
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE CRYSTAL CONSORTIUM. NEITHER THIS
DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED BY ANY
MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE CESAR
CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE
RESEARCH LEADING TO THESE RESULTS HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S SEVENTH
FRAMEWORK PROGRAM (FP7/2007-2013) FOR CRYSTAL – CRITICAL SYSTEM ENGINEERING ACCELERATION JOINT
UNDERTAKING UNDER GRANT AGREEMENT N° 332830 AND FROM SPECIFIC NATIONAL PROGRAMS AND / OR FUNDING
AUTHORITIES.

CRitical SYSTem Engineering AcceLeration

Heterogeneous Simulation Approach
D606.021

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 2 of 23

DOCUMENT INFORMATION

Project CRYSTAL

Grant Agreement No. ARTEMIS-2012-1-332830

Deliverable Title Heterogeneous Simulation Approach

Deliverable No. D606.021

Dissemination Level CO

Nature R

Document Version V1.0

Date 2014-01-31

Contact Thomas Kuhn

Organization Fraunhofer IESE

Phone +49 631 6800 2177

E-Mail thomas.kuhn@iese.fraunhofer.de

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 3 of 23

AUTHORS TABLE

Name Company E-Mail

Thomas Kuhn Fraunhofer IESE thomas.kuhn@iese.fraunhofer.de

Sören Schneickert Fraunhofer IESE
soeren.schneickert@iese.fraunh

ofer.de

Jean-Luc Johnson EADS Jean-Luc.Johnson@eads.com

CHANGE HISTORY

Version Date Reason for Change
Pages

Affected

0.1 20.09.2014 Outline All

0.2 03.12.2013 Added FhG IESE context (Kuhn) All

0.3 19.12.2013 Added content to chapter 3 (Schneickert) All

0.4 20.12.2013 Added EADS content (Johnson, Kuhn) All

0.9 27.12.2013 Added partner context (Kuhn) All

0.91 15.01.2014 Internal Revision (Johnson, Kuhn, Schneickert) All

1.0 29.01.2014 Processed comments from external Review (Kuhn) All

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 4 of 23

CONTENT

D6.6.2-1 .. I

1 INTRODUCTION .. 6

1.1 ROLE OF DELIVERABLE ... 6
1.2 RELATIONSHIP TO OTHER CRYSTAL DOCUMENTS .. 6
1.3 STRUCTURE OF THIS DOCUMENT ... 6

2 APPROACH FOR INTEGRATION OF HETEROGENEOUS MODELS (B2.47) ... 7

2.1 BRICK DESCRIPTION ... 7
2.2 ADDRESSED REQUIREMENTS OF CRYSTAL USE-CASES .. 7
2.3 RELATIONSHIPS TO DEPENDENT BRICKS .. 8
2.4 SOLUTION APPROACH ... 8
2.5 EVALUATION PROPOSAL ... 10
2.6 RELATED WORK .. 10

3 SIMULATIVE EVALUATION OF HETEROGENEOUS MODELS (B2.48) ... 12

3.1 BRICK DESCRIPTION ... 12
3.2 ADDRESSED REQUIREMENTS OF CRYSTAL USE-CASES .. 13
3.3 RELATIONSHIPS TO DEPENDENT BRICKS .. 13
3.4 SOLUTION APPROACH ... 13
3.5 EVALUATION PROPOSAL ... 14
3.6 RELATED WORK .. 14

4 MODEL-BASED DESIGN VERIFICATION METHOD (B2.49)... 16

4.1 BRICK DESCRIPTION ... 16
4.2 ADDRESSED REQUIREMENTS OF CRYSTAL USE-CASES .. 16
4.3 RELATIONSHIPS TO DEPENDENT BRICKS .. 16
4.4 SOLUTION APPROACH ... 16
4.5 EVALUATION PROPOSAL ... 17
4.6 RELATED WORK .. 17

5 MODELICAML TOOL FOR DESIGN VERIFICATION BASED ON MODELS (B2.40) 19

5.1 BRICK DESCRIPTION ... 19
5.2 ADDRESSED REQUIREMENTS OF CRYSTAL USE-CASES .. 19
5.3 RELATIONSHIPS TO DEPENDENT BRICKS .. 19
5.4 SOLUTION APPROACH ... 19
5.5 EVALUATION PROPOSAL ... 19
5.6 RELATED WORK .. 19

