
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE CRYSTAL CONSORTIUM. NEITHER THIS
DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED BY ANY
MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE CESAR
CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE
RESEARCH LEADING TO THESE RESULTS HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S SEVENTH
FRAMEWORK PROGRAM (FP7/2007-2013) FOR CRYSTAL – CRITICAL SYSTEM ENGINEERING ACCELERATION JOINT
UNDERTAKING UNDER GRANT AGREEMENT N° 332830 AND FROM SPECIFIC NATIONAL PROGRAMS AND / OR FUNDING
AUTHORITIES.

CRitical SYSTem Engineering AcceLeration

System Family Engineering Framework – V1
D610.031

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 2 of 39

DOCUMENT INFORMATION

Project CRYSTAL

Grant Agreement No. ARTEMIS-2012-1-332830

Deliverable Title System Family Engineering Framework – V1

Deliverable No. D610.031

Dissemination Level CO

Nature R

Document Version V1.0

Date 2014-01-30

Contact Adeline Silva Schäfer

Organization Fraunhofer IESE

Phone +49-631-6800-2216

E-Mail adeline.schaefer@iese.fraunhofer.de

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 3 of 39

AUTHORS TABLE

Name Company E-Mail

Adeline Silva Schäfer Fraunhofer IESE adeline.schaefer@iese.fraunhofer.de

Martin Becker Fraunhofer IESE martin.becker@iese.fraunhofer.de

Tiago Amorim Fraunhofer IESE Tiago.amorim@iese.fraunhofer.de

Peter Graubmann Siemens AG peter.graubmann@siemens.com

Anjelika Votintseva Siemens AG anjelika.votintseva@siemens.com

Andrea Leitner VIF Andrea.leitner@v2c2.at

Jason Mansell Tecnalia Jason.Mansell@tecnalia.com

Ralf Bogusch Cassidian ralf.bogusch@cassidian.com

Christian Reuter Daimler christian.c.reuter@daimler.com

CHANGE HISTORY

Version Date Reason for Change
Pages

Affected

0.01 05.12.2013 Initial structure ALL

0.02 10.12.2012 Review of initial structure ALL

0.03 16.12.2013 UC needs – use case 3.4b 8-12; 15

0.04 20.12.2013 Safety

0.05 02.01.2014 Added Section on ISO 26550 Standard

0.06 08.01.2014 Added section on Varies and PLUM

0.07 10.01.2014 Removed section on PLUM – it didn’t fit the main section

0.08 13.01.2014 Added UC 2.3; Removed some safety sections

0.09 16.01.2014 Added overview of SFEF, removed “template section”

0.10 17.01.2014 Overall improvements ALL

0.11 22.01.2014
Addressed some reviewer’s comments & added content to
section 3.1.2

ALL

0.12 23.01.2014
Changed sections 2.3,3.1 and 3.3 and minor adjustments in
the whole document

ALL

0.13 23.01.2014 Changed section 3.2 35

1.0 29.01.2014
Addressed Reviewer’s comments and minor changes to
section 2.3

ALL

mailto:adeline.schaefer@iese.fraunhofer.de
mailto:martin.becker@iese.fraunhofer.de
mailto:Tiago.amorim@iese.fraunhofer.de
mailto:peter.graubmann@siemens.com
mailto:anjelika.votintseva@siemens.com
mailto:Andrea.leitner@v2c2.at
mailto:Jason.Mansell@tecnalia.com
mailto:ralf.bogusch@cassidian.com

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 4 of 39

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 5 of 39

CONTENT

D610.031 .. I

1 INTRODUCTION .. 7

1.1 ROLE OF DELIVERABLE ... 7
1.2 RELATIONSHIP TO OTHER CRYSTAL DOCUMENTS .. 7
1.3 STRUCTURE OF THIS DOCUMENT ... 7

2 STATE OF THE ART IN SYSTEM FAMILY ENGINEERING ... 8

2.1 PRODUCT LINE ENGINEERING .. 8
2.1.1 International Standard ISO/IEC 26550:201 J(E) .. 8
2.1.2 SEI Framework for Software Product Line Practice .. 9
2.1.3 Fraunhofer PuLSE ... 11
2.1.4 BigLever 2

nd
 Generation PLE Approach ... 12

2.2 VARIABILITY MANAGEMENT RELATED PROJECTS .. 14
2.2.1 VARIES Project .. 14

2.3 VARIABILITY MANAGEMENT OF HIGH INTEGRITY SYSTEMS ... 16
2.3.1 Safety Requirements for PLE ... 17
2.3.2 A Holistic Approach to the Engineering of Safety-critical Product Lines .. 20

3 APPLICATION IN CRYSTAL .. 27

3.1 REQUIREMENTS FROM THE USE CASES .. 27
3.1.1 UC 2.3 – Mission Support Equipment (Cassidian) .. 27
3.1.2 UC 3.2 – Autonomous Driving in Specific Environment (Daimler) .. 30
3.1.3 UC 3.4 – AVLab (AVL) .. 32

3.2 WHAT WILL BE IMPLEMENTED/PROVIDED IN THE CRYSTAL PROJECT ... 35
3.3 HOW WILL THIS BRICK BE INTEGRATED IN THE USE CASES ... 36

4 TERMS, ABBREVIATIONS AND DEFINITIONS ... 38

4.1 CRYSTAL-SPECIFIC MANAGERIAL ABBREVIATIONS: ... 38
4.2 ACRONYMS, USED IN THIS DELIVERABLE: ... 38

5 REFERENCES ... 39

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 6 of 39

Content of Figures

Figure 2-1: Reference model for SSPL engineering and management ... 9
Figure 2-2: The Three Essential Activities for Software Product Lines .. 10
Figure 2-3: PuLSE Components Overview ... 11
Figure 2-4: 3-Tiered Methodology .. 14
Figure 2-5: Safety management process for high integrity systems .. 16
Figure 2-6: The activities in the safety assessment process .. 18
Figure 2-7: The activities in the safety assurance process .. 19
Figure 2-8: Two basic "best practices" ... 20
Figure 2-9: Product Line Safety Assessment and its relation to the product line assets 22
Figure 2-10: Product Line Safety Assessment Process (Overview with regard to Domain Engineering) 23
Figure 2-11: Safety assurance ... 24
Figure 2-12: The core relations in a safety case .. 25
Figure 3-1: Degraded Visual Environments.. 28
Figure 3-2: Display of the Landing Symbology ... 29
Figure 3-3: User Stories of UC2.3 .. 29
Figure 3-4: User Story Variability Management ... 30
Figure 3-5: Engineering Methods assigned to different Steps in the V-Model ... 31
Figure 3-6: Integrated variability management approach ... 32
Figure 3-7: Current tool landscape ... 33
Figure 3-8: Planned extension of the current development environment ... 34
Figure 3-9: SFEF components ... 36
Figure 3-10: SFEF Instantiation .. 37

Content of Tables

Table 3-1: Requirements from Use Cases ... 35
Table 4-1: CRYSTAL-specific managerial abbreviations ... 38
Table 4-2: Acronyms ... 38

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 7 of 39

1 Introduction

1.1 Role of deliverable
This deliverable describes the System Family Engineering Framework (SFEF) brick. SFEF

provides a customizable method, respective techniques, guidelines and best practices to engineer

families of high-integrity (including safety critical) systems, which can be followed in different

application domains. Specific features of the framework comprise the planning (esp. scoping) and

specification of high integrity families, modularization approaches, and orthogonal variability

management across several system levels.

