault

tree elements and there related reliability figures.

Comments: none

Pre-Condition Engineering Activity Post-Condition

FTA performed 01. Set System Model Scope

02. Retrieve FTA Data

03. Correlate System Model
Elements With FTA Elements

04. Compare Reliability Figures

05. Generate Safety Coherence

Report

Traceability between model and

fault tree elements established

Notes: - Notes: - Notes: -

Artefacts Required as inputs of

the Activities

Artefacts used internally within
the Activities

(optional)

Artefacts Provided as outputs of

the Activities

Name: SystemArchitect

ure

Name: - Name: -

Generic Type: SysMLModel Type: - Generic Type: -

Required

Properties:

Content

MethodComplian

ce

Properties: - Provided

Properties:

 -

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 45 of 125

Description & Interoperability
Additional Constraints:

MethodCompliance = MBSE guide
/ IBM Harmony SE

Content = Logical (opt. Physical)

Architecture

Description:

 -

Description & Interoperability
Additional Constraints:

 -

Name: SystemFTA Name: - Name: -

Generic Type: FaultTree Type: - Generic Type: -

Required

Properties:

Content Properties: - Provided

Properties:

 -

Description & Interoperability
Additional Constraints:

Content = Fault Tree (Validated)

Description:

 -

Description & Interoperability
Additional Constraints:

 -

Name: - Name: - Name: ConsistencyRep

ort

Generic Type: - Type: - Generic Type: Report

Required

Properties:

 - Properties: - Provided

Properties:

Description & Interoperability
Additional Constraints:

 -

Description:

 -

Description & Interoperability

Additional Constraints:

Name: SysUseCase Name: - Name: -

Generic Type: SysMLModelEle

ment

Type: - Generic Type: -

Required

Properties:

SystemModelEle
mentType

SystemModelEle
mentType

SystemModelEle
mentType

SystemModelEle

mentType

Properties: - Provided

Properties:

 -

Description & Interoperability
Additional Constraints:

SystemModelElementType =

UseCase

Description:

 -

Description & Interoperability
Additional Constraints:

 -

Name: PhysicalBlock Name: - Name: -

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 46 of 125

Generic Type: SysMLModelEle

ment

Type: - Generic Type: -

Required

Properties:

SystemModelEle
mentType

SystemModelEle
mentType

SystemModelEle
mentType

SystemModelEle

mentType

Properties: - Provided

Properties:

 -

Description & Interoperability
Additional Constraints:

SystemModelElementType = Block

Description:

 -

Description & Interoperability
Additional Constraints:

 -

Name: LogicalBlock Name: - Name: -

Generic Type: SysMLModelEle

ment

Type: - Generic Type: -

Required

Properties:

SystemModelEle
mentType

SystemModelEle
mentType

SystemModelEle
mentType

SystemModelEle

mentType

Properties: - Provided

Properties:

 -

Description & Interoperability
Additional Constraints:

SystemModelElementType = Block

Description:

 -

Description & Interoperability
Additional Constraints:

 -

Name: SystemFunction Name: - Name: -

Generic Type: SysMLModelEle

ment

Type: - Generic Type: -

Required

Properties:

SystemModelEle
mentType

SystemModelEle
mentType

SystemModelEle
mentType

SystemModelEle

mentType

Properties: - Provided

Properties:

 -

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 47 of 125

Description & Interoperability
Additional Constraints:

SystemModelElementType =

PrimitiveOperation

Description:

 -

Description & Interoperability
Additional Constraints:

 -

Name: SystemSafetyTra

ce

Name: - Name: -

Generic Type: Link Type: - Generic Type: -

Required

Properties:

ArtefactStatus

LinkSource

LinkTarget

Properties: - Provided

Properties:

 -

Description & Interoperability
Additional Constraints:

LinkSource =
SystemModelElement

LinkTarget = FaultTreeElement

ArtefactStatus = Validated

Description:

 -

Description & Interoperability
Additional Constraints:

 -

Engineering Method: US202_Transfer Model Data for Fault Tree Analysis_EM202_01_01

Purpose: Providing functions and architecture elements with associated reliability figures to the safety

analysis tool for FTA.

Comments: Reliability figures are stored within the system model. Rationale: The system model is part of the

specification as such. The fault tree as an analysis model is not (it is the justification for reliability figures

required).

Pre-Condition Engineering Activity Post-Condition

Functional analysis with logical

and/or physical architecture

performed. Data provided in SysML

model with dedicated structure.

01.Extract System Use Cases from
model

02. Select Use Case and type for
FTA

03. Extract physical architecture
data (physical FTA only)

04. Extract logical architecture data

05. Generate basic elements library

05. Generate basic elements library

06. Establish traces to originating

elements

Model elements transformed into a

set of artefacts (basic elements) as

input for fault tree analysis.

Notes: - Notes: - Notes: -

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 48 of 125

Artefacts Required as inputs of

the Activities

Artefacts used internally within
the Activities

(optional)

Artefacts Provided as outputs of

the Activities

Name: SystemArchitect

ure

Name: - Name: -

Generic Type: SysMLModel Type: - Generic Type: -

Required

Properties:

Content

MethodComplian

ce

Properties: - Provided

Properties:

 -

Description & Interoperability
Additional Constraints:

MethodCompliance = MBSE guide
/ IBM Harmony SE

Content = Logical (opt. Physical)

Architecture

Description:

 -

Description & Interoperability
Additional Constraints:

 -

Name: SysUseCase Name: - Name: -

Generic Type: SysMLModelEle

ment

Type: - Generic Type: -

Required

Properties:

SystemModelEle
mentType

SystemModelEle
mentType

SystemModelEle
mentType

SystemModelEle

mentType

Properties: - Provided

Properties:

 -

Description & Interoperability
Additional Constraints:

SystemModelElementType =

UseCase

Description:

 -

Description & Interoperability
Additional Constraints:

 -

Name: LogicalBlock Name: - Name: -

Generic Type: SysMLModelEle

ment

Type: - Generic Type: -

Required

Properties:

SystemModelEle
mentType

SystemModelEle
mentType

SystemModelEle
mentType

Properties: - Provided

Properties:

 -

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 49 of 125

SystemModelEle

mentType

Description & Interoperability
Additional Constraints:

SystemModelElementType = Block

Description:

 -

Description & Interoperability
Additional Constraints:

 -

Name: PhysicalBlock Name: - Name: -

Generic Type: SysMLModelEle

ment

Type: - Generic Type: -

Required

Properties:

SystemModelEle
mentType

SystemModelEle
mentType

SystemModelEle
mentType

SystemModelEle

mentType

Properties: - Provided

Properties:

 -

Description & Interoperability
Additional Constraints:

SystemModelElementType = Block

Description:

 -

Description & Interoperability
Additional Constraints:

 -

Name: SystemFunction Name: - Name: -

Generic Type: SysMLModelEle

ment

Type: - Generic Type: -

Required

Properties:

SystemModelEle
mentType

SystemModelEle
mentType

SystemModelEle
mentType

SystemModelEle

mentType

Properties: - Provided

Properties:

 -

Description & Interoperability
Additional Constraints:

SystemModelElementType =

PrimitiveOperation

Description:

 -

Description & Interoperability
Additional Constraints:

 -

Name: - Name: - Name: SystemFTA

Generic Type: - Type: - Generic Type: FaultTree

Required

Properties:

 - Properties: - Provided

Properties:

Content

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 50 of 125

Description & Interoperability
Additional Constraints:

 -

Description:

 -

Description & Interoperability
Additional Constraints:

Content = FT Elements (library)

Name: - Name: - Name: SystemSafetyTra

ce

Generic Type: - Type: - Generic Type: Link

Required

Properties:

 - Properties: - Provided

Properties:

ArtefactStatus

LinkSource

LinkTarget

Description & Interoperability
Additional Constraints:

 -

Description:

 -

Description & Interoperability
Additional Constraints:

LinkSource =
SystemModelElement

LinkTarget = FaultTreeElement

ArtefactStatus = Validated

6.2.3 Requirements fulfilled by initial tool/method version

The envisaged functionality as described in 6.2.1 is not yet available and will be developed in the frame of
CRYSTAL.

6.2.4 What will be implemented/provided in the CRYSTAL project

The envisaged functionality as described in 6.2.1 is not yet available and will be developed in the frame of
CRYSTAL.

6.2.4.1 New and improved features

See Chapter 6.2.1

6.2.4.2 Interoperability requirements

See Chapter 6.2.1

6.3 Implementation/Elaboration

[This section is empty for this iteration of the document. In future iterations, it will give details on which
requirements are successfully implemented and how they can be used]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 51 of 125

6.4 Evaluation

[This section is empty for this iteration of the document. In future iterations, it will give details on how they
fulfilment of the requirements was checked before integrating the brick into the SEE of the use case. For
interoperability features, this might be done by pairwise interaction between some bricks.]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 52 of 125

7 NuSMV

Provider: FBK

Task #: T6.4.6

Brick #: B2.43

Category: Safety Analysis automation and verification

7.1 Overview

7.1.1 General Description

The extended version of the NuSMV model checker is a tool suite for model-based development that covers
several phases of system engineering, including requirement analysis and validation, verification of
functional and non-functional requirements, safety assessment, and contract-based architectural design. For
this purpose, the extended version of the NuSMV model checker includes several tools, namely nuXmv (for
requirements analysis and functional verification), xSAP (for safety assessment) and OCRA (for contract-
based design). More in detail, the extended version of NuSMV supports the following activities:

 Requirements validation:

to check the quality of a set of requirements by formalizing them into a formal language, e.g. Linear
Temporal Logic (LTL), and using verification techniques to discover errors such inconsistencies,
missing requirements, wrong conditions, over-specifications.

 Verification of functional correctness:

to check the compliance of a system model with respect to a set of properties using model checking
for infinite-state systems.

 Safety assessment:

to check the compliance of a system model with respect to safety properties, and analyse its
robustness in presence of faults; it includes techniques such as Fault Tree Analysis and Failure
Modes and Effects Analysis.

 Contract-based architectural design:

to analyse the architectural decomposition of a system using contract-based design, and use
contracts for compositional reasoning and a proper reuse of components.

7.1.2 Related Use cases

The NuSMV brick is a cross-domain toolset for model-based engineering. In Crystal, it will be evaluated in
the aerospace domain. In particular, the brick will be integrated in Use Case 2.8 (“Public Use Case
Aerospace”). The brick will implement functionalities for the following engineering methods identified in
UC2.8:

 Verify Design against requirements (functionality: verification of functional correctness)

 Fault Tree generation (functionality: safety assessment)

It is also under consideration the integration of the brick into Use Case 2.6 (“Multi-Mode Navigation System”),
in particular for the following engineering method:

 Requirements validation

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 53 of 125

7.2 Specification

7.2.1 Requirements from the UCs

The NuSMV brick will address the following requirements coming from the UCs.

7.2.1.1 Use Case 2.6

We have identified the following requirements:

 The tool shall be able to retrieve, using IOS primitives, the list of requirements to be validated

 The tool shall be able to check consistency and completeness of a set of requirements

 The tool shall be able to generate verification results, such as traces, in a format to be made

available through the IOS

7.2.1.2 Use Case 2.8

We have identified the following requirements:

 The tool shall be able to retrieve, using IOS primitives, the nominal and dysfunctional model(s),

written in Altarica language

 The tool shall be able to retrieve, using IOS primitives, the set of properties to be used for functional

verification

 The tool shall be able to retrieve, using IOS primitives, the list of Failure Conditions to perform Fault

Tree Analysis

 The tool shall be able to perform functional verification, given a set of nominal (and dysfunctional)

model(s) and a set of properties

 The tool shall be able to generate a Fault Tree, given the nominal and dysfunctional model(s),

written in Altarica language, and the list of Failure Conditions

 The tool shall be able to generate traces in a format to be made available through the IOS

 The tool shall be able to generate Fault Trees in a format to be made available through the IOS

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 54 of 125

7.2.2 How will this brick be integrated in the UC

We exemplify the way NuSMV will be integrated with UC 2.8, to perform Fault Tree Analysis. We consider
the following scenario:

• The safety designer would like to generate fault trees corresponding to a list of failure conditions

• The safety data are stored in a safety in-house tool

• Dysfunctional models are available

In this scenario, we assume that NuSMV provides the machinery for generating Fault Trees, and a user-level
application (e.g., FT+) is used to generate requests to NuSMV, and also as a graphical displayer for the
generated artefacts.

The interaction between the tools can be described as follows.

First, failure conditions are retrieved (points 1, 2 and 3 in Figure 7-1); the request generated from the
application (FT+ in this example) is forwarded to a safety repository, and the result is sent back.

Figure 7-1: Failure Conditions retrieval.

Second, the NuSMV tool is invoked in order to generate the list of failure components (point 4 in Figure 7-2).
NuSMV uses as input the nominal and dysfunctional models, written in Altarica, and the list of failure
conditions. The Altarica models are converted into SMV language, the input language of the NuSMV model
checker, using the Altarica2Smv plugin. Internally, NuSMV implements routines, based on model checking
techniques, to generate Fault Trees.

In this example, NuSMV generates the list of failure components corresponding to the set of Minimal Cut
Sets (MCSs) – i.e. a flat (two-level) FT.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 55 of 125

Figure 7-2: NuSMV invocation.

Then, the failure components are sent to FT+ (point 5 in Figure 7-3).

Figure 7-3: Failure Components are sent back.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 56 of 125

Finally, the list of failure components produced by NuSMV is assembled and visualized in FT+ using
standard Fault Tree notation (point 6 in Figure 7-4).

Figure 7-4: Generation of Fault Trees.

7.2.3 Requirements fulfilled by initial tool/method version

The NuSMV brick already implements routines for requirements analysis, functional verification, safety
assessment and contract-based architectural design. Such functionalities will be extended and adapted to
the Crystal RTP. The new features are explained in detail in Section 7.2.4.1.

Additionally, the tool will be extended to allow interoperability with the Crystal IOS and RTP. The
corresponding requirements are discussed in more detail in Section 7.2.4.2.

7.2.4 What will be implemented/provided in the CRYSTAL project

The extended version of the NuSMV model checker will be developed by FBK, and adapted to Crystal
needs, in order to support the IOS specification and to be integrated in the Crystal RTP.

7.2.4.1 New and improved features

We envisage the following directions of development:

 The nuXmv tool will be extended in order to incorporate the requirements analysis functionality

implemented in the RAT tool (Requirements Analysis tool – also developed by FBK) so as to create

a seamless environment for requirements validation and functional verification

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 57 of 125

 The NuSMV/OCAS plugin will be extended and possibly adapted to match the dialect of Altarica

used in UC2.8. Some syntactical and semantical limitations of the current version will be removed.

Moreover, we have identified some implementation-level improvements that may affect the

performance of the plugin.

 Concerning the safety assessment engine, we will investigate the possibility to improve the

readability of the generated Fault Trees. Currently, the tool is capable to generate flat (two-level)

FTs. Possibility of generating some form of hierarchical layout – using contract-based techniques - is

currently under investigation. Such improvement may also be beneficial in terms of performance.