6 CONCLUSION ... 21

7 TERMS, ABBREVIATIONS AND DEFINITIONS ... 22

8 REFERENCES ... 23

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 5 of 23

Content of Figures

Figure 2-1: Example (automotive) scenario .. 7
Figure 2-2: Simulation domains of highly integrated automotive architectures .. 8
Figure 2-3: FERAL framework overview ... 9
Figure 2-4: Communication across simulation domains ... 10
Figure 3-1: Heterogeneous scenario example ... 12
Figure 3-2: Heterogeneous scenario example – realization proposal .. 14
Figure 4-1: vVDR Method ... 17
Figure 5-1: ModelicaML prototype GUI example .. 20

Content of Tables

Table 7-1: Terms, Abbreviations and Definitions ... 22

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 6 of 23

1 Introduction

1.1 Role of deliverable
This deliverable collects the scientific results from WP 6.6. This first iteration presents results for bricks that

have results already available. The other bricks from D6.6.1-1 are omitted in this deliverable iteration, and

will be included in subsequent iterations of this deliverable.

Brick B2.47 (Approach for Integration of Heterogeneous Models) has a stronger focus on the integration of

system models; its results would not be meaningful without their integration with brick B2.48 (Simulative

Evaluation of Heterogeneous Models) that provides the core simulation environment. Brick B2.49 (Model-

Based design Verification Method) provides the evaluation platform that triggers the simulation environment

and interprets the results of the simulation.

1.2 Relationship to other CRYSTAL Documents
Deliverable D 6.6.1 describes the requirements for the bricks of this deliverable. Subsequent iterations of

D6.6.1 will also contain evaluation scenarios and evaluation results. It also collects relevant related work,

relevant research projects, and other relevant sources of information for WP 6.6 in general.

1.3 Structure of this document
This Deliverable is structured as following: Section 2 describes our progress in context of brick B2.47.

Section 3 describes our progress in context of brick B2.48. Section 4 describes our progress in context of

brick B2.49. Section 5 describes our progress in context of brick 2.40. Section 6 draws conclusions and lays

out future work.

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 7 of 23

2 Approach for integration of heterogeneous models (B2.47)

2.1 Brick description
Specialized simulators simulate specific aspects of the real world with high accuracy; other aspects are

approximated or ignored. The simulation of complex scenarios requires simulator coupling to address all

relevant aspects in one semantically integrated scenario. In the domain of embedded systems, one common

example scenario that requires simulator coupling is the simulation of shared control loops.

Today, in automotive, industrial, and avionic environments, control functions that control the same actuators

are usually deployed on one electronic control unit (ECU) or computer, which is the hardware, the function is

executed on. In the avionic domain, this is provided by the IMA platform that enables the segregated

execution of mixed criticality functions on the same hardware. For the near future, plans exist to replace the

common units with fewer multi-core CPUs. This way, independent functions for example would be deployed

on the same hardware unit, while one function (i.e. one control loop) could be spread over several hardware

units as well if this fits the system architecture. This way, the number of required hardware units could be

drastically reduced.

Figure 2-1: Example (automotive) scenario

Figure 2-1 illustrates an example of highly integrated automotive system architectures. It consists of two

control loops, which are deployed onto multiple ECUs. Control loop 1 consists of periodically triggered

functions Fun1, Fun2, and Fun3. Control loop 2 consists of event triggered functions FunA and FunB. Event

triggered functions are commonly used for the handling of events that require timely processing. Periodic

functions are executed at different periods; Fun1 is, for example, triggered every 10ms, while Fun3 is

triggered every 5ms. Communication between ECUs is via an automotive network, e.g. via a CAN bus.To

simulate all relevant effects, simulator coupling becomes necessary. In the described scenario, this includes

the simulation of functional behavior, communication, and vehicle dynamics. Simulating all relevant effects

by using specialized simulators separately is not sufficient, because effects often correlate with each other.

For example, random delays of input data due to high network load and resulting jitter changes the functional

behavior of algorithms. Only the combination of all relevant effects in one integrated holistic simulation

scenario reveals all hidden interactions. Complex scenarios therefore need to be simulated by a combination

of specializes simulators. Their integration requires the combination of multiple simulation models, which

may be time based, event based, or based on finite state machine semantics.

