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1 Introduction 
 

1.1 Role of deliverable 
This deliverable collects the scientific results from WP 6.6. This first iteration presents results for bricks that 

have results already available. The other bricks from D6.6.1-1 are omitted in this deliverable iteration, and 

will be included in subsequent iterations of this deliverable.  

Brick B2.47 (Approach for Integration of Heterogeneous Models) has a stronger focus on the integration of 

system models; its results would not be meaningful without their integration with brick B2.48 (Simulative 

Evaluation of Heterogeneous Models) that provides the core simulation environment. Brick B2.49 (Model-

Based design Verification Method) provides the evaluation platform that triggers the simulation environment 

and interprets the results of the simulation. 

 

1.2 Relationship to other CRYSTAL Documents 
Deliverable D 6.6.1 describes the requirements for the bricks of this deliverable. Subsequent iterations of 

D6.6.1 will also contain evaluation scenarios and evaluation results. It also collects relevant related work, 

relevant research projects, and other relevant sources of information for WP 6.6 in general. 

 

1.3 Structure of this document  
This Deliverable is structured as following: Section 2 describes our progress in context of brick B2.47. 

Section 3 describes our progress in context of brick B2.48. Section 4 describes our progress in context of 

brick B2.49. Section 5 describes our progress in context of brick 2.40. Section 6 draws conclusions and lays 

out future work. 



D606.021 
Heterogeneous Simulation 

Approach
 

 

 

Version Nature Date Page 

V1.0 R 2014-01-31 7 of 23 

 

2 Approach for integration of heterogeneous models (B2.47) 
 

2.1 Brick description 
Specialized simulators simulate specific aspects of the real world with high accuracy; other aspects are 

approximated or ignored. The simulation of complex scenarios requires simulator coupling to address all 

relevant aspects in one semantically integrated scenario. In the domain of embedded systems, one common 

example scenario that requires simulator coupling is the simulation of shared control loops. 

Today, in automotive, industrial, and avionic environments, control functions that control the same actuators 

are usually deployed on one electronic control unit (ECU) or computer, which is the hardware, the function is 

executed on. In the avionic domain, this is provided by the IMA platform that enables the segregated 

execution of mixed criticality functions on the same hardware. For the near future, plans exist to replace the 

common units with fewer multi-core CPUs. This way, independent functions for example would be deployed 

on the same hardware unit, while one function (i.e. one control loop) could be spread over several hardware 

units as well if this fits the system architecture. This way, the number of required hardware units could be 

drastically reduced.  

 

 

Figure 2-1: Example (automotive) scenario 

 

Figure 2-1 illustrates an example of highly integrated automotive system architectures. It consists of two 

control loops, which are deployed onto multiple ECUs. Control loop 1 consists of periodically triggered 

functions Fun1, Fun2, and Fun3. Control loop 2 consists of event triggered functions FunA and FunB. Event 

triggered functions are commonly used for the handling of events that require timely processing. Periodic 

functions are executed at different periods; Fun1 is, for example, triggered every 10ms, while Fun3 is 

triggered every 5ms. Communication between ECUs is via an automotive network, e.g. via a CAN bus.To 

simulate all relevant effects, simulator coupling becomes necessary. In the described scenario, this includes 

the simulation of functional behavior, communication, and vehicle dynamics. Simulating all relevant effects 

by using specialized simulators separately is not sufficient, because effects often correlate with each other. 

For example, random delays of input data due to high network load and resulting jitter changes the functional 

behavior of algorithms. Only the combination of all relevant effects in one integrated holistic simulation 

scenario reveals all hidden interactions. Complex scenarios therefore need to be simulated by a combination 

of specializes simulators. Their integration requires the combination of multiple simulation models, which 

may be time based, event based, or based on finite state machine semantics. 

 

2.2 Addressed requirements of Crystal USE-Cases 
This brick mainly addresses the requirements of user story US 2.08: Multi-physics modelling and simulation. 