1.2 Relationship to other CRYSTAL Documents

This document is the first in a series of three reports:

 D610.031 – System Family Engineering Framework V1 (this document)

 D610.032– System Family Engineering Framework V2 – with the description of the SFEF

 D610.033 – System Family Engineering Framework V3 – with the assessment of SFEF
usage by the demonstrators

This document contains information provided in the following deliverables:

 D610.011 – Crystal Variability Management – V1

 D203.011 – MSE Report – V1 – Use Case 2.3

 D304.011 – Milestone Report – V1 – Use Case 3.4

1.3 Structure of this document

The deliverable is structured in two main sections: Section 2 presents an overview of existing
variability management frameworks and methods and an overview of existing approaches for
safety engineering for product lines. Section 3 presents the use cases and their requirements
coverage for the SFEF brick.

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 8 of 39

2 State Of The Art in System Family Engineering
This section provides an overview of the state of the art with regard to engineering methods,

techniques and tools of system families.

This section is structured as follows: Section 2.1 presents an overview of existing product line

engineering frameworks, section 2.2 provides an overview of variant management related projects,

and in section 2.3 we outline and discuss a possible approach for integrating product line and

safety engineering.

2.1 Product Line Engineering
In this section, we provide an overview of the most prominent product line approaches. These
approaches have been successfully applied in software product lines, however, when it comes to
software intensive systems, new aspects have to be considered, which requires additional steps in
the development lifecycle, not covered by the existing approach. In particular, for high integrity
systems, safety aspects need to be considered in nearly every stage of the development lifecycle.

2.1.1 International Standard ISO/IEC 26550:201 J(E)

The international standard ISO/IEC 26550:201 J(E) is the entry point of the whole suite of
international standards for software and systems product line engineering and management. It
aims to define terms specific to Software and Systems Product Line (SSPL) engineering and
management, establish a reference model for the overall structure and processes SSPL, and
describe how the components of the reference model fit together, along with interrelationships
amongst them. This standard does not describe any methods and tools associated with SSPL. The
consecutive standards (ISO/IEC 26551 through 26556) will concentrate on them. This standard,
was produced stating from References [Pohl, 05], [Northrop, 00] and [Kakbla, 06] and structures
from ISO/IEC 12207:2008, ISO/IEC 15288:2008, ISO/IEC 15940:2006 and ISO/IEC 14102:2008.

SSPL engineering and management creates, exploits, and manages a common platform to
develop a product line (e.g., software products, systems architectures) at lower cost, reduced
time to market, and better quality. It provides a reference model abstracting the key processes of
SPPL engineering and management and the relationships between the processes. It can be used
in subsequent standardization efforts to create different levels of abstraction standards.

The reference model consists of domain engineering and application engineering life cycles and
organizational management and technical management process groups (Figure 2-1:). The domain
and application engineering life cycles need to be synchronized and applicable to different life
cycle models, as needed to meet different quality criteria and to achieve different organizational
objectives.

Domain engineering identifies the key commonality and variability, establishes a product line
platform implementing this commonality and variability, and manages the platform throughout the
life cycle of the product line. It is assisted by product line scoping, Domain requirements
engineering and domain design.

Application engineering develops application assets and individual systems on top of the platform.
Ideally, much or even most of the product line engineering effort and complexity have been
allocated to domain engineering, reducing application complexity and shortening application
development times. Application engineering involves customers and thus needs to deal with

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 9 of 39

evolving market needs. It is supported by application requirements engineering, application design,
application realization, and application verification and validation.

Figure 2-1: Reference model for SSPL engineering and management

Organizational management processes orchestrate the product line organization. Ongoing
preparation, planning, execution, and improvement efforts needed for the introduction and
institutionalization of the product line strategy is provided by these management processes. It is
assisted by organizational level product line planning and organizational product line enabling
management.

Technical management processes manage the creation and evolution of product line processes,
domain assets, and products. It consists of process management, variability management, asset
management, and support management.

Organizational and technical management process groups are necessary to help organizations
to establish and improve capabilities for nurturing their product lines from conception to
retirement and for establishing and managing relationships with customers, providers and other key
stakeholders.

2.1.2 SEI Framework for Software Product Line Practice

The Framework for Software Product Line Practice (FSLP), version 5.0 [Northrop, 00], published
by the Software Engineering Institute (SEI), describes the 3 essential activities and 29 practice
areas necessary for creating and managing a software product line. The three essential activities
are depicted in Figure 2-2. Each rotating circle represents one of the essential activities. All three
are linked together and in continuous motion, showing that they are all essential, linked, iterative,
and can occur in any order. The rotating arrows indicate not only that core assets are used to
develop products, but also that revisions of existing core assets or even new core assets evolve
out of the product development.

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 10 of 39

Figure 2-2: The Three Essential Activities for Software Product Lines

There is a strong feedback loop between the core assets and the products. Core assets are
refreshed as new products are developed. There is a constant need for strong, visionary
management to invest resources in the development and sustainment of the core assets.

Core Asset Development
The goal of the core asset development activity is to establish a production capability for products.
The inputs of this activity are: Product constraints, production constraints, production strategy and
inventory of preexisting assets. The outputs of the core asset development activity are required for
a production capability to develop products:

 Product Line Scope: A description of the products that will constitute the product line or
that the product line is capable of including.

 Core Asset Base: Includes all the core assets, which are the basis for the production of
products in the product line. Each core asset should have an associated attached process
that specifies how it will be used in the development of actual products

 Production Plan: A production plan prescribes how the products are produced from the
core.

Product Development
The product development activity depends on the outputs of core asset development plus the
requirements for each individual product. The creation of products may have a strong feedback
effect on the product line scope, the core assets, the production plan, and even the requirements
for specific products.

Management
Management is divided between technical and organizational levels and must be strongly
committed to the software product line effort. Organizational management identifies production
constraints and ultimately determines the production strategy.

Practice areas
Product line practice areas describe what an organization must do to perform those three
previously described broad essential activities. The practice areas are loosely divided in three
categories:

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 11 of 39

 Software engineering practice areas are those necessary for applying the appropriate
technology to create and evolve both core assets and products. They are carried out in the
core asset development and product development.

 Technical management practice areas are those necessary for managing the creation
and evolution of the core assets and the products.

 Organizational management practice areas are those necessary for orchestrating the
entire software product line effort.

2.1.3 Fraunhofer PuLSE

Fraunhofer PuLSE (Product Line Software Engineering) [Bayer et al., 00], [Muthig et al., 04] is
a method for enabling the conception and deployment of software product lines within a large
variety of enterprise contexts developed at Fraunhofer IESE. This is achieved via a product centric
focus throughout its phases, customizability of its components, an incremental introduction
capability, a maturity scale for structured evolution, and adaptations to a few main product
development situations.