2.2 Addressed requirements of Crystal USE-Cases
This brick mainly addresses the requirements of user story US 2.08: Multi-physics modelling and simulation.

It is used in the context of the public aerospace use-case, as described in deliverable D208.010.

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 8 of 23

 Integration of heterogeneous simulation models and executable models

 Ability to integrate new model types and development environments when necessary

 Ability to add meta data to models, and to lookup models when instantiating simulation scenarios

 Ability to link simulation models across companies

 Confidentiality of company specific IP must be assured during simulation

2.3 Relationships to dependent bricks
Relationships exist to brick B2.48.

2.4 Solution approach
We propose to solve the challenge of integrating heterogeneous models by coupling individual simulation

models through a framework that provides the semantic integration between the models, enables

communication according to the Models of Communication and Computation of the individual models and

that controls the simulation time, re-synchronization intervals and simulation accuracy of the resulting holistic

simulation scenario.

Figure 2-2 illustrates a proposed coupled simulation scenario for the system shown in Figure 2-1. It consists

of five time-triggered simulation domains that represent tasks that are running on the ECUs of the simulated

system. Periodic tasks are triggered with three different periods. Additionally, event triggered Tasks (FunA,

FunB) are part of the system; these tasks are triggered upon reception of a particular CAN message frame.

The vehicle dynamics simulator is included through a time triggered simulation domain as well. CAN bus

simulation is realized via a CAN bus simulator (CANSim) in an event triggered domain; communication links

exist to the time triggered domains that simulate functions of control loop 1 and control loop 2.

Figure 2-2: Simulation domains of highly integrated automotive architectures

Other simulation scenarios, e.g. from other application domains could be realized in a similar manner.

Simulation scenarios are created out of components: Figure 2-3 illustrates the architecture of the simulator

coupling framework “FERAL” – Framework for Efficient simulator coupling on Requirements and Architecture

Level.

FERAL consists of runnable components, directors, and simulation components. Runnable components are

the abstract base class of directors and simulation components; they are components of the simulation

scenario. Ports and links represent communication between components.

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 9 of 23

Figure 2-3: FERAL framework overview

Directors create simulation domains with defined semantics. Simulation domains of the FERAL framework

manage the execution semantics of coupled simulators. They also manage the coupling of these simulators

and synchronize communication between simulators. Simulation components are instantiated within

simulation domains. In the simulation scenario shown in Figure 2-2, the Simulink component is a bridge to

either a Simulink IDE debugging a Simulink model or to a compiled Simulink model. The CAN bus simulator

CANSim integrates a CAN bus simulator component into the scenario.

Directors may be nested. A FERAL simulation scenario consists therefore of a tree of directors and

simulation components. While directors control the semantics of the coupled simulation scenario; simulation

components provide mostly syntactic interfaces to concrete simulators. A director controls four aspects that

define the model of computation and communication of its semantic domain:

 Triggering of the activation of contained simulation components and controlling the active periods

(i.e. periods of unsynchronized execution) of nested components.

 Controlling of the simulation time of contained simulation components

 Implementing the input port behavior of contained simulation components

 The times when transmitted messages waiting at output ports of connected components are

forwarded to connected input ports of receivers.

Each simulation domain implements its local time. Horizontal synchronization between simulation domains is

managed by the enclosing simulation domain. Vertical synchronization of nested simulation domains is

provided by the FERAL framework. When simulation components are triggered, they are granted an active

period. During this period, components may act independently of all other components. Synchronization with

other components is performed at the end of the active period at earliest, depending on the simulation model

of the enclosing director. Depending on synchronization intervals, time synchronization is more or less strict,

enabling users to balance between accuracy and efficiency. In the shown example, the top-level simulation

domain is time-triggered with a step size of 10ms. Therefore, local simulation times of all nested simulation

domains must not deviate more than 10ms from each other. This also holds for nested domains and

simulation components.

Execution of simulation components is completely controlled by enclosing directors. Nested directors define

their own triggering semantics, which are mostly independently of the semantics of the enclosing director

using the basic FERAL execution model. Directors however control the triggering of nested directors when

necessary, e.g. for the simulation of finite state machines that enable or disable nested directors based on

active states. Similar to simulation components, nested directors are bound by their active periods as defined

by the enclosing director. This is necessary for maintaining synchronization across hierarchy levels.

Directors that are created within the FERAL framework are automatically bound to these basic semantics.