7.2.4.2 Interoperability requirements

NuSMV will be extended with new interfaces, according to users’ needs and as a consequence of
requirements coming from the UCs. In particular, we envisage the following extensions:

 New formats will be defined in order to exchange verification data, such as traces and Fault Trees.

 Requirements will be linked with models.

 Traceability of artefacts will be supported, in particular it will be possible to trace verification and

safety artefacts to models.

NuSMV will be extended in order to be integrated into the Crystal IOS. Moreover, based on the ongoing
integration into SafeCer CTF (Certification Tool Framework), NuSMV will be updated to be inserted into the
CRYSTAL RTP. More specifically:

 An adapter will be implemented to interface NuSMV and make it compliant with the CRYSTAL IOS.

 The existing NuSMV/OCAS interface will be extended and adapted to match CRYSTAL RTP.

 Results formats, such as formats for execution traces and for safety artefacts (FTs and FMEA

tables), will be created in order to exchange results with CRYSTAL tools.

7.3 Implementation/Elaboration

[This section is empty for this iteration of the document. In future iterations, it will give details on which
requirements are successfully implemented and how they can be used]

7.4 Evaluation

[This section is empty for this iteration of the document. In future iterations, it will give details on how they
fulfilment of the requirements was checked before integrating the brick into the SEE of the use case. For
interoperability features, this might be done by pairwise interaction between some bricks.]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 58 of 125

8 C²FT

Provider: FhG IESE

Task #: T6.4.7

Brick #: B3.97

Category: Safety Analysis Tools

8.1 Overview

8.1.1 General Description

C

2
FT is the evolution of Fault Tree Analysis (FTA) and Component Fault Trees (CFT). This technique has

been created with the aim of facilitating fault tree analysis during the design process. This is achieved by the
C

2
FT approach by defining a formal relation between a CFT and a component in a component model. This

relation is not only established between the two models but also between their interfaces, so that failure
modes of the CFT are associated with the incoming and outgoing interfaces of components. See Figure 8-1.

The formalization of the relation between the safety model and the component model, represents and
enhancement with respect to the predecessor techniques regarding:

 Consistency

 Traceability

 Maintainability

 Reusability

Furthermore, C
2
FTs also help handling the complexity of the safety analysis by keeping the same modular

and hierarchical structures as can be defined in the component/architectural models.

An implementation of the technique already exist in form of plug ins provided as an extension of the
commercial tool Magic Draw

4
.

8.1.2 Related Use cases

C
2
FTs is relevant for the use case UC3.3 “Functional power train architecture & control development” on

charge of (AVL). See deliverable “Milestone report – V1” (D303.011) for detailed information on this use
case.

4
 Magic Draw is a software and system modeling tool developed and distributed by No Magic Inc.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 59 of 125

Figure 8-1: C
2
FT

8.2 Specification

8.2.1 Requirements from the UCs

Requirements for C

2
FTs with respect to the use case UC3.3 “Functional power train architecture & control

development” are still under discussion. These would be documented here as soon as they have reached a
stable version.

8.2.2 How will this brick be integrated in the UC

The C
2
FT tool will provide the capabilities to model Fault Trees, Component Fault Trees (CFT) and

Component Integrated Fault Trees (C
2
FTs). Furthermore, qualitative (e.g. minimal cutset) as well as

quantitative analysis (e.g. top event probability) can be performed. C
2
FT would allow to perform FTA on

basis of architectural models, as described in section 8.1.1.

8.2.3 Requirements fulfilled by initial tool/method version

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 60 of 125

Recall section 8.2.1.

8.2.4 What will be implemented/provided in the CRYSTAL project

In a world with growing number of distributed development approaches, the need for a safety integrated
development has become very urgent. This has been evidenced during the definition and evaluation of the
C

2
FTs method. For this reason, FHG IESE has the main objective of facilitating this integration process at

several levels. On the one hand, we desire to integrated several safety analysis techniques, so that
heterogeneous analysis are possible, and for which C

2
FT represent a reached milestone. Furthermore, we

also want to reduce the gap between different tools, by enhancing their interoperability.

In order to facilitate the interaction between tools, FHG IESE want to develop an Open Safety Model (OSM)
see Figure 8-2. The function of the OSM is to define the supported analysis techniques and serve as a
model exchange layer by offering an API that allows to exchange model relevant data as well as analysis
results independent of the tool making use of it.

Traditionally, the integration between tools have been achieved by defining interfaces and a exchange
format for every pair of tools. This is however a non ending task. Therefore, the OSM pretends to avoid this
situation by offering a generalized format that could be used by all tools. The advantage of it would be that
compatibility between two tools does not need to be guaranteed but only between the tool and the OSM.

8.2.4.1 New and improved features

The interoperability with other tools is of high relevance for FHG IESE, therefore one of the goals to be
achieved in Crystal relates to achieve higher levels of data exchange. Although the current implementation
offers already the exchange of model information, this is restricted to a small set of tools. Therefore with the
implementation of the OSM we expect to increase the chances of interoperability of tools and integration of
techniques.

Figure 8-2: Open Safety Model (OSM)

Fr
o

n
te

n
d

Tool 1

Diagram 1

Tool n

Diagram k

K
er

n
el

(O
SM

)

Fault Tree

Package

FMEDA
Package

Markov
Package

B
ac

ke
n

d

FT+ IQ-FMEA Zusim

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 61 of 125

8.2.4.2 Interoperability requirements

With the focus in interoperability the tools created at FHG IESE will be developed with the aim to comply with
the Crystal IOS as well as to be integrated in the Crystal RTP.

8.3 Implementation/Elaboration

[This section is empty for this iteration of the document. In future iterations, it will give details on which
requirements are successfully implemented and how they can be used]

8.4 Evaluation

[This section is empty for this iteration of the document. In future iterations, it will give details on how they
fulfilment of the requirements was checked before integrating the brick into the SEE of the use case. For
interoperability features, this might be done by pairwise interaction between some bricks.]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 62 of 125

9 Safety for Avionic Design and Analysis Framework

Provider: EADS IW-G

Task #: T6.4.9

Brick #: B2.41

Category: Safety Analysis Tools

9.1 Overview

The basic motivation for developing this Safety Brick for an Avionic Design and Analysis Framework is to
provide a mean to System and Safety Engineers that enables the definition of System Architectures
optimized for Safety & Reliability and following robust design principles.

9.1.1 General Description

Figure 9-1 below provides a first draft overview of the envisaged Avionic Design and Analysis Framework. It
is based mainly on input provided by the Airbus Environmental Control System Use Case. The core part of
the framework is dedicated to the integration of safety and design models managed by Simulink. A
connection to Design Verifier is needed for analysis purposes. The framework will also include a dedicated
tool that allows triggering of failure injections and visualization of safety analysis results.

It is expected to later extend the framework to other tools such as Isograph FT+, IBM Doors, or Airbus
internal tools for Particular Risk Analysis.

The connections between the different tools involved in this framework shall be based on the CRYSTAL IOS.

9.1.2 Related Use cases

The Safety framework for Avionic Design and Analysis is currently driven mainly by the Use Case 2.1a –
Airbus Environmental Control Systems.

It is expected to extend the framework such that it can also support the Use Case 2.1b – Airbus Simulation
for Particular Risk Analysis, and Use Case 2.1c – Airbus Fuel Management Risk Analysis.

The definition of the core part of framework is tightly linked to the definition of the SEE of the Airbus

Environmental Control System Use Case as described in the deliverable D2.1.1.1‐1 (Use Case Definition,
Airbus-Germany, Environmental Control Systems)

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 63 of 125

Figure 9-1: Avionic Design and Analysis Framework

9.2 Specification

9.2.1 Requirements from the UCs

The following requirements will be addressed by this brick, grouped by use case:

9.2.1.1 UC2.1a - Airbus Environmental Control Systems

Figure 9-2 provides a more detailed view on the envisaged way of working of the core part of the Safety for
Avionic Design and Analysis Framework:

1. The framework shall consist of a dedicated tool that allows the safety engineer to trigger failure

injections by selection of either relevant Simulink blocks of the design model or the entire design

model, and by the selection of relevant Failure classes and fault representatives.

2. Based on this, functional models defined by Simulink shall be enriched by observers and failures and

then sent to Design Verifier tool.

3. The Design Verifier will be used to compute counter-examples for a dedicated Safety Requirement.

Design Verifier stops its calculation when it has found a first counter example. For this counter-

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 64 of 125

example it will provide the minimal cut set. After stopping, Design Verifier shall be automatically re-

launched to compute other counter-examples

4. A dedicated visualization tool shall extract out of a set of counter examples the minimal cut sets.

Figure 9-2: Core of Avionic Design and Analysis Framework

The next pictures show briefly possible extension of the Safety for Avionic Design and Analysis Framework.
It is planned to connect the tool Isograph FT+ to the framework in order to visualize the failure model that
results from the minimal cut sets and the design model.
It is also planned to add IBM Doors to this framework in order to provide traceability functionality between
observers and textual requirements.
These parts will however be further analysed and specified for the next version of this deliverable.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 65 of 125

Figure 9-3: Possible extensions of the Safety for Avionic Design and Analysis Framework

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 66 of 125

An explanation of the terms “observers” “counter-examples” and “minimal cut-sets” and of acceptable levels
of minimal cut sets for Avionics can be found in the deliverable D201.011.

9.2.1.2 UC2.1b - Airbus Simulation for Particular Risk Analysis

It is assumed that the core part of the framework will also support the Airbus Simulation for Particular Risk
Analysis Use Case. Additional Requirements that are specific for the Airbus Simulation for Particular Risk
Analysis Use Case will mostly be defined for a later iteration of this document.

A possible extension of the framework to cover UC2.1b needs is represented in the picture below. It is
planned to add an Airbus internal tool to the framework that contains the Hit List that is resulting from
Particular Risk Analysis. The Hit List includes all system components (e.g., sensors, computers, switches,
power centers, cable routings) that are positioned within the trajectory of debris resulting from a particular
risk event such as an engine rotor burst and that will be hit and destroyed by such an event. This Hit List
could be used as another input to trigger failure injections.

Figure 9-4: Extension of the framework to cover UC2.1b

9.2.1.3 UC2.1c - Airbus Fuel Management Risk Analysis.

It is assumed that the core part of the framework will also support the Airbus Fuel Management Risk Analysis
Use Case. Additional Requirements that are specific for the Airbus Fuel Management Risk Analysis Use
Case will be defined for a later iteration of this document.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 67 of 125

9.2.2 How will this brick be integrated in the UC

This brick will be the core part of the SEE of U.C 2.1a. It will also play a key role in UC 2.1b and UC 2.1c.

9.2.3 Requirements fulfilled by initial tool/method version

TBD for the next version of this deliverable.

9.2.4 What will be implemented/provided in the CRYSTAL project

Within CRYSTAL, it is planned to focus in the first place on the definition of the dedicated tool for triggering
the failure injections and for visualization of Safety Analysis Results, and on the interfaces between this tool
and Matlab Simulink, Design Verifier, and other tools relevant for future framework extensions.

9.2.4.1 New and improved features

This part will be defined for the next version of the deliverable.

9.2.4.2 Interoperability requirements

This part will be defined for the next version of the deliverable.

9.3 Implementation/Elaboration

[This section is empty for this iteration of the document. In future iterations, it will give details on which
requirements are successfully implemented and how they can be used]

9.4 Evaluation

[This section is empty for this iteration of the document. In future iterations, it will give details on how they
fulfilment of the requirements was checked before integrating the brick into the SEE of the use case. For
interoperability features, this might be done by pairwise interaction between some bricks.]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 68 of 125

10 Claims Language Boilerplate

Provider: IFX-UK

Task #: T6.4.10

Brick #: B3.99

Category: Safety requirements engineering

Replaced brick “URML”.

10.1 Overview

Extend the Security semi-formal notation language from the 1991 ITSEC standard
http://www.ssi.gouv.fr/site_documents/ITSEC/ITSEC-uk.pdf for safety, implement a boilerplate and tooling to
translate from Natural Language to the Claims extension.

10.1.1 General Description

The ISO26262 strongly recommends for ASIL C and D that the requirements are written with a semi-formal
notation. Originally Infineon considered using a new UML extension called URML from Siemens as it was
restricted enough to be used for Requirements. The analysis of all the options possible was undergone
within the ARTEMIS VeTess project concluded that for Infineon, the best solution would be to extend the
ITSEC security standard Claims language (see http://www.ssi.gouv.fr/site_documents/ITSEC/ITSEC-uk.pdf)
for Safety. Therefore we plan to extend the Claims boilerplate and write a tool to translate from Natural
language to the Claims format – possibly the DODT that was developed under the ARTEMIS CESAR project
http://publik.tuwien.ac.at/files/PubDat_201539.pdf

10.1.2 Related Use cases

Currently within the Requirements Engineering flow we have a very manual process during the collation and
storage of the requirements at the start phase. The Requirements are all in a natural language format and
are translated to a semi-formal style notation within a manual process. The review and quality gateway is
also a manual and time-consuming process subject to misinterpretation and data integrity issues as shown in
the excerpt from the Requirements Engineering DFD diagram of use case 3.3 and the automotive public
use-case.

Within the Crystal project we plan to automate the translation process from natural language to semi-formal
notation to avoid manual errors. This tool will be a brick and may need to interact with other tools, for
example should the naming be variant related it may need to access the information from the Information
database KiD (Knowledge and Information Database).

http://www.ssi.gouv.fr/site_documents/ITSEC/ITSEC-uk.pdf
http://www.ssi.gouv.fr/site_documents/ITSEC/ITSEC-uk.pdf
http://publik.tuwien.ac.at/files/PubDat_201539.pdf

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 69 of 125

Figure 10-1: Quality gateway

Figure 10-2: DODT

10.2 Specification

Currently the DODT is being analysed and syntax options are discussed with AVL.

10.2.1 Requirements from the UCs

3.3.3 Quality Gateway : " Implement strict rule set to ensure semi-formal notation " will be addressed by this
brick.

dfd Data Flow Diagram

ClearQuest RequisiteProEngineer

Change

process

Requirement Quality GatewayRequirement Quality Gateway

manual inputmanual reviewmanual input

«trace»

Refinement

& link

dfd Brick Boilerplate DFD

ClearQuest RequisitePro

Engineer

Change

process

«artifact»

DODT

Natural Language Reqs

Semi-formal Reqs

Natural

Language Reqs

«trace»

Refinement

& link

manual input

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 70 of 125

10.2.1.1 Use Case 3.3

10.2.2 How will this brick be integrated in the UC

The current top-level of the use-case which includes the quality check and translation both with the initial
requirement list and the ones that come through the change management process, will be replaced over
time by the new automated quality check.

The figure below shows in the red circle the current flow – this will be replaced by the data flow in the red
square,

Figure 10-3: Manual Quality flow to be replaced

Figure 10-4: Replaced with automated Quality flow

dfd Data Flow Diagram

ClearQuest RequisiteProEngineer

Change

process

Requirement Quality GatewayRequirement Quality Gateway

manual inputmanual reviewmanual input

«trace»

Refinement

& link

dfd Brick Boilerplate DFD

ClearQuest RequisitePro

Engineer

Change

process

«artifact»

DODT

Natural Language Reqs

Semi-formal Reqs

Natural

Language Reqs

«trace»

Refinement

& link

manual input

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 71 of 125

10.2.3 Requirements fulfilled by initial tool/method version

Currently none

10.2.4 What will be implemented/provided in the CRYSTAL project

10.2.4.1 New and improved features

 An agreed set of semi-formal notations,

 A semi-automated check of requirement quality

 A translation of NL Requirements into the agreed semi-formal ones.