This approach focuses on a set of concrete products, not on a theoretically defined domain.
These products can be current ones, planned ones, and anticipated ones that are likely to be
needed in the future or that would be of strategic value for the enterprise.

Figure 2-3: PuLSE Components Overview

PuLSE provides a complete framework that covers the whole software product line
development life cycle, including infrastructure construction, usage, and evolution. It is centered on
three main elements: The deployment phases, the technical components, and the support
components:

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 12 of 39

 Deployment Phases: Logical stages of the product line life cycle. They describe activities
performed to set up, use, and evolve product lines. The four phases are:

o Initialization: An instance of PuLSE is produced, which is tailored to the enterprise
context in which it will be applied.

o Product Line Infrastructure Construction: To scope, model, and architect the product
line infrastructure.

o Product Line Infrastructure Usage: Aims at specifying, instantiating, and validating
single product line members. This phase also contains the implementation of
product line and instance specific assets in case they are not available.

o Product Line Infrastructure Evolution: Manage the evolution of the product line
infrastructure over time.

 Technical Components: Provide the technical know-how needed to operationalize the
product line development. They are used throughout the deployment phases. A different
facet of each component is often used in more than one of the phases – though some
components directly correspond to phases. Technical components are the following:

o PuLSE-Customizing (BC) is used to baseline the enterprise and to customize
PuLSE accordingly.

o PuLSE-Scoping (Eco) aims at identifying, describing, and bounding a product line by
determining its members and their characteristics.

o PuLSE-Modelling (CDA) is used to elicit the requirements for the domain through
creating a product line model.

o PuLSE-Architecting (DSSA) is concerned with the development of a reference
architecture

o PuLSE-Instantiating (I) aims at specifying, constructing, and validating single
members of the product line.

o PuLSE-Evolving & Management (EM) guides and supports the application of PuLSE
throughout the product line life cycle. Since there are strong connections to the
evolution and product line management, configuration management is described as
part of this component.

 Support Components: Packages of information, or guidelines that enable a better
adaptation, deployment, and evolution of PuLSE. They are used by the technical
components. Currently there are the following support components:

o Project Entry Points: Provides customizations of PuLSE to major project categories
o Organization Issues: Provides guidelines to set up and maintain the right

organizational structure for developing and managing product lines
o Maturity Scale: Provides a scale for evaluating the quality of PuLSE process

applications in an enterprise

2.1.4 BigLever 2nd Generation PLE Approach

The first generation of software product line methods emphasized a clear separation between the
domain engineering and the application engineering. The first is producing assets for reuse and the
latter is developing with reuse. The second generation approach advocates that this dichotomy
between domain and application engineering creates problems continuously, as the product line
needs to evolve. The changes in the product specific assets lead to an overhead in management
effort, especially regarding the configuration management. Instead of having two separated
processes, 2nd generation PL are based on so-called software mass customization.

Taking into account this paradigm, BigLever Software created the PLE Lifecycle Framework and
3-Tiered PLE Methodology. This industry standard PLE framework and pragmatic methodology
provide 2nd Generation PLE (2GPL) capabilities needed to shift from product centric approaches to
create an automated, optimally efficient means of production for systems and software product

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 13 of 39

lines [Krueger,14]. This PLE solution allows organizations to make a systematic and incremental
transition to an operational PLE production line. By focusing both business and engineering teams
on the operation of the production line, the organization can plan, develop, deploy and evolve the
product line portfolio, from business case and analysis, to requirements, design, implementation,
testing, delivery, maintenance and evolution.

PLE Lifecycle Framework

The PLE Lifecycle Framework provides a set of common PLE concepts and constructs that
augment tools, assets and processes across the entire lifecycle:

 A feature model that expresses the feature diversity among the products in your product
line.

 A uniform variation point mechanism to manage feature based variations in all stages of
the engineering lifecycle.

 A product configurator to automatically assemble and configure assets and their variation
points to produce all of the assets and products in product line.

A key capability of the PLE Lifecycle Framework is the integration of PLE concepts into tools,
assets and processes across the systems and software development lifecycle.

3-Tiered PLE Methodology

The 3-Tiered Methodology is a practical tiered approach that allows a non-disruptive transition and
successfully operating a PLE production line. Each tier builds upon and is enabled by the previous
tier:

 Base Tier (1): Feature-based Variation Management and Automated Production
Tools, integrations and infrastructure for engineering product line features, product feature
profiles, product line hierarchy, feature based variation points in assets, and automated
feature based configuration of product line assets into products and deliverables.

 Middle Tier (2): Feature based Asset Engineering
Processes and organizational structures for engineering the full lifecycle of product line
assets – from requirements to architecture, design, implementation and test – on multiple
delivery streams in a production line.

 Top Tier (3): Feature based Portfolio Management
Business wide management of a product line portfolio by the features offered and the
profile of features allocated to each product.

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 14 of 39

Figure 2-4: 3-Tiered Methodology

2.2 Variability Management Related Projects

2.2.1 VARIES Project

VARIES 1is an industry driven research project in the ARTEMIS program on the topic of variability
in safety critical embedded systems. Embedded Systems (ES) are rarely entirely conceived from
scratch. Companies developing ES constantly face decisions about whether to use and adapt
existing products or product assets or whether to develop new assets. Determining the long term
risk and benefits of such decisions is very challenging. VARIES addresses the following question:
How can the benefits offered by introducing variability into ES outweigh the increased product
complexity caused by variability. Its objectives are

 to enable companies to make informed decisions on variability use in safety critical ES;

 to provide effective variability architectures and approaches for safety critical ES; and

 to offer consistent, integrated and continuous variability management over the entire
product life cycle.

In addition, VARIES will create a Center of Innovation Excellence (CoIE) for managing variability
in ES. VARIES started in May 2012 with duration of 3 years, and involves 23 partners from 7
countries, with the following objectives:

Objective 1: Enable companies to make an informed decision on variability use in safety
critical ES

The VARIES project will enable a company to make variability decisions in their ES based on hard,
tangible evidence instead of subjective “good feeling”, and will allow the same companies to
assess the impact of their variability decisions across the entire product life cycle. Moreover,
VARIES will allow companies to better define the product variants that are of most value to the
market segments they serve.

1
 http://www.varies.eu/

http://www.varies.eu/

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 15 of 39

Serving different market segments may introduce constraints on the product variants, e.g. safety
regulations in automotive sub sectors. The VARIES project will provide companies support to
better assess these boundary conditions and their impact on product variability

Objective 2: Providing effective variability architectures and approaches for safety critical
embedded systems

Managing variability aspects of safety critical ES without negatively impacting the safety aspects is
a huge challenge today. Managing the safety characteristics of an embedded system at (reusable)
component level will introduce yet another level of complexity that will have to be properly
managed.

By definition, safety is a property pertaining to the entire system; determining the system level and
its justification based on the specific characteristics of the individual elements composing the
system is far from straightforward today. Providing assurance concerning the adequate
management of hazards and risks is a regulatory requirement and a prerequisite for the
deployment of a safety critical system. A safety case, through its arguments and evidence, which
provides this justification of the system, is acceptably safe to operate within its intended
environment. From the perspective of a product line, the safety case should be systematically
developed and maintained, ensuring the management of the impact of variation on safety
assurance supported by the traceability between the product line artifacts and the safety case
concepts.