New directors that are created by specializing existing directors automatically inherit this behavior; it cannot

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 10 of 23

be changed by specialized directors. Developers that create directors from scratch, e.g. because they need

to implement exotic simulation models have the responsibility to ensure that their created directors conform

to these basic semantics as well.

Data exchange between simulation components is managed through ports and links. Ports represent

communication endpoints of directors and simulation components, links represent communication paths (cf.

Figure 2-3). They connect simulation components within one simulation domain or simulation components

across simulation domains. Simulated communication between simulation components of one simulation

domain is controlled by the director of that domain. It controls the behavior of input ports and decides at

which time data is forwarded from output ports to connected components. The time triggered director for

example triggers all simulation components that are contained in its simulation domain periodically once per

period. After all components have been triggered, it forwards data from all output ports to connected input

ports. Data exchange between components therefore happens at the end of each period. Event triggered

directors execute contained components, and immediately forward generated output messages to receivers.

Communication across simulation domains is managed by the FERAL framework as well. Like simulation

components, directors define input ports as well. These are connected to input ports of nested directors or

simulation components. Semantics of these input ports are managed by the enclosing director (cf. PortA in

Figure 2-4). Input ports of directors are forwarded to input ports of contained directors or simulation

components.

Figure 2-4: Communication across simulation domains

2.5 Relation to Crystal IOS
The proposed simulation coupling approach will be the foundation for the integrated execution of simulation
models and functional mockup units under the control of the Crystal IOS platform. FERAL supports the
coupling of fixed-step and variable-step solvers that enable the coupled simulation of functional mockup
units. In addition, it is possible to integrate event-based and state-machine based models to support
simulation of failure modes and communication models that simulate, for example, the failure of an individual
sensor or of an individual de-icing device during flight.

OSLC (Open Services for Lifecycle Communication) will be used for service discovery and configuration of
simulation scenarios that enables an integration of simulation services into the IOS platform, as well as the
providing of simulation results via OSLC connectors. For the exchange of runtime data during executed
simulations however, the runtime interface of FERAL will be used, because it is highly optimized for the
support of distributed simulations and yields considerably less protocol overhead compared to OSLC.

2.6 Evaluation proposal
Evaluation scenarios are not defined yet. They will be finalized before the second iteration of this deliverable.

2.7 Related work
Simulator coupling is a topic of active research. Scientific literature already documents several couplings that

were using specifically tailored interfaces. Additionally, related literature exists with respect to harmonized

execution models and coupling frameworks.

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 11 of 23

One concrete simulator coupling is described in [1]. It illustrates a simulator coupling that was published

already in 1997, which integrates the ANSYS and SABER tools for microsystem design. ANSYS is a

simulation solution that implements algorithms for solving linear and non-linear engineering problems;

SABER is a circuit and system simulator. This simulator coupling was realized for evaluation of thermal

properties. It required semantic coupling of two different simulation models, which were realized in these two

specialized tools. The authors of [2] describe the coupling of a simulator for netlists and another simulator for

VHDL code. By coupling the simulators SLSim and SMASH, the authors enabled integrated simulation of

continuous SPICE (Simulation Program with Integrated Circuit Emphasis) simulation models, as well as

discrete VHDL models that enable the prediction of electronic circuits.

The work presented in [3] illustrates the networking domain as another application area of simulator

coupling. By coupling simulators for link layer protocols and network layers, the authors build an

infrastructure for locating interactions between effects on both layers. The work described in [4] applies the

simulator coupling approach to the automotive domain for simulating the impacts of Car-to-X systems. This

requires coupling of the OMNeT++ simulator, which provides a network simulation, and the road traffic

simulator SUMO. The integrated simulation environment is used to evaluate the impact of Car-to-X solutions

to vehicle behavior.

These works show that simulator integration is already today a proven technique that is applied whenever

the coupling of simulation models becomes necessary. Due to the lack of coupling frameworks, however,

development of such a coupling is time consuming, because interfaces and the overall simulation model are

created individually for every coupling.

Modelisar [5] is a framework for the coupling of time-triggered simulators. It is based on a common

simulation model that realizes time-triggered semantics and data flow communications. Several industry

strength tools, for example, Simulink, and Modelica, implement Functional Mockup Interfaces

(Modelisar/FMI) as defined by Modelisar. Modelisar, however, is focused on one simulation model; e.g. the

integration of event-driven simulators that require simulation of queues is not possible. Therefore, simulation

of complex networks, cloud-based services, and non-dataflow models in general are not in the scope of

Modelisar.

