
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE CRYSTAL CONSORTIUM. NEITHER THIS
DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED BY ANY
MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE CESAR
CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE
RESEARCH LEADING TO THESE RESULTS HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S SEVENTH
FRAMEWORK PROGRAM (FP7/2007-2013) FOR CRYSTAL – CRITICAL SYSTEM ENGINEERING ACCELERATION JOINT
UNDERTAKING UNDER GRANT AGREEMENT N° 332830 AND FROM SPECIFIC NATIONAL PROGRAMS AND / OR FUNDING
AUTHORITIES.

CRitical SYSTem Engineering AcceLeration

CRYSTAL Variability Management V1

D610.011

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 2 of 30

DOCUMENT INFORMATION

Project CRYSTAL

Grant Agreement No. ARTEMIS-2012-1-332830

Deliverable Title CRYSTAL Variability Management V1

Deliverable No. D610.011

Dissemination Level CO

Nature R

Document Version V1.0

Date 2014-02-28

Contact Jason Mansell

Organization TECNALIA

Phone (+34)664 10 45 97

E-Mail jason.mansell@tecnalia.com

mailto:jason.mansell@tecnalia.com

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 3 of 30

AUTHORS TABLE

Name Company E-Mail

Jason Mansell TECNALIA jason.mansell@tecnalia.com

Carlos Zubieta ORBITAL carlos.zubieta@orbital-aerospace.com

Martin Becker Fraunhofer IESE Martin.Becker@iese.fraunhofer.de

Konstantin Keutner Siemens konstantin.keutner@siemens.com

Andrea Leitner VIF Andrea.leitner@v2c2.at

Gerald Stieglbauer AVL Gerald.stieglbauer@avl.com

Adeline Silva Schäfer Fraunhofer IESE Adeline.Schaefer@iese.fraunhofer.de

Arjan Mooij TNO arjan.mooij@tno.nl

Mark Van Den Brand
Technical University
Eindhoven

m.g.j.v.d.brand@tue.nl

Rob Albers
Philips Medical Systems
Nederland B.V.

r.albers@philips.com

CHANGE HISTORY

Version Date Reason for Change
Pages

Affected

V0.1 25/10/2013 Included information from Orbital 7-9

V0.2 29/11/2013 Included Contribution from Fraunhofer, Siemens. 10-12

V0.3 15/01/2014
Consolidated version with final contributions from Frauhofer,
Orbital, Siemens, TNO, Tu/E, Philips, AVL, VIF, TECNALIA.

All

mailto:jason.mansell@tecnalia.com
mailto:carlos.zubieta@orbital-aerospace.com
mailto:Martin.Becker@iese.fraunhofer.de
mailto:konstantin.keutner@siemens.com
mailto:Andrea.leitner@v2c2.at
mailto:Gerald.stieglbauer@avl.com
mailto:Adeline.Schaefer@iese.fraunhofer.de
mailto:arjan.mooij@tno.nl
mailto:m.g.j.v.d.brand@tue.nl
mailto:r.albers@philips.com

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 4 of 30

CONTENT

1 INTRODUCTION .. 6

1.1 ROLE OF DELIVERABLE ... 6
1.2 RELATIONSHIP TO OTHER CRYSTAL DOCUMENTS .. 6
1.3 STRUCTURE OF THIS DOCUMENT ... 6

2 VARIANT ANALYSIS BRICK (TASK 6.10.3) ... 8

2.1 DESCRIPTION .. 8
2.1.1 Tool/method description: what will you find in Variant Analysis .. 8

2.2 IMPROVEMENTS IN CRYSTAL ... 9
2.2.1 Case Study coverage .. 9

2.3 INTEGRATION WITHIN THE IOS ... 10

3 AVL IGEM BRICK (TASK 6.10.5) ... 11

3.1 DESCRIPTION .. 11
3.2 IMPROVEMENTS IN CRYSTAL ... 12

3.2.1 Case Study coverage .. 12
3.3 INTEGRATION WITHIN THE IOS ... 12

4 AVL TFMS BRICK (TASK 6.10.6) .. 13

4.1 DESCRIPTION .. 13
4.2 IMPROVEMENTS IN CRYSTAL ... 13

4.2.1 Case Study coverage .. 13
4.3 INTEGRATION WITHIN THE IOS ... 13

5 AVL CRETA/CAMEO (TASK 6.10.7) ... 15

5.1 DESCRIPTION .. 15
5.1.1 Tool/method description: what will you find in [name of brick] .. 15

5.2 IMPROVEMENTS IN CRYSTAL ... 15
5.2.1 Case Study coverage .. 16

5.3 INTEGRATION WITHIN THE IOS ... 18

6 DSL BRICK (TASK 6.10.8) .. 21

6.1 DESCRIPTION .. 21
6.1.1 Tool/method description: what will you find in the DSL brick ... 21

6.2 IMPROVEMENTS IN CRYSTAL ... 22
6.2.1 Case Study coverage .. 24

6.3 INTEGRATION WITHIN THE IOS ... 24

7 AUGE BRICK (TASK 6.10.9) .. 25

7.1 DESCRIPTION .. 25
7.1.1 Tool/method description: what will you find in AUGE ... 25

7.2 IMPROVEMENTS IN CRYSTAL ... 26
7.2.1 Case Study coverage .. 26

7.3 INTEGRATION WITHIN THE IOS ... 27

8 TERMS, ABBREVIATIONS AND DEFINITIONS ... 28

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 5 of 30

Content of Figures

Figure 5-1: Test and calibration iteration pattern .. 16
Figure 5-2: Tool-set up for a calibration iteration based on simulation .. 17
Figure 5-3: Calibration data migration from one testing phase to another ... 18
Figure 5-4: OSLC linked-data approach for calibration data management .. 19