It is used in the context of the public aerospace use-case, as described in deliverable D208.010. 
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 Integration of heterogeneous simulation models and executable models 

 Ability to integrate new model types and development environments when necessary 

 Ability to add meta data to models, and to lookup models when instantiating simulation scenarios 

 Ability to link simulation models across companies 

 Confidentiality of company specific IP must be assured during simulation 

 

2.3 Relationships to dependent bricks 
Relationships exist to brick B2.48. 

 

2.4 Solution approach 
We propose to solve the challenge of integrating heterogeneous models by coupling individual simulation 

models through a framework that provides the semantic integration between the models, enables 

communication according to the Models of Communication and Computation of the individual models and 

that controls the simulation time, re-synchronization intervals and simulation accuracy of the resulting holistic 

simulation scenario. 

Figure 2-2 illustrates a proposed coupled simulation scenario for the system shown in Figure 2-1. It consists 

of five time-triggered simulation domains that represent tasks that are running on the ECUs of the simulated 

system. Periodic tasks are triggered with three different periods. Additionally, event triggered Tasks (FunA, 

FunB) are part of the system; these tasks are triggered upon reception of a particular CAN message frame.  

The vehicle dynamics simulator is included through a time triggered simulation domain as well. CAN bus 

simulation is realized via a CAN bus simulator (CANSim) in an event triggered domain; communication links 

exist to the time triggered domains that simulate functions of control loop 1 and control loop 2. 

 

 

Figure 2-2: Simulation domains of highly integrated automotive architectures 

 

Other simulation scenarios, e.g. from other application domains could be realized in a similar manner. 

Simulation scenarios are created out of components: Figure 2-3 illustrates the architecture of the simulator 

coupling framework “FERAL” – Framework for Efficient simulator coupling on Requirements and Architecture 

Level. 

FERAL consists of runnable components, directors, and simulation components. Runnable components are 

the abstract base class of directors and simulation components; they are components of the simulation 

scenario. Ports and links represent communication between components. 
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Figure 2-3: FERAL framework overview 

 

Directors create simulation domains with defined semantics. Simulation domains of the FERAL framework 

manage the execution semantics of coupled simulators. They also manage the coupling of these simulators 

and synchronize communication between simulators. Simulation components are instantiated within 

simulation domains. In the simulation scenario shown in Figure 2-2, the Simulink component is a bridge to 

either a Simulink IDE debugging a Simulink model or to a compiled Simulink model. The CAN bus simulator 

CANSim integrates a CAN bus simulator component into the scenario. 

Directors may be nested. A FERAL simulation scenario consists therefore of a tree of directors and 

simulation components. While directors control the semantics of the coupled simulation scenario; simulation 

components provide mostly syntactic interfaces to concrete simulators. A director controls four aspects that 

define the model of computation and communication of its semantic domain: 

 

 Triggering of the activation of contained simulation components and controlling the active periods 

(i.e. periods of unsynchronized execution) of nested components.  

 Controlling of the simulation time of contained simulation components 

 Implementing the input port behavior of contained simulation components 

 The times when transmitted messages waiting at output ports of connected components are 

forwarded to connected input ports of receivers. 

 

Each simulation domain implements its local time. Horizontal synchronization between simulation domains is 

managed by the enclosing simulation domain. Vertical synchronization of nested simulation domains is 

provided by the FERAL framework. When simulation components are triggered, they are granted an active 

period. During this period, components may act independently of all other components. Synchronization with 

other components is performed at the end of the active period at earliest, depending on the simulation model 

of the enclosing director. Depending on synchronization intervals, time synchronization is more or less strict, 

enabling users to balance between accuracy and efficiency. In the shown example, the top-level simulation 

domain is time-triggered with a step size of 10ms. Therefore, local simulation times of all nested simulation 

domains must not deviate more than 10ms from each other. This also holds for nested domains and 

simulation components.  

Execution of simulation components is completely controlled by enclosing directors. Nested directors define 

their own triggering semantics, which are mostly independently of the semantics of the enclosing director 

using the basic FERAL execution model. Directors however control the triggering of nested directors when 

necessary, e.g. for the simulation of finite state machines that enable or disable nested directors based on 

active states. Similar to simulation components, nested directors are bound by their active periods as defined 

by the enclosing director. This is necessary for maintaining synchronization across hierarchy levels. 

Directors that are created within the FERAL framework are automatically bound to these basic semantics. 

