
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE CRYSTAL CONSORTIUM. NEITHER THIS
DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED BY ANY
MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE CESAR
CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE
RESEARCH LEADING TO THESE RESULTS HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S SEVENTH
FRAMEWORK PROGRAM (FP7/2007-2013) FOR CRYSTAL – CRITICAL SYSTEM ENGINEERING ACCELERATION JOINT
UNDERTAKING UNDER GRANT AGREEMENT N° 332830 AND FROM SPECIFIC NATIONAL PROGRAMS AND / OR FUNDING
AUTHORITIES.

CRitical SYSTem Engineering AcceLeration

Specification, Development and Assessment for
Validation Models - V1

D612.011

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 2 of 54

DOCUMENT INFORMATION

Project CRYSTAL

Grant Agreement No. ARTEMIS-2012-1-332830

Deliverable Title Specification, Development and Assessment for Validation Models - V1

Deliverable No. D612.011

Dissemination Level CO

Nature R

Document Version V3.00 (final version)

Date 2014-01-29

Contact Gregorio Barberio

Organization MATE

Phone

E-Mail g.barberio@mateconsulting.it

mailto:g.barberio@mateconsulting.it

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 3 of 54

AUTHORS TABLE

Name Company E-Mail

Aniello Amato Mate Consulting srl a.amato@mateconsulting.it

Barberio Gregorio Mate Consulting srl g.barberio@mateconsulting.it

Stieglbauer Gerald AVL/GRZ Gerald.Stieglbauer@avl.com

Wallner Alfred AVL/GRZ alfred.wallner@avl.com

Settelmeier Joerg AVL/DE joerg.settelmeier@avl.com

Serrie Chapman Infineon serrie.chapman@infineon.com

Galpin Darren Infineon darren.galpin@infineon.com;

Tichy Matthias CTH tichy@chalmers.se

REVIEW TABLE

Version Date Reviewer

Internal
Review

2013-12-03 Gregorio Barberio

Internal
Review

2014-01-13 Valeria Vittorini

External

Review
2014-01-27 Vasaiely, Parham

External

Review
2014-01-29 Renato De Guglielmo

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 4 of 54

CHANGE HISTORY

Version Date Reason for Change
Pages

Affected

V1.00 2013-12-03 First issue

V2.00 2014-01-15 Minor changes after internal review

V3.00 2014-01-29

Some minor changes after external review:

- updated the references table

- deleted empty tables for technical items

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 5 of 54

CONTENT

1 INTRODUCTION .. 9

1.1 ROLE OF DELIVERABLE ... 9
1.2 RELATIONSHIP TO OTHER CRYSTAL DOCUMENTS .. 10
1.3 STRUCTURE OF THIS DOCUMENT ... 10

2 VALIDATION PROCESS (B3.12) ... 11

2.1 DESCRIPTION .. 11
2.2 IDENTIFIED REQUIREMENTS FOR EXTENSION ... 13
2.3 USE CASE COVERAGE AND APPLICATION ... 13
2.4 GENERAL IMPROVEMENT .. 13
2.5 INTEGRATION AND INTEROPERABILITY ... 13

3 AVL VEVAT/MAGIC (B3.49) ... 14

3.1 DESCRIPTION .. 14
3.1.1 Tool/method description: what will you find in AVL VeVaT/Magic .. 14

3.2 USE CASE COVERAGE AND APPLICATION ... 16
3.3 GENERAL IMPROVEMENT .. 17
3.4 INTEGRATION AND INTEROPERABILITY ... 17

4 REQUISITEPRO (B3.86) .. 20

4.1 DESCRIPTION .. 20
4.1.1 General Description ... 20

4.2 USE CASE COVERAGE AND APPLICATION ... 20
4.2.1 Use Case 3.3 .. 20
4.2.2 Requirements fulfilled by initial tool/method version ... 20
4.2.3 What will be implemented/provided in the CRYSTAL project ... 21

4.2.3.1 New and improved features .. 21

4.3 GENERAL IMPROVEMENT .. 21
4.3.1 Implementation ... 21

4.4 INTEGRATION AND INTEROPERABILITY ... 22
4.4.1 Interoperability requirements .. 22
4.4.2 How will this brick be integrated in the UC ... 22

5 CLEARQUEST (B3.87) .. 23

5.1 DESCRIPTION .. 23
5.2 USE CASE COVERAGE AND APPLICATION ... 23

5.2.1 Requirements fulfilled by initial tool/method version ... 23
5.2.2 What will be implemented/provided in the CRYSTAL project ... 23

5.3 GENERAL IMPROVEMENT .. 23
5.4 INTEGRATION AND INTEROPERABILITY ... 24

5.4.1 How will this brick be integrated in the UC ... 24

6 REQTIFY (B3.88) ... 25

6.1 DESCRIPTION .. 25
6.2 USE CASE COVERAGE AND APPLICATION ... 25

6.2.1 Use Case 3.3 .. 25
6.2.2 Requirements fulfilled by initial tool/method version ... 25
6.2.3 What will be implemented/provided in the CRYSTAL project ... 26