Content of Tables

Table 1-1: Bricks x Companies ... 7
Table 8-1: CRYSTAL-specific managerial abbreviations ... 28
Table 8-2: Terms, abbreviations and definitions .. 29
Table 9-1: Tools related to the Bricks ... 30

https://projects.avl.com/11/0154/Data%20Exchange/006_Results/Deliverables_Submitted_to_JU/SP6/CRYSTAL_D_610_011_V1.0.doc#_Toc381347760
https://projects.avl.com/11/0154/Data%20Exchange/006_Results/Deliverables_Submitted_to_JU/SP6/CRYSTAL_D_610_011_V1.0.doc#_Toc381347761
https://projects.avl.com/11/0154/Data%20Exchange/006_Results/Deliverables_Submitted_to_JU/SP6/CRYSTAL_D_610_011_V1.0.doc#_Toc381347762
https://projects.avl.com/11/0154/Data%20Exchange/006_Results/Deliverables_Submitted_to_JU/SP6/CRYSTAL_D_610_011_V1.0.doc#_Toc381347763

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 6 of 30

1 Introduction

1.1 Role of deliverable

Within CRYSTAL one of the key step for success is the maximization of the reuse of existing

knowledge in the creation of new critical systems in a faster, secure, certified and reliable manner.

In this direction this deliverable sets the basis for the provision of variability management practices,

methods and tools for the industrial cases within CRYSTAL.

This deliverable provides the specification of WP6.10 Bricks that involve tool support and specific
tool enhancement that will be used in the use cases.

1.2 Relationship to other CRYSTAL Documents

This document is the first in a series of three reports:

 CRYSTAL_D610_011 – Crystal Variability Management - V1 (this document)

 CRYSTAL_D610_012 – Crystal Variability Management – V2

 CRYSTAL_D610_013 – Crystal Variability Management – V3

Use Cases cited in this deliverable:

 CRYSTAL_D203_011 - Use Case 2.3 “Mission Support Equipment” (EADS-CAS),

 CRYSTAL_D304_011 - Use Case 3.4 “Test Case Definition” (AVL)

 CRYSTAL_D401_010 - WP4.1 (Philips HealthCare)

1.3 Structure of this document

The remainder of this document is composed of 6 sections detailing the current status and plans
for the WP6.10 technical bricks development. Each section is structured in the following way:

 Description: provides a description of what the technical basis of the brick is and how the
Brick can be used

 Improvements in CRYSTAL: describes the intended further development within CRYSTAL
and the plans to use it within the CRYSTAL use cases.

 Integration within IOS: Describes the plans for integration with the IOS.

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 7 of 30

Task Company Brick Name

6.10.3 Fh IESE Variant Analysis

6.10.5 AVL iGeM

6.10.6 AVL TFMS

6.10.7 AVL Creta/Cameo

6.10.8 Siemens DSL

6.10.9 Orbital AUGE

Table 1-1: Bricks x Companies

This document will be a living document that in its second release will detail the technical work
done as well as the result of the Use Case validation.

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 8 of 30

2 Variant Analysis Brick (Task 6.10.3)

2.1 Description

Name: Variant Analysis

Contact: Slawomir.Duszynski@iese.fraunhofer.de

Technical Information: This brick will be a standalone software application with graphical HMI allowing the
user to simultaneously analyse the similarity of a group of up to 32 software artefact variants (especially
source code, documents). The application determines and visualizes the detailed information on similarity of
the artefacts variants on all levels of abstraction.

Operation
System/platform

Windows/Linux

Version 1.0

Type of Input Data Software Artefacts (source code, text)

Type of Output
Data

Similarity graphs, matrices and tables

Dependencies Eclipse

License Terms and conditions agreed in CRYSTAL APCA

Additional
information

N/A

2.1.1 Tool/method description: what will you find in Variant Analysis

Variant Analysis is an approach and tool to identify commonality and variability in the engineering
artefacts (for instance, source code) of existing system variants in an efficient and effective way. It
compares several artefact variants in parallel and supports an interactive commonality-variability-
analysis on multiple levels of abstraction. In this way, it enables the user to assess the reuse
potential in existing artefacts and decide on the optimal strategy for introducing variation
management approaches.

Variant Analysis is intended to be used in the situation when variation management approaches
should be used retroactively, after the subject software assets are already developed. In many
practical situations, the need for asset customization is often not visible upfront, but rather emerges
during asset lifetime. In such a case, the variants are often created in ad-hoc manner – for
example by cloning the original artefact and changing it according to the specific requirements of
the customer. Subsequently, the artefact variants are maintained in parallel independently of each
other. The described approach may be a viable and easy-to-realize short-term solution, but in a
longer time it causes serious maintenance problems. These problems can be alleviated by
adoption of a suitable variation management approach. Therefore, the existing assets need to be
analysed and transformed into a new, generic and reusable form. Variant Analysis delivers the
similarity information for these activities. It can also be used for any other purpose where detailed
and accurate information on the similarity of multiple artefact variants is needed.