VARIES will provide an integration of safety assessment into the product line processes, and
concrete guidance with regard to reference architectures and approaches to realize variability
without compromising the safety characteristics of the ES.

Special attention will be given to the composition of reliable and unreliable components and on the
impact on safety of this composition. Moreover, VARIES will also enable a company to trade off
safety and variability, i.e., determining the optimal balance between both aspects.

Objective 3: Consistent, integrated and continuous variability management over the entire
product life cycle

VARIES will enable consistent, continuous and integrated variability management over the whole
product life cycle for a single company as well as between collaborating companies. Special
attention will be given to the multidisciplinary aspects in complex embedded systems engineering,
including safety and certification aspects.

The main results of VARIES will be:

 Innovative embedded systems (ES) shall help to develop a reference framework for lean
innovation, where the framework is made of new models, tools, and design methods.

 The VARIES Platform delivers a complete, cross-domain, multi-concern, state-of-the-art
reference platform for managing variability in safety critical ES. Special attention will be
given to aspects specific to safety critical ES, in particular the impact of reuse and
composition on certification. In this platform different tools can be instantiated and chained
to support the process flow of development for embedded systems product variants, over
the whole product lifecycle, tailored to the specific context to a given company.

 A Center of Innovation Excellence on the topic of how to come to an optimized product
variability that can be used for a variability of markets will be established.

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 16 of 39

2.3 Variability Management of High Integrity Systems

There are two ways of constructing a software design. One way is to make
it so simple that there are obviously no deficiencies. And the other way is to
make it so complicated that there are no obvious deficiencies.

— C.A.R. Hoare (cited after [Bowen et al. 99])

High Integrity Systems are complex, software controlled systems with essential impact on life and
health of humans or animals and the functionality of the human society, the environment and/or the
existence of organizations.

Engineering of high integrity systems focuses on the development, analysis and justification of
safety critical and security critical systems which primarily implies the consideration of safety
analysis and failure modeling techniques. But further focus is also on

 the appropriate adaptation of methods for an integrated system and software architecture
development,

 the consideration and adaptation of (a) requirements engineering methods, (b) formal
development techniques, (c) analysis and development techniques for real time systems,
and (d) testing approaches, as well as

 the elaboration of concepts for the eventually necessary assurance that the developed and

realized systems conform to the expectations with respect to safety and security.

Here, in the context of variability management, the focus is on the reusability aspects of the
artifacts that are developed for high integrity systems.. The intention is to provide an integrated
process for the management of safety critical product lines together with guidelines and best
practices for its utilization.

This process has two key aspects:

Figure 2-5: Safety management process for high integrity systems

 Safety assessment is the part of the process where safety is provided. It comprises the
scoping and identification of safety critical functions, the definition of the context model (i.e.,
the description of the expected environment), the various analysis steps, the identification
of the safety requirements and the development of the mitigation strategies – all that under
the assumption that there are variations in the system part as well as in the
context/environment part.

 Safety assurance is the part of the process wherein the proofs or corroborations are
provided that should convince the relevant authorities (certification authorities) that the
required safety is achieved by the final product. Safety assurance comprises two activities:
the development of the safety cases (which are the particular proofs of the compliance with
the safety requirements) and the provision of process assurance (which has to demonstrate

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 17 of 39

the quality of the applied development processes, in order to corroborate the statements
made in the safety cases)

The intended process is assumed to be – as far as possible – ignorant to the underlying safety
analysis techniques.

2.3.1 Safety Requirements for PLE

It is often stated that “safety is intrinsically a property of the system as a whole” since the real
hazards and risks become observable only at the physical system boundaries i.e. analyzing the
system parts will not show the real risks. Thus safety is essentially not a “compositional property”
and safety of the parts does not allow inferring the safety of the entire system. This is due to the
fact that safety depends on the system environment and the observation that the interference of
system properties may cause new hazards and risks.

In the context of product lines this seems to indicate that safety arguments have to be elaborated
completely new for every single derived product, because the environment and/or components in
the composition may have changed. This seems to be today’s state of the practice in industry. For
a product line approach, however, one would expect that safety arguments associated with
reusable components are core assets from which the system safety argument can be derived
jointly with the product composition.

System safety is given in a qualified way (e.g. freedom from unacceptable risk) or quantified (e.g.
something highly undesirable will happen only with a probability lower than a maximally acceptable
threshold). This kind of qualifying safety shows that variability is inherent to its definition

 What is acceptable and what not?

 How is the threshold defined?

One example of products with different safety properties derived from the same product line is, for
instance, two cars, a family coach with child-proof locks and a sports car without. The environment
into which the product will be placed determines whether a product will be considered safe or not.

Safety engineering has to start at the very beginning of system engineering. Typically, a safety
engineering process will have the following tasks (See Figure 2-6):

 Item Definition: Identify what belongs to the system under consideration and what are the
safety critical functions of the relevant system parts. This step includes also the definition of
the environment in which the system is expected to operate.

 Hazard Identification: Hazards, which are potential source of harm, may be detected
throughout the systems lifetime. Sequences of events that could lead to an undesirable
state (e.g. an accident, damage, or injury) are identified as well.

 Risk assessment: Estimate the risk that is posed by a certain hazard. A risk is defined as
the combination of the probability of occurrence of harm and the severity of that harm.

 Safety Concept: Created from collected hazards together with their risk classification. Also
may be called safety requirements definition.

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 18 of 39

Figure 2-6: The activities in the safety assessment process

The safety requirements specify the necessary risk reduction associated with each identified
hazard and they are usually allocated to the system as a whole. They are transformed into the
derived safety requirements when it comes to the realization of the safety requirements during
the development phases.

There are also the safety integrity requirements which specify the reliability that has to be
accomplished for safety and derived safety requirements. They are categorized into Safety
Integrity Levels (SILs). Safety and derived safety requirements are associated with the system
components within the overall system architecture. If a system component consists of hardware
and software components, then the safety/derived safety and the respective safety integrity
requirements have to be refined and broken down to these components.

Safety engineering is also concerned with the provision of safety assurance i.e. the support for
certification of the safety critical system. This certification typically means to prove its compliance
with safety standards in the respective domain and industry. In most cases the proof has to be
presented as safety case concerned with both, the product-based and the process-based safety
assurance. A safety case consists of a well-structured and well-reasoned safety argument and
the corroborating safety evidence.

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 19 of 39

Figure 2-7: The activities in the safety assurance process

The product-based part of the safety case demonstrates the acceptable safe behavior of the
system (i.e., the product), showing the identified hazards, arguing the tolerability of the risks and
claiming the satisfaction of all safety requirements. This claim is corroborated by direct evidence
obtained from (formal) analysis, testing and simulation.

The development of safety-critical systems in a product line context raises the question if and to
what extent the artifacts generated by the above described safety-related activities can be reused;
it further poses the question: “How product line engineering and safety engineering can be
integrated?”