SystemC/TLM [6] is another approach for the coupling of simulation models that is widely used in the domain

of electrical engineering. It supports coupling of time and event triggered processes, but its semantics and

simulation model are tailored to the simulation and coupling of components that simulate digital electronic

circuits.

The aforementioned frameworks enable the coupling of simulation components, but cover only one

simulation model. This limits their scope to one class of simulation areas. Modelisar for example is used in

functional design, while SystemC is widely used in platform design. Development of integrated simulation

scenarios requires coupling of simulators from different domains that use different simulation models, for

example to reflect execution of functional designs on platform models.

Ptolemy II [7] is a framework that is used for exploring the integration of execution and communication

models. It splits a system into different domains that are time-triggered, event-triggered, or that describe, for

example, the triggering semantics of wireless networks. Each domain realizes one semantic model; Ptolemy

defines an approach for the coupling of these domains. For our framework, we have adapted some aspects

of Ptolemy and modified them to fit to the needs of a simulator coupling environment.

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 12 of 23

3 Simulative evaluation of heterogeneous models (B2.48)

3.1 Brick description
Nowadays real products are to be assembled from a broad spectrum of parts obeying a complex set of laws

each. On a system and subsystem level these parts of a product mutually interoperate in extensive ways.

Models representing such parts (and a combination of such parts respectively) can be used for the

simulation of their interplay within controlled system environments thus simulating the behavior of the

product to be evaluated. To this end simulating environments take a closed loop control based on events,

time, and states to operate an arbitrary and often complex combination of simulation (sub) models.

In homogeneous environments this is realized by implementing the whole model and all its parts in one

modeling language, but for different reasons this approach does not fit the needs:

 Parts of the model implementations to be evaluated exist already but may be the intellectual property

of another party. Therefore they can’t be used until the “wheel is re-invented”.

 Already existing models, freely available but implemented in a different language cannot be used

and therefore cause double work.

 Limitations of the used simulation environment force for re-modeling of available (sub) models.

Since products’ parts are generally built by different producers each and every of the issues mentioned

above may be valid for a simulation scenario, making evaluation unnecessarily expensive, and time

consuming or even impossible. Therefore a simulation environment is needed that supports the deployment

of heterogeneous models for heterogeneous simulation tools.

Figure 3-1: Heterogeneous scenario example

For the integration of heterogeneous structures into one’s simulation environment two principle possibilities

can be thought of. On the one hand executable part models must be able to integrate, i.e. when triggered

with some input a correspondent output is directly provided (Co-Simulation). On the other hand non-

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 13 of 23

executable part models must be able to integrate by providing a model description that enables the

environment to generate an executable (Model-Exchange).

3.2 Addressed requirements of Crystal USE-Cases
This brick mainly addresses the requirements of user story US 2.08. It is used in the context of the public

aerospace use-case, as described in deliverable D208.010.

 Integration of heterogeneous simulation models and executable models

 Ability to integrate new model types and development environments when necessary

 Ability to add meta data to models, and to lookup models when instantiating simulation scenarios

3.3 Relationships to dependent bricks
Relationships exist to brick B2.47.

3.4 Solution approach
We propose to solve the challenge of a simulative evaluation of heterogeneous models by deploying model

units like functional mock-up units (FMU) within a simulation framework that takes care of the interplay of the

different FMUs deployed. By using functional mock-up interfaces (FMI) for co-simulation and model

exchange it will be possible to build complex systems consisting of model parts based on a wide variety of

simulation tools that already support FMI. While the simulation framework controls the process of deploying

the contained heterogeneous models in a closed loop manner based on events, time and states part

deployments are delegated to the FMUs that either execute their own simulation (co-simulation) or provide

all data for the deployment of their underlying model within the specified simulation environment (model-

exchange). As simulation framework we propose the usage of FERAL which provides the necessary domain

and component types that are needed for a successful integration of FMUs. FERAL builds up simulation

scenarios by combining and nesting simulation and directing components.