Variant Analysis uses a hierarchical set similarity model which enables very efficient similarity
analysis and supports easily understandable result presentation. Compared to other similarity
analysis approaches, Variant Analysis is particularly efficient for large software systems and a high
number of analysed software variants.

mailto:Slawomir.Duszynski@iese.fraunhofer.de

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 9 of 30

2.1.1.1 Installing / Using method Variant Analysis

Variant Analysis is an Eclipse-based application distributed with the use of the Eclipse Update Site
mechanism. In order to use the tool, the user needs to have the Eclipse environment installed on
the computer. Depending on the environment configuration, the installation process of Variant
Analysis can also include an installation of Eclipse-based open-source model management
frameworks used by the tool (e.g. Eclipse Modelling Framework).

The tool binaries are accompanied by documentation (PDF) explaining tool use and result
interpretation. The tool license is displayed before the installation process starts.

To use the tool, Eclipse needs to be started. The specific Eclipse perspective, consisting of Variant
Analysis views, will be displayed in the Eclipse environment. The usage of the tool consists of
three main steps:

 Artefact import: the specific artefact variants which need to be analysed for similarity should
be added to the analysis project using the fact extraction wizard. In the wizard, the user has
the possibility to filter the imported artefacts (e.g. by specifying the accepted file extensions)
and configure other extraction options (e.g. concerning the internal structure of the
artefact).

 Artefact similarity analysis: in the analysis wizard, the user can specify the options for
similarity analysis. The options include, among others, the choice of a similarity analysis
algorithm and the choice of a similarity evaluation function.

 Result browsing and interpretation: the structure hierarchy of the analysed artefact variants
is displayed in a diagram. For each artefact or its constituent element, similarity information
relating it to other variants of the selected element is displayed. The user can navigate the
structure of the artefact and receive information related to elements on any level of
abstraction (the “details on demand” principle). The information bases on the hierarchical
set data model and is provided in the form of diagrams, matrices and tables. It can be
exported to output files for further processing in other tools.

2.1.1.2 TEST Variant Analysis installation / Example of usage of the Method

Initially, the installation can be verified by the means of Eclipse installation details dialog. Eclipse
should report the feature “Fraunhofer Variant Analysis” and the corresponding plugins such as
“de.fhg.iese.save.structure.an.variantanalysis” as installed. If the installation is successful, the
SAVE Eclipse perspective should be shown by default, and the user should be able to enable the
two related views: “Variant Analysis Result View” and “Variant Analysis Query View”.

2.2 Improvements in CRYSTAL

The tool delivers information for reengineering activities aiming at developing generic, reusable
artefacts which are equivalent to the multiple input artefact variants. In the basic usage, the use of
the tool for source code should be demonstrated. Advanced tool improvements include the usage
for other textual artefacts, such as requirements, test cases and specification documents, as well
as for design models. For this purpose, suitable analysis algorithms and equivalence functions
need to be defined.

2.2.1 Case Study coverage

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 10 of 30

Variant Analysis will be applied in the Use Case 2.3 “Mission Support Equipment” in the Aerospace

domain, led by EADS Cassidian. The Use Case focus is on integration of the bricks related to

requirement engineering, artefact traceability, safety analyses and variability management. The

Variant Analysis tool will support the user in analysis and reengineering of input artefacts, e.g.

textual requirements and specifications, in order to introduce suitable variability management

practices to these artefacts.

2.3 Integration within the IOS

The implementation of an IOS data connector, supporting data exchange in both directions
(importing the artefact data and exporting the similarity results), is envisioned.

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 11 of 30

3 AVL iGeM Brick (Task 6.10.5)

3.1 Description

AVL iGEM is a tool which is used in the context of engine and vehicle test beds. These test beds
are used for early validations, e.g. of the engine while the rest of the vehicle is still simulated.
Important aspects especially for engines are emission tests, because vehicles have to adhere to
certain limits.

The AVL iGEM product line guarantees the correct implementation of the latest legislative code in
the emission automation for engine and vehicle testbeds selecting from a huge range of variants.
The modular structure of the application allows selecting a set of test applications in advance but
also an upgrade or extension later on. iGEM offers high scalability and also allows simple
adjustments for different testbed configurations to be made based upon individual user needs.

The GEM Engine product line covers Engine Emission Research & Development and Certification
testing for Heavy Duty On-Highway, all Off-Highway and certification-like the testing of Light Duty
and passenger car engines on dynamic engine testbeds.

Frequent changes in the worldwide rulemaking of emission legislation increase the need to keep
up to date with emission automation. New requirements like EPA 40 CFR Part 1065 and Off-
Highway regulations as well as Euro 5/6 are a challenge to modern emission testing. AVL iGEM
Engine and GEM301 EC guarantee a correct implementation of the latest legislative code in the
emission automation for engine test beds.

The product consists of a base module, which is the interface to the engine automation PUMA
Open. The application covers ECE, EPA, Japanese, Chinese, ISO and World Harmonized
emission regulations and legislation for certification as well as R&D purpose. The legislative tests
can be executed in raw/partial flow as well as diluted/full flow mode. iGEM Engine as well as
GEM301 EC supports the fuel types Diesel, Gasoline, Biodiesel, Methanol, Ethanol, Propane,
Butane, CNG and LPG for all applications. All tests from the above listed legislations are already
pre-parameterized for device & engine control, data storage and calculation & reporting according
to legislation.