In [Becker et al., 10], strategies for the integration of safety into PLE are discussed. The ideal
conception would be to get the entire product line certified by a certification authority with the result
that the derived products are considered certified as well. Due to the context dependency and the
probably hazards produced by feature interference and also there is the evolutionary aspect of
product lines, this goal is, in practice, infeasible. The safety argument for new features (added
during application engineering) is not covered by the already done certification of the product line.
The only way out would be to solely allow such changes in the newly derived products that are
definitely not safety-relevant.

Another approach is to have a product line without any variability management for the safety-
related artifacts i.e. the products are derived from the product line in the “classical way” without any
safety considerations and the necessary safety artifacts are built anew for each derived product.
This disregards a considerable reuse potential. However, [Becker et al.,10] warns that the reuse
potential within safety engineering might be less than expected since minor changes in the
architecture may cause considerable changes in the safety artifacts.

The converse approach would be to have a product line for safety engineering – the products
themselves should be developed in a classical, non-PLE fashion, or in a separate (“safety-free”)
product line for the product derivation. Such an approach, however, seems to be also problematic
since keeping safety engineering issues and the different products and their related artifacts might
be a difficult task.

The only feasible way to integrated safety and product line engineering is through a holistic
approach where both are set up together in one product line and safety is engineered into the
product line. The artifacts produced during the safety engineering activities should become part of
the core asset base where they are managed, like all others, in a prescribed well-defined process.

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 20 of 39

The relation of the safety assets to the production plan should be investigated, because it is the
place where information about the safety engineering process has to be detailed.

2.3.2 A Holistic Approach to the Engineering of Safety-critical Product Lines

In the following, we outline a holistic, model-based, approach to an integrated safety-critical
product line based on the work of Habli [Habli, 09].
This approach is a starting point for the identification and development of the necessary building
blocks and best practices for our System Family Engineering Framework. It is worth noting that our
approach will not be restricted to the procedures presented in the following sections.

There are in particular two "best practices" which very often are advocated in industrial settings
whose appropriateness and pertinence are quite obvious:

 Encapsulate the safety relevant issues in a partition of the system as small and concise as
possible and keep feature interaction with the rest of the product line features to a minimum

 Keep the number of variations in the safety relevant parts of the system as small as ever
possible

These two rules are in particular relevant for product lines since effort and complexity increases
with the number of safety relevant features/components and the variations therein. In particular,
the two rules imply that safety and its variations have to be very carefully planned in the scoping
phase of the product line (see Figure 2-8).

Figure 2-8: Two basic "best practices"

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 21 of 39

Features and the specifically required contextual assets provide the entities to start the safety
assessment process with. The contextual assets are outcomes of the contextual model which is a
particular requirement for safety engineering since environment conditions and system context
properties have an essential influence on system safety.

The basic concepts in the product line safety assessment process are safety conditions, causal
relationships and safety requirements (see Figure 2-9). Safety conditions are an abstraction for
safety condition types which are “capturing some ‘state-of-affair’ - event or state in the system or
the environment” [Habli, 09]. In dependency of the domain or safety engineering method, safety
conditions may be considered as hazards, failure conditions and faults, etc., just as the terminology
requires.

Safety conditions are related to other conditions by causal relationships as “causes” or “effects” or
“contexts” and they are associated to product line assets and the safety requirements they
generate. This model is sufficient to cross-link the hazards, failures, etc., identified in the safety
assessment phase, to each other, the safety requirements that are derived from them and the
artifacts where they are described and “occur”. The elaborated linking of the safety conditions, in
particular also to context and system assets, is essential in a safety-critical context since
environment and deployment conditions have a potentially dangerous influence on the safety-
relevant behavior of a system. There are many examples that a small change in the deployment
method may have a far-reaching impact. Therefore, contextual and system assets (with may be
either mandatory or subject to variation) are explicitly mentioned in Figure 2-9.

The proposed product line safety assessment process is split into two parts: The process for safety
assessment, tightly integrated into the domain engineering process (see Figure 2-10), and the
course of actions related to safety assessment during product derivation in the application
engineering part of PLE. The two processes are sketched in the following sections.

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 22 of 39

Figure 2-9: Product Line Safety Assessment and its relation to the product line assets

2.3.2.1 Safety Assessment in Domain and Application Engineering

In the domain engineering process, the failure behavior of the reusable functions and design
assets have to be captured and analyzed. This is done by deriving three product line failure models
which comprehend the safety conditions and how they are associated with the product line assets
in the context, feature and reference architecture models. These models are:

 Functional Failure Assessment in Domain Engineering: Based upon the functional
features and their dependencies with the context model (i.e. the product line environment).
They become subject of the “product line” Functional Failure Analysis (FFA) or similar
analysis methods wherewith the functional failure model, that is, the safety conditions and
their traces to the context and feature models, are produced. Thereby, safety conditions
subsume failure conditions, their effects, the respective classification of the risks with
respect to type and severity, and the safety requirements.

 Architectural Failure Assessment in Domain Engineering: After having identified the
failure conditions in the first step, now the failure modes have to be identified and analyzed.
They are rooted in the design of the system and the expected behavior of the system
environment. Failure mode chains, the causal derivation of the reason leading to a
functional failure condition, have to be thus elicited (a) from the product line architecture
model (the “reference architecture”) where the reusable mandatory and optional design
assets are defined and (b) from the respective context model. These artifacts again
become subject to a safety analysis technique, as, for instance, Fault Tree Analysis (FTA)
or a cognate analysis techniques (cf. root cause analysis) wherewith the failure mode
causal chains and the derived safety requirements are produced.

 Component Failure Assessment in Domain Engineering: It is based upon the
consideration of the components provided as core assets in the product line. This activity

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 23 of 39

defines the product line component failure model which relates the component failure
modes with their effects. The analysis technique proposed is Failure Mode Effect Analysis
(FMEA).

These three failure models “capture the impact of the defined variation in the product-line … on the
product-line safety assessment data explicitly” [Habli, 09]. Safety assessment artifacts are
produced and associated with the respective product line functions and design artifacts in a way
that they can be reused during product derivation.

Figure 2-10: Product Line Safety Assessment Process (Overview with regard to Domain
Engineering)

Product Line Safety Assessment in the Application Engineering Process
Having derived the three product line failure models in the domain engineering phases, the obvious
idea is to re-use them for the failure assessment during product derivation. This can be done to
some extent, but needs considerable manual analysis. The product derivation safety assessment
process has the same structure as its counterpart in domain engineering.

 The product functional failure assessment process starts, as soon as the configuration
for the product is decided. Then, the features (system functions) are selected and the
expected context is defined. Whenever it is necessary to add new features to the derived
product, this has to be done now. With all these product features, a Functional Failure
Analysis (FFA) has to be started, yet not from the scratch but using the already available
product line FFA.

 The product architectural failure assessment is responsible for identifying the product’s
failure mode chains in the context of the product architecture elements and to find out how
they contribute to the products functional failure conditions. Unfortunately, slight alterations

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 24 of 39

of the product line reference architecture and mismatches with the product architecture can
in principle invalidate the previously defined product line architectural failure model.

 The product component failure mode assessment procedure is very similar to the one
devised for the product functional failure assessment: identifying the reused components
and their associated failure modes; for all failure modes, determining the failure mode
effects which are in context of a safety condition which in turn is associated to a reused
component or contextual asset and collecting the associated mitigation measures.