The semi-formal notations ensure that the requirements are at an atomic level and therefore can be reused
within the flow.

10.2.4.2 Interoperability requirements

Currently the tool is standalone – however if the ontology/rule set differs between the variants then we may
look at using CRYSTAL IOS to link the data from the KiD to the DODT or equivalent

10.3 Implementation/Elaboration

[This section is empty for this iteration of the document. In future iterations, it will give details on which
requirements are successfully implemented and how they can be used]

10.4 Evaluation

[This section is empty for this iteration of the document. In future iterations, it will give details on how they
fulfilment of the requirements was checked before integrating the brick into the SEE of the use case. For
interoperability features, this might be done by pairwise interaction between some bricks.]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 72 of 125

11 DaD Data Analyser Dashboard

Provider: IFX-UK

Task #: T6.4.11

Brick #: B3.91a

Category: Verification management

(former brick name: Cross Domain Data Analyser)

11.1 Overview

DaD is an internally specified tool to allow for ease of managing the various data across the multiple projects
and domains.

11.1.1 General Description

During implementation of the Requirements tracing flow it was identified that the communication of data
between not only the domains but across the Hierarchy was problematic. It was decided that a dashboard
that could analyse all of the related information necessary to ‘view’ the project as a whole would be of help
here. DaD will analyse information from the different tools and documents released into the Configuration
management tools and present it in a graphical user interface which can be configured on a per view basis.

11.1.2 Related Use cases

This is planned to be applied in UC3.3 Functional power train development.

11.2 Specification

11.2.1 Requirements from the UCs

11.2.1.1 Use Case 3.3

The requirements coverage figures will also be added to the tool to allow ease of visibility on the maturity of
the project and the contact name for each set of results. All of this will allow for a greater communication
between the projects, the verification/validation teams and the requirements engineering group.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 73 of 125

11.2.2 How will this brick be integrated in the UC

The commercial tool asuresign from TVS currently allows for software and hardware test and regression
management as well as linking requirements into tests and analysed hardware test results. It will be
expanded to all domains such as software, firmware and validation to ensure reusability and also a single
interface for all groups into the requirements tracing flow. The tool will have a single database instance for
each module and per variant, this information will be gathered into a central area under configuration
management and a tool will be added to view the information all centrally. This tool will be called DAD (Data
Analyser Dashboard) and will assist the different domain managers in having visibility of which requirements
are being tested by the other domains, this will assist with ensuring that the requirements are not over
verified/tested by multiple groups and also that it is verified/tested at least once in the flow. It also will allow
grading of the requirements to allow early IP release to the SoC team, IP is intellectual Property in the form
of a module, SoC’s are system-on-chips and are made up of multiple modules which are tested in
standalone testbenches and then tied together by a system team. To do this we can define a grading
system such as “Gold, silver, bronze” for example and assign a release maturity to a module. So if we define
all of the tests which just test interfaces as a bronze or first release, then the SoC team will be aware that no
other functionality has been tested and should they uncover a bug in an internal functionality they will not
debug it as it might be currently under debug by the IP team. This will save duplication of effort and allow
the safe staged release of IP’s to speed up the SoC implementation and verification.

Asuresign is reliant on the passing of data and as such is reliant on data being under Configuration
management and stable in its place of storage. It is at the bottom of the requirements trace flow linking
through from the results and translating them into an ARQE.xml format which is readable by both asuresign
and Reqtify, thus bringing the info into the requirements traceability tree.

Figure 11-1: DaD within the Requirements Engineering flow

A proposed example for DAD is shown in Figure 11-2 below.

dfd Data Flow Diagram

KiD (Knowledge &

Information

Database)

«script(s)»

Release manager

Clearcase

configuration

management

«Tool»

DaD (Data Analyser

Dashboard)

«Tool»

MoM (Measure of

Metrics)

read ARQE xml

moves all docs

read DB

read ARQE.xml

information for move

read DB

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 74 of 125

Figure 11-2: DaD information analysis

11.2.3 Requirements fulfilled by initial tool/method version

Improved communication across domains and better project management.

11.2.4 What will be implemented/provided in the CRYSTAL project

11.2.4.1 New and improved features

The Tool is new and internal to IFX, the tool will be completed and any improvement areas analysed and
reworked into the tool over time within the project. As this is a completely new tool, it is likely to evolve over
time as it gets used as other users may identify either problems or improvements that they wish to have fixed
or introduced.

11.2.4.2 Interoperability requirements

This tool is a data analyser. It is dependent on getting the correct information from the correct area/tool.
This information shall be held within the KiD database (a new internal database under construction but not
part of CRYSTAL). So it will interface between the Configuration management storage in Clearcase and
KiD. ARQE.xml and a database query may be used for reading the data, for the database info OSLC may
also be investigated.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 75 of 125

11.3 Implementation

Currently this is under construction, a full set of UML design diagrams has been created and is under review.
A trial program was already implemented and is being analysed before being continued with tool
implementation.

11.4 Evaluation

[This section is empty for this iteration of the document. In future iterations, it will give details on how they
fulfilment of the requirements was checked before integrating the brick into the SEE of the use case. For
interoperability features, this might be done by pairwise interaction between some bricks.]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 76 of 125

12 Recommended methodology according ISO 26262

Provider: ITKE

Task #: T6.4.12

Brick #: B3.04

Category: Safety Methodology

12.1 Overview

12.1.1 General Description

ISO 26262 is an established norm for the automotive industry which is not yet finished transforming
respective production and development. The characteristic property of the norm is that it must be concretized
before use. ITK Engineering is active in several projects of different manufacturers which are based on the
ISO 26262. This peculiarity happens to make us familiar with the different concretizations. From this
experience we see the need for a directive how to complete a transition from status quo to solutions based
on the future Crystal RTP.

The purpose of this task/brick is to maintain applicability of CRYSTAL solutions to development
environments based on ISO 26262. The definition of a cross-domain interoperability requires the division of
the problem into typical technical patterns of information exchange and into a set of domain-specific symbol
declarations (incl. convention over their meaning = Ontology) in order to control the technology. They are
both part of the IOS but it is only the latter that is relevant to ISO 26262 applicability. The output of this brick
can be threefold:

1. Derive Instructions for the automotive domain on the use of CRYSTAL RTP

2. Possibly extension of generic CRYSTAL ontologies for ISO 26262 purposes

3. Identification of remaining technological shortcomings and resulting dangers

for automotive setups

The freedom to lay out the ISO 26262 has consequences for interoperability of software because software is
relying on communication of objects with some known meaning. Automotive companies have three important
degrees of freedom in ISO 26262 implementation which give rise to the risk of having to adapt implemented
methodology before being able to use Crystal RTP. These freedoms are:

1) Freedom of Interpretation

2) Freedom of Selection

3) Freedom of Combination

Freedom number one relates to the OEM’s right but also duty to specify what specific terms mean in the
context of a given company. Ontogenesis of these terms involves the evolutionary definition of properties,
establishment of taxonomical order with similar concepts and declaration of valid operations. From this
refinement different kinds of process objects and artefacts can emerge which are embedded in an OEM-
specific process landscape and ecosystem of tools.

Freedom number two relates to the OEM’s right but also duty to select between several equivalent or at least
similar approaches in order to achieve ISO 26262 defined goals. OEMs will choose between different tools,
between different kinds of issue management, between different kinds of organizations of workers or
between different kinds of innovation cycles. For example, a new development may very well be performed
as a strategic project or as a market-triggered innovation cycle. Possibly one quality management system is
based on SPICE and another on CMMI. Maybe the product has been inherited from pre-ISO times or it is a

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 77 of 125

new product designed from scratch. Hence, manufacturers will find it difficult to implement methods and
procedures in the same way as they have different resources, product complexities, production realities,
legal frames and so on. Numerous technological tools are involved in this as well.

Freedom number three relates to the OEM’s right but also duty to combine various steps in such a way that
the output is relevant to the goal. Once the building blocks had been selected to conform to an ISO 26262
development environment, it is important to define how information will flow through it. And this is much less
a freedom but more like a “take it or leave it”. The large body of realities swamping in from “freedom #1” and
“freedom #2” lead to a lock-in of tools designed to live in a specific niche. For example, the obstacles for
switching from one set of software tools to another can be subtle but grave. What software a supports easily
can be very difficult to achieve with software b. Sometimes this is just a detail like a missing API or unreliable
exporter or a patent issue preventing the use of some software under local jurisdiction. Using software c with
similar capabilities could be impossible because the terminology and concepts behind it do not exactly match
domain specific conventions, etc.

The problem with the three freedoms is that they are impeding each other and CRYSTAL is visibly trying to
better distribute the trade-offs to be made among them. As a rule of thumb, the Freedom of Interpretation
has to be restrained a little in order to gain options during Selection and Combination. The most likely
approach for achieving this will be to specify more generic terminology embedded in a more generic but
modular process framework. This can fuse items which have not been considered the same or related until
now. This again could open new possibilities for linking items together (this is probably desired but also a
new source of error) and it could interrupt processes which will require inconsistent terminology (this is
probably an improvement but at first it is a hassle).

A brief made-up example shall serve as an illustration of the problem: The idea of tests (term “test”) can be
either generic or special, depending whether several organizational units have to interact with each other or
not. If they do not have to interact with each other then we observe the establishment of very specific
understandings. In such specific cases the term “test” will mean either a single row in an Excel sheet or a
single mechanical operation. Obviously, it is very difficult to establish interoperability at this level of detail. In
more general cases the term “test” will describe a set of related objects and functions which are verified to
satisfy certain qualities. The number and style of attributes used to describe the act of testing will most likely
differ between companies, will often differ between departments and sometimes even differ from case to
case. As long as the number of properties is small and their values are generic interoperability appears to be
much more viable.

For example, if some ISO 26262 compliant organization tries to verify material properties then the term “test”
will probably relate to visual inspections, to chemical reaction experiments or to procedures for inducing
mechanical stress. Such tests can be destructive (specimen is lost) and may have a high cost which must be
monitored and assigned to responsible staff. In contrast, for some software company a test will probably only
relate to a piece of developed software and it will run automatically at no noticeable delay. From this
difference, it might not appeal to require any reference to monetary properties but it might appeal to store
paths to configuration data and to instructions for external test devices. A software company may call some
kind of test “user satisfaction assessment” but it could be unaware that it can be explicitly expressed in a
requirements-testing framework. Hence, a company producing materials for the automotive industry will most
likely have a different understanding of what properties properly characterize tests and may prefer to use
different terminology. One company will speak of “quality assessments” and the other will speak of
“functional verifications”. Without generalization these two terms will lead to the creation of two incompatible
process landscapes.

Luckily, if stakeholders have to work together more frequently then concepts in use will approximate to the
point where certain terminology condenses to be a domain specific jargon. In CRYSTAL the ontology tasks
attempt to recapture what has become accepted terminology so far and to develop it further in order to allow
deeper entanglement of objects from different domains. The creation of an overall ontology could help in this
but it might entail the creation of an official taxonomy which is different from all existing ones. Such
CRYSTAL taxonomy will reduce interpretational freedom at one hand but will increase Freedom of Selection
and Combination at the other. The companies who develop embedded systems with such new tools will
hopefully perceive the new practical freedoms so convincing that they will accept less domain- (and less
company-) specific development practices.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 78 of 125

From the CRYSTAL project it is generally expected that it will create terminology at a greater level of
abstraction in order to encompass concepts used in multiple domains. It cannot be guaranteed that this new
terminology will nicely map to the participating companies’ original terminology. Hence, the purpose of this
task is to basically reverse the process, to map older terminology to new one and to describe how to handle
the differences when using tool integrations based on the ARTEMIS RTP. Some realism is required in this. It
is true that during the CRYSTAL project several concrete use-cases are played though and optimized using
a new interoperability technology but the resulting configurations are probably nowhere close to allowing
arbitrary alteration. The purpose of this task must be the formulation of effective approaches, revelation of
real options and warning off pitfalls when employing ARTEMIS RTP integrations in an ISO 26262 context.

12.1.2 Related Use Cases

UC3.2, UC3.3

12.2 Specification

This is a methodological brick.

12.3 Implementation

Experience from the project will be condensed in a publicly available directive for IT architects.

12.4 Evaluation

[This section is empty for this iteration of the document. In future iterations, it will give details on how they
fulfilment of the requirements was checked before integrating the brick into the SEE of the use case. For
interoperability features, this might be done by pairwise interaction between some bricks.]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 79 of 125

13 Risk assessment and hazard analysis

Provider: ITKE

Task #: T6.4.13

Brick #: B3.05

Category: Safety Methodology

13.1 Overview

13.1.1 General Description

Risk assessment and hazard analysis is an important step in almost any norm governing the development
and production of potentially harmful technical systems. In this process a variety of artefacts is generated
which have certain relationships among them. An analysis will have a relationship with the analysed models,
for example. In many cases these relationships are implicitly maintained by naming conventions for the files
and by their placement in folders or by databases holding them. CRYSTAL IOS is attempting to extend the
means of organization and interaction by providing rich explicit relationship networks and object abstractions
which are driven by the developers needs and not by available features of tools. In this task it is important to
identify which kinds of relationship and object categories are really required.

ITK Engineering and TNO have together performed a series of meetings discussing various terms related to
risk and hazards analysis. The specific choice of a risk evaluation approaches gives rise to different kinds of
procedures and/or additional analysis steps required to be performed for design changes. It also opens up or
closes doors to specific classes of mathematical analysis tools. For example a system’s risk could be defined
as 1) immediate hazard proximity, 2) as the probability of loss or 3) a decision theoretically motivated access
to an undesired state space.

1. The first concept is adequate for describing individual deterministic processes which end in an

uncontrollable harmful situation. A hazard could then be understood as remote (there is no path to

harm and it cannot be easily established: rock is far off the cliff), as dormant (there is no path to

harm but it could be easily established: rock is at the brink of cliff), as potential (there is a path to a

harm but it is under control: rock is close to falling off the cliff but its direction is controlled with

bumpers and target area was cleared) or as active (there is a path to a harm and it is not under

control: rock is falling off the cliff). A “path” in these categories is an uninterrupted sequence of

events stemming from the system’s dynamics in an individual scenario.

2. The second concept is adequate for modeling hazards which are activated at predictable

probabilistic rates but which cannot be predicted at individual demands. Such hazards typically arise

from physical component failures after long stress.The third is a little bit unfamiliar but makes more

sense in context of software where individual situation classifications and failure probabilities do not

seem to be a perfectly reasonable approach because software is not analyzed at instance level

(instead we analyze the algorithm) and it is neither operated randomly nor does it operate randomly.