The application is adaptable to the configuration of the test cell and requirements of the customer.
The modular structure of the application allows selecting a set of test applications in advance but
also an upgrade or extension later on. Customer specific applications and extensions to the
standard modules can be easily implemented.

AVL iGEM Vehicle provides ready-to-use application packages for passenger car, medium &
heavy duty truck and motorcycle.

iGEM Vehicle is used for certification, research & development, or for conformity of production
purposes. iGEM Vehicle offers the best solution for passenger car, medium and heavy duty truck,
and motorcycle emission automation. It also provides varied and personalized application
packages.

AVL iGEM Offline test data evaluation is an innovative solution for efficient data analysis of
exhaust emission tests according to legislative demands.

iGEM Offline includes a series of effective tools and offers the possibility for authorized users to
change or expand an existing record configuration. The Formula Editor helps to change calculation
variables and formulas and add them into the database. The configuration can be adapted to
comply with new legislation or modified technical conditions. Report templates can be created and
modified easily via drag and drop operations in the Report Layout Editor. Several different types of
reports can be created besides the typical standard reports such as online and modal reports;

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 12 of 30

specimen, equipment and consumable data record sheets; statistics COP and audit reports; testing
series reports and also combinations of different types of reports.

3.2 Improvements in CRYSTAL
Major tool improvements will be about an improved interoperability with other tools included in the
overall activities of testing a vehicle at different vehicle development phases. A special focus of
collaboration could be the interoperability with the brick Simulation Model Backbone Database
(B3.83), which will be developed in WP6.13.

3.2.1 Case Study coverage

According to CRYSTAL’s application document, the AVL iGem (Brick 3.50) is associated with
WP3.4 (UC3.4a). At the current stage of UC definition, iGEM is not yet explicitly included, but
could play a role at a later use case definition phase.

The use case scenario of UC3.4a defines several requirements that adhere to the WLTP emission
legislation specification. WLTP stands for World-wide harmonized Light-duty Test Procedure and is
currently available as a draft specification. Besides certain testing requirements it contains also
concrete standardized test-runs for emission testing. This specification could be transferred to a
corresponding iGEM configuration during the improvement of the UC specification.

More detailed information will be provided in the next deliverable version based on the enhanced
UC definition in WP3.4.

3.3 Integration within the IOS
The main objective of this task is to improve the interoperability with other tools by applying IOS
concepts in WP3.4. Since the role of AVL iGem is not yet defined in this work package, the
integration concepts for IOS will be presented in the next deliverable based in the enhanced UC
definition in WP3.4.

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 13 of 30

4 AVL TFMS Brick (Task 6.10.6)

4.1 Description

AVL TestFactory Management SuiteTM (TFMS) is a comprehensive system for the standardization and
automation of the core processes in the field of testing for the automotive domain. Test bed systems
provide a high degree on variability, because various units can be tested in various environments. The main
task of AVLS TFMS is the efficient management of all data related to test orders, test equipment, and units
under test.
AVL’s approach is to integrate and to interact with the test automation system and other existing business
systems such as project management systems, unit under test data bases and calibration data management
systems. Unused productivity potential of a test facility will be available.
While there is a trend towards increasing complexity of the processes and diversity of the systems in test
facilities, the test costs are to be reduced drastically. Simultaneously, the reliability, reproducibility and
quality of the process are to be improved. The AVL TestFactory Management Suite™ - TFMS supports the
users in achieving these seemingly contradictory objectives.
In order to support the seamless implementation of test processes, the system controls the work steps and
provides all data and documents that are relevant in the corresponding step. This way, the planning,
definition and implementation of test jobs as well as inventorying, maintenance, and calibration of test
equipment are managed and optimized with the help of the AVL TestFactory Management Suite™. The
existing system environment within the test facility is not replaced, but the TestFactory Management
Suite™ integrates and interacts with the existing systems, such as project management, unit under test and
calibration data management.
Thus, the AVL TestFactory Management Suite™ taps into the unused productivity potential of a test facility
through cross-networking and providing the corresponding information at the right time and place.

4.2 Improvements in CRYSTAL
The major objective of this task is to improve the interoperability with other tools by the application
of IOS concepts. A special focus of collaboration could be the interoperability with the brick
Simulation Model Backbone Database (B3.83), which will be developed in WP6.13.

4.2.1 Case Study coverage

According to CRYSTAL’s application document, the AVL TFMS (Brick 3.48) is associated with
WP3.4 (UC3.4a). At the current stage of UC definition, TFMS is not yet explicitly included, but
could play a role at a later use case definition phase.

A critical issue in WP3.4 is that during the overall process of developing a vehicle various testing
scenarios with different test bed configurations have to be set up. Managing all these different
variants and data re-use across development phases is one of the greatest challenges of this WP.
The explicit role of TFMS and variant management especially in term of interoperability challenges
has to be defined by WP3.4 by future enhancements.

More detailed information will be provided in the next deliverable version based on the enhanced
UC definition in WP3.4.

4.3 Integration within the IOS
The main objective of this task is to improve the interoperability with other tools by applying IOS
concepts in WP3.4. Since the role of AVL TFMS is not yet defined in this work package, the

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 14 of 30

integration concepts for IOS will be presented in the next deliverable based in the enhanced UC
definition in WP3.4.