Functional failure analysis helps to exclude unsafe configurations already in the domain
engineering phase and its results can be taken over at least as far as the reused parts are
concerned. Architectural failure mode analysis shows in domain engineering if solutions are
unfeasible or unrealistic (e.g. too high mitigation costs); in application engineering, some effort has
to be spent for a thorough manual analysis, even if some effort is gained by taking over the results
from domain engineering. For the component failure analysis, there are no particular benefits on
the domain engineering side, but the results can be taken over completely for the product
derivation during application engineering.

The presented approach needs an alignment with the safety assessment and analysis techniques
that are preferred in the use cases provided by the CRYSTAL applications. Guidelines and best
practices have to be elaborated.

2.3.2.2 Safety Assurance (Certification and Process Assurance)

Safety Assurance is to document that all safety requirements are duly fulfilled. For this aspect,
[Habli, 09] provides an approach to use the safety assessment models to develop a modular
“product line safety case”, that is, a means to compose the safety cases of derived products from
the product line safety assets. In order to corroborate the safety case(s), process assurance, that
is, the evidence that a safety case is produced in a sound and convincing manner, is needed (and
required by the certification authorities in most cases). [Habli, 09] also provides an approach to
process assurance. In the following, a very brief summary of these two approaches will be given, in
order to complete the picture for product line safety.

Figure 2-11: Safety assurance

A safety case is a natural way to argue that a product or system is safe. It has to show that all
identified risks have been managed, and all specified safety requirements are satisfied. The
strength of such a “product-based” safety argument is corroborated by the argument about the

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 25 of 39

quality of the engineering process that was followed in manufacturing the product. Safety case
arguments for product lines should follow the structure of the product line reference architecture
and be clearly traceable to its parts. There are five important “refers to”-relations:

 Argument Element — Product Line Asset: an argument element (e.g. a goal) refers to a
product line asset thus expressing a claim concerning the reliability of the reusable asset.

 Argument Element — Product Line Process: an argument element refers to the product line
process element that is responsible for its production (e.g., an analysis step, a test).

 Evidence Item — Product Line Asset: an evidence item (e.g. safety analysis data) refers to
the product line asset it results from.

 Evidence Item — Product Line Process: an evidence item is associated to the process by
which the respective product line asset is produced, ensuring that it can be identified
wherefrom certain evidence with respect to a hazard comes. This also corroborates the
process qualities.

 Product Line Asset — Product Line Process: Product line assets and the producing
processes can be identified.

Figure 2-12: The core relations in a safety case

These five types of references describe the central relationship between the safety case and the
product line assets and processes and they ensure that the impact of all the product line variability
can be traced explicitly into the product line safety case. This allows the composition of the
respective argument modules with their goals, solutions, assumptions, etc. according to the
selected variability, but also the reference to the provenance of the assets, ensuring that it is
traceable and justifiable.

[Habli, 09] concludes its approach with a framework for process assurance which is intended to
provide a “process-based argument” for product safety. It is a way to ensure certification authorities
that they can trust the evidence given in the safety case. The process assurance framework has
four main steps:

 Process Criteria: Verifiable goals have to be defined which a product line process should
satisfy in order to show a certain level of assurance.

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 26 of 39

 Process Model: Should be described thoroughly in order to allow a detailed and
convincing analysis.

 Process Analysis: Aims at identifying safety flaws and vulnerabilities and eventually at the
demonstration that the process is appropriate.

 Process Justification: Justifies the adequacy of the process to generate trustworthy
evidence and the cost-effectiveness of a process, given safety-critical project constrains.

The process assurance framework needs to be aligned with the processes used in the
development of the use cases. Best practices and pre-formulated descriptions for the entities
produced by the process assurance framework steps have to be developed.

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 27 of 39

3 Application in CRYSTAL
This section provides an overview of the requirements of the different CRYSTAL Use Cases to the

System Family Engineering Framework.

3.1 Requirements from the Use Cases

We have identified three Use Cases that require support for family engineering. This section
provides an overview on these applications and their needs with regard to variability management.
The three Use Cases are:

 UC 2.3 Mission Support Equipment, from EADS Cassidian

 UC 3.2 Autonomous Driving in Specific Environment, from Daimler

 UC 3.4 AVLAb, from AVL

3.1.1 UC 2.3 – Mission Support Equipment (Cassidian)

One of today's main challenges in the aerospace domain is to enhance the pilot’s situational
awareness. This means, that the pilot shall be able to identify, process and comprehend
mission/flight critical elements of information under all circumstances e.g.:

 Take-off

 Landing

 Low level flight

 Planning of cargo load

 Mission data preparation

Possible root causes for loosing situational awareness can be for example:

 Confusion caused by multiple simultaneous visual and/or acoustic alerts

 Missing information about potential hazards

 Failure to meet planned objectives

 Ambiguous information

The risk of losing situational awareness might have catastrophic consequences with regards to
mission or even human life.

The key success factor will be to support the pilot with information in a simple, precise way, clearly
understandable, and focused on the relevant information. Therefore it is very important to adapt
the information level depending on the current mission/flight scenario.

The Mission Support Equipment (MSE) shall therefore support different mission/flight scenarios.
This shall be achieved by several functions to support the pilot on ground and/or in flight, providing
adequate visual or acoustic information using databases, sensor data and/or a data fusion of both
sources for a certain phase of flight/mission.

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 28 of 39

Complexity and System Features
During studies on airplane and helicopter mission/flight scenarios and workshops with pilots
following functions have been identified, having potential positive impact on situational awareness:

 MAP display

 Tactical symbology

 On-ground mission preparation (map data, overlays)

 Real-time update of mission relevant information (e.g. weather or traffic)

 Obstacle detection and warning (sensor data and database)

 Landing aid based on sensor data and/or database

 Sensor data and database supported vision enhancement under bad environment condition
(e.g. rain, snow, fog, dust, night)

3.1.1.1 Problem Description

For demonstration and evaluation purposes the Landing Symbology feature will be taken in this
use case. The Landing Symbology supports helicopter pilots during the final landing approach in
degraded visual environments which can be caused by e.g. rain, fog, dust and snow (see Figure
3-1). Many accidents can be directly attributed to such degraded visual environments where pilots
often loose spatial and environmental orientation.

Figure 3-1: Degraded Visual Environments

The Landing Symbology feature allows to mark the landing point on ground using a head-tracked
helmet mounted display. During the final landing approach it enhances the spatial awareness of
flying crews by displaying 3D conformal visual cues on a helmet-mounted display. In addition it
employs a surface grid conformal to the measured terrain for the landing area.

The Landing Symbology feature provides the following functionality:

 Display 3D conformal visual cues on a helmet mounted display visualizing the
helicopter attitude and position relative to the intended landing point

 Determine and visualize the condition of the anticipated landing zone with respect to
roughness and slope based on real time 3D data

 Display obstacles on a helmet mounted display relevant for the start and landing phase.
The obstacles are taken from the real-time obstacle fusion, thus considering obstacles
from the obstacle data bases and from real-time sensor obstacle classification.

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 29 of 39

Figure 3-2 shows an example of the landing symbology displayed during the final landing
approach.