In a first step there is the need to adapt to FMU on a code basis as FERAL is Java-based and FMUs are C-

based. To reach this goal we deploy JFMI (a Java wrapper for the FMI by the Ptolemy project). In a next step

we have to build wrappers for FMI for Co-Simulation1 as well as for FMI for Model Exchange2 to translate

the semantics of the FERAL framework to those of FMI.

1
 The intention is to provide an interface standard for coupling two or more simulation tools in a co-simulation

environment. The data exchange between subsystems is restricted to discrete communication points. In the
time between two communication points, the subsystems are solved independently from each other by their
individual solver. Master algorithms control the data exchange between subsystems and the synchronization
of all slave simulation solvers (slaves) [fmi-standard.org, 19.12.2013].
2
 The intention is that a modelling environment can generate C-Code of a dynamic system model that can be

utilized by other modelling and simulation environments. Models are described by differential, algebraic and
discrete equations with time-, state- and step-events) [fmi-standard.org, 19.12.2013].

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 14 of 23

Figure 3-2: Heterogeneous scenario example – realization proposal

Signals handled within the FMI context, that is inputs, outputs, parameters, and status information as well as

derivatives of inputs, and outputs w.r.t. time can be set and retrieved by the FERAL framework via the FMI

wrapper. FERAL also counts for co-simulation algorithms and communication technology for distributed

scenarios since FMI does not define these concepts.

Using FMUs in FERAL not only opens the framework for a variety of models already described by

differential, algebraic and discrete equations, but supports also the integration of executable models from

different tools supporting FMI and thus keeps intellectual properties secure and prepares distributed

evaluation scenarios.

3.5 Evaluation proposal
Evaluation scenarios are not defined yet. They will be finalized before the second iteration of this deliverable.

3.6 Related work
FMI

Functional Mock-up Interface (FMI) is a tool independent standard to support both model exchange and co-

simulation of dynamic models using a combination of xml-files and compiled C-code. The first version, FMI

1.0, was published in 2010. The FMI development was initiated by Daimler AG with the goal to improve the

exchange of simulation models between suppliers and OEMs. As of today, development of the standard

continues through the participation of 16 companies and research institutes. FMI is supported by over 35

tools and is used by automotive and non-automotive organizations throughout Europe, Asia and North

America.

2013-10-18: FMI specification v2.0 RC 1 released

https://www.fmi-standard.org/

https://www.fmi-standard.org/

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 15 of 23

Ptolemy

Ptolemy II is a framework that is used for exploring the integration of execution and communication models.

It splits a system into different domains that are time-triggered, event-triggered, or that describe, for example,

the triggering semantics of wireless networks. Each domain realizes one semantic model; Ptolemy defines

an approach for the coupling of these domains.

The Ptolemy Project provides JFMI, a Java wrapper for the Functional Mock-up Interface (current version

1.0.2) that we use to adapt to the C-based FMUs.

http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 16 of 23

4 Model-Based Design Verification Method (B2.49)

4.1 Brick description
Modelling and simulation of complex systems is at the heart of any modern engineering activity. Engineers

strive to predict the behaviour of the system under development in order to get answers to particular

questions long before physical prototypes or the actual system are built and can be tested in real life.

An important question is whether a particular system design fulfils or violates requirements that are imposed

on the system under development. When developing complex systems, such as spacecraft, aircraft, cars,

power plants, or any subsystem of such a system, this question becomes hard to answer simply because the

systems are too complex for engineers to be able to create mental models of them. Nowadays it is common

to use computer-supported modelling languages to describe complex physical and cyber-physical systems.

The situation is different when it comes to describing requirements. Requirements are typically written in

natural language. Unfortunately, natural languages fail at being unambiguous, in terms of both syntax and

semantics. Automated processing of natural-language requirements is a challenging task which still is too

difficult to accomplish via computer for this approach to be of significant use in requirements engineering or

verification.

This brick will enhance the vVDR (virtual Verification of System Designs Against System Requirements)

method (proposed in [1]) that enables verification of system dynamic behaviour designs against

requirements using simulation models. In particular, it will show how natural-language requirements and

scenarios are formalized using different tools and exported as FMUs and how simulation models can be

composed automatically and used for design verification.