6.3 GENERAL IMPROVEMENT .. 26
6.3.1 Implementation ... 26

6.4 INTEGRATION AND INTEROPERABILITY ... 26

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 6 of 54

6.4.1 How will this brick be integrated in the UC ... 26

7 REQIF (B3.89) .. 27

7.1 DESCRIPTION .. 27
7.2 USE CASE COVERAGE AND APPLICATION ... 27

7.2.1 Use Case 3.3 .. 27
7.2.1.1 What format they are in ... 27
7.2.1.2 Requirements fulfilled by initial tool/method version ... 27
7.2.1.3 What will be implemented/provided in the CRYSTAL project .. 27

7.3 GENERAL IMPROVEMENT .. 28
7.4 INTEGRATION AND INTEROPERABILITY ... 28

7.4.1 Interoperability requirements .. 28
7.4.2 How will this brick be integrated in the UC ... 28

8 DOCUMENTUM (B3.90) ... 29

8.1 DESCRIPTION .. 29
8.2 USE CASE COVERAGE AND APPLICATION ... 29

8.2.1 Use Case 3.3 .. 29
8.2.2 Requirements fulfilled by initial tool/method version ... 29
8.2.3 What will be implemented/provided in the CRYSTAL project ... 29

8.3 GENERAL IMPROVEMENT .. 29
8.4 INTEGRATION AND INTEROPERABILITY ... 30

8.4.1 Interoperability requirements .. 30
8.4.2 How will this brick be integrated in the UC ... 30

9 ASURESIGN (B3.91) .. 31

9.1 DESCRIPTION .. 31
9.2 USE CASE COVERAGE AND APPLICATION ... 31

9.2.1 Use Case 3.3 .. 31
9.2.2 Requirements fulfilled by initial tool/method version ... 31
9.2.3 What will be implemented/provided in the CRYSTAL project ... 32

9.3 GENERAL IMPROVEMENT .. 32
9.3.1 Implementation ... 32

9.4 INTEGRATION AND INTEROPERABILITY ... 32
9.4.1 Interoperability requirements .. 32
9.4.2 How will this brick be integrated in the UC ... 32

10 RAIL MODEL (B5.1) ... 33

10.1 DESCRIPTION .. 33
10.1.1 Modelling the behaviour and requirements of complex and safety critical systems 34
10.1.2 Semi-automatic test case generation .. 35

10.2 USE CASE COVERAGE AND APPLICATION ... 35
10.3 GENERAL IMPROVEMENT .. 35
10.4 INTEGRATION AND INTEROPERABILITY ... 36

11 IOP TEST WRITER (B5.3) ... 39

11.1 DESCRIPTION .. 39
11.2 USE CASE COVERAGE AND APPLICATION ... 40
11.3 GENERAL IMPROVEMENT .. 41
11.4 INTEGRATION AND INTEROPERABILITY ... 41

12 LOG ANALYZER (B5.4) ... 44

12.1 DESCRIPTION .. 44
12.1.1 Failed test identification ... 44
12.1.2 Requirements not correctly implemented identification .. 45

12.2 USE CASE COVERAGE AND APPLICATION ... 45

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 7 of 54

12.2.1 [B5.4] LOGANALYZER TOOL.. 45
12.3 GENERAL IMPROVEMENT .. 46
12.4 INTEGRATION AND INTEROPERABILITY ... 47

13 EMBEDDED VERIFICATION PLATFORM (B3.100) ... 49

13.1 DESCRIPTION .. 49
13.2 USE CASE COVERAGE AND APPLICATION ... 50
13.3 GENERAL IMPROVEMENT .. 51
13.4 INTEGRATION AND INTEROPERABILITY ... 51

14 TERMS, ABBREVIATIONS AND DEFINITIONS ... 52

15 REFERENCES ... 53

16 ANNEX .. 54

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 8 of 54

Content of Tables

Table 1-1: Relationship to other Crystal Documents .. 10

Table 12-1: Example of report for failed tests... 44

Table 12-2: Example of report for failed Requirements .. 45

Table 14-1: Terms, Abbreviations and Definitions ... 52

Table 15-1: References .. 53

Content of Figures

Figure 2-1: Research method ... 11

Figure 2-2: Most popular validation and verification techniques .. 12

Figure 3-1: VEVAT Validation report on channel group level .. 15

Figure 3-2: VEVAT Validation report on single value level.. 16

Figure 3-3: Integration of AVL VeVaT/Magic within the IOS concept .. 18

Figure 3-4: VEVAT Internal requirements container .. 19

Figure 4-1: RequisitePro toolchain integration ... 22

Figure 5-1: ClearQuest toolchain integration .. 24

Figure 6-1: Reqtify toolchain integration ... 26

Figure 7-1: ReqIF toolchain integration .. 28

Figure 8-1: Documentum toolchain integration... 30

Figure 9-1: Asuresign toolchain integration .. 32

Figure 10-1: Validation workflow and supporting bricks ... 34

Figure 11-1: IOP Test writer tool Input-Output .. 40

Figure 12-1: LogAnalyzer Tool Input-Output .. 46

Figure 13-1: Development process including tool landscape ... 49

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 9 of 54

1 Introduction

1.1 Role of deliverable
This document aims to show the results of the first requirement collection phase for work package 6_12.
Since this deliverable is due at an early stage of the project, it mainly aims to introduce the different bricks in
this WP and shows how they are planned to be used at this stage of the project.