The problem with software is that a system can be dangerous despite the software being fault-free

and the underlying hardware being reliable. The question then is how an operator can decide

whether his action policy will unlock a system hazard or not. The problem with bringing in an

operator is that he acts intentionally and that his policies are not best modeled with probabilistic

distributions (with some effort this is possible). This approach will try to answer how many bits of

information must be provided by the operator system to the operated system despite the information

gain communicated from the operated system to the operator in order to unlock a specific hazard in

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 80 of 125

the worst case. The number of bits communicated in both directions is posing the length of the

hazard key. The longer it is the safer the system because there is a strong separation between

similar operator policies and the action is absolutely intentional.

Spontaneously, it may not appear plausible to everybody why the third option is different from the first one.
Therefore an example shall briefly illustrate the difference: Let’s assume that we are considering the danger
of deleting a desired file on disk. Let’s further assume that before deletion the software will ask the user a
series of questions and will warn him about his operation. For example, at first the software could ask the
user if he really wants to delete the selected file. Before the user can answer “yes” the software reminds him
of the file’s content with a small preview of the file. If the file is somehow linked to other project files then it
could ask him again if it should really delete this file and show the user how these files are linked together. If
the file happens to be protected by the system the user will have to enter the administrator password before
proceeding and in the end the software will ask him if he really, really wants to delete this system protected
file. We finally arrive at a situation where the user will see this dialog with “yes” and “no” on it. In this situation
there is this potential hazard to delete a desired file but it is not reasonable to say that the software poses a
large hazard in terms of undesired deletions. Despite the system being potentially able to perform undesired
deletions it is not potentially dangerous.

Such ideas can be explored for their usefulness in CRYSTAL use-cases.

For example, UC 3.2 finds itself in a situation where ISO 26262 norm conform risk classifications do not work
for the use-case. An adoption of ASIL* classification has become necessary which is custom to the project.
Characteristic for the product in the use-case is the controlled environment where probabilistic failures from
hardware wear-out are being negligible and where probabilities for vehicle situations and exposure rates are
artificially designed on a case by case basis and not real-life estimates on a fleet basis as it is assumed by
the norm. A new hazard classification based on decision theoretic qualities could yield a more holistic
guideline for the overall system design which is compartmentalized at the moment (department processes,
on-board steering unit, series control units and software for trajectory generation are analyzed mostly
separately).

UC 4.2 is also facing hazards which are difficult to quantify from field data. In this case the severity and the
likelihood of specific events could be based on simulations or access models (3). This specific use-case is
also interested in smart field data collection and evaluation which is difficult if systems have no own
knowledge and fully rely on operator feedback. If systems can monitor their operation with rich knowledge of
assumptions made during development then patterns of operation which violate these assumptions could be
more easily detected.

From the perspective of the tool-chain it is very important to be able to easily identify all solutions designed
to prevent certain harmful events (traceability). The challenge in doing this is to support a large variety of
tools (tools for software development, tools for designing E/E platforms, tools for mechanical design and
tools for procedures and documentation design.)

13.1.2 Related Use Cases

UC3.2, UC4.2

13.2 Specification

This is a methodological brick.

13.3 Implementation

Concerned use-cases implement IOS-based solutions. Implementation of software for hazard estimation
based on information units, operator models and system descriptions are thinkable.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 81 of 125

Experience from the project will be condensed in a publicly available directive for safety analysts.

13.4 Evaluation

[This section is empty for this iteration of the document. In future iterations, it will give details on how they
fulfilment of the requirements was checked before integrating the brick into the SEE of the use case. For
interoperability features, this might be done by pairwise interaction between some bricks.]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 82 of 125

14 FTA, FMEA and FMEDA (ITKE)

Provider: ITKE

Task #: T6.4.14

Brick #: B3.06

Category: Safety Methodology

14.1 Overview

14.1.1 General Description

Fault Tree Analysis, Failure Mode Effect Analysis and the more hardware oriented Failure Mode Effects and
Diagnosis Analysis is a popular technique for analysing systems for their potential to generate failures
associated with harm. These techniques are part of an early analysis and help to decide among various
design options. This variety will grow if we think of a company with a broad product portfolio. The problem of
tracking the results and changes becomes pressing when systems are similar. In such cases humans can
mistakenly refer to wrong but similar documents. A scenario of this kind can be found in Use-Case 4.2.

Sometimes such analysis is done in a semi-technical way. It must be of high concern to introduce such
analysis as well-managed objects to the development environment because only then robust linking to
development artefacts can be achieved.

This task must also deal with practical aspects of technique execution. For example, FTAs can be a very
powerful method for detecting weak points in a design. The means to achieve this is to compute minimum
cutting sets (cross-sections). However, inadequate modelling can lead to false results. ITK Engineering will
help to detect or to define best-practice for techniques found to be relevant to use-cases. Living up to best-
practices is preliminary to further technological improvements like the introduction of an IOS-networked tool-
chain. For example, if a naming strategy for tree objects poses an obstacle to efficient computation of cutting
sets then an improved technological representation is not automatically going to make the computation of
those sets more efficient or correct.

There are several ways how CRYSTAL could yield improvements for engineering of critical embedded
systems. If use-case-providers decide to update their tool chains in order to include best in class tools for
faults and failure analysis, which allows for stably referentiable objects then producing IOS interoperability
will lead to development of respective adapters.

ITK Engineering and TNO have investigated for options to establish modern analysis techniques going
beyond FTA, FMEA and FMEDA. Such techniques, like bow-tie/event-tree, LOPAs or GOMS-based operator
interaction analysis, but also variants like the FMECA, RBDs and various statistical analysis methods can be
beneficial cross-domain and should be considered as part of this task.

Especially important are dynamical aspects of the analysis where diagnostics and active counter-measures
could lead to undesired dangers (recurrent analysis). Such analysis could be realized by conventional
analysis models if they could relate to each other. Establishment of such relationships could be achieved
with IOS-links.

The methods could also greatly gain strength if they could be invalidated by new data arriving at a safety-
database like it is envisioned for Use-Case 4.2.

14.1.2 Related Use Cases

UC4.2

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 83 of 125

14.2 Specification

14.2.1 Requirements from the UC

14.2.1.1 Use-Case 4.2

Use-Case 4.2 is aimed at improving the efficiency of the product risk management of interventional X-ray
systems (iXR) (cf. Figure 14-1). This medical device consists of a C-bow to allow instruments moving in a
multidimensional space to be aimed at a patient and controlled by an operator, a table to move and position
a patient in several directions and of a set of monitors and imaging facilities.

Figure 14-1. Example of an X-ray system developed in use-case 4.2

Product Risk Management (PRM) is a continuous process throughout the lifetime of a product addressing all
risk management activities related to the health, safety, privacy and security of people. This includes product
design, manufacturing, distribution, installation, service (maintenance, repair), de-installation, surveillance
and where necessary timely corrective actions. Two phases are distinguished:

• pre market: activities during design and release of the product (project execution)
• post market: activities after release of the product.

Three case studies are identified as relevant areas for improving product risk management processes:

1. Analyzing risk profile related to an adverse event;

2. Impact analysis of design changes;

3. Comparing actual risk profile to residual risk profile (trending).

Part of the PRM is the development of separate FMEA’s for reliability and safety once a new variant of an
iXR is designed and operational field data (like customer feedback, e.g. “complaints”) gives rise to evaluate
assumptions underlying the FMEA. FTA-methods are not used by Philips in this process.

Aim is to detect intolerable risks that require technical or organizational countermeasures in order to reduce
them to a tolerable level. In this context it is very important to draw a line between initial risks (without
countermeasures) and residual risk (with countermeasures). Experience feed-back on the latter leads to
review of the design base and the related FMEA as well as change proposals. Key of the analysis is to
assess whether tolerable risk limits are exceeded.

http://www.healthcare.philips.com/main/about/events/ecr/assets/images/IXR-1-2-lrg.jpg

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 84 of 125

Important problem was the difficulty to track results in Excel-sheets and related databases and to represent
them in meaningful information for diverse users in the PRM as well as to have a systematic overview in a
system to manage risk data of variants the system efficiently and prevent repetition. Several engineering
methods are used for this and they need to be combined.

An overview of the interrelations between the parts of the current safety risk management process is
depicted in the figure below. In the next section, each part in this figure is described in detail.

Figure 14-2: Overview of interrelations between parts of the safety risk management process.

In figure 14-2, the following parts can be distinguished:

product safety risk assessment: This represents the
sequence of events that can produce hazardous
situations and harm. The indicated sequence is from
cause to hazard to harm. As indicated in the figure,
one cause can result in more than one hazard and in
more than one harm. One harm can be caused by
more than one cause. This results in a m-to-n
relationship between causes, hazards and harms.
The red-crosses are entry points for risk control
measures.

risk control

measure

cause

cause

cause

cause

cause

cause

cause

cause

cause

cause

cause Hazard

Hazard

Hazard

Hazard

Hazard

Hazard

Hazard

Hazard

Hazard

Hazard

Hazard

Hazard

Harm

L0

L1

L2

L3

L4

S1
S2

S3
S4

L0

L1

L2

L3

L4

S1
S2

S3
S4

test: OK

Implementation

Detailed design
Specification

User needs
Specification

User Interaction
Specification

testing

verification

validation

5

6

7

4

1

2

3

Field

(actual) Hazard risk profile

L4

L3

L2

L1

L0

S1 S2 S3 S4

x
x xHazard

Hazard

Hazard

Hazard

Hazard

Hazard

Hazard

Hazard

Hazard

Hazard

Hazard

Hazard

Harm

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 85 of 125

system design: The system is built up from hardware
and software components and units. The
corresponding design choices directly affect the
possible causes for hazards and harms. The
diagram represents the hierarchical build-up of the
system design.

initial risk profile: based upon the severity of harm
and likelihood of occurrence of the hazards, a risk
profile of the complete product can be compiled.
Sequences of events resulting in harms with high
severity (e.g. S4) and high likelihood (e.g. L4) are
unacceptable.

risk control measure: Within the risk management
process risk control measures are defined and
implemented to reduce the risk(s) to an acceptable
level. As indicated with the connecting lines, risk
control measures are preferable defined as safety
concepts and specified in the top level of the system
design. Other risk control measures are defined and
implemented on unit level.

residual risk profile: This is the risk profile after
implementing the risk control measures. The risk
analysis process is repeated until sufficient risk
control measures have been defined and
implemented to reduce the risks to an acceptable
level.

development process: The risk control measures are
realized via the development process. Note that
some measures have impact at the overall system
requirements and design level and some only at the
low-level detailed design level. For each risk control
measure, test and verification results are collected at
the corresponding design levels.

test evidence: For all risk control measures, test and
verification evidence is collected from the
development process.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 86 of 125

post market analysis: customer complaints and
service work orders are analysed with respect to
occurrence of hazardous situations and adverse
events. When needed additional risk control
measures are defined and implemented.

actual risk profile: using the data from the post
market analysis, the actual product risk profile is
compiled. This profile is compared to the estimated
residual risk profile.

Improvements sought are amongst others:

1. Supporting the PRM by giving easy access to data form several user perspectives including
developers and enable transposing of risk data in new profiles

2. Structuring the description of events to enable to link them to hazards situation data and to clarify
and manage interrelationships of data (e.g. interdependencies of causes, hazards, harm, and control
measures)

3. To link these data with simulations, relevant test designs and safety cases.

4. Aligning hazardous situations in pre-market analysis with those experience in post market phase

5. To reconcile pre and post market risk profiles

6. To identify trends, automated reasoning mechanisms to connect safety cases, explore tools that
enable risk models to become more adaptive.

The need expressed in this use case for cross domain tooling may go beyond traditional methods and needs
exploration of new methods to support PRM at Philips. They may vary from innovative approaches like self-
reporting machines on the one site and renewal of the present analysis techniques by (e.g. Isograph) suites
including methods like fault tree, event tree or markov analysis on the other site. But also support in the work
flow system of rich interlinked items which are under a firm work-flow control can be thought of.

Currently this is under construction, a full set of UML design diagrams has been written and is under review.
A trial program was already implemented and is being analysed before being continued with tool
implementation.

14.3 Implementation

Experience from the project will be condensed in a publicly available directive for safety analysts.

14.4 Evaluation

[This section is otherwise empty for this iteration of the document. In future iterations, it will give details on
how they fulfilment of the requirements was checked before integrating the brick into the SEE of the use
case. For interoperability features, this might be done by pairwise interaction between some bricks.]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 87 of 125

15 Feature documentation in model based software

Provider: ITKE

Task #: T6.4.16

Brick #: B3.10

Category: Safety Methodology

15.1 Overview

During every development step the set of requirements is refined and transformed into design features which
must be documented for various purposes. A great variety of documentation documents is typical for modern
products. The variety of documents results from the variety of intentions behind them. There are installation
guides, manuals, safety instructions for the end-user, documentation for other developers, mounting
procedures, disposal remarks and maybe legally mandatory documents, like e.g. specific parameter sheets.

From our experience we observe a trend to rationalize this process. Many departments pursue the goal to
derive documentation from technical requirement descriptions. However, there are philosophical obstacles to
this approach:

 The first and foremost problem is that requirements describe a desired state and documentation is
describing the actually achieved state. Despite all the efforts to bring the achieved state and the
desired state together a remaining difference is often observed. The correct capturing of this
difference can be crucial in terms of safety or perceived product quality.

 The second important problem speaking against this strategy is that automatic documentation
compilers will not alter the content based on the intention behind the document. Such alterations can
be: change of language, change of style, reduction according to importance, reordering according to
priority or modification/insertion/deletion of diagrams and pictures. This process is a little bit of an art
which requires deep understanding of the reader’s reception of the document in a given situation.

 The third reason opposing an all too optimistic compilation of requirements into documentation is the
way information is assigned to documents. Requirements can often express themselves in different
ways and become relevant to different documentation activities. It is very difficult to know this in
advance and to properly characterize requirements by their relevance to specific documents. For
example, some products change their area of application and will require documentation which was
not expected up front.

These three important reasons have the consequence that production of documentation is still a mostly
human task. There are several important requirements from the point of view of the human documentation
engineer which if satisfied will greatly help him to produce high quality documentation:

1. Access to relevant technical artefacts (requirements, architecture diagrams, technical notes, test
protocols, etc.) should be easy. The probability to refer to a wrong artefact should be small.

2. Documentation is not affected by every change of design but sometimes it is. Nevertheless, the
documentation engineer should be able to track changes to the product and to adapt the produced
documentation as early as possible.

3. The tool-chain should support the production of a complete set of documentation artefacts. The
necessary documentation could be part of the requirements.

4. The tool-chain should allow for a nice workflow between original developers and documentation
engineers. These developers are sometimes on different projects and do not have immediate idea
what the documenting colleague is meaning. There should be an easy way to create a basket of
artefacts for a thread of discussion.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 88 of 125

5. Documents produced for documentation should be standardized and instructions for creating them
should be available.

Especially the OSLC based approach is adequate to create and track relationships among documents. From
experience it is considered already as very assuring if the final documentation for a product release is
collected automatically from such configurations.

Even if a fully automatic documentation is yet impractical some documentation could be updated or
generated semi-automatically. For example it should be easy to update numerical values in documentation
from requirements if they are exactly those which shall be documented (otherwise the values have to be
measured or derived from other sources like e.g. tests or parameter databases). The scripts or programs
responsible for such a merge should be easily exchangeable between documentation engineers. Therefore
they should be somehow attached as meta-data to the documentation involved.