Figure 3-2: Display of the Landing Symbology

The Landing Symbology feature is part of a situational awareness system. It uses available
information coming from databases and sensors.

3.1.1.2 Planned Extensions

In the context of CRYSTAL, several user stories have been defined for the MSE. In this section we
describe only Variability Management User Story.

Figure 3-3: User Stories of UC2.3

This user story consists of a process to manage variability. It should support identification,
specification and tracing of variability points to development artifacts. To achieve this, we need an
approach which allows the support the following:

1. Variability modelling using feature models
2. Create a variability model covering external and internal variability.
3. Possibility to link the variability model with:

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 30 of 39

 Requirements.

 System / Safety Architecture and Design Model, including SW (architecture and source
code)

 Test cases and Procedures
4. Product configuration
5. Create and manage component and system model libraries
6. Combine component and system model libraries together.
7. Modelling guidelines

Figure 3-4: User Story Variability Management

3.1.2 UC 3.2 – Autonomous Driving in Specific Environment (Daimler)

UC3.2 faces the development of a host computer (next generation) for automated driving. The host
computer is embedded in a big system called ADSE (autonomous driving in specific environment)
and controls the vehicle to support testing activities of driver assistant systems with aspects of
reproducible driving of trajectories, operation together with a partner car and operation with or
without driver in the car. The host computer is not part of a series vehicle.

3.1.2.1 Problem Description

The project has to manage some common challenges of automotive OEMs:

 Transfer of knowledge of the engineering experts (implicit traces) into „explicit traces“ and
methods in a tool based development system

 Support efficient impact analysis based on a given change request on requirement, system
or component level to another abstraction level (vertical) or to the right side of the V-model
(horizontal)

 Introduction of variant handling to manage the upcoming use cases of the host computer
and to optimize the verification and validation activities

 Enable the consistency of different models on system, functional and component level

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 31 of 39

 Almost automatic safety case documentation during the development phase

3.1.2.2 Planned Extension

The project wants to gain improved procedures and their integration into the tool environment.
Different tools and manual activities occur in this development process. Thus, the target is to raise
the interoperability for a continuous, traceable and efficient development. The solutions have to be
applicable so that the mentioned development project will be able to apply the processes, methods
and tools after finalization of the CRYSTAL project, too. Furthermore, for other Daimler projects it
should be possible to easily adapt the solutions for an efficient development process.

The rising number of artifact instances and the need of linking lead to the necessity for developing
a continuous variant handling. So the different artifacts along the development process must have
common variant attributes to support a general feature model and to use them for automated steps
or for suggestions in manual steps.

Figure 3-5: Engineering Methods assigned to different Steps in the V-Model

The single tool along the process chain should include the feature model for an easier use during
the product development. The underlying data will be live exchanged via OSLC. This would be an
enormous improvement in comparison to an import/export process nowadays.

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 32 of 39

3.1.3 UC 3.4 – AVLab (AVL)

The main need in this use case is the development of new and the integration of existing variability

management methods, techniques, and tools in order to improve reusability in the automotive

software development process. Systematic reuse is often not supported by existing approaches, as

for example Clone & own. Nevertheless, many companies simply “reuse” existing solutions by

copying them and adapting them for the new context. This approach can of course increase the

efficiency, but has the disadvantage of various slightly different code bases. In case of identified

bugs this could lead to problems, because it has to be identified which variants are affected and if

they are affected the error has to be corrected in all variants.

Figure 3-6 illustrates the development steps which should be covered in this brick including MIL,

SIL, and probably also HIL testing. Variability occurs at each development step and has to be

represented, managed, and also bound. For example, for requirements this could mean that there

is a set of requirements, which specifies the entire product space. Not all of these requirements are

required for the instantiation of a concrete product. This means that requirements may be disabled

for a specific product instance. The same applies for architecture, implementation, and testing. The

reason why there is no repository for the architecture phase in this figure is that the architecture

tool provides some kind of variability handling functionality. One task in this project will be the

evaluation of these variability management techniques and their applicability in this concrete

scenario.

Figure 3-6: Integrated variability management approach

AVL-R applies a slightly improved variant handling approach compared to clone & own based on

PTC Integrity RM and PTC Integrity Source. They have introduced a structure and method called

Powertrain Software Framework (PSF). The basic building parts of the PSF are function groups

and components, which are stored in PTC 2Integrity Source and linked to Requirements in PTC

Integrity RM. The concept of PTC Integrity enables basic variant handling based on versions and

branches. The main problem with the current solution is the lacking distinction between version

and variant.

2
 http://www.ptc.com/

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 33 of 39

Figure 3-7: Current tool landscape

Figure 3-7 gives an overview of the current development environment. Integrity RM and Source are

used for data management. This means that requirements, models, and test are stored in these

tools, which also supports version control and traceability. The PSF can also be seen part of this

layer. It use used to support reusability, but of course there are always project specific parts, which

are simply stored in Integrity. The middle layer, here called business logic layer, covers all tools

which are used for the different steps of the development process. The user actually works with

AVLab, which is the common model-based development environment. The tools in the business

logic layer are usually accessed through this common user interface. The improvement of

interoperability will be part of another work package, but will be a main requirement for systematic

variant management (see UC3.4b Description).

3.1.3.1 Problem description

The main problem which should be solved in CRYSTAL is the current lack of systematic reuse. As
mentioned before, a reuse approach based on the PSF has been defined in the past.
Nevertheless, reuse is still not as systematic as it could be. The main challenge in this specific use
case is the existence of a broad product portfolio. This means that various domains (automotive,
racing, shipping, etc.) can be supplied, but the actual range of products is rather small (control
software). As a result, there is a high potential for reuse, especially in the domains, but sometimes
even cross-domain.

The main challenge is the fact that AVL-R as a supplier cannot simply build a product line for their
product portfolio, because they are highly dependent on customer requirements. Since the format
of the requirements they get from customers can be quiet different, a solution based on
requirements will probably be hard to achieve. Therefore, requirements may are not the
appropriate way to identify applicable variants. One possible solution is the description of variability
and commonality of the problem domain in so called feature models. Feature models have already
been introduced in the nineties [Kang, 90] and are a good approach to describe variability.

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 34 of 39

One need of this use case is the definition of a concept how feature models can be used to
describe variability at AVL-R. This also includes the question at which level of abstraction feature
models should be applied to achieve the best performance. Most likely they should be applied on
function group level, because there is little correspondence between different function groups. If a
first investigation shows that there are dependencies, a second layer (an additional feature model),
which describe the dependencies between the function groups could be introduced.

The description of variability is only one aspect in this use case. Furthermore, variability has to be
reflected throughout the development process. This means that the development process and all
involved tools have to be investigated in order to identify needs as well as possibilities for
variability.

3.1.3.2 Planned extension

Figure 3-8 illustrates the potential extension of the existing development environment based on a
first investigation. AVLab is a model-based development environment, which is (more or less) used
as a single point of contact for developers. Therefore, the description of variability and selection of
variants could also be integrated in this environment. For the storage of variants, there could also
be a need to include strategies for variant handling at the lowest layer. Basically, this could be
understood as a separation of problem and solution space [Czarnecki, 00]. The problem space
specifies the problem from a more abstract point of view and the solution space describes various
technical realizations.