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 15 of 30

5 AVL Creta/Cameo (Task 6.10.7)

5.1 Description

Name: AVL Creta/Cameo

Contact: Andrea.leitner@v2c2.at

Technical Information

Operation
System/platform

Windows

Version

Type of Input Data Calibration Set-up, Measurement Results, Initial Calibration Data, Test Cases

Type of Output
Data

Calibration Model, Calibration Data

Dependencies Testbed-Set up, UUT parameters, AVL Cruise/Boost brick, AVL Data Backbone

License

Additional
information

5.1.1 Tool/method description: what will you find in [name of brick]

As a central calibration data management system for xCU parameters, AVL CRETA™ allows the
central storage, conflict-free merging, and traceable documentation of calibration datasets and
variants during series calibration projects. Due to the high amount of calibration labels, more and
more vehicle variants, globally distributed team assignments and close collaboration with partners,
calibration data management becomes highly complex.

Today’s complex calibration projects including multiple xCU’s with more than 40.000
parameters/labels and this large number of calibration variants require standardized and easily
applicable processes to maintain a high level of quality. AVL CRETA™ ensures that every
development engineer follows your company standards.
Submitting calibrations, creating a report, checking the project status, getting information on
dataset history, or the comparison of calibration results are one click tasks. This saves a
substantial amount of time for engineers allowing them to focus on their real work instead of
sending and documenting files and datasets.

AVL CAMEO Powertrain Calibration Environment is a powerful tool that gives you one window
onto handling the complete calibration process. It performs the Modelling and optimization task
based on the measured engine responses. This means that AVL Cameo is a tool to optimize
calibration datasets and is therefore closely related to AVL CRETA.

We consider AVL CAMEO and AVL CRETA as one tool suite for calibration here.

5.2 Improvements in CRYSTAL
Major tool improvements will be about an improved interoperability with other tools included in the
overall activities of testing a vehicle at different vehicle development phases. A special focus of

mailto:Andrea.leitner@v2c2.at

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 16 of 30

collaboration could be the interoperability with the brick Simulation Model Backbone Database
(B3.83), which will be developed in WP6.13. In addition, improving the integration with simulation
tools and testbed environments will be another key focus.

5.2.1 Case Study coverage

Both tools, AVL Creta and AVL Cameo are strongly are strongly related to calibration processes in
various vehicle testing scenarios. The brick thus depend on the AVL use case of WP3.4.

In this WP the test case conceptualization for testing a vehicle is described. A general pattern of a

test environment is about UUT calibration as shown in Figure 5-1.

The test case conceptualization is divided by two set-ups (test modules): the calibration and the
test bed set-up. The test bed set-up configures the testing environment (with further sub-modules
such as needed measurement devices, UUT configurations, etc.), while the calibration set-up is
specialized on tuning selected parameters of the UUT in order to fulfil the given set of
requirements. The specification of theses set-ups with all there sub-modules finally leads to the
implementation and integration of the overall test set-up, which can be executed with a set of given
test-runs.

In many cases, the test modules test case execution and calibration are clearly separated: During
a test-run execution measurement results are associated to given test run input vectors. These
pairs of date are used in corresponding calibration tools to create a calibration model that
interpolates even not tested constellations and supports in speeding up the calibration process as
a whole.

If the test case execution is entirely done by simulation in early development cycles, simulation
results based on an initial simulation model parameter set can be used as an input for AVL Cameo.
Given some target values, AVL Cameo calculates an optimized driveline calibration based on a
calibration model. This calibration is evaluated by a simulation in the next iteration round.
Throughout several iterations the design can be adapted and optimized already in a virtual
environment. This process has also been described in detail in deliverable 603.011 Section 3.1.2
which describes the respective simulation tool AVL Cruise. A schematic overview of a possible
calibration set-up for calibration is shown in Figure 5-2. Tools such as Simulink and Cruise would
be adequate candidates for performing such simulations.

Figure 5-1: Test and calibration iteration pattern

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 17 of 30

This iterative calibration process results in a high number of different calibration variants. Even
more variants have to be handled if calibration data should be re-used over development cycles,
whereas the simulation models are more and more replaced by physical components. Even more
calibration variants come into play since each calibration cycle has to be started with an initial
calibration data set, which is related to previous projects based on similar requirements. AVL
CRETA is able to store and manage all these variants.

The related use case in WP3.4 has a strong focus on calibration tasks and calibration data re-use
across vehicle development and test phases. Figure 5-3 illustrates for instance the migration from
a calibration iteration based entirely on simulation to a test phase, whereas the simulated engine
model is replaced by a physical instance of the related engine. This physical engine is then
integrated in a testbed environment, with its own configuration tools.

Figure 5-2: Tool-set up for a calibration iteration based on simulation

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 18 of 30

5.3 Integration within the IOS
According to the previous section, existing standards and related IOS challenges have to be
evaluated and improved during the project. For instance, there is an ASAM standard for calibration
data called ASAM MCD-2 MC.

A possible approach that deals with the linked-data concepts of OSLC and with existing ASAM
standards is shown in Figure 5-4: A calibration tool (i.e. AVL Creta and/or Cameo in our case) is
storing its data (e.g. calibration variants) in a proprietary format, but is also capable of exporting
some aspects of this data to different standardized formats (such as ASAM MCD-2 MC for
calibration data and ASAM ODS for measurement results). The exported data may be stored in a
central data base such as the AVL data backbone concept (e.g. using AVL Santorin). OSLC
adaptors on top of all involved tools and data providers, however, allow direct access to top level
elements of the data artefacts applied in the engineering method about test and calibration
iteration. These top level elements are elements of a high level OSLC resource model that
complies with artefacts presented by this engineering method. A uniform workbench (such as the
AVL Navigator tool) can then be used to navigate on a concrete instance of this OSLC model.
Consequently, if the activities (of which the current engineering method is comprised) are
embedded in this workbench properly, the usage of this tool would ensure that links are set
properly and enables corresponding data navigation and reuse in related projects or later testing
phases.