New directors that are created by specializing existing directors automatically inherit this behavior; it cannot 
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be changed by specialized directors. Developers that create directors from scratch, e.g. because they need 

to implement exotic simulation models have the responsibility to ensure that their created directors conform 

to these basic semantics as well.  

Data exchange between simulation components is managed through ports and links. Ports represent 

communication endpoints of directors and simulation components, links represent communication paths (cf. 

Figure 2-3). They connect simulation components within one simulation domain or simulation components 

across simulation domains. Simulated communication between simulation components of one simulation 

domain is controlled by the director of that domain. It controls the behavior of input ports and decides at 

which time data is forwarded from output ports to connected components. The time triggered director for 

example triggers all simulation components that are contained in its simulation domain periodically once per 

period. After all components have been triggered, it forwards data from all output ports to connected input 

ports. Data exchange between components therefore happens at the end of each period. Event triggered 

directors execute contained components, and immediately forward generated output messages to receivers.  

Communication across simulation domains is managed by the FERAL framework as well. Like simulation 

components, directors define input ports as well. These are connected to input ports of nested directors or 

simulation components. Semantics of these input ports are managed by the enclosing director (cf. PortA in 

Figure 2-4). Input ports of directors are forwarded to input ports of contained directors or simulation 

components.  

 

 

Figure 2-4: Communication across simulation domains 

 

2.5 Relation to Crystal IOS 
The proposed simulation coupling approach will be the foundation for the integrated execution of simulation 
models and functional mockup units under the control of the Crystal IOS platform. FERAL supports the 
coupling of fixed-step and variable-step solvers that enable the coupled simulation of functional mockup 
units. In addition, it is possible to integrate event-based and state-machine based models to support 
simulation of failure modes and communication models that simulate, for example, the failure of an individual 
sensor or of an individual de-icing device during flight. 

OSLC (Open Services for Lifecycle Communication) will be used for service discovery and configuration of 
simulation scenarios that enables an integration of simulation services into the IOS platform, as well as the 
providing of simulation results via OSLC connectors. For the exchange of runtime data during executed 
simulations however, the runtime interface of FERAL will be used, because it is highly optimized for the 
support of distributed simulations and yields considerably less protocol overhead compared to OSLC. 

 

2.6 Evaluation proposal 
Evaluation scenarios are not defined yet. They will be finalized before the second iteration of this deliverable. 

 

2.7 Related work 
Simulator coupling is a topic of active research. Scientific literature already documents several couplings that 

were using specifically tailored interfaces. Additionally, related literature exists with respect to harmonized 

execution models and coupling frameworks. 
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One concrete simulator coupling is described in [1]. It illustrates a simulator coupling that was published 

already in 1997, which integrates the ANSYS and SABER tools for microsystem design. ANSYS is a 

simulation solution that implements algorithms for solving linear and non-linear engineering problems; 

SABER is a circuit and system simulator. This simulator coupling was realized for evaluation of thermal 

properties. It required semantic coupling of two different simulation models, which were realized in these two 

specialized tools. The authors of [2] describe the coupling of a simulator for netlists and another simulator for 

VHDL code. By coupling the simulators SLSim and SMASH, the authors enabled integrated simulation of 

continuous SPICE (Simulation Program with Integrated Circuit Emphasis) simulation models, as well as 

discrete VHDL models that enable the prediction of electronic circuits.  

The work presented in [3] illustrates the networking domain as another application area of simulator 

coupling. By coupling simulators for link layer protocols and network layers, the authors build an 

infrastructure for locating interactions between effects on both layers. The work described in [4] applies the 

simulator coupling approach to the automotive domain for simulating the impacts of Car-to-X systems. This 

requires coupling of the OMNeT++ simulator, which provides a network simulation, and the road traffic 

simulator SUMO. The integrated simulation environment is used to evaluate the impact of Car-to-X solutions 

to vehicle behavior. 

These works show that simulator integration is already today a proven technique that is applied whenever 

the coupling of simulation models becomes necessary. Due to the lack of coupling frameworks, however, 

development of such a coupling is time consuming, because interfaces and the overall simulation model are 

created individually for every coupling.  