In this deliverable, Bricks are documented which are developed in the WP6.12. This deliverable is updated
iteratively, three times during the project runtime, based on the corresponding milestones of the project.
Therefore, the Brick documentations in this document represent an evolutionary process of continuous
development and enhancement of the CRYSTAL solutions, and complementary to previous version of this
deliverable.

Here a brief introduction to the WP 6.12 scope.

To validate a complex industrial systems, starting from the system requirements, test scenarios should be
defined by V&V team (independent from the development team), usually using a model describing the
system itself. This model often does not allow any automatic verification of its feasibility. Any change of the
requirements implies the manual identification of the tests impacted by this change and then a modification
of the tests themselves.

Moreover, it is not possible to define, automatically, system tests from the model itself, but this definition of
test cases is made manually, starting from a model that is only a representation of the system behaviour.

To reduce the effort related to these activities it is necessary to improve the integration between the different
steps of the V&V process.

The objectives should be summarized as:

- model complex and asynchronous systems of different domains in the CRYSTAL scope;

- limit efforts for test case generation;

- reduce time needed to modify test cases after changes in requirements;

- support users during the analysis phase of the entire system life cycle.

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 10 of 54

1.2 Relationship to other CRYSTAL Documents
This table shows the relationship between other CRYSTAL documents and bricks of this

deliverable.

CRYSTAL

Code Title Bricks

D301.010 Use Case Definition B3.12

D304.011 Use Case Definition. B3.12 B3.100

D307.011 Public Use Case Automotive. B3.100

D501.010 Data and methodologies report. B5.1 B5.3 B5.4

D501.020 Use Requirements Specification. B5.1 B5.3 B5.4

D612.011 Specification, Development and Assessment for Validation Models - V1

Table 1-1: Relationship to other Crystal Documents

1.3 Structure of this document
This document is organized as follows:

- Chapter 1 (this chapter) provides an overview of the document;

- Chapters 2-13 are arranged by bricks, each brick is represented in a separate section and each
section contains at least a brief description of the brick.

A brick in Crystal may be a Software Tool (Single Tool, Pre-Integrated Set of Tools, Software
Platform), a Method (how to…), a Process (work flows, information flows,…) or a Specification
(Language, Interoperability,…).

For each bricks of WP 6.12 there is a base common structure (other sub-chapter are available as
needed) as follow:

o Description, a general description of the purpose and functionality;

o Use case coverage and application;

o General improvement;

o Integration and interoperability.

Extensions, enhancements, improvements of Bricks developed in CRYSTAL to meet the UC needs
are technical solutions represented and documented as Technical Items (TI) A Brick can be
associated by one or more Technical Items.

- The remaining chapters contains tables about Abbreviations, References, etc.

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 11 of 54

2 Validation Process (B3.12)

2.1 Description

Name: Validation Process

Contact: TICHY Matthias (tichy@chalmers.se)

Dependencies Brick B3.7 Model-based requirements engineering

License N/A

Additional
information

This methodology brick contains the definition of a validation process for automotive systems with a specific
focus on the Use Case 3.1. The validation process targets the model-driven software engineering approach
and additionally, as a result of the Use Case 3.1 definition, focuses on the requirements and design phases
where modeling will be used. This brick also depends on the Brick B3.7 “Model-based requirements
engineering” that focuses on using model-based approaches for formally specifying requirements for
embedded systems.

In the initial phase, we worked on the requirements engineering phase and performed a systematic mapping
study to assess the state of the art of validation in model-based requirements engineering for automotive
systems together with Brick B3.7. A specific focus of the research was to identify approaches that have been
empirically validated in industrial projects, as those are the most relevant for Crystal.

Figure 2-1: Research method

Figure 2 1 shows the employed research method. First, we defined the research questions to guide our
research. In the second step, we conducted the search using keyword search on different literature
databases. The resulting papers were filtered based on inclusion and exclusion criteria in step 3. We
extracted the data from the papers with respect to our research questions in the final step.

Research questions

RQ1: Which model-based requirements engineering approaches exist targeting automotive or embedded
software?

RQ2: Which validation and verification activities are supported?