Figure 5-3: Calibration data migration from one testing phase to another

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 19 of 30

Another main aspect for the optimization of calibration datasets is the continuous data exchange
with simulation tools via such a data backbone approach. In order to provide consistent data
throughout the development process, concepts for such data backbone will be developed as a
separate brick in WP6.13. This task is closely related to this work package, because the
interoperability of AVL CRETA and AVL Cameo with this data backbone has to be ensured. Figure
5-5 gives a rough over view about the general idea of such a data backbone in terms of the
belonging AVL UC3.4.

Figure 5-4: OSLC linked-data approach for calibration data management

Figure 5-5: general idea of such a data backbone in terms of the belonging AVL UC3.4

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 20 of 30

The AVL Data Backbone acts as some kind of single-source-of-truth for all tools (including AVL
Creta/Cameo) and data categories (including calibration variants) applied in all testing phases
represented by different testing V-models (and thus different tools). With this concept, consistency
among the development processes should be enabled and effective frontloading of development
tasks become possible.

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 21 of 30

6 DSL Brick (Task 6.10.8)

This brick provides capabilities to design “Domain Specific Languages” and automatically generate

code and other artifacts from such models.

6.1 Description

Name: DSL Brick

Contact: konstantin.keutner@siemens.com

Technical Information

The brick is based on the mature, well-known Xtext technology. This technology chain is based on EMF
(Eclipse Modelling framework), which is part of the Eclipse ecosystem.

Alternatives which extend the state of the art are being considered as well, including Gtext which is based on
GLL (Generalized LL parsing). This gives more concise syntax definitions, closer to semantics.

Operation
System/platform

Portable, based on the Java technology.

Version Xtext/Xtend 2.4.3

Type of Input Data Domain specific models.

These represent specific information for the particular domain, and can be freely
defined.

Integrations to other models can be achieved with model-to-model transformations.

Type of Output
Data

Very flexible output formats are possible:

Text-based structured output (such as source code)

XML

Custom connectors to other data sinks.

Dependencies Eclipse 3.5 (Kepler)

License Eclipse Public License

Additional
information

Domain Specific Languages help to raise the level of abstraction, thus getting closer to
requirements than to code. In the area of software development, they can improve the efficiency of
code development for the variability hotspots of a domain. The development and use of DSLs and
generators for the implementation of safety-critical systems poses particular challenges with regard
to selection and usage of tooling in order to develop safety-certifiable high-integrity code.

This brick will provide a domain-specific language tool suite comprising existing open source
tooling, additionally developed components, and guidelines specifically tailored towards safety-
critical embedded systems development. This will facilitate the efficient development of domain
specific languages and code generators in the different use cases, with a particular focus on
safety-critical code generation and the safety certification process.

6.1.1 Tool/method description: what will you find in the DSL brick

mailto:konstantin.keutner@siemens.com

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 22 of 30

Xtext is an open-source framework for developing programming languages and domain-specific
languages (DSLs). Unlike standard parser generators, Xtext not only generates a parser, but also
a class model for the Abstract Syntax Tree and a fully featured, customizable Eclipse-based IDE.
To specify a language, a user has to write a grammar in Xtext’s grammar language. This grammar
describes how an Ecore model is derived from a textual notation. From that definition, a code
generator derives an ANTLR parser and the classes for the object model. Both can be used
independent of Eclipse.

Into the bargain, Eclipse-based IDE integration is generated. That IDE offers e.g.: Syntax coloring,
Code completion, a restricted form of static analysis, Outline view, Source-code navigation,
Indexing, Compare view, Hovers, Code folding and Rename refactoring.

Xtext languages and the IDE are highly configurable, as the language infrastructure and the IDE
are wired up using dependency injection and Guice. The default components can be easily
replaced by binding customized ones instead.

Since version 2.0, Xtext facilitates the development of domain-specific languages for the Java
Virtual Machine, referring to and compiling to Java artifacts with tight integration into Eclipse’s Java
Development Toolkit. A reusable expression languages library enables rich modelling right within
the DSL.

A code generator written in Xtend can be easily hooked in for any language. For JVM languages, it
is enough to map the DSL concepts to Java artifacts to get holistic Java integration. An alternative
interpreter is also available.

6.1.1.1 Installing and using the DSL brick

Xtext can be downloaded and installed using either

 ‘Full Eclipse’ installation – a pre-configured Eclipse distribution can be downloaded which

has already all the necessary plug-ins installed.

 ‘Update Sites’ installation – if you have an Eclipse installation running, you can use the

Eclipse update site mechanism to additionally install the Xtext plug-ins.

Both mechanisms are described in detail on the Xtext website
http://www.eclipse.org/Xtext/download.html. Follow the instructions in the relevant section.