The production of documentation is also one of the final quality assurance steps in a project. There should
be ways to trigger issues on the official change management platform if problems are detected.

15.2 Specification

This is a methodological brick.

15.3 Implementation

Use-Cases implement such ideas according to their internal requirements.

Experience collected during CRYSTAL should be condensed into a directive for documentation engineers
involved in projects based on Crystal RTP.

15.4 Evaluation

[This section is otherwise empty for this iteration of the document. In future iterations, it will give details on
how they fulfilment of the requirements was checked before integrating the brick into the SEE of the use
case. For interoperability features, this might be done by pairwise interaction between some bricks.]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 89 of 125

16 Isograph FaultTree+

Provider: ITKE

Task #: T6.4.7

Brick #: B3.55

Category: Safety Analysis Tools

16.1 Overview

The Isograph offers a product called Reliability Workbench which includes fault tree analysis (FTA). The
Reliability Workbench also supports various safety analysis techniques. The most up-to-date Isograph
Workbench delivers FTA, FMEA, RBD, Statistical Tests and various designers for management of the
process of finding the best technical approach to confront the spectrum of failures and their possible
expression. One such designer helps to design the reliability allocation because there is not a single solution
to face a potential failure. The Reliability Workbench is coming with catalogues of safety relevant objects
according to ISO 26262 and IEC 61508. ITK Engineering advises and accompanies CRYSTAL-partners in
their respective use-cases.

16.2 Specification

16.2.1 General Description

The minimal requirement for this brick will be the exposition of analysis results as an OSLC resource which
can be then referenced by other tools to manage safety requirements actualization. Use-Case 3.2 plans to
introduce a specialized IOS-based tool to navigate project graphs. This tool has the purpose to make the
most specific propositions for work given a selected set of project objects. It can be imagined that unfinished
but required FTAs appear as a workflow item in this tool. However, this tool is not representing the workflow
itself because it is implemented in PTC Integrity.

16.2.1.1 Related Use Cases

This was planned for UC4.2 Safety layer of interventional X-ray system.

16.3 Implementation

[This section is empty for this iteration of the document. In future iterations, it will give details on which
requirements are successfully implemented and how they can be used]

16.4 Evaluation

[This section is otherwise empty for this iteration of the document. In future iterations, it will give details on
how they fulfilment of the requirements was checked before integrating the brick into the SEE of the use
case. For interoperability features, this might be done by pairwise interaction between some bricks.]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 90 of 125

17 SAFETY ARCHITECT (ALL4TEC)

Provider: All4Tec

Task #: T6.4.12

Brick #: B3.04

Category: Safety Analysis Tools

17.1 Overview

17.1.1 General Description

The aim of this brick is to support local FMEA (Failure Mode and Effects Analysis) on the model elementary
components and to automatically generate Fault Trees. Using a system functional design or its physical
architecture model, the user can perform a local analysis inside Safety Architect, by linking failure modes of
the outputs of the block to the failure modes identified on the block inputs. In parallel, the user can also
implement safety barriers, participating to the safety objectives compliance (cut the critical path). The user
then defines what failure modes are the feared events (FE). These events will be studied by the analysis.
Then a propagation is run, which consists in spreading in the system all the identified failure modes, and to
trace those that reach a feared event. The results of this propagation are formulated through Fault Trees. In
case of modification of the system or software model, Safety Architect is able to perform an impact analysis
that reduces the rework costs that can be very high for a FMEA.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 91 of 125

17.1.2 Related Use cases

The brick development is applied in the use case UC5.3 in order to support the safety analysis at different
steps of the system design.

17.2 Specification

For the first iteration, and before the definition of IOS standards, the new functionalities that will be added to
Safety Architect are the following:

- Possibility to handle new attributes of failure modes that are mandatory in the Alstom format,

- Automatic generation of the global analysis results in the Alstom format.

17.2.1 Requirements from the UCs

17.2.1.1 Use Case 5.3

[req-UC53-01]

The tool shall be able to import the functional and architectural specifications of a system or sub-
system. In the use case, these specifications are formalized with SysML.

[req-UC53-02]

The tool shall be able to import existing safety (and functional) requirements defined in a Doors
database or SysML model.

[req-UC53-03]

The tool shall be able to export newly defined safety requirement toward Doors or SysML.

[req-UC53-04]

The tool shall provide to safety engineers a safety specific viewpoint of the functions and
components of the system, allowing them to consult, edit and validate the dysfunctional specification
of these objects. By dysfunctional specification it is meant: failure modes, causes, local equations,
input/output characterization…

[req-UC53-05]

During the import phase, the hierarchical description of functions and components shall be preserved
by the tool and explicitly showed in the dysfunctional viewpoint.

[req-UC53-06]

The tool shall be able to detect gaps between the current system model and the newly imported one.
These gaps shall be identified visually.

[req-UC53-07]

Models produced by the tool shall be “versionable” with mainstream versioning tools and support diff
and to some extent merge.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 92 of 125

[req-UC53-08]

The tool shall assist the safety engineer during the preliminary hazard analysis (PHA), by providing
means to describe accident scenarios and to associate tolerable hazard rate (THR)

[req-UC53-09]

The tool shall be able to capitalize accident description, context description, barriers and scenarios
description in libraries that can be reused for other analyses.

[req-UC53-10]

The tool shall produce a PHA description within a tabular view (e.g. excel sheet), one scenario per
line.

[req-UC53-11]

The tool shall initiate the hazard log table that traces feared event, barriers, and requirements down
to verification means (evidences) and status. At this stage only feared event, barriers and
requirements are identified.

[req-UC53-12]

The tool shall assist the safety engineer during the system Hazard analysis (SHA), by providing
means to describe the dysfunctional specification of every function of the system.

[req-UC53-13]

The tools shall produce FMEA and fault trees from the dysfunctional specification.

[req-UC53-14]

FMEA should be formalized within an excel sheet, fault tree should be either in the OpenPSA or
Aralia format.

[req-UC53-15]

During the SHA phase, the tool shall provide support to SE for SIL definition and allocation given a
global THR objective.

[req-UC53-16]

The tool shall ensure traceability between failure of functions and potential accident at system level.

[req-UC53-17]

During the SHA phase, the hazard log shall be updated with failures and associated safety
requirements

[req-UC53-18]

The tool shall simulate the dysfunctional behaviour of the system, providing means to study failure
propagation.

[req-UC53-19]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 93 of 125

For the SSHA phase the tool shall verify the same requirements as the ones defined for SHA id:
[req-UC53-12], [req-UC53-13], [req-UC53-14], [req-UC53-15], [req-UC53-17], [req-UC53-18]. Except
for [req-UC53-16] that is redefined.

[req-UC53-20]

The tool shall ensure traceability between failure of functions at subsystem level and failure of
functions at system level.

17.2.2 How will this brick be integrated in the UC

The system modelling process used is the Alstom Transport’s ASAP process which is implemented with
UML/SysML. ASAP is an advanced use case driven method that addresses requirement management,
operational analysis, functional analysis and constructional analysis. Each phase of analysis is subjected to
system safety analysis that will be supported by the Safety Architect brick.

Figure 17-1 Relations between the requirements management process and design modelling process

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 94 of 125

17.2.3 Global process

The next paragraphs show the main processes needed for the global analysis. The activities are shown in
terms of their order of execution and the conditions under which they are executed. Requirements
engineering process is described in the section 17.2.3.1, system analysis process is described in section
17.2.3.2, safety analysis process is described in section 17.2.3.3, hazard log is then described in section
17.2.3.4.

17.2.3.1 Requirements analysis process

Figure 17-2 shows the requirements analysis process.

17.2.3.1.1 Inputs

Requirements analysis requires project description.

17.2.3.1.2 Description

Requirements activities are described as follows:

 Elicit requirements: The aim of this activity is to identify, gather and define the sources of elements

that are used as a basis for the requirements.

 Identify context definition: The purpose of this activity is to identify and define the stakeholders and

systems elements that are used as a basis for the context definition view.

 Analyse requirement: The aim of this activity is to understand the requirements of the system by

looking at the use case for them.

 Define acceptance criteria: The aim of this activity is to consider how each use case is validated.

 Establish traceability: The aim of this activity is to check whether traceability between all the views

has been defined.

 Document process: The aim of this activity is to produce requirements document.

17.2.3.1.3 Outputs

At the end of requirements analysis, new requirements are stored in DOORS.

17.2.3.2 System analysis process

The next stage of analysis focuses on system analysis process. System analysis encompasses operational
analysis, functional analysis and constructional analysis. At each stage of analysis, we establish traceability
to ensure that traceability between all the views has been defined.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 95 of 125

Figure 17-2 Requirements analysis process

17.2.3.3 Safety analysis process

The safety analysis process includes preliminary analysis, system hazard analysis and sub system hazard
analysis. At the end of each process, we identify safety requirements. Safety analysis is supported by the
Safety Architect tool.

System Engineering
Method

Input Description Output

Operational Analysis System requirements Define the system
environment.
Understand actors
intended uses. Develop
operational scenarios.
Develop the
operational data model.

Internal block definition
diagram, State machine
diagram, Sequence
diagram, Block Definition
diagram

Function Analysis System requirements Identify the system
functional
dependencies with its
environment. Define
the system functional

Internal block definition
diagram, Activity diagram,
Block Definition diagram

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 96 of 125

System Engineering
Method

Input Description Output

break down structure.
Define the system
operation: How the
system functions are
executed. Develop the
function data model

Constructional
Analysis

System requirements Identify the system
connection with its
environment. Define
the system breakdown
structure. Define the
system constructional
behaviour. Develop the
function data model.

Internal block definition
diagram, Activity diagram,
Block Definition diagram

Table 17-1 System analysis process

Safety Engineering
Method

Input Description Output

Preliminary hazard
analysis

Safety Plan, the system
requirements and the
Hazard Breakdown
Structure

Identify protections
necessary to eliminate
or mitigate identified
risks.

safety requirements at the
system level

System hazard
analysis

Safety Plan, the
Preliminary Hazard
Analysis, the Hazard
breakdown structure,
the System Functional
Specification, the
System Operational
and Support Hazard
Analysis.

Identify all failures
leading to potential
hazards through a
Failure Mode and
Effects Analysis
(FMEA). Determine
and assign the SIL of
system functions.
Identify barriers and
safety requirements
against hazardous
situations. Identify the
necessary sub-system
hazard analysis,
specific hazard
analysis and interface
hazard analysis and
record this information
in the SHL. Record
identified hazards in
the SHL.

new safety requirements

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 97 of 125

Safety Engineering
Method

Input Description Output

Sub system hazard
analysis

Safety Plan, System
Hazard analysis,
System Interface
Hazard analysis and
Sub-systems
requirements
specification.

Identify all failures
leading to potential
hazards through a
Failure Mode and
Effects Analysis
(FMEA).
Determine and assign
the SIL of sub-systems
functions. Identify
barriers and safety
requirements against
hazardous situations.

safety requirements at sub
system level

Table 17-2 Safety analysis process

17.2.3.4 Hazard Log

Hazard log Input Description Output

 Hazard breakdown
structure
System Preliminary
Hazard Analysis
System Interface
Hazard Analysis
System Requirements
Specification
System and sub-
system Requirements
Tests Plans
System and sub-
system Requirements
Tests Descriptions
System and sub-
system Integration
Tests Descriptions
System and sub-
system Requirements
Tests Reports
Operational and
Support Hazard
Analysis
System Hazard
Analysis
Sub-system Hazard
analyses
Specific Safety Studies
Fault Tree Analysis

Products and Software
exported constraints

Record for each
identified hazard the
following attributes:
An identification
number,
A complete description,
Its consequences,
Its estimated
frequency,
The components it
involves,
The protections,
The associated actions,
Its status (open,
resolved, closed),
The related safety
requirements,
Record people involved
in safety related
activities with their
skills;
Record methods,
techniques and tools
used for analysis;
Record hypothesis
used for analysis;
Record known limits of
analysis;
Record level of
confidence on used
data for analysis.

System Hazard Log
Sub-System Hazard Log

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 98 of 125

Hazard log Input Description Output

Verify the coverage of
safety requirements by
tests cases

Table 17-3 Hazard log

17.2.4 Requirements fulfilled by initial tool/method version

The following requirements are directly addressed in the initial version of Safety Architect without additional
work:

req-UC53-01 ; req-UC53-05 ; req-UC53-07 ; req-UC53-13 ; req-UC53-16 ; req-UC53-18.

The following requirements are partially addressed in the initial version of Safety Architect:

req-UC53-03 ; req-UC53-04 ; req-UC53-06; req-UC53-14.

17.2.5 What will be implemented/provided in the CRYSTAL project

System analysis is supported by Papyrus tool. Papyrus is a Modelling Tool that provides an implementation
of the OMG standards (UML, SysML, Marte). We will provide the facility to import system or software models
(SysML, UML) in Safety Architect and initial functionalities that cover the following requirements:

req-UC53-01 ; req-UC53-05 ; req-UC53-07 ; req-UC53-13 ; req-UC53-16 ; req-UC53-18.

In the first iteration, we will implement the possibility to support Alstom and to generate fault trees and
FMECA at the SHA and SSHA levels of safety analysis.

Thus the first iteration will cover the following requirements:

req-UC53-04 : req-UC53-12 ; req-UC53-13 ; req-UC53-14.

The other requirements will be implemented in the next iterations.

17.2.5.1 New and improved features

Possibility to export the SHA and SSHA results in a “FMECA type” format which is mandatory for Alstom.

17.2.5.2 Interoperability requirements

[REQ-UC53-IOS-01]

Requirements [req-UC53-01], [req-UC53-02], [req-UC53-03], [req-UC53-14] define interoperability
challenges and shall be verified in the RTP.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 99 of 125

[REQ-UC53-IOS-02]

The Hazard Log gathers elements coming from different teams: requirement, hazards, functions,
components and verification means (test case…). This artefact shall be interpretable between
multiple tools and kept coherent regarding the different baseline of the system.

[REQ-UC53-IOS-03]

Artefacts defined within safety and system models shall be versioned and managed coherently with
configuration management tools. Traceability links shall not be lost from one configuration to
another.

17.2.5.3 New features specifications

As seen in the previous chapters (cf. 17.2.4, 17.2.5.1), Safety Architect addresses partially some
requirements and must also integrate new features to support the Alstom process. The aim of this chapter is
to specify what will be done in Safety Architect to be able to:

- Manage safety and functional requirements, and import them from an external tool, like Doors

- Generate analysis results corresponding to the Alstom needs (i.e.: SHA)

17.2.5.3.1 Requirements management

An important need in the Model Based Safety Analysis approach is to assure the requirements traceability.
This implies different kinds of requirements: those identified in the upstream phases like the functional
requirements, and those written during the safety analysis. These requirements are a key data used to
exchange between the system and safety teams.

To include Safety Architect in a global process, the requirements management is mandatory. As each user
may have already defined its requirements in its own format, the solution is to manage the requirements in a
standard interchange format: ReqIF. This format is an opened standard and it can be used to exchange
requirements data base with Safety Architect and several tools, like Doors. Moreover Safety Architect will
use the OSLC framework to communicate with external tools and share those requirements.