Conducting search

The data collection was performed on IEEE Xplore and the ACM digital library (which also includes papers
from SpringerLink, the digital library of Springer) with the following query:

(automotive OR embedded)

AND (intitle:requirement)

AND (model OR modeling OR formal OR executable)

1) Define Research
Questions

2) Conducting Search 3) Filtering 4) Data Extraction

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 12 of 54

The first part of the search string restricts the papers to those, which include the term embedded and
automotive, as these are our domains of interest. The second part of the search string restricts the results to
those, which have “requirement” in the title. We restricted the search term “requirement” to appear in the
paper's title since the term is used in many unrelated papers in the body text. Furthermore, it showed during
definition of the search term that papers, which deal with model-based requirements engineering used the
term requirement in the title. Finally, we restricted the search to those papers which use the terms “model”,
“modeling”, “formal” and “executable” in order to find only those papers which deal with model-based
requirements engineering. The search resulted in 266 papers on IEEE Xplore and 298 papers in the ACM
Digital Library.

Filtering

Based on the search results, we manually filtered each paper by inclusion and exclusion criteria. The
inclusion criteria were: “behavioral models, automotive or embedded systems focus, requirements
engineering”. The exclusion criteria: “focusing only on tracing, unrelated to model-driven development,
focusing only on variability, focusing only on non-functional properties”. The filtering was done on the
abstracts of the papers initially and additionally on the papers themselves in case of doubts and on all
papers that were finally included. As a result of the filtering, we found 40 relevant papers in the ACM digital
library search results and 74 relevant papers in the IEEE Xplore results.

Data Extraction

All selected papers were classified according to different categories with respect to the research questions.
As a pre-defined fixed set of categories was not sufficient the validation and verification activities, the list of
categories was extended during the data extraction phase. We define “industrially relevant papers” as those,
which report about the application of an approach to an industrial system or to a standard like the European
Train Control System (ETCS), which on the one hand has a considerable complexity and also will be
implemented by companies.

Results

In the following, we present an overview of the results from the mapping. We show the number of all relevant
papers and additionally give references for those that report on industrial application as they are the most
relevant to Crystal (See Figure 2 3). We refer to Deliverable D603.011 for a description of which domains the
different papers target, which modeling languages are used in the different papers, and which aspects of the
system’s requirements can be modeled.

Figure 2-2: Most popular validation and verification techniques

From our initial results, 20% of the papers were relevant with respect to our research questions but only 4%
reported on experiences in an industrial setting. The majority of the papers were published in the last five
years. From a validation perspective, many different validation techniques were employed. However, clearly,

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 13 of 54

both in all papers and in the ones with industrial application, four techniques are employed most: static
consistency checks, test case generation, simulation, and model checking as formal method.

2.2 Identified requirements for extension
Based on these results and discussions in the Use Case 3.1, we currently focus on the requirements phase
and use the Brick B3.7 on scenario-based modelling of requirements, specifically Modal Sequence Diagrams
(See Deliverable D603.011) as modeling approach. With respect to validation, we currently focus on
simulation from the list above. The employed approach/tool supports manual simulation by stepping through
the scenarios and their interaction.

One identified requirement is the support for using the scenarios as test oracles in automated tests of
systems that implement the requirements. This requires an automation of the simulation and the definition of
an appropriate interface to interact with the test oracle.

Another requirement for extension is the support for the integration of continuous behaviour. While the
currently employed modeling formalism (and the simulation) supports scenarios of discrete message
exchange and corresponding manual simulation, it was identified that continuous behaviour like the speed
and the acceleration of the car is an important part of the requirements and will be integrated into the
formalism in Brick B3.7. This has the obvious impact on the validation support such that it also must consider
that part to the required extent.

2.3 Use Case coverage and application
The brick is used in the Use Case 3.1. Furthermore, due to the dependency on Brick B6.3 and its
involvement in Use Case 3.4, we get specific needs from that use case as well.

While the exact needs from Use Case 3.1 need to be defined, the above described identified requirements
coming from the Use Case 3.4 are also suitable for Use Case 3.1.

2.4 General Improvement
The definition of Technical Items, which represent extensions, enhancements and improvements of Bricks
developed in CRYSTAL to meet the UC needs, except from Interoperability, will be part of the next phase of
the project.

2.5 Integration and Interoperability
The definition of Technical Items, which represent solutions related to the interoperability of Bricks, will be
part of the next phase of the project.

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 14 of 54

3 AVL VeVaT/Magic (B3.49)

3.1 Description

Name: AVL VeVaT/Magic

Contact: STIEGLBAUER Gerald (gerald.stieglbauer@avl.com)

Technical Information: This brick will be about requirement verification and validation based on
measurement results of particular test cycles in the automotive domain.

Operation
System/platform

Windows

Version N/A

Type of Input
Data

Formal Requirements, Measurement results

Type of Output
Data

Verified Requirements

Dependencies N/A

License

Additional
information

N/A

AVL MAGIC automates the post processing. It is designed to manipulate large amount of data. The
extensive toolkit library makes the design of processing sequence straight forward. Fully integrated in the
automation system it enables a direct online processing while the tests are running.

AVL VeVaT works on top of Magic and is used for verification and validation based on the results delivered
by Magic and on the basis of the associated requirements.