Modelisar [5] is a framework for the coupling of time-triggered simulators. It is based on a common 

simulation model that realizes time-triggered semantics and data flow communications. Several industry 

strength tools, for example, Simulink, and Modelica, implement Functional Mockup Interfaces 

(Modelisar/FMI) as defined by Modelisar. Modelisar, however, is focused on one simulation model; e.g. the 

integration of event-driven simulators that require simulation of queues is not possible. Therefore, simulation 

of complex networks, cloud-based services, and non-dataflow models in general are not in the scope of 

Modelisar. 

SystemC/TLM [6] is another approach for the coupling of simulation models that is widely used in the domain 

of electrical engineering. It supports coupling of time and event triggered processes, but its semantics and 

simulation model are tailored to the simulation and coupling of components that simulate digital electronic 

circuits. 

The aforementioned frameworks enable the coupling of simulation components, but cover only one 

simulation model. This limits their scope to one class of simulation areas. Modelisar for example is used in 

functional design, while SystemC is widely used in platform design. Development of integrated simulation 

scenarios requires coupling of simulators from different domains that use different simulation models, for 

example to reflect execution of functional designs on platform models.  

Ptolemy II [7] is a framework that is used for exploring the integration of execution and communication 

models. It splits a system into different domains that are time-triggered, event-triggered, or that describe, for 

example, the triggering semantics of wireless networks. Each domain realizes one semantic model; Ptolemy 

defines an approach for the coupling of these domains. For our framework, we have adapted some aspects 

of Ptolemy and modified them to fit to the needs of a simulator coupling environment. 
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3 Simulative evaluation of heterogeneous models (B2.48) 
 

3.1 Brick description 
Nowadays real products are to be assembled from a broad spectrum of parts obeying a complex set of laws 

each. On a system and subsystem level these parts of a product mutually interoperate in extensive ways. 

Models representing such parts (and a combination of such parts respectively) can be used for the 

simulation of their interplay within controlled system environments thus simulating the behavior of the 

product to be evaluated. To this end simulating environments take a closed loop control based on events, 

time, and states to operate an arbitrary and often complex combination of simulation (sub) models.  

In homogeneous environments this is realized by implementing the whole model and all its parts in one 

modeling language, but for different reasons this approach does not fit the needs: 

 Parts of the model implementations to be evaluated exist already but may be the intellectual property 

of another party. Therefore they can’t be used until the “wheel is re-invented”. 

 Already existing models, freely available but implemented in a different language cannot be used 

and therefore cause double work. 

 Limitations of the used simulation environment force for re-modeling of available (sub) models. 

 

Since products’ parts are generally built by different producers each and every of the issues mentioned 

above may be valid for a simulation scenario, making evaluation unnecessarily expensive, and time 

consuming or even impossible. Therefore a simulation environment is needed that supports the deployment 

of heterogeneous models for heterogeneous simulation tools.  

 

 

Figure 3-1: Heterogeneous scenario example 

 

For the integration of heterogeneous structures into one’s simulation environment two principle possibilities 

can be thought of. On the one hand executable part models must be able to integrate, i.e. when triggered 

with some input a correspondent output is directly provided (Co-Simulation). On the other hand non-
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executable part models must be able to integrate by providing a model description that enables the 

environment to generate an executable (Model-Exchange). 

 

3.2 Addressed requirements of Crystal USE-Cases 
This brick mainly addresses the requirements of user story US 2.08. It is used in the context of the public 

aerospace use-case, as described in deliverable D208.010. 

 Integration of heterogeneous simulation models and executable models 

 Ability to integrate new model types and development environments when necessary 

 Ability to add meta data to models, and to lookup models when instantiating simulation scenarios 

 

3.3 Relationships to dependent bricks 
Relationships exist to brick B2.47. 

 

3.4 Solution approach 
We propose to solve the challenge of a simulative evaluation of heterogeneous models by deploying model 

units like functional mock-up units (FMU) within a simulation framework that takes care of the interplay of the 

different FMUs deployed. By using functional mock-up interfaces (FMI) for co-simulation and model 

exchange it will be possible to build complex systems consisting of model parts based on a wide variety of 

simulation tools that already support FMI. While the simulation framework controls the process of deploying 

the contained heterogeneous models in a closed loop manner based on events, time and states part 

deployments are delegated to the FMUs that either execute their own simulation (co-simulation) or provide 

all data for the deployment of their underlying model within the specified simulation environment (model-

exchange). As simulation framework we propose the usage of FERAL which provides the necessary domain 

and component types that are needed for a successful integration of FMUs. FERAL builds up simulation 

scenarios by combining and nesting simulation and directing components.  