17.2.5.3.2 Requirements edition

To manage the requirements in Safety Architect, a new data library will be added to the projects. This library
will be an independent XML file, respecting the ReqIF format. Each new project will be created with a default
empty requirements library.

Safety Architect will be able to display and edit the requirements library content, using the ReqIF concepts.
To ease the user work, the editor will include two points of view: a standard user presentation and an expert
one. Indeed, ReqIF includes a lot of advanced concepts which are not useful for a standard use.

Moreover, this editor will use the RMF project as base, to capitalise on this open-source project, already
included in others Eclipse tools.

17.2.5.3.3 Requirements import / export

The first step of the safety analysis in Safety Architect is to model his system, or to directly import it from an
external tool. To manage the requirements associated to an existing model, all the import wizards will
provide in their advanced options the possibility to import a ReqIF file. Like this, the project created in Safety
Architect will directly include the requirements found in the imported file.

http://www.omg.org/spec/ReqIF/
http://www.eclipse.org/rmf/pror/

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 100 of 125

A new type of import will also be integrated, to import a ReqIF file in an existing project. This will merge the
requirements existing in the project with the imported file content. This functionality can be used to import a
new version of the requirements data base, to share standard requirements between several projects, etc.

Finally, the requirements library can be exported to an external XML file. Thus, any external tool which is
compatible with ReqIF can import this file, which may include the safety requirements defined in Safety
Architect during the safety analysis.

Safety Architect is planned to be able to interact with SysML/UML modellers with OSLC references, but not a
full synchronization at the moment.

17.2.5.3.4 Requirements association

The requirement management added value is to assure their traceability. To assure the traceability during
the system modelling and the safety analysis, the requirements may be linked to any element of the model.
In Safety Architect, any object will may be linked to any requirement, this will be done by adding a
'requirements' property to all the objects manipulated.

Finally, once the requirements are associated to the different elements, the user can display a coverage
report to see how any requirement is covered.

17.2.5.3.5 SHA generation, in Alstom format

Safety Architect is used to automate the global analysis of a system. The safety engineer can then
concentrate is work on the added value tasks like the local analysis. Currently, the global analysis results are
only displayed in the form of a critical paths report, or a failure tree. This is not enough to address the whole
process of Alstom.

Indeed, the expected results are a custom representation of the SHA (System hazard analysis) format. The
SHA considers the system as a whole and identifies how the systems, subsystem and operators interface
and interact, and how the components fail.

17.2.5.3.5.1 SHA format

The SHA format used by Alstom includes some specific properties. To be able to generate a result which
corresponds to this need, and which can also be used and understood by any other user, these are the
property retained:

Property
Safety Architect
implementation

Comment

ID None Generated automatically with the SHA

System function Name of the Container

Function Name of the Bloc

Failure mode
Name of the failure
mode

RRF

Risk Reduction Factor

Property of the feared
event

The value is selected amongst a limited enumeration

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 101 of 125

Property
Safety Architect
implementation

Comment

Mode
Property of the failure
mode

A global mode is created as a property of the Model. By
default, this global mode is affected to all the failure
modes, but it can be changed. The value is selected
amongst a limited list, defined by the user in the Model

Option None
Free text field, edited by the user after the SHA
generation

Cause
Property of the failure
mode.

The value is entered by the user, as a free text

Effect None
Free text field, edited by the user after the SHA
generation

Potential accident
Feared event
associated to the
failure mode

ID Safety Req
ID of the safety
requirement associated

Safety Req
Detail of the safety
requirement

ID Functional Req
ID of the functional
requirement associated

Functional Req
Detail of the functional
requirement

Element involved None
Free text field, edited by the user after the SHA
generation

S
Property of the feared
event

The value is selected amongst a limited enumeration

R
Property of the feared
event

The value is selected amongst a limited enumeration

TAR
Property of the feared
event

The value is selected amongst a limited enumeration

SIL None
Automatically computed using RFF, S, R and TAR
values

Comment None
Free text field, edited by the user after the SHA
generation

Table 17-4 SHA format in Safety Architect

17.2.5.3.6 SHA generation and export

The SHA generation is not automatically launched on each global analysis. Indeed, the basic result is still the
fault tree. Once the analysis results are satisfying, the user can choose to generate the SHA arrays from the
results files.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 102 of 125

The SHA built is directly displayed in a specific view of Safety Architect, which allow the user to show/hide
the columns and rows, edit some cells, etc. Finally, once the user has completely built its SHA, he can save
it, and export it to an Excel file.

17.3 Implementation/Elaboration

[This section is empty for this iteration of the document. In future iterations, it will give details on which
requirements are successfully implemented and how they can be used]

17.4 Evaluation

[This section is empty for this iteration of the document. In future iterations, it will give details on how they
fulfilment of the requirements was checked before integrating the brick into the SEE of the use case. For
interoperability features, this might be done by pairwise interaction between some bricks.]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 103 of 125

18 MU Safety Analysis Tool (MUSAT)

Provider: MU

Task #: T6.4.19

Brick #: B2.52

Category: Safety Analysis automation and verification

18.1 Overview

18.1.1 General Description

MU Safety Analysis Tool (MUSAT) will be built on top of DIVINE model checker. The DIVINE model checker
is a tool for model-based development and system verification that covers multiple phases of system
engineering, including requirement analysis and verification, verification of functional and non-functional
requirements, safety verification and reliability assessment. It allows use of Linear Temporal Logic (LTL) for
specification of temporal properties of systems under verification.

For this purpose, the extended and integrated version of the model checker will include several
tools/components: a component for translation of MATLAB Simulink designs into CESMI (and CESMI
extended with probabilistic choice), a component to build Markov Decision Process representation from a
CESMI-based specification, and probabilistic and discrete, non-probabilistic LTL model checking core.

More in detail, MUSAT will support the following activities:

Requirements validation:  checking the quality of a set of requirements using Linear Time Logic (LTL) as a

formal specification language, using model checking techniques to discover errors such inconsistencies,
logical conflicts or missing requirements.

Non-functional requirement checking and reliability assessment: to check the compliance of a system
model with respect to a set of probabilistic safety properties using explicit-state model checking for finite-
state probabilistic systems.

Functional property checking: verify that a Simulink design complies with a temporal behavior
specification, compiled from requirements for the given component.

18.1.2 Related Use cases

MUSAT will be integrated and evaluated within Use Case 2.6 - Multi-Mode Navigation System internally by
Honeywell (CRYSTAL partner no. 69).

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 104 of 125

18.2 Specification

18.2.1 Requirements from the UCs

18.2.1.1 Use Case 2.6

At the current stage of the development of the UC 2.6, the requirements on MUSAT are as follows.

 The ability of checking coherence and sanity of a set of temporal LTL properties.

 Perform vacuity checking and vacuity witness generation for a given LTL formula.

 Qualitative and Quantitative model checking of selected probabilistic Simulink designs.

18.2.2 How will this brick be integrated in the UC

The tool will be integrated internally by Honeywell. The details of integration are not yet fully defined and
therefore will be part of the next deliverable.

18.2.3 Requirements fulfilled by initial tool/method version

The DIVINE model checker already provides components for functional verification, safety checking and
design verification. As for coherence and sanity checking of LTL formulae DIVINE is, at the moment, capable
of checking satisfiability of a given LTL formula. All these capabilities will be directly exported by MUSAT or
will be internally called by MUSAT as needed.

18.2.4 What will be implemented/provided in the CRYSTAL project

18.2.4.1 New and improved features

Relevant existing and newly implemented functionalities will be adapted to the proper use within the use
case.

The following new features are planned:

 The DIVINE tool will be extended to handle probabilistic choice in its input models. This comprises
handling of probabilistic MATLAB Simulink designs. On such inputs, the tool will implement
probabilistic verification based on Markov Decision Processes (MDPs).

 An interface for exporting state spaces in the form of explicit-coded MDPs from DIVINE will be
provided. This will allow integration with third-party probabilistic verification tools such as PRISM.

18.2.4.2 Interoperability requirements

DIVINE's existing interfaces will be extended with provisions for encoding probabilistic choice, based on the
requirements coming from the UCs. Moreover, the backend probabilistic interface for integration with
external probabilistic verification engines will be specified, in such a way as to allow interoperability with
existing tools.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 105 of 125

18.3 Implementation/Elaboration

[This section is empty for this iteration of the document. In future iterations, it will give details on which
requirements are successfully implemented and how they can be used]

18.4 Evaluation

[This section is empty for this iteration of the document. In future iterations, it will give details on how they
fulfilment of the requirements was checked before integrating the brick into the SEE of the use case. For
interoperability features, this might be done by pairwise interaction between some bricks.]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 106 of 125

19 Safety-analysis for Aerospace (ESA Standards)

Provider: GMV

Task #: T6.4.20

Brick #: B2.53

Category: Safety Methodology

The “Safety-analysis for Aerospace” brick evaluates the industrial applicability of safety-analysis frameworks
in the scope of space systems. In particular, the output artefacts produced by the partners involved in the
Aerospace Use Case will be assessed with respect to the dependability and safety requirements extracted
from ESA standards (ECSS-Q-ST-30C and ECSS-Q-ST-40C) in order to prepare such artefacts for use in
the Use Case.

19.1 Overview

This section summarises the dependability and safety process in the Aerospace Domain according to the
applicable ESA standards. Currently, most of these activities (e.g., FMEA) are manually performed by the
Safety Engineers. Therefore, the goal is to be able to automate this process and conduct some activities
using one or more of the tools proposed in CRYSTAL. To achieve it, it will be necessary to evaluate the
artefacts produced by each tool and determine their compliance with the ECSS standards.

19.1.1 General Description

Nowadays, the complexity and functionality of space systems is increasing more and more. Safety Critical
Systems are those in which any misbehaviour could lead to an accident where the environment could be
damaged or human life endangered. In these cases, the systems have to guarantee strong safety and
dependability constraints.

In the Aerospace Domain, a dependability and safety process has to be conducted and properly assessed.
In particular, in view of the growing complexity of the software used in space critical applications together
with increasing cost and schedule constraints.

Systems are built from lower level subsystems, so that the system-level safety and dependability analysis
needs inputs from lower-level subsystems. Systematic software and hardware failures are taken into account
during the requirements, design, coding and testing processes, while requirements baseline errors are
covered by the system safety and dependability analyses. The identification of suitable methods and the
adoption of appropriate techniques are needed in order to ensure that the system behaviour is meant to be
such that the system behaves according to its dependability and safety requirements.

These requirements are specified in the technical specification and considered in the subsequent design,
implementation and verification/validation phases. The dependability and safety process allow the
Verification and Validation (V&V) Manager to verify the implementation of the requirements in order to
mitigate risks.

The following section details how the dependability and safety process is addressed in the ECSS standards
at system and software level.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 107 of 125

19.1.1.1 ECSS Standards

ECSS stands for “European Cooperation for Space Standardisation” and represents a cooperative effort of
the European Space Agency (ESA), national space agencies and European industry associations for the
development of a coherent, single set of consistent space standards for use by the entire European Space
Community.

The result of this effort is the ECSS series of Standards (ST), Handbooks (HB) and Technical Memoranda
(TM) organized in four branches:

 M: Management.
 Q: Product Assurance.
 E: Engineering.
 U: Sustainability.

Figure 19-1 depicts the ECSS structure highlighting the dependability and safety branches.

Figure 19-1: ECSS standards hierarchy

From the dependability and safety point of view, the following ECSS standards are applicable:

 ECSS-Q-ST-30C defines the requirements for a dependability assurance programme in space
projects. This standard calls for the use of dependability analysis techniques, tailored to match the
generic requirements in each project, to address the hardware, software and human functions
composing the system.

 ECSS-Q-ST-40C defines the safety programme and the technical safety requirements for space
projects.

 ECSS-E-ST-40C defines the principles and requirements applicable to space software engineering.
In version C assets the need of specifying software RAMS (Reliability, Availability, Maintainability
and Safety) requirements based on the System RAMS analysis result.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 108 of 125

 ECSS-Q-ST-80C presents the software product assurance requirements to be met in a particular
space project to provide confidence to the customer and to the suppliers. Namely, ECSS-Q-ST-80C
presents:

o Requirements to ensure that the software is developed to perform as expected and safely in
the operational environment, meeting the quality objectives agreed for the project.

o Requirements concerning “Software dependability and safety analysis” (subclause 6.2.2).
These requirements (through the referred requirements of ECSS-Q-ST-30C and ECSS-Q-
ST-40C) refer to the supplier carrying out a software dependability and safety analysis to
assign criticality levels to software components, based on the criticality levels of the
functions and the identification of safety functions. In addition, subclause 6.2.2 of ECSS-Q-
ST-80C mentions that the software dependability and safety analysis is performed at every
development milestone. It also expects that the list of software critical components is
verified, reviewed and reduced and designed to facilitate dependability and safety analysis
and software testing.

o Requirements concerning “Handling of critical software” (subclause 6.2.3), regarding
measures and activities to ensure dependability and safety of critical software components,
the verification of the use of those measures, what to do regarding dead code and about
non-critical code potentially affecting the critical code.

19.1.1.2 Dependability and Safety Process

Dependability and safety process is an iterative and continuous process that provides dependability and
safety design guides.

The process has to be conducted along the whole project lifecycle at every development phase. Primary, the
analysis focuses on the system behaviour (i.e., functionality) based on the objectives and requirements
already defined. Subsequently, it focuses on concrete design criteria and coding rules. Additionally, it is
important to consider that an entire project (system) consists of different parts (subsystems) which can be
divided into elements composed of different components. Sometimes, different subsystems or elements are
developed by different companies or contractors. In these cases, the complexity of the analysis increases.
The supplier (upper-level) already provides a set of dependability and safety requirements, then they are
scoped and tailored at subsystem level, and the analysis is performed again at subsystem level and
additional requirements may be defined.

Two different approaches can be followed:

 Top-Down approach: in the top-down approach, dependability and Safety Engineering starts with
analyses based principally on dependability and safety objectives and past experiences. On the
basis of the system-feared events, an event tree is constructed (e.g. using a Fault Tree Analysis)
to identify the worst-case event/failure at the boundaries between system, subsystem and
equipment.

 Bottom-Up approach: in the bottom-up approach, Dependability and Safety Engineering starts
with detailed analyses undertaken on product (e.g. using a Failure Mode Effect and Criticality
Analysis). All failures modes are assessed for risk potential and event consequences are
followed up to the next level of integration up to system level. Risks reduction actions are taken at
the best suitable level.

Dependability and safety process is tailored (e.g., techniques applied) according to the software category.
This category will be used to identify the suitable engineering and product assurance measures aiming at
reducing the risks associated to the software criticality.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 109 of 125

Criticality
Category

Definition

A Software that if not executed or if not correctly executed, or whose anomalous behaviour
can cause or contribute to a system failure resulting in:

 CATASTROPHIC consequences (safety or dependability).

B Software that if not executed or if not correctly executed, or whose anomalous behaviour
can cause or contribute to a system failure resulting in:

 CRITICAL consequences (safety or dependability).