3.1.1 Tool/method description: what will you find in AVL VeVaT/Magic

AVL VEVAT is a Verification & Validation Tool for various software products resp. software modules which

generate voluminous numerical output – e.g. numerous single result values and/or huge sequences of

numerical values (e.g. multi-channel time history data).

It provides two approaches for validating product functionality via checking the correctness of its numerical

output data:

 Comparison of actual output data to already validated reference output data (mainly used for

regression tests, where output data of a new product version get compared to validated data of a

preceding software release)

 Detecting/deriving significant properties of output data (time history data) and compare them to

numerical product requirements (e.g. deriving properties of a vehicle braking event from road

measurement data and checking, whether e.g. braking time, braking distance, deceleration, ABS-

influences etc. reside within required limits); therefore no pre-validated reference data but just the

numerical requirements are needed.

In order to obtain practical validation results (PASSED / FAILED statements), comparison parameters

(significance of checked values, acceptable deviations resp. tolerances etc.) can be optionally user-defined

at several hierarchy levels (for entire result files, for particular data channel groups, or even for individual

data channels resp. single values).

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 15 of 54

VEVAT generates validation reports, which supply PASSED / DOUBTFUL / FAILED validation statements at
several hierarchy levels, i.e. an overall statement and more detailed statements for subsections of analyzed
data – even for single values where beside PASSED / FAILED statements furthermore the reference value,
the actual value, the calculated deviation etc. is displayed.

The following example shows a validation report of an emission test result at channel group level (number

and percentage of channels that are stated as passed, failed, unchecked etc.):

Figure 3-1: VEVAT Validation report on channel group level

Validation status and
comment

PASSED, doubtful,
FAILED, unchecked

Significance for
validation

essential, relevant,
ignored (doesn‘t affect

Statistical survey
Number of checked

channels,
thereof PASSED,

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 16 of 54

The following example shows a validation report of an emission test result at single channel resp. single
value level (PASSED, FAILED, unchecked statement as well as numerical values and deviations):

Figure 3-2: VEVAT Validation report on single value level

AVL VeVaT works on top of the tool AVL Magic and is used for verification and validation based on the

results generated at test runs and on the basis of the associated requirements.

AVL MAGIC automates the post processing. It is designed to manipulate large amount of data. The

extensive toolkit library makes the design of processing sequence straight forward. Fully integrated in the

automation system it enables a direct online processing while the tests are running.

3.2 Use Case coverage and application
AVL VeVaT/Magic will be mostly covered by WP3.4 (UC3.4a). Here it has mostly deal with two input data

categories: Requirements and measurement results of test cycle iterations in the automotive domain.

Requirements for vehicle development and testing are represented in different forms. At the beginning of a

project, they are formulated by informal textual representations. In order to verify requirements (semi-)

automatically the need to be (semi-) formalized. (Semi-) formalized representations would be for instance

boilerplate expressions.

In the corresponding use case scenario of WP3.4, for instance, the WLTP specification (which is an up-

coming specification for world-wide harmonized emission legislation) is the foundation for the testing

requirements (in addition to the vehicle requirements). Thus these specifications have to be formalized. In

our use case we will examine three (semi-)formal representations: Boilerplates, requirement models in form

of SysML models and sequenced based requirement representations (based on SysML as well). All these

representations are created by different tools and need to be interlinked to enable traceability.

Significance for
validation

essential, relevant or
ignored (doesn‘t affect

Validation status
and comment

PASSED, doubtful,
FAILED, unchecked

Numeric values and
deviations

Value of checked channel and

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 17 of 54

The requirements should be represented in as much representations as possible/useful. The following tools

are considered for the various representations:

 HP Quality Center (informal requirement representation, an ALM tool such as PTC Integrity is

considered to be an alternative tool)

 ViF Boilerplate Prototype tool

 Artisan Studio (for SysML representations)

Measurement results is the data output of a concrete test-run execution. These results need to be analysed

and requirements have to be validated against these analyses. Furthermore test-run inputs and

measurement outputs are building the basis for the definition of a calibration model.

The following requirements could be associated with concrete measurement results. The exact content and

meaning of measurement results often differs from case to case and especially between different testing

phases. Consequently a mapping and unique interpretation of the measurement results is considered as an

interoperability challenge. The table below associates selected vehicle and testing requirements to particular

tools that manages them in various testing phases. If a 1:1 mapping of measurement result and the related

requirement is not possible measurement result post-processing is provided by separate tools such as AVL

Magic.

In WP3.4 there, a well specified engineering method deals with the task of verification of requirements using
AVL VeVaT/Magic. Purpose of this engineering method is the verification of requirements against a specific
test results (e.g. measurement results) of a specific test case. At this point of the engineering method, it is
not distinguished between natural textual requirements and (semi-)formalized requirements. Thus the tools
on the requirement management side are HP Quality Center, Artisan Studio and the boilerplate prototype
application. These requirements are verified by concrete test cases that lead to specific measurement
results. AVL Santorin is the tool of choice in this use case to manage and access these measurement
results. The actual process of requirement verification is captured by the AVL VeVaT tool. Due to the
availability of proper data artefact links, AVL VeVaT is able to compare the measurement results against the
formalized requirements and finally verifies or falsifies the associated natural language requirement. If some
measurement value post-processing is needed for that step, AVL VeVaT instruments AVL Magic, which is
designed for such tasks.