Figure 3-8: Planned extension of the current development environment

This requires as a first step the investigation of the current process and tool landscape in order to

get an overview of the main challenges and needs. A second step will be the definition of a

variability description concept. As mentioned before, this concept will most likely be based on

feature models. Most probably there will be a common feature model structure, but single feature

models for the different function groups. Additionally, the integration in the PTC tool environment

has to be evaluated and maybe extended.

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 35 of 39

3.2 What will be implemented/provided in the CRYSTAL project

Based on the current Use Case descriptions, the following feature demands can be derived for the
SFEF:

 UC2.3 UC3.2 UC3.4

Variability management for
safety-critical systems

X X X

Multi-level Variability
management for modular
systems

X X X

PL scoping approach and
tool

X X X

Overview on practical
variability management
approaches

X X X

Multi-view variability
modelling (e.g.) external vs.
internal features

X X X

Traceability to
requirements artifacts

X X X

Traceability to design
models

X X X

Traceability to test artifacts X X X

Variability modelling
guidelines

X X X

Incremental Variability
Management adoption /
improvements

 X

Extractive core asset
development, including
analysis of existing variants
for commonality and
variability

 X

Table 3-1: Requirements from Use Cases

These demands will be refined as part of the next project activities together with the Use Case
partners. It is foreseen, that further Use Cases will raise demands regarding variability
management, which are currently not considered. To this end, other Use Case specifications will
be analyzed for further demands with regard to variability management.

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 36 of 39

Figure 3-9: SFEF components

Driven by the identified feature demands, the SFEF will provide the following features to the Use
Cases:

1. Customizable System Family Engineering method
Provide a method framework for the engineering of high-integrity system and software
families, which identifies relevant practice areas and proposes concrete processes
within the practice areas. Additionally, templates will be provided for the respective
process activities, where helpful.
The methods will be tool-independent, but tool-based, i.e. the brick will not depend on a
specific variability management tool, but it will show how to conduct the practices with
industrial-strength tool support.

2. Family Engineering Adoption strategies

Provide reasonable strategies to improve family engineering in different settings, e.g.
incremental transition from single system to family engineering, or improvement of
existing family engineering practices.

3. Variability Management Techniques
Provide an overview on practical variability management techniques and the respective
tool support.
Identify typical tool chain settings and interoperability demands for an integrated,
orthogonal, multi-level, multi-view variability management

4. Variability Management Guidelines
Provide guidelines, best practices, and examples for efficient and effective variability
management in the Use Case settings. Where necessary, identify context factors,
which have an influence on the guidelines, etc.

3.3 How will this brick be integrated in the Use Cases

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 37 of 39

The SFEF will be a customizable method, intended to be used in any of the domains approached

by the CRYSTAL project. However, in order to make it more efficient and prove its applicability, we

will create so-called profiles for the Use cases described in section 3.1.

These profiles are versions of the SFEF tailored for the enterprise needs. In order to do that, we

will gather information about existing tool chain and process and this will be used to adapt our pre-

defined methods and guidelines, as depicted in Figure 3-10.

Figure 3-10: SFEF Instantiation

We plan to produce one profile for each of the Use Cases described in Section 3.1. Ideally, the
profiles will be created in consecutive iterations, allowing the framework to be improved before the
next usage (See the dashed line in Figure 3-10).

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 38 of 39

4 Terms, Abbreviations and Definitions

4.1 CRYSTAL-specific managerial abbreviations:

CRYSTAL CRitical SYSTem Engineering AcceLeration

R Report

P Prototype

D Demonstrator

O Other

PU Public

PP Restricted to other program participants (including the JU).

RE Restricted to a group specified by the consortium (including the JU).

CO Confidential, only for members of the consortium (including the JU).

WP Work Package

SP Subproject

Table 4-1: CRYSTAL-specific managerial abbreviations

4.2 ACRONYMS, used in this deliverable:

ADSE Autonomous Driving in Specific Environment

FFA Failure Functional Analysis

FMEA Failure Mode Effect Analysis

FTA Fault-Tree Analysis

MIL Model in the loop

MSE Mission Support Equipment

OEM Original Equipment Manufacturer

OSLC Open Services for Lifecycle Collaboration

PLE Product Line Engineering

PSF Powertrain Software Framework

PuLSE Product Line Software Engineering

SEI Software Engineering Institute

SFEF Software Family Engineering Framework

SIL Safety Integrity Levels

UC Use Case

VM Variability Management

Table 4-2: Acronyms

D610.031 D610.031

Version Nature Date Page

V1.0 R 2014-01-30 39 of 39

5 References

[Author,

Year]

Authors; Title; Publication data (document reference)

[Kang, 90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, A. Spencer

Peterson:

Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical report,

Carnegie-Mellon University Software Engineering Institute (1990)

[Bayer et al.,

00]

Joachim Bayer, Oliver Flege, Peter Knauber, Roland Laqua, Dirk Muthig, Klaus
Schmid, Tanya Widen, PuLSE – Product Line Software Engineering, Technical
Report, 2000

[Czarnecki,

00]

K. Czarnecki and U. Eisenecker, Generative Programming: Methods, Tools,

and Applications.Boston, MA: Addison-Wesley, 2000

[Bowen et
al., 99]

Jonathan P. Bowen, Michael G. Hinchey: High-integrity System Specification
and Design. Formal Approaches to Computing and Information Technology
FACIT, Springer Verlag, 1999

[Northrop,

00]

Linda M. Northrop, P a u l C. Clements. A Framework f o r Sof tware P r o d u c t
L i n e Pract ice , Version 5 . 0 . Software Engineering Institute, Carnegie Mellon
University , July 2000

[Muthig et

al., 04]

Dirk Muthig, Isabel John, Michalis Anastasopulos, Thomas Forster, Jörg Dörr,
Klaus Schmid, GoPhone - A Software Product Line in the Mobile Phone
Domain. IESE-Report No. 025.04/E, Version 1.0, March 5, 2004

[Pohl, 05] Klaus Pohl, Gunter Beckie, Frank J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer 2005

[Kakbla, 06] Timo Kakbla and Juan Carlos Duenas, Software Product Lines - Research
Issues in Engineering and Management, Springer, 2006

[Habli, 09] Ibrahim Mustafa Habli: Model-Based Assurance of Safety-Critical Product
Lines. PhD Thesis, University of York, September 2009

[Becker et

al., 10]

Martin Becker, Soeren Kemmann, Kodambali C. Shashidhar: Integrating
Software Safety and Product Line Engineering using Formal Methods:
Challenges and Opportunities. 1st International Workshop on Formal
Methods in Software Product Line Engineering FMSPL 2010, co-located with
the SPLC’10, Proc. of the 14th SPLC, Volume 2 – Workshops, Industrial
Track, Doctoral Symposium, Demonstrations and Tools, Jeju Island, South
Korea, 13-17 September, 2010

[Krueger,14] Charles Krueger , Second Generation Product Line Engineering for Systems
and Software (Part 3) http://www.biglever.com/newsletters/2G_SPL_Part3.html
(Accessed Jan 2014)

http://www.biglever.com/newsletters/2G_SPL_Part3.html