In a first step there is the need to adapt to FMU on a code basis as FERAL is Java-based and FMUs are C-

based. To reach this goal we deploy JFMI (a Java wrapper for the FMI by the Ptolemy project). In a next step 

we have to build wrappers for FMI for Co-Simulation1 as well as for FMI for Model Exchange2 to translate 

the semantics of the FERAL framework to those of FMI.  

                                                      
1
 The intention is to provide an interface standard for coupling two or more simulation tools in a co-simulation 

environment. The data exchange between subsystems is restricted to discrete communication points. In the 
time between two communication points, the subsystems are solved independently from each other by their 
individual solver. Master algorithms control the data exchange between subsystems and the synchronization 
of all slave simulation solvers (slaves) [fmi-standard.org, 19.12.2013]. 
2
 The intention is that a modelling environment can generate C-Code of a dynamic system model that can be 

utilized by other modelling and simulation environments. Models are described by differential, algebraic and 
discrete equations with time-, state- and step-events) [fmi-standard.org, 19.12.2013]. 
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Figure 3-2: Heterogeneous scenario example – realization proposal 

 

Signals handled within the FMI context, that is inputs, outputs, parameters, and status information as well as 

derivatives of inputs, and outputs w.r.t. time can be set and retrieved by the FERAL framework via the FMI 

wrapper. FERAL also counts for co-simulation algorithms and communication technology for distributed 

scenarios since FMI does not define these concepts.  

Using FMUs in FERAL not only opens the framework for a variety of models already described by 

differential, algebraic and discrete equations, but supports also the integration of executable models from 

different tools supporting FMI and thus keeps intellectual properties secure and prepares distributed 

evaluation scenarios. 

 

3.5 Evaluation proposal 
Evaluation scenarios are not defined yet. They will be finalized before the second iteration of this deliverable. 

 

3.6 Related work 
FMI 

Functional Mock-up Interface (FMI) is a tool independent standard to support both model exchange and co-

simulation of dynamic models using a combination of xml-files and compiled C-code. The first version, FMI 

1.0, was published in 2010. The FMI development was initiated by Daimler AG with the goal to improve the 

exchange of simulation models between suppliers and OEMs. As of today, development of the standard 

continues through the participation of 16 companies and research institutes. FMI is supported by over 35 

tools and is used by automotive and non-automotive organizations throughout Europe, Asia and North 

America. 

2013-10-18: FMI specification v2.0 RC 1 released 

https://www.fmi-standard.org/ 

 

https://www.fmi-standard.org/
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Ptolemy 

Ptolemy II is a framework that is used for exploring the integration of execution and communication models. 

It splits a system into different domains that are time-triggered, event-triggered, or that describe, for example, 

the triggering semantics of wireless networks. Each domain realizes one semantic model; Ptolemy defines 

an approach for the coupling of these domains. 

The Ptolemy Project provides JFMI, a Java wrapper for the Functional Mock-up Interface (current version 

1.0.2) that we use to adapt to the C-based FMUs. 

http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm 
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4 Model-Based Design Verification Method (B2.49) 
 

4.1 Brick description 
Modelling and simulation of complex systems is at the heart of any modern engineering activity. Engineers 

strive to predict the behaviour of the system under development in order to get answers to particular 

questions long before physical prototypes or the actual system are built and can be tested in real life.  

An important question is whether a particular system design fulfils or violates requirements that are imposed 

on the system under development. When developing complex systems, such as spacecraft, aircraft, cars, 

power plants, or any subsystem of such a system, this question becomes hard to answer simply because the 

systems are too complex for engineers to be able to create mental models of them. Nowadays it is common 

to use computer-supported modelling languages to describe complex physical and cyber-physical systems. 

The situation is different when it comes to describing requirements. Requirements are typically written in 

natural language. Unfortunately, natural languages fail at being unambiguous, in terms of both syntax and 

semantics. Automated processing of natural-language requirements is a challenging task which still is too 

difficult to accomplish via computer for this approach to be of significant use in requirements engineering or 

verification.  