3.3 General Improvement
The major objective of this task is to improve interoperability with other tools which are usually used in tight

collaboration with AVL VeVaT/Magic. A use case for such collaboration will be developed in WP3.4a. Special

focus of collaboration will be the interoperability with the brick Simulation Model Backbone Database (B3.83),

which will be developed in WP6.13. It is expected that for AVL VeVaT an increase amount of features has to

be implemented for the use case – e.g. support for handling requirement lists (requirement definitions as well

as requirement validation status) as shown in the picture below:

The definition of Technical Items, which represent extensions, enhancements and improvements of Bricks
developed in CRYSTAL to meet the UC needs, except from Interoperability, will be part of the next phase of
the project.

3.4 Integration and Interoperability
In order to improve collaboration as described above, AVL VeVaT/Magic should be seamlessly integrated
into the CRYSTAL interoperability standard, which a special focus on interoperability with brick B3.83
(WP6.13) as well as with bricks that are used in WP3.4.

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 18 of 54

In addition to that Figure 3-3: Integration of AVL VeVaT/Magic within the IOS concept shows a possible
concept for IOS/OSLC integration. The corresponding OSLC RM/QM domains provide high-level data
structures for the definition of data relations. In case of an AVL VeVaT/Magic integration an adequate linked-
data structure then provides relations between concrete requirements (in natural language or even semi-
formalized), test cases and measurement values (which are created by the execution of test cases). In
addition, AVL Santorin (applied within WP3.4) is a specialized tool for measurement result management.
AVL Santorin adheres to the ASAM ODS standard created for a standardized representation measurement
values. AVL Magic is able to interpret this standard and thus can import the measurement values for post-
processing. On the one hand, AVL VeVat (which works on top of AVL Magic) directly communicates with
AVL Magic regarding the results of this post-processing step. On the other hand it should have a
corresponding access layer (via an OSLC adapter) to the OSLC-based data structure. In that way it can
analyse the belonging semi-formalized requirements with the post-processed measurement data. Depending
on the result of this analysis, corresponding flags about the status of the belonging requirements are set in
the requirement management tools. These requirement management tools will be extended as well by a
OSLC adapter in order to enable that kind of tool interoperability.

Figure 3-3: Integration of AVL VeVaT/Magic within the IOS concept

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 19 of 54

Figure 3-4: VEVAT Internal requirements container

The left group of columns Requirement definitions contains the requirement properties that are supplied by

the requirements management tool (HP Quality Center®) via IOS/OSLC. The right group of columns

Validation results contains the validation status, comments etc. that can be returned to the requirements

management tool via IOS/OSLC.

Besides of improvements on the tool that become necessary in order to comply with the CRYSTAL

interoperability standard, several features have to be implemented for the tools in order to fit the related use

case requirements.

The definition of Technical Items, which represent solutions related to the interoperability of Bricks, will be
part of the next phase of the project.

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 20 of 54

4 RequisitePro (B3.86)

4.1 Description

Name: RequisitePro

Contact: Serrie.chapman@infineon.com

http://www-03.ibm.com/software/products/en/reqpro

Operating
System

Windows terminal server

Version N/A

Type of Input
Data

Manual semi-formalised natural language

Type of Output
Data

ARQE.xml

Dependencies Currently none – manual input. Possible link to a Quality tool (DODT from the
ARTEMIS CESAR project) and B3.87 Clearquest

License Token license

Additional
information

Requisite Pro is being passed out currently by IBM so resources spent on
integrating this tool wrt a long term solution may not be truly feasible and we
may consider moving the work to integrating the replacement solution in its
place

Requisite Pro is IBM’s Requirements Management tool http://www-03.ibm.com/software/products/en/reqpro/
. In reality IBM are in fact phasing this out for a new replacement, however within inFineon, although we
have analysed and decided to move from RequisitePro to Visure http://www.visuresolutions.co.uk , within the
40nm Crystal Infineon project it is too late to move over to the new tool so we need to consider how we can
interface.

4.1.1 General Description

IBM® Rational® RequisitePro® is a requirements and use case management tool for project teams. Teams
can author and share their requirements using familiar document-based methods, while using database
capabilities such as traceability and impact analysis.

4.2 Use Case coverage and application

4.2.1 Use Case 3.3

Improve the capture, allocation and implementation of all stakeholder requirements for the next Infineon
40nm Microcontroller product family to:

 Improve comprehension and communication of requirements internally and externally.