4.2 Addressed requirements of Crystal USE-Cases
This brick mainly addresses the requirements of use case 2.08:

 Integration of heterogeneous simulation models and executable models

 Ability to integrate new model types and development environments when necessary

 Confidentiality of company specific IP must be assured during simulation

4.3 Relationships to dependent bricks
Relationships exist to brick B2.47

4.4 Solution approach
The description of the virtual Verification of System Designs Against System Requirements method (vVDR)

(see Figure 4-1) will be enhanced to take into account aspects that result from the fact of using FMUs

instead of proprietary models (e.g. in Modelica or ModelicaML) and the need for integrating them on demand

(e.g., perhaps even including the usage of IOS (see WP 6.1) for finding the appropriate set of models for the

task at hand).

The enhancement will include the identification of meta-data necessary to enable an automated lookup and

integration of models on demand (e.g. in order to perform verification of a particular design alternative

against a set of formalized requirements).

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 17 of 23

Figure 4-1: vVDR Method

The on-going work in this brick addresses the following questions:

- What is the minimum set of information to be captured in order to express that particular scenarios

are appropriate for testing a certain design model against a set of requirements?

- What meta-data do we need to capture in order to enable lookup of models based on some input

criteria? Is it possible to define generic search criteria, or are they all specific to the tasks on hand,

How can we annotate existing models (FMUs) with meta-data?

- Having found the right set of models, what information needs to be captured in order to enable an

automated integration of them (i.e., automatically connect models, or generate appropriate glue

code)?

4.5 Evaluation proposal
Evaluation approach is not yet defined. It will be documented in the second issue of this deliverable after

definition of appropriate use cases is in place.

4.6 Related work
The review of the state of the art shows that there is no approach that is specialized for design verification

against natural-language requirements. For example, Model Based Systems Engineering (MBSE)

methodologies focus more on the description of designs and do not provide means for formal verification of

system design against natural-language requirements. Further, many of those methodologies use modelling

to structure information and not to perform verification. Verification techniques have a differing focus or are

limited in terms of model complexity. For example, model checking does not scale to cope with continuous-

time models. Runtime verification primarily focuses on checking software runtime properties and addresses

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 18 of 23

challenges in generating efficient code from property monitors in order to minimize their impact while running

them in parallel to the software being verified. Testing in general aims to find design errors by stimulating the

system through appropriate test cases that include verdicts for determining the pass/fail criteria. The main

intention of Model Based Testing (MBT) is to automate the generation of test cases based on a special

white-box system model. Simulation is primarily used for predicting the behaviour of the real system that is

represented by the model.

None of the listed approaches incorporates means for formalizing natural-language requirements for design

verification using models. In conclusion, there is a need for a new approach which is tailored to a model-

based verification of designs against requirements. The new approach should follow the heterogeneous

simulation paradigm that underlies the WP 6.6.

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 19 of 23

5 ModelicaML Tool for Design Verification Based on Models
(B2.40)

5.1 Brick description
The goal of this brick is to provide modelling and simulation environment for integrating requirement, design

alternative and scenario models based on the FMI standard. This implies that models, i.e., FMUs, will be

created in different tools (provided each tool used supports the FMI export). The ModelicaML tool will be

enhanced to facilitate the usage and integration of FMUs in order to enable model-based design verification

(see B2.49).

5.2 Addressed requirements of Crystal USE-Cases
This brick mainly addresses the requirements of use case 2.08:

 Integration of heterogeneous simulation models and executable models

 Ability to integrate new model types and development environments when necessary

 Confidentiality of company specific IP must be assured during simulation

5.3 Relationships to dependent bricks
The enhanced ModelicaML environment will be used to support the method developed in B2.49.

5.4 Solution approach
The main purpose of using ModelicaML tooling [5] will be for integrating models on demand (e.g., integrating

the design alternative model with a scenario and a set of requirements). This will include creating new

models (e.g. verification models, see [7]) that will be composed of the set of FMUs to be integrated.

The close link with Modelica allows reusing FMU import/export Modelica tool (e.g. OpenModelica [6])

functionality within ModelicaML. However, the open question in the on-going work is still whether a full import

(i.e., translation) of FMUs into Modelica/ModelicaML models is necessary, or whether the required

information can be captured using the data from the FMU description file (XML format).

Another challenge to be addressed is the format for storing the captured information. Candidates under

investigation are: UML XMI format, a new XML format (based on a XML Schema), or the OWL format (i.e.,

storing data based on an ontology to be developed for that purpose).

5.5 Evaluation proposal
Evaluation approach is not yet defined. It will be documented in the second issue of this deliverable after

definition of appropriate use cases is in place.