This brick will enhance the vVDR (virtual Verification of System Designs Against System Requirements) 

method (proposed in [1]) that enables verification of system dynamic behaviour designs against 

requirements using simulation models. In particular, it will show how natural-language requirements and 

scenarios are formalized using different tools and exported as FMUs and how simulation models can be 

composed automatically and used for design verification. 

4.2 Addressed requirements of Crystal USE-Cases 
This brick mainly addresses the requirements of use case 2.08: 

 Integration of heterogeneous simulation models and executable models 

 Ability to integrate new model types and development environments when necessary 

 Confidentiality of company specific IP must be assured during simulation 

4.3 Relationships to dependent bricks 
Relationships exist to brick B2.47 

4.4 Solution approach 
The description of the virtual Verification of System Designs Against System Requirements method (vVDR) 

(see Figure 4-1) will be enhanced to take into account aspects that result from the fact of using FMUs 

instead of proprietary models (e.g. in Modelica or ModelicaML) and the need for integrating them on demand 

(e.g., perhaps even including the usage of IOS (see WP 6.1) for finding the appropriate set of models for the 

task at hand).  

The enhancement will include the identification of meta-data necessary to enable an automated lookup and 

integration of models on demand (e.g. in order to perform verification of a particular design alternative 

against a set of formalized requirements).  
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Figure 4-1: vVDR Method 

 

The on-going work in this brick addresses the following questions:  

- What is the minimum set of information to be captured in order to express that particular scenarios 

are appropriate for testing a certain design model against a set of requirements?  

- What meta-data do we need to capture in order to enable lookup of models based on some input 

criteria? Is it possible to define generic search criteria, or are they all specific to the tasks on hand, 

How can we annotate existing models (FMUs) with meta-data?  

- Having found the right set of models, what information needs to be captured in order to enable an 

automated integration of them (i.e., automatically connect models, or generate appropriate glue 

code)? 

 

4.5 Evaluation proposal 
Evaluation approach is not yet defined. It will be documented in the second issue of this deliverable after 

definition of appropriate use cases is in place. 

 

4.6 Related work 
The review of the state of the art shows that there is no approach that is specialized for design verification 

against natural-language requirements. For example, Model Based Systems Engineering (MBSE) 

methodologies focus more on the description of designs and do not provide means for formal verification of 

system design against natural-language requirements. Further, many of those methodologies use modelling 

to structure information and not to perform verification. Verification techniques have a differing focus or are 

limited in terms of model complexity. For example, model checking does not scale to cope with continuous-

time models. Runtime verification primarily focuses on checking software runtime properties and addresses 
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challenges in generating efficient code from property monitors in order to minimize their impact while running 

them in parallel to the software being verified. Testing in general aims to find design errors by stimulating the 

system through appropriate test cases that include verdicts for determining the pass/fail criteria. The main 

intention of Model Based Testing (MBT) is to automate the generation of test cases based on a special 

white-box system model. Simulation is primarily used for predicting the behaviour of the real system that is 

represented by the model.  

None of the listed approaches incorporates means for formalizing natural-language requirements for design 

verification using models. In conclusion, there is a need for a new approach which is tailored to a model-

based verification of designs against requirements. The new approach should follow the heterogeneous 

simulation paradigm that underlies the WP 6.6.  
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5 ModelicaML Tool for Design Verification Based on Models 
(B2.40) 
 

5.1 Brick description 
The goal of this brick is to provide modelling and simulation environment for integrating requirement, design 

alternative and scenario models based on the FMI standard. This implies that models, i.e., FMUs, will be 

created in different tools (provided each tool used supports the FMI export). The ModelicaML tool will be 

enhanced to facilitate the usage and integration of FMUs in order to enable model-based design verification 

(see B2.49).  

 

5.2 Addressed requirements of Crystal USE-Cases 
This brick mainly addresses the requirements of use case 2.08: 

 Integration of heterogeneous simulation models and executable models 

 Ability to integrate new model types and development environments when necessary 

 Confidentiality of company specific IP must be assured during simulation 

 

5.3 Relationships to dependent bricks 
The enhanced ModelicaML environment will be used to support the method developed in B2.49.  