C Software that if not executed or if not correctly executed, or whose anomalous behaviour
can cause or contribute to a system failure resulting in:

 MAJOR consequences (dependability).

D Software that if not executed or if not correctly executed, or whose anomalous behaviour
can cause or contribute to a system failure resulting in:

 MINOR or NEGLIGIBLE consequences (dependability).

Table 19-1: Software criticality categories

Systematic failures are taken into account during the requirements, design, coding and testing processes,
while the requirements baseline errors are covered by the system safety and dependability analyses.

The severity categories utilised to perform the analysis are defined in Table 19-1 and can be a result of
software that if not executed or if not correctly executed, or whose anomalous behaviour could cause or
contribute to a system failure. The severity of each failure is determined according to its consequences.

Severity Level
Dependability

[ECSS-Q-ST-30]

Safety

[ECSS-Q-ST-40]

Catastrophic 1 Failures propagation Loss of life, life-threatening or permanently disabling injury or
occupational illness.

Loss of system.

Loss of an interfacing manned flight system.

Loss of launch site facilities.

Severe detrimental environmental effects.

Critical 2 Loss of mission Temporarily disabling but not life-threatening injury, or temporary

occupational illness.

Major damage to interfacing flight system.

Major damage to ground facilities.

Major damage to public or private property.

Major detrimental environmental effects.

Major 3 Major mission degradation ---

Minor or
Negligible

4 Minor mission degradation or any other
effect

Table 19-2: Criticality classification (extracted from ECSS-Q-ST-40C)

The severity categories must be assigned without consideration of existing compensating provisions (the
worst case). The number identifying the severity category shall be followed by a suffix in the following cases:

1. The suffix ‘R’ shall be used to indicate redundancy.
2. The suffix ‘S’ shall be used to indicate safety in catastrophic and critical severities.

The criticality assigned to each component is the highest one of its associated failure modes.
In order to identify and evaluate failures, different methods and techniques (see section [19.1.1.3]) are
applied and their results must be analysed. They could lead to (i) new requirements that reduce the risks
identified; (ii) design constraints; and (iii) coding rules.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 110 of 125

19.1.1.3 Methods and Techniques

The main task behind the dependability and safety analysis is to identify which parts of the software are
critical and which are not or at least with minor critical level. At the same time, mechanisms to mitigate and/or
remove the effects of failures have to be proposed. To achieve it, the Space Domain uses well-established
methods and techniques.

The techniques to be applied in each project depend on the criticality determined by the risks faced and the
potential failure consequences. The objective of the whole analysis is to guarantee that the design,
implementation and V&V processes are appropriate to ensure that any risk caused by failures is acceptable
for the system.

To check the system behaviour in all possible situations and discover all potential failures is not an easy
task. The definition of a dependability and safety strategy tries to ensure that the analysis performed has
been done adequately and in a consistent manner.

The safety critical process covers the next analyses at various levels:
 RAMS (Reliability, Availability, Maintainability and Safety) process using FMECA (Failure Modes,

Effects and Criticality Analysis), FTA (Fault Tree Analysis), HA (Hazard Analysis), etc.

 Safety Case. It is a documented body of evidences that provides a convincing and valid argument
that a system is adequately safe for a given application or a given environment. The safety analysis
presents the control and risk reduction measures, the safety critical elements, safety risk
assessment status, etc. The evidences of the argumentations are based mainly in RAMS analysis.
This includes: FMECA, FTA, etc.

The coordination among dependability and safety activities is essential from the very beginning of the
project. Analyses are basically applicable to both fields and need to be performed in close synchronization.

The initial hazard analysis performed by the Safety Team, and the failure modes analysis accomplished by
the Dependability Team, provides the safety information required to perform the initial safety risk assessment
of the identified hazards. Without identified hazards and failure modes very little can be accomplished to
improve the overall safety of the system. Identified hazards and failure modes become the basis for the
identification of recommendations leading to the implementation of additional safety requirements.

Here are some possible techniques to conduct dependability and safety analyses but many other techniques
can be used:

 PHI (Preliminary Hazard Identification). Identification of all possible situations that exposes people or
environment to potential harm.

 HA (Hazard Analysis). It specially focuses on safety aspects. From a detailed identification of
hazards and their associated accidents tries to eliminate and mitigate hazards that may affect to the
system and environment.

 HAZOP (HAZard and OPerability). It is a qualitative process based on guide-words used to identify
potential hazardous variations from design intent in components and in interactions between system
components. In addition, operational problems are identified.

 FMEA (Failure Modes and Effects Analysis) represents a qualitative analysis method to identify
failures and to investigate potential effects for every single function or component of a system. FMEA
takes as input the requirements, the functional analysis and standards applicable. Then, for every
component or functions identifies possible failure modes. Once failure modes are identified, failure
causes are determined, and also the component and system effects. Finally, results are recorded in
a table.

 FMECA (Failure Modes, Effects and Criticality Analysis) includes FMEA but also some extends. For
each failure mode, FMECA also determines the probability of failure and the criticality level. So,
different PA and QA requirements are assigned to that function or component under analysis.

 FTA (Fault Tree Analysis). From feared events, its potential causes are identified. The goal is to
specify mitigation barriers that inhibit the occurrence of the top-level feared event.

 ETA (Event Tree Analysis) is used to determine the likelihood of potential consequences after the
hazard has been realised. This technique starts from a hazard and obtains all possible subsequent
events that could lead to specific consequences.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 111 of 125

 CCA (Common Cause Analysis) identifies dependencies in a design and assures independence
when it is needed (e.g. independence of failures of multiple systems). So, corrective measures for
potential failures in multiple systems or multiple subsystems can be determined. CCA facilitates the
identification of single causes which may lead to multiple failures.

 HSIA (Hardware-Software Interaction Analysis) is a method to analyse that software has been
specified and designed to react to hardware failures and to ensure that it cannot overstress
hardware.

 PSSA (Preliminary System Safety Assessment). Its purpose is to assist in validating the proposed
system architecture and to allocate safety requirements to components of that architecture or even
to identify derived safety requirements.

 SSA (System Safety Assessment) is used to confirm and provide evidences and arguments that
safety requirements have been addressed. So that, the complete system will satisfy safety
objectives. It demonstrates that all risks have been eliminated or minimised in order to be
acceptable, and monitors the safety performance of the system in service.

 Safety Case is the final activity in the development process and uses SSA as input. It demonstrates
that the entire safety requirements have been addressed and demonstrates that the system, in its
operational environment, will not compromise agreed safety levels.

All these techniques are not used in the same project phase and they are the basis of hazards identification
and the assessment of probabilities and severities. The outputs provided by each technique can be used as
an output to refine the dependability and safety process.

All Dependability and Safety recommendations resulting from the various analyses performed are tracked,
compiled and maintained. The recommendations represent mechanisms to mitigate the effects of the
different system failure modes. All these techniques are complementary.

Tests specifications may also use the hazards analysis to prepare the test strategy for dependability and
safety derived requirements. In turn, verification results will help to close the identified hazards and to
support the safety related argumentation. This safety argumentation is built based on all project related
evidences.

From safety point of view, risk reduction is formally documented in the hazard analysis and reviewed. Safety
requirements are verified by testing as preferred verification method and analysis when testing is not
sensible. The tests include the demonstration of all operational modes.

19.1.2 Related Use cases

This brick will be used in the Aerospace Use Case (“WP205 – CRYSTAL space toolset applied to Avionics
Control Unit Software generation, test, V&V and Certification”). One or more tools will be proposed to be
used in the use case based on the results extracted from this brick. Therefore, firstly an analysis has to be
carried out to ensure that the artefacts produced will serve as safety artefacts for the qualification process.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 112 of 125

19.2 Specification

19.2.1 Requirements from the UCs

19.2.1.1 UC2.5 – CRYSTAL space toolset applied to Avionics Control Unit Software
generation, test, V&V and Certification

The following process has to be performed for Use Case 2.5:

1. Functional analysis

The functional analysis is a common basic task necessary to perform subsequent Dependability and
Safety activities. Its purpose is to identify software critical functions. This analysis must also include
the interfaces with other subsystems and with the underlying hardware. Then, the software context
(the interaction of the software with its environment) is completely defined (e.g. system hardware
and external commandability).
This task is primary based on the Use Case functional description. Later, it will be refined according
to the Software Requirements Specification. Finally, when the software architecture is available,
functions previously identified are mapped to software components.

2. Analysis of failure modes

The potential failure modes associated to each software function are identified.
Not only generic failure modes have to be included (e.g. incorrect function execution, non-execution,
real-time constraints), but also those specific to the Use Case SW: interrupts, etc.
In addition their effects and corresponding recovery/mitigation actions are described and analyzed.
Software requirements document is used to identify software failure modes, whereas Software
design document provides information about the causes of these failures. The effects require also
information at system level to determine how a failure can affect other subsystems.

3. Criticality assessment

A criticality category is assigned to each software component based on the effects of the associated
failure modes. The criticality of the software component corresponds to the highest severity of the
potential failure modes of that component.
Compensation and recovery actions are extracted from SFMEA analysis. They are evaluated to
decide their implementation or, if the final decision is for no actuation, a documented rationale has to
be added.
The set of critical software components is listed but it shall be verified and reviewed at each software
cycle review.

4. Verification of the implementation of compensation provisions

Recommendations/compensation provisions to the overall software life cycle are provided in order to
fulfill the required measures and assure the required reliability.
The implementation of approved compensation provisions must be checked. A document containing
the traceability matrix that traces compensation provisions to those requirements and software
components that implement them has to be produced.

The SFMEA information must be provided according to the following procedure:

1. SFMEA analysis of each SW component: effects and observable symptoms.

2. Assignation of a severity category.

3. Identification of possible recommendations or compensation mechanisms.

The following SFMEA template is proposed:

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 113 of 125

Column Description

Item/ID Sequential number identifying the item being analysed

SW Component(s) Software component(s) where the functionality is performed

Function(s) Statement identifying the functionality performed by the item

Failure Mode Identification of the assumed failure mode of the item under consideration

Effect on sub-assembly Short description of the consequences of the assumed failure on the functionality of the sub-
assembly (local effects)

Effect on equipment Short description of the consequences of the assumed failure on the functionality of the equipment
(end effects)

Observable symptoms /
Detection Principle

Provides the observability of the failure or its consequences

Compensation
Provisions

Mechanisms to reduce or avoid the effects of a failure mode

Recovery Actions Indicates potential means to recover the function or an acceptable degraded consequences

Criticality Number categorizing the criticality of the failure effect

Remarks Remarks about the failure mode

Table 19-3: SFMEA template

19.2.2 How will this brick be integrated in the UC

Dependability and Safety Activities are performed during the entire SW life cycle as described in the
following figure:

Figure: Integration of the brick in the use case

19.2.3 Requirements fulfilled by initial tool/method version

N/A

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 114 of 125

19.2.4 What will be implemented/provided in the CRYSTAL project

This brick will provide the requirements that CRYSTAL tools have to fulfil in order to apply them in the
Aerospace Domain, and to be able use the output artefacts as part of the qualification process.

19.2.4.1 New and improved features

N/A

19.2.4.2 Interoperability requirements

N/A

19.3 Implementation/Elaboration

[This section is empty for this iteration of the document. In future iterations, it will give details on which
requirements are successfully implemented and how they can be used]

19.4 Evaluation

[This section is empty for this iteration of the document. In future iterations, it will give details on how they
fulfilment of the requirements was checked before integrating the brick into the SEE of the use case. For
interoperability features, this might be done by pairwise interaction between some bricks.]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 115 of 125

20 Autonomous Fault Tolerant System Design Methodology
(AFTS DM)

Provider: Tecnalia

Task #: T6.4.21

Brick #: B2.54

Category: Safety Methodology

20.1 Overview

The increase of transistor integration density in conjunction with operation voltage reduction and operation
frequency increase has resulted in more sensitive devices. In this regard, radiation is one of the major
sources of faults primarily in aerospace domain applications where environment conditions are specially
harsh.

In the case of SRAM FPGAs, the combination of traditional fault tolerance techniques such us Triple Modular
Redundancy (TMR) (hardware triplication), temporal redundancy (time-delayed signal process repetition)
and Scrubbing (device reprogramming) with modern design techniques based on Partial Reconfiguration
(PR) is required in order to create a robust design, that is, an AFTS. Thus, PR arises as the key technology
to leverage SRAM FPGA AFTS design.

AFTS-DM consists of a design methodology aimed at augmenting current reconfigurable device fault
tolerance level, which is of crucial importance in FPGA-based critical system design. Since PR technology
entails a number of design challenges a secure design methodology is therefore required. AFTS-DM is
intended to combine recent advances in PR state-of-the-art to provide a reliable design methodology to
implement PR technology as a solution for AFTS creation in those critical FPGA-based systems that require
high security levels.

Depending on several factors such as target device, system architecture and environment conditions the
AFTS DM will be adapted to the specific use case requirements (UC 2.5 leaded by TASE) in order to provide
a reliable solution and an acceptable fault tolerance level.

AFTS DM will be a brand new development under the present project hinging on Tecnalia’s expertise in the
field of FPGA-based System on Chip Design and Partial Reconfiguration techniques.

20.1.1 General Description

Field-Programmable Gate Arrays (FPGA) were invented in the mid-eighties by Xilinx, currently the major
FPGA vendor. FPGAs were conceived as a chip packed with transistors organized in regular-shaped logic
blocks that could be configured and reconfigured by software tools. Earlier FPGAs were intended to be used
as simple glue logic devices in larger systems. Thanks to the exponential increase in transistor integration
density, modern FPGAs are now able to entirely implement complete digital systems, coining the so-called
System on Programmable Chips (SoPCs).

The main advantage offered by the FPGAs is the ability to be reconfigured in the field. This feature results in
a remarkable increase in design flexibility, which leads to the development of FPGA-based designs as the
preferred option for prototyping before implementing the system in an Application Specific Integrated Circuit
(ASIC).

Presently, a growing number of designs incorporate FPGAs in the final product. A step further in FPGA
reconfigurability is the dynamic/run-time Partial Reconfiguration (PR) introduced by Xilinx in the early 2000s
for its high performance Virtex family. Altera, the second major FPGA vendor, introduced its first partially
reconfigurable devices a decade later. PR is the capability to reconfigure only a portion of the FPGA fabric

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 116 of 125

while the remaining logic continues to operate without interruption. Thus, the inherent flexibility of the FPGAs
is extended further, since the modules that compose the SoPC can be time-multiplexed. Therefore, a more
efficient use of the silicon is possible.

Nevertheless, in order to implement a PR system, a strict design methodology must be followed. Such a
methodology entails a steep learning curve which, in addition to the inherent complexity of the design
methodology itself, results in a significant development effort. This fact has hindered the introduction of PR
systems in the industrial sector, relegating PR to research applications. On the purpose of easing PR system
design, Xilinx has evolved its PR Design Flow during the last years, taking significant advance in the field of
PR. However, it still imposes important limitations to the implementation of PR systems.

Taking advantage of the Xilinx Design Language (XDL) a number of research developments have been
accomplished aimed to circumvent, among others, the aforementioned issue. XDL is as an ASCII-based
non-proprietary FPGA physical description language provided by Xilinx. The possibility to manage FPGA
resources at the lowest level, in terms of both logic and routing, has brought about the development of new
approaches for FPGA-based system design beyond the scope of traditional FPGA vendor commercial tools.