5.6 Related work
The main portion of the ModelicaML [5] concrete syntax is defined as graphical notation that facilitates

different views (e.g. composition, inheritance, behaviour) on system models. It is based on a subset of the

OMG Unified Modeling Language [1]. Since the ModelicaML profile is an extension of the UML meta-model,

it can be used for modelling both with standard UML and with UML-based languages such as SysML [2].

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 20 of 23

Parts of the model are entered as text (i.e., Modelica equations or algorithmic code, modification and

declaration expressions).

UML provides the modeller with powerful descriptive constructs at the expense of loosely defined semantics

that are marked as “semantic variation points” in the UML specification. The intention of ModelicaML is to

provide the modeller with powerful executable constructs and precise execution semantics that are based on

the Modelica language.

Therefore, ModelicaML is based on a limited part of the UML meta-model and extends it using the UML

profiling mechanism, offering new constructs to allow capturing of Modelica concepts that are not provided

by UML and to support all concepts required for the vVDR method. However, like UML or SysML,

ModelicaML is a graphical notation. ModelicaML models are eventually translated into Modelica code.

Hence, the execution semantics are defined by the Modelica language and ultimately by a Modelica compiler

that will translate the generated Modelica code into an executable form.

Figure 5-1: ModelicaML prototype GUI example

Along with the fact that ModelicaML integrates UML and Modelica (which addresses the need for an

integrated modelling and simulation systems that contain both, hardware and software), it is designed to

support the vVDR method. The ModelicaML tool (see Figure 5-1) extension (towards a heterogeneous

simulation approach based on FMI) planned within this brick will widen the applicability of the proposed

model-based design verification method and will contribute to improving the development process efficiency

through automation.

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 21 of 23

6 Conclusion

The provided results indicate the progress that has already been made with respect to heterogeneous

simulation. Due to necessary changes in bricks and a shift in focus, not all bricks could be addressed for this

first deliverable, therefore, not all bricks are mentioned in this document. Those missing bricks will be added

into the next iteration of this deliverable. Nevertheless, the results already indicate that a combination of

Open Services for Lifecycle Collaboration (OSLC) for the configuration of simulation scenarios and the

application of the functional mock-up interface FMI is a feasible way to realize heterogeneous simulation

scenarios in the context of the CRYSTAL project.

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 22 of 23

7 Terms, Abbreviations and Definitions

Please add additional terms, abbreviations and definitions for your deliverable.

Table 7-1: Terms, Abbreviations and Definitions

CRYSTAL CRitical SYSTem Engineering AcceLeration

R Report

P Prototype

D Demonstrator

O Other

PU Public

PP Restricted to other program participants (including the JU).

RE Restricted to a group specified by the consortium (including the JU).

CO Confidential, only for members of the consortium (including the JU).

WP Work Package

SP Subproject

vVDR Virtual Verification of System Designs Against System Requirements

CAN Controller Area Network

FERAL Framework for Evaluation of Systems on Requirements and Architecture Level

ECU Electronic Control Unit, an automotive hardware platform

FMU Functional Mockup Unit

FMI Functional Mockup Interface

OSLC Open Services for Lifecycle Collaboration

MBT Model Based Testing

D606.021
Heterogeneous Simulation

Approach

Version Nature Date Page

V1.0 R 2014-01-31 23 of 23

8 References

[1] OMG UML. (2011). OMG Unified Modeling LanguageTM (OMG UML), Superstructure. Retrieved Sept. 25, 2013, from www.omg.org

[2] OMG SysML. (2012). OMG Systems Modeling Language (OMG SysML™). Retrieved Sept. 25, 2013, from www.omgsysml.org

[3] Modelica. (2013). Modelica specification, Version 3.3. Modelica Association.

[4] Schamai, W. (2013). Model-Based Verification of Dynamic System Behavior against Requirements: Method, Language, and Tool.Ph.D. thesis.

[5] ModelicaML – A UML Profile for Modelica. http://modelicaml.openmodelica.org/

[6] OpenModelica Project. http://openmodelica.org/

[7] Schamai, W. (2013). Model-Based Verification of Dynamic System Behavior against Requirements: Method, Language, and Tool.Ph.D. thesis.

http://modelicaml.openmodelica.org/
http://openmodelica.org/