 

5.4 Solution approach 
The main purpose of using ModelicaML tooling [5] will be for integrating models on demand (e.g., integrating 

the design alternative model with a scenario and a set of requirements). This will include creating new 

models (e.g. verification models, see [7]) that will be composed of the set of FMUs to be integrated.  

The close link with Modelica allows reusing FMU import/export Modelica tool (e.g. OpenModelica [6]) 

functionality within ModelicaML. However, the open question in the on-going work is still whether a full import 

(i.e., translation) of FMUs into Modelica/ModelicaML models is necessary, or whether the required 

information can be captured using the data from the FMU description file (XML format).  

Another challenge to be addressed is the format for storing the captured information. Candidates under 

investigation are: UML XMI format, a new XML format (based on a XML Schema), or the OWL format (i.e., 

storing data based on an ontology to be developed for that purpose).  

 

5.5 Evaluation proposal 
Evaluation approach is not yet defined. It will be documented in the second issue of this deliverable after 

definition of appropriate use cases is in place. 

 

5.6 Related work 
The main portion of the ModelicaML [5] concrete syntax is defined as graphical notation that facilitates 

different views (e.g. composition, inheritance, behaviour) on system models. It is based on a subset of the 

OMG Unified Modeling Language [1]. Since the ModelicaML profile is an extension of the UML meta-model, 

it can be used for modelling both with standard UML and with UML-based languages such as SysML [2]. 
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Parts of the model are entered as text (i.e., Modelica equations or algorithmic code, modification and 

declaration expressions).  

UML provides the modeller with powerful descriptive constructs at the expense of loosely defined semantics 

that are marked as “semantic variation points” in the UML specification. The intention of ModelicaML is to 

provide the modeller with powerful executable constructs and precise execution semantics that are based on 

the Modelica language.  

Therefore, ModelicaML is based on a limited part of the UML meta-model and extends it using the UML 

profiling mechanism, offering new constructs to allow capturing of Modelica concepts that are not provided 

by UML and to support all concepts required for the vVDR method. However, like UML or SysML, 

ModelicaML is a graphical notation. ModelicaML models are eventually translated into Modelica code. 

Hence, the execution semantics are defined by the Modelica language and ultimately by a Modelica compiler 

that will translate the generated Modelica code into an executable form. 

 

 

Figure 5-1: ModelicaML prototype GUI example 

 

Along with the fact that ModelicaML integrates UML and Modelica (which addresses the need for an 

integrated modelling and simulation systems that contain both, hardware and software), it is designed to 

support the vVDR method. The ModelicaML tool (see Figure 5-1) extension (towards a heterogeneous 

simulation approach based on FMI) planned within this brick will widen the applicability of the proposed 

model-based design verification method and will contribute to improving the development process efficiency 

through automation.  
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6 Conclusion 

The provided results indicate the progress that has already been made with respect to heterogeneous 

simulation. Due to necessary changes in bricks and a shift in focus, not all bricks could be addressed for this 

first deliverable, therefore, not all bricks are mentioned in this document. Those missing bricks will be added 

into the next iteration of this deliverable. Nevertheless, the results already indicate that a combination of 

Open Services for Lifecycle Collaboration (OSLC) for the configuration of simulation scenarios and the 

application of the functional mock-up interface FMI is a feasible way to realize heterogeneous simulation 

scenarios in the context of the CRYSTAL project. 
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7 Terms, Abbreviations and Definitions 

Please add additional terms, abbreviations and definitions for your deliverable. 

 

Table 7-1: Terms, Abbreviations and Definitions 

CRYSTAL CRitical SYSTem Engineering AcceLeration 

R Report 

P Prototype 

D Demonstrator 

O Other 

PU Public 

PP Restricted to other program participants (including the JU). 

RE Restricted to a group specified by the consortium (including the JU). 

CO Confidential, only for members of the consortium (including the JU). 

WP Work Package 

SP Subproject 

vVDR  Virtual Verification of System Designs Against System Requirements 

CAN Controller Area Network 

FERAL Framework for Evaluation of Systems on Requirements and Architecture Level 

ECU Electronic Control Unit, an automotive hardware platform 

FMU Functional Mockup Unit 

FMI Functional Mockup Interface 

OSLC Open Services for Lifecycle Collaboration 

MBT Model Based Testing 
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