4.2.2 Requirements fulfilled by initial tool/method version

Currently the requirements have been manually improved to be of good quality and to be an internal semi-
formal Natural language type. The Hierarchy within the tool has been much improved since the last product
family as it is well considered and can be used throughout the flow to assist with tooling.

http://www-03.ibm.com/software/products/en/reqpro

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 21 of 54

Automation of documentation from the database has already been implemented and we are working on
extractions for the Verification flow.

4.2.3 What will be implemented/provided in the CRYSTAL project

A full automation from the RequisitePro database into tooling and documentation will be achieved and will
ensure data integrity within the flow

4.2.3.1 New and improved features

 Traceability between internal and external requirements to allow well separated documents for
different customers to improve customer interface

 Automation of extract of atomic requirements to be used directly for specification and for the test
plan tooling

4.3 General Improvement

4.3.1 Implementation

A Cron job delivers an updated xml within the configuration management system whenever and only when
an update has occurred that affects the requirements

A Script is triggered by this which does an intelligent diff, it is needed to identify only the sub IP/domain xmls
that need updating and overwrite the original xml within clearcase configuration management system.

The definition of Technical Items, which represent extensions, enhancements and improvements of Bricks
developed in CRYSTAL to meet the UC needs, except from Interoperability, will be part of the next phase of
the project.

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 22 of 54

4.4 Integration and Interoperability

4.4.1 Interoperability requirements

Linkage between the Clearquest change management system and RequisitePro database is currently an
issue and may need a common interface – although a DODT equivalent may provide an interim step, in
which case interoperability with the DODT will be necessary.

The definition of Technical Items, which represent solutions related to the interoperability of Bricks, will be
part of the next phase of the project.

4.4.2 How will this brick be integrated in the UC

Figure 4-1: RequisitePro toolchain integration

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 23 of 54

5 ClearQuest (B3.87)

5.1 Description

Name: ClearQuest

Contact: Serrie.chapman@infineon.com

http://www-03.ibm.com/software/products/en/clearquest/

Operating
System

Windows terminal server

Version N/A

Type of Input
Data

Manual

Type of Output
Data

Manual

Dependencies None currently needs to link to RequisitePro B3.86

License Rational Common Licensing multisite

Additional
information

As with Requisite Pro, this is being replaced with Jira. Analysis of the cost of
integrating an automated solution between Clearquest and Requisite pro may
suggest that we look at the Jira/Visure integration instead

IBM® Rational® ClearQuest® is application lifecycle management (ALM) software that provides flexible
change and defect tracking, customizable processes, real-time reporting and lifecycle traceability for better
visibility and control of the software development lifecycle.

Essentially this is a database which contains, amongst other data, a list of all requirements that come into
the project after the first requirements analysis and quality review of the agreed product requirements has
occurred.

5.2 Use Case coverage and application

5.2.1 Requirements fulfilled by initial tool/method version

A clear set of rules and processes are already defined for the Change management tooling – although the
translation process from the Change database into the requirement database is manual and there is a risk of
data corruption between the two.

5.2.2 What will be implemented/provided in the CRYSTAL project

Automation between ClearQuest and RequisitePro to ensure quality and data integrity – via the DODT (see
Brick B3.99) is the improvement that we plan to implement within the Crystal project.

5.3 General Improvement
The definition of Technical Items will be part of the next phase of the project.

http://www-03.ibm.com/software/products/en/clearquest/

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 24 of 54

5.4 Integration and Interoperability

5.4.1 How will this brick be integrated in the UC

After the initial collation and review of the requirements and once the product development has started ALL
changes, new or rejected requirements must go through the Change management system, thus making this
the starting Brick in the process. There needs to be a very specific set of rules & process relating to any
changes after a requirement contractual agreement, this should be documented and under Configuration
management.

All Changes that relate to a change in the requirements list must ensure that they meet the quality criteria –
currently this is a manual process, within crystal we will attempt to automate this (see Brick B3.99).

Figure 5-1: ClearQuest toolchain integration

The definition of Technical Items will be part of the next phase of the project.

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 25 of 54

6 Reqtify (B3.88)

6.1 Description

Name: Reqtify

Contact: Serrie.chapman@infineon.com

http://www.3ds.com/products-services/catia/capabilities/systems-engineering/requirements-
engineering/reqtify

Operating
System

Windows terminal server for licenses local install (also available on terminal
server)

Version N/A

Type of Input
Data

ARQE.xml

Type of Output
Data

PDF Excel

Dependencies All documentation and asuresign B3.91

License Multisite permanent (maintenance only, limited licenses)

Additional
information

Reqtify in itself is a linkage tool – we don't believe that it will require any
updates but a 'type' may be needed to ensure it can read the IOS

Reqtify offers a comprehensive list of interfaces to multiple systems engineering tools. Reqtify can capture
data from any source (file, database) of any vendor in a wide variety of data and file formats. It is an open
and extendible platform and has interfaces to more than 60 common systems engineering tools. It can also
produce Documentation from the sources, analyzing the coverage figures, which can serve as proof of
requirements traceability and coverage for audit proving.