During the last years a remarkable effort has been made by the research community in this regard. This
effort has resulted in the development of new applications and tools for reconfigurable system design.

New design possibilities enabled by XDL have resulted in a new paradigm for PR system design. In this
regard, the most relevant related research works can be arranged according to the following areas:

- Algorithms for reconfigurable logic placement and routing

- Tools for XDL-based system design

- Frameworks for advanced PR system design

- Techniques for improved PR implementation

The analysis of presently available algorithms, tools, frameworks and techniques in the field of
reconfigurable system design will provide a real view of the direction towards PR research is heading.
Autonomous Fault Tolerant Systems (AFTS) or Software Defined Radio (SDR) are some examples of the
key applications for PR technology where new advances in PR system design will significantly leverage its
implementation in industrial applications.

Dynamic Partial Reconfiguration or Partial Run-Time Reconfiguration, hereafter referred to as Partial
Reconfiguration (PR), is a process consisting of swapping parts or modules of a reconfigurable system while
the rest of the systems remains running and therefore fully operational.

Whereas FPGA technology provides a high degree of flexibility by allowing onsite device circuit
reconfiguration, PR takes a step further by enabling on-site circuit partial reconfiguration. That is, some
portions of the FPGA logic, referred to as Reconfigurable Region (RR), are modified dynamically by
downloading partial bitstream file through the configuration port. During the PR process, the rest of the
system or logic, referred to as Static Region (SR), continues running without being affected. The
reconfigurable logic is therefore replaced by the content of the partial bitstream. In Figure 20-1 a basic
representation of the PR concept is shown.

Figure 20-1: Partial Reconfiguration concept

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 117 of 125

There are several ways to download partial bitstreams into the FPGA. Apart from traditional methods, which
consist in loading the bitstream externally through available configuration ports such as SelectMap or JTAG,
there is an Internal Configuration Access Port (ICAP), which is essentially an internal version of the
SelecMap. The ICAP therefore enables the Partial auto-Reconfiguration since a PR system is able to self-
modify by accessing internally to the device configuration and load a new partial bitstream.

Partial bitstreams contain all the configuration commands and data necessary for PR. FPGA embedded
configuration logic handles both full and partial bitstreams so the same type of programming information is
processed in both cases in the same configuration engine. In addition, the task of loading partial bitstreams
into an FPGA does not require knowledge of the physical location of the Reconfigurable Macro (RM) since
the configuration frame addressing is already included in the partial bitstream.

XILINX PARTIAL RECONFIGURATION DESIGN FLOW

There exist two flows provided by Xilinx to design PR systems: Difference-Based PR and Module-Based PR.
The main objective of the former is to allow small design changes to be performed dynamically. It is a useful
method to make small on-the-fly changes to design parameters such as Look-up Table equations, Input-
Output standards or filter parameters stored in a BRAM, among others. These design changes are made
directly onto the placed and routed design making use of Xilinx FPGA Editor tool provided within the IDS
software. The process output results in a partial bitstream that only contains information about the executed
changes, that is, the differences between the original design bitstream and the modified design bitstream.
Hence the name of Difference-Based PR.

Module-Based PR was originally based on Xilinx Modular Design methodology, which consists of defining
distinct portions of an FPGA design in order to be one or more of them reconfigurable and the rest static.
The initial design flow for Module-Based PR implied a great deal of challenges for PR system designers
which hindered the development of PR designs. Nevertheless, based on the same modular design concept,
Xilinx has provided significant improvements in PR design tools in the last years which has leveraged PR
system design. Current Xilinx PR design flow can be considered as a mature and time-tested design option.

To design a PR system first of all the designer must define both the SR and at least one RR. With reference
to the latter, the designer defines an RR in terms of both physical size and type of resources required. For
each RR, a different set of RM is considered. It must be taken into account that the quantity and type of
resources provided by the RR must be sufficient to host each of the selected RMs. The IDS software
ensures that the resources used to construct the RM are completely contained within the selected RR and
that no interference with the SR exists. Communication between static logic and reconfigurable logic is
accomplished via the so-called Proxy Logic. A Proxy Logic is a single Look-up Table element automatically
inserted by the software for each port of an RM (referred to as Partition Pin).

There are different PR styles depending on the way that RMs are implemented onto the RRs.

- Island style: this style allows swapping RMs exclusively in one RR on the FPGA. Although more

than one RR may exist, each island is bound to host its individual set of RMs, thus not being

possible to swap RMs between RRs. This configuration style is the only one supported by FPGA

vendor tools such as Xilinx PR Design Flow

- One-Dimensional Slot style: in Island style, the largest RM defines the RR size. It results in a

resource waste when a smaller RM is implemented in the RR. This effect is referred to as internal

fragmentation. That is, a large RM cannot be replaced by multiple smaller RMs. Aiming at

improving resource utilization; the RR is divided into a set of adjacent one-dimensional aligned

resource slots. Hence, RMs can be implemented using required number of adjacent slots

- Two-Dimensional Grid style: even making resource slots as narrow as possible (1 CLB column

wide in case of Xilinx FPGAs), it can still result in a waste of resources. It occurs in particular when

dedicated primitives such as RAMs or multipliers are required. A step further consists in dividing the

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 118 of 125

resource slots so that they are organized in a two-dimensional grid. Thus, the internal fragmentation

is reduced but in contrast RM placement becomes more complex.

PR system design support is provided via PlanAhead tool provided within the IDS software. All the elements
required to build a PR system (SR, RRs and RMs) are managed in PlanAhead. Floorplanning, required to
define RRs, and Design Rule Checks (DRC), established to guide designers on a successful path on design
completion, are all accessed through the PlanAhead software environment.

In order to generate required full and partial bitstreams, Place and Route process is executed multiple times.
Each placement and routing iteration results in a complete FPGA configuration. Once the design
configuration meets all requirements, results from that successful implementation can be reused to create
remaining configurations. Current IDS PR solution makes use of the so-called Partitions, a technology
introduced in the ISE 8.2i, and enhanced in subsequent releases, to enable design reuse. After all
configurations are implemented, verification routines validate consistency among all the versions. In addition,
once all these design versions have been placed and routed, traditional timing, simulation and verification
techniques can be used to validate results.

20.1.2 Related Use cases

Tecnalia will provide the implementation of the AFTS DM Technology Brick for Use Case UC2.5: the
development of low level software for an Avionics Control Unit including autonomous navigation features
based on GPS, inertial and/or image acquisition inputs.

The AFTS DM will consist of methodology adaptation to the specific aerospace application requirements
(environment, application and architecture). It will result in the achievement of required fault tolerance level.
In this regard, it should be noted that aerospace applications are subjected to the so-called Single Even
Upsets. Hence, fault tolerance techniques are required in order to maintain SoC functionality without
interruption.

20.2 Specification

20.2.1 Requirements from the UCs

As it has been said, PR is the ability to change design modules dynamically while the remaining system
continues to run without interruption. In other words, PR is the ability to time multiplex hardware dynamically.
Accordingly, FPGA flexibility is significantly enhanced which entails an important benefit in the SoPC design.
In addition, since system modules and, therefore, system functionality can be modified on the fly, PR allows
the designer to move designs to smaller devices resulting in a lower design cost. Consequently, power
consumption may be reduced. Generally speaking, PR permits a more efficient use of the silicon by only
loading a required functionality at a specific point of time.

It could be stated that PR addresses three main design requirements by allowing the designer to:

- Increase system design flexibility enabling to change a design in the field. Moreover, it is only

required to run the full design flow for the RM (instead of on the entire design)

- Reduce cost and size by time-sharing functionality. That is, it is possible to fit either more logic into

a given device or a design into a smaller and thus less expensive device

- Reduce power consumption permitting to use smaller devices to implement designs or by loading

functions (by means of RM) on-demand (instead of designing exclusively for high performance)

Apart from the three aforementioned fundamental design needs, the Space Use Case defined in WP2.5 also
defines some additional requirements to be accomplished by AFTS DM:

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 119 of 125

- Improve the actual FPGA fault tolerance

- Enable the use of new techniques in design security

- Reduce bitstream storage requirements

- Accelerate configurable computing

- Alignment with space safety and dependability standards

- Allow on-flight FPGA reconfiguration/reprogramming triggered by an external event

- Compatible with real-time systems (schedulability)

The main goal of utilizing PR is therefore to reduce FPGA size and consequently cost and power
consumption. The achievement of this objective will enable the implementation of FPGA technology in
systems that due to its power and cost constraints would require ASIC implementation.

From the Use Case point of view, it is of course desirable to reduce the impact of a number of drawbacks
that can come together with the implementation of PR:

- Resource overhead for providing both PR process management and communication infrastructure

for RMs

- Timing penalties for the communication

- A challenging and more complex design process

20.2.1.1 Use Case Description

The application to be implemented for the Space domain is the Low Level Software for an Avionics Control
Unit whose application software could include autonomous navigation features based on GPS, inertial and/or
image acquisition inputs. This unit will be based in a LEON architecture running in multicore configuration
inside an FPGA.

The aforementioned Software implements satellite’s vital functions such as: attitude and orbit control in both
nominal and non-nominal cases, telecommands execution or dispatching, housekeeping telemetry gathering
and formatting, on board time synchronisation and distribution, failure detection, isolation and recovery, etc.

20.2.2 How will this brick be integrated in the UC

From the engineering process point of view, the use case comprises the tasks shown in Figure 20-2.

Specifically the PR technology brick influences three of the aforementioned tasks:

- Architectural Design: Partial reconfiguration requires a control and monitoring module. The

architecture of the use case should be designed to include this module.

- Coding: PR imposes some requirements to the coding of modules to be reconfigured. Specifically,

these modules should be implemented in a restricted area of the FPGA and their interfaces should

be clearly defined. The coding phase should take into account all these requirements.

- Integration Tests: Finally, the reconfiguration monitoring and control module will be integrated in the

use case at this stage.

From the implementation point of view, the space use case will employ a dual-FPGA board, whose block
diagram can be observed in Figure 20 3.

This dual-FPGA architecture allows evaluating multiprocessor systems where a main (multi)processor
embedded within one of the FPGAs distributes the processing load to a second device; it is the Low Level
SW of this multiprocessor whose development is the main driven of the Aerospace Demonstrator.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 120 of 125

Figure 20-2: Software engineering process

In this case, the second FPGA can embed another processor, a DSP or just implement some hardware
(VHDL) algorithms.

The PR methodology will be applied to some of the hardware modules implemented inside the Virtex 5
FPGA.

20.2.3 Requirements fulfilled by initial tool/method version

Without need of further development the PR technology brick tackles the following requirements:

- Reduce cost and size of the FPGA devices: PR allows reduce the number of modules to be

implemented in the FPGA; making it possible, thus, to employ smaller devices.

- Reduce power consumption permitting to use smaller devices to implement designs or by loading

functions (by means of RM) on-demand (instead of designing exclusively for high performance)

- Reduce bitstream storage requirements

20.2.4 What will be implemented/provided in the CRYSTAL project

Besides these requirements, PR can provide two new features to the Space use case:

- Fault-tolerance

- Flexibility and adaptability

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 121 of 125

Figure 20-3: Dual-FPGA board potential lay-out

20.2.4.1 New and improved features

PR can be used to provide two new features to the Space Use Case:

- Fault-tolerance: PR might be employed to add fault tolerance capabilities to the application running

in the FPGA. A monitoring system would be added to the FPGA design which would be in charge of

controlling the smooth running of the application; were a failure be detected, this system would

apply PR to reconfigure the damaged part of the FPGA design.

- Flexibility and adaptability: One of the main limitations of satellite system is their lack of

reconfigurability once they are launched. If new standards or features appear when the system is

already on space, there is no way to update the applications. In this regard, a system could be

designed which, by means of partial reconfigurability, would updated a certain application on the

controller’s demand.

Adding these two new features to the use case is out of the scope of the CRYSTAL project, therefore only
one of them will be selected. Unfortunately, at this stage of the use case definition it is not possible to
determine which one is more appropriate for the use case.

20.3 Implementation/Elaboration

[This section is empty for this iteration of the document. In future iterations, it will give details on which
requirements are successfully implemented and how they can be used]

20.4 Evaluation

[This section is empty for this iteration of the document. In future iterations, it will give details on how they
fulfilment of the requirements was checked before integrating the brick into the SEE of the use case. For
interoperability features, this might be done by pairwise interaction between some bricks.]

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 122 of 125

21 Summary

In the previous sections, the safety related bricks have been described and general as well as
interoperability related requirements have been given. While some of the use cases are still in flux and there
will be changes from lessons learned on the way anyway, the available information is sufficient to start
development work on the bricks – both methodology bricks and tool bricks. For some of the bricks,
development work has started in earnest already some time ago, the rest will follow now.

There are a lot of similarities between some of the bricks, e.g. there are three bricks related to FaultTree+.
This will be analysed for synergies and possibilities for standardized interfaces for the next iteration of this
document.

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 123 of 125

22 Terms, Abbreviations and Definitions

AFTS Autonomous Fault Tolerant Systems

API Application Programming Interface

ASIL Automotive Safety Integrity Level

AUT Artefact Under Test

CENELEC Comité Européen de Normalisation Électrotechnique - European Committee for
Electrotechnical Standardization

CFT Component Fault Trees

CMMI Capability Maturity Model Integration

CO Confidential, only for members of the consortium (including the JU).

CRYSTAL CRitical SYSTem Engineering AcceLeration

CTF Certification Tool Framework

D Demonstrator

DCs Design Components

ESA European Space Agency

FTA Fault Tree Analysis

FMEA Failure Mode and Effects Analysis

FMECA Failure Modes, Effects and Criticality Analysis

FPGA Field Programmable Gate Array

HAZID Hazard Identification

HAZOP HAZard and OPerability

IOS Interoperability Specification

MB Model-Based

MDE Model Driven Engineering

MSCs Message Sequence Chart

MSDs Modal Sequence Diagram

O Other

OEM Original Equipment Manufacturer

P Prototype

PHI Preliminary Hazard Identification

PP Restricted to other program participants (including the JU).

PRM Product Risk Management

PU Public

R Report

RAMS Reliability, Availability, Maintainability and Safety

RE Restricted to a group specified by the consortium (including the JU).

RTP Reference Tool Platform

SAC Safety application conditions

SafeCer ARTEMIS Project “SAFEty CERtification”

SCADE Safety Critical Applications Development Environment, product by Esterel Technologies

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 124 of 125

SDR Software Defined Radio

SEE Systems Engineering Environment

SP Subproject

SPICE Software Process Improvement and Capability Determination (ISO/IEC 15504)

SysML Systems Modeling Language

TCG Test Case Generation

UML Unified Modeling Language

WP Work Package

URML a UML-Based Rule Modeling Language

V&V Verification and Validation

Table 22-1: Terms, Abbreviations and Definitions

D604.011

Version Nature Date Page

V1.0 P 2014-02-07 125 of 125

23 References

There are no external references in this document, except the CRYSTAL deliverables already listed in
section 1.3.