6.2 Improvements in CRYSTAL

In collaboration with Philips HealthCare, a DSL using the Eclipse Modeling Framework (EMF) has

been defined, and in particular Xtext. Based on the good experiences, in the CRYSTAL project we

are planning to develop more DSLs using these technologies. After discussions with various

developers and managers from Philips HealthCare, we have identified a couple of open issues:

1. Modularity of DSLs, based on reusable fragments:

http://www.eclipse.org/Xtext/download.html

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 23 of 30

 Many DSLs share some fragments that deal with common concepts, it is desirable

to be able to reuse such fragments (meta-model, grammar, validation, etc.). For

example, a DSL fragment that can easily be used for all kinds of expression

languages, which differ mainly in terms of the non-terminals. Xbase seem to be a

proposal, but it looks too big to be used as input for code generation.

2. Modularity of DSL instances, based on import mechanisms:

 DSL instances describing industrial systems can become quite big, it is desirable to

decompose them using a kind of import mechanism. There are many styles of

import mechanisms (e.g., Java, C++) also depending on whether they work

recursively and whether they can deal with cycles (Xtext has two predefined

mechanisms). Adding such mechanisms to a DSL impacts grammar, scoping,

validation, code generation, etc. The limitations of such mechanisms will be studied

in order to have reusable techniques to build such mechanisms properly.

3. Integration of textual and graphical editing:

 In the context of EMF, GMF focuses only on graphical editing, and Xtext focuses

only on textual editing. It is desirable to edit parts of a DSL instance in a graphical

way and other parts in a textual way; some parts may even be edited in multiple

ways.

4. Scalability:

 DSL instances describing industrial systems can become quite big, It is desirable

that the DSL language infrastructure scales properly. This includes the performance

of parsing, scoping, outline tree, validation, etc. For example, there may be

implementation guidelines, caching approaches, or information about the

(in)efficiency of generic default implementations.

5. Debugging DSL instances:

 Generating code from a DSL is one thing, but what to do if the generated code

doesn’t work properly (in the context of some other code)? It is desirable to debug

the generated code at the abstraction level of the DSL. For example, there exists an

integration of Visual Studio with MetaEdit+, but not with EMF.

6. Definition of semantics

 The current generation of language workbenches, Xtext and Eclipse is one of them,

are very syntax oriented. There are very restricted facilities to define static

semantics; in fact only identification can be defined with Xtext in combination of

simple scoping rules. If more static semantic rules have to be defined, one has to do

this in Java. The definition of the dynamic semantics of a DSL is entirely lacking.

The dynamic semantics is mostly expressed in the translation of the DSL into some

general-purpose language.

Additional issues look at:

1. Integrated tooling, additional components and application guidelines for DSL and generator

development in safety-critical systems.

2. Analyze contributions/problems of DSL approach with certification:

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 24 of 30

 Failure modes of generative approach?

 Generation of certification artifacts possible?

 Comparison with other approaches (embedded)

6.2.1 Case Study coverage

Use case WP4.1 (Philips HealthCare) has identified Domain Specific Languages (DSLs) as a way

to define, represent, validate and transform models of system Modelling. It will be applied in the

iterative development of systems where patient safety is absolutely critical.

This use case is not about the development of a single DSL; it is likely that multiple DSLs will be

developed, emphasizing different aspects of the system. The following requirements are relevant in

this application:

1. Ability to quickly develop and modify a DSL (e.g., guidelines, semantic building blocks);

2. Ability to debug DSL instances (in particular in the presence of code generators);

3. Ability to visualize parts of textual DSL instances;

4. Scalability of the Xtext technology to industrially-sized DSL instances.

In addition, an indirect contribution to WP4.1 from the DSL Brick is made via task 6.3.6 on

improving the POOSL tools. The improved POOSL tools will be based on Xtext technology, and

hence POOSL should be considered as a (rather complex) Domain Specific Language (DSL). The

following requirements are relevant in this application:

1. Ability to split large POOSL models into smaller files (such as libraries);

2. Ability to edit certain parts of POOSL models in a textual way and others in a graphical way;

3. Scalability of the Xtext technology to industrially-sized POOSL models.

6.3 Integration within the IOS

Need to develop a vision of possible interfaces (inputs and outputs).

Integration activities:

 Integrate existing DSL and generator tooling (Eclipse, EMF, Xtext, Xtend, and others) and

provide it to the use cases. Other model transformation languages for EMF such as Epsilon

could be candidates as well.

 Alignment with Task 6.10.2 System Family Engineering to tailor existing tooling and its

usage to safety and certification process demands and avoiding pitfalls.

Relate (elements in) input models and output artifacts to a requirements tool (or a higher-level
design model).

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 25 of 30

7 AUGE Brick (Task 6.10.9)

7.1 Description

Name: AUGE

Contact: carlos.zubieta@orbital-aerospace.com

Technical Information: This brick will be a standalone Software application with graphical HMI allowing the
user to browse a set of Requirements stored in an IOS-compatible Requirements Management Server (i.e.
DOORS) and generate automatic tests in generic IOS test language.

Operation
System/platform

Linux

Version 1.0

Type of Input Data IOS Formal Requirements, IOS Requirement Changes

Type of Output
Data

IOS Test syntax

Dependencies N/A

License Terms and conditions agreed in CRYSTAL APCA

Additional
information

N/A

7.1.1 Tool/method description: what will you find in AUGE

Currently, software engineering processes in sectors such as Space and Avionics are facing
important variability challenges when integrating Requirements Management Systems (i.e.
DOORS) data modules to Verification & Validation artifacts to perform required testing and
traceability.

Typically, a high-level requirements module must be traced to a related low-level module, and from
this one, an additional module refined with convenient test data and syntax is produced and
exported to a third-party format (i.e. Microsoft Excel). This set of data is somehow parsed and
imported into an Automatic Testing Tool (i.e. TestStand) in order to proceed with V&V. Thus, the
whole process involves heavy data processing which provides no added-value and increases
significantly costs and time.

AUGE is SW standalone application that will reduce such costs in Verification & Validation
campaigns by achieving automatically test generation from requirements. The tool shall be an
independent entity totally driven by IOS-compatible data interfaces and formats, enabling the
integration of any kind of Requirements Management Systems and Automatic Testing Tools
(provided that these bricks are IOS-enhanced, via plugins, adapters or internal modifications).

AUGE shall focus in Space software development use case, providing specific integration with
ESA ECSS-E-40 standard. This way, generated test shall be aligned with space certification
criteria and could be provided as relevant evidences in ESA software certification process with
minimum effort.

mailto:carlos.zubieta@orbital-aerospace.com

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 26 of 30

7.1.1.1 Installing / Using method AUGE

AUGE shall be a GNU/Linux native application, distributed as a standard Linux package such as
.rpm or .deb file. The package will include all software dependencies (if any) to ease installation
process to final user.

In order to use AUGE, a predefined configuration file shall be set by user with all relevant IOS
settings such as:

 Requirements Management Server(s) URI(s).

 User credentials (password, profile).

The user shall be able to select a predefined server and browse permitted Requirements modules
according to his profile. Once a requirement is selected, the user shall either:

 Preview the Requirement. A new dialog window shall display some requirement data, as
defined in OSLC “Linking Data via HTML User Interface” specification.

 Generate Test. The Requirement data shell be processed by the application. If the data
syntax is correct the requirement will be considered mature and an output text file shall be
generated containing an automatic test. Otherwise, the requirement shall be considered not
mature and an error message shall be displayed.

7.1.1.2 TEST AUGE installation / Example of usage of the Method

The installation is straightforward provided that a standard Linux package will be distributed.

Example:

For Debian Linux environments, a .deb file shall be packaged. To install, execute the following
command:

 sudo dpkg –i auge.deb

To run the application, execute the following command:

 auge

7.2 Improvements in CRYSTAL

7.2.1 Case Study coverage

AUGE is aligned with Use Case 2.5 in Space domain, leaded by Thales-Alenia Space España.

This use case focus on integration of Space hardware with embedded software provided by

external manufacturer.

AUGE tool will enable system integrator to get seamless ISVV (Independent Software Verification

and Validation) by leveraging variability challenges aroused from incompatibilities in partners

applications and data formats.

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 27 of 30

TASE inputs shall be required in the future to obtain automatic tests aligned with ESA-ECSS-E40

standard.

7.3 Integration within the IOS
AUGE shall be designed to totally integrate with IOS. Moreover, all inputs and outputs shall be

IOS-related so no linkage to specific commercial tools will be required. The following IOS

workgroups have been identified to cover AUGE integration requirements:

 Formal Requirements Management

 Change Management

 Documentation Generation

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 28 of 30

8 Terms, Abbreviations and Definitions

8.1 CRYSTAL-specific managerial abbreviations:

CO Confidential, only for members of the consortium (including the JU).

CRYSTAL CRitical SYSTem Engineering AcceLeration

D Demonstrator

O Other

P Prototype

PP Restricted to other program participants (including the JU).

PU Public

R Report

RE Restricted to a group specified by the consortium (including the JU).

SP Subproject

WP Work Package

Table 8-1: CRYSTAL-specific managerial abbreviations

8.2 ACRONYMS, used in this deliverable:

ASAM Association for Standardisation of Automation and Measuring Systems

CNG Compressed Natural Gas

DSL Domain Specific Language

EMF Eclipse Modelling framework

ESA European Space Agency

GMF Graphical Modeling Framework

GLL Generalized LL parsing

HMI Human Machine Interface

HTML Hypertext Mark-up Language

IDE Integrated Development Environment

IOS Interoperability Specification

ISVV Independent Software Verification and Validation

JVM Java Virtual Machine

LPG Liquid Propane Gas

MC Measurement & calibration

MCD Measurement, Calibration, Diagnostics

ODS Open Data Services

PDF Portable Document Format

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 29 of 30

POOSL Parallel Object-Oriented Specification Language

TFMS TestFactory Management SuiteTM

URI Uniform Resource Identifier

V&V Verification and Validation

WLTP World-wide harmonized Light-duty Test Procedure

Table 8-2: Terms, abbreviations and definitions

D610.011

Version Nature Date Page

V1.0 R 2014-02-28 30 of 30

9 References

Tool URL Related Bricks

Eclipse www.eclipse.org T6.10.3, T6.10.8

Guice https://code.google.com/p/google-
guice/

T6.10.8

Xtext www.eclipse.org/xtext T6.10.8

EMF https://www.eclipse.org/modeling/emf/ T6.10.8

Xtend https://www.eclipse.org/xtend/ T6.10.8

GMF http://www.eclipse.org/modeling/gmp/ T6.10.8

Table 9-1: Tools related to the Bricks

http://www.eclipse.org/xtext
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/xtend/
http://www.eclipse.org/modeling/gmp/