6.2 Use Case coverage and application

6.2.1 Use Case 3.3

Changes at any level may have an effect on multiple levels of implementation within the requirements tracing
flow. Linking the matching requirements correctly and ensuring that refinement of the requirements is traced
although it does have some issues with ensuring correctness, needing review and ensuring the tool chain is
complete.

6.2.2 Requirements fulfilled by initial tool/method version

The Requirements Traceability Tree

The Requirements Traceability tree is essentially a tree of interlinked documents. Each level of the tree
hierarchy can be assigned to a different part of the requirements process and it is subjective about the level
of granularity and also how and where the argument or proof of correctness is.

Within Infineon we categorise into the following four sections:

- Requirements;

- Intention to implement the requirement;

- Intention to prove implementation of the requirement

- Proof of correct implementation of the requirement.

http://www.3ds.com/products-services/catia/capabilities/systems-engineering/requirements-engineering/reqtify
http://www.3ds.com/products-services/catia/capabilities/systems-engineering/requirements-engineering/reqtify

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 26 of 54

6.2.3 What will be implemented/provided in the CRYSTAL project

Reqtify will continue to link the documentation – it will be extended to ensure that it can translate the
exported AREQ.xml information into the flow to be included within the Requirements Traceability Reports
(RTR’s)

6.3 General Improvement

6.3.1 Implementation

A first link to an example export from asuressign has been implemented. It is likely that this will need some
changes throughout the lifetime of the CRYSTAL project.

The definition of Technical Items, which represent extensions, enhancements and improvements of Bricks
developed in CRYSTAL to meet the UC needs, except from Interoperability, will be part of the next phase of
the project.

6.4 Integration and Interoperability

6.4.1 How will this brick be integrated in the UC

Reqtify essentially acts as the glue within the documentation tree and produces audit proof documentation to
show the coverage of the requirements. It is also able to analyse and extract metadata relating to the
configuration management version etc so that the reports can be replicated at any time.

Figure 6-1: Reqtify toolchain integration

The definition of Technical Items, which represent solutions related to the interoperability of Bricks, will be
part of the next phase of the project.

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 27 of 54

7 ReqIF (B3.89)

7.1 Description

Name: ReqIF

Contact: Serrie.chapman@infineon.com

http://en.wikipedia.org/wiki/Requirements_Interchange_Format

Operating
System

Any

Version N/A

Type of Input
Data

Xml schema

Type of Output
Data

Xml schema

Dependencies requsitePro/Clearquest B8.6 B 8.7 (possibly the CESAR DODT tool)

License None – free download

Additional
information

We will be looking at any possible harmonisation of ReqIf and ARQE.xml

RIF/ReqIF (Requirements Interchange Format) is an XML file format that can be used to exchange
requirements, along with its associated metadata, between software tools from different vendors. The
requirements exchange format also defines a workflow for transmitting the status of requirements between
partners. Although developed in the automotive industry, ReqIF is suitable for lossless exchange of
requirements in any industry.

7.2 Use Case coverage and application

7.2.1 Use Case 3.3

7.2.1.1 What format they are in

All stakeholders agree on interface format Excel/Word/UML etc

 Agreement on pictorial or ontological meanings to remove ambiguity

 Agreement on any standard interface formats and usage

 Agreement on hierarchical requirements database structure

7.2.1.2 Requirements fulfilled by initial tool/method version

None – ARQE.xml addresses asuresign, Requisite Pro and Reqtify currently, whereas ReqIF is believed to
work between RM tools only.

7.2.1.3 What will be implemented/provided in the CRYSTAL project

Ensuring that either we can extend or merge with the ReqIF to allow it to fully support further than just the
RM tools. It may take the place of an extension, but we would like to ensure there is no conflict between
ARQE.xml and ReqIF.

http://en.wikipedia.org/wiki/Requirements_Interchange_Format

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 28 of 54

7.3 General Improvement
The definition of Technical Items will be part of the next phase of the project.

7.4 Integration and Interoperability

7.4.1 Interoperability requirements

Extension of ReqIf via an extension to ensure interoperability with an extended toolset and not just the RM
tools and by extensions just requirements data – extend towards Configuration management and change
management tools as well as proof information.

7.4.2 How will this brick be integrated in the UC

Currently Infineon use its own xml schema to share information across its tooling. This is the area that few
will be ensuring that it can either contain a superset of the ARQE.xml or does not clash. Therefore any area
within the dataflow that interacts via ARAE.xml may require integration with this standard.

Figure 7-1: ReqIF toolchain integration

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 29 of 54

8 Documentum (B3.90)

8.1 Description

Name: Documentum

Contact: Serrie.chapman@infineon.com

http://www.emc.com/domains/documentum/index.htm?id=902

Operating
System

Windows

Version0 N/A

Type of Input
Data

Documentation

Type of Output
Data

None – storage only

Dependencies Reqtify B3.88 release manager (internal tool)

License Global

Additional
information

Documentum is an enterprise content management platform. Enterprise Content Management (ECM) is a
formalized means of organizing and storing an organization's documents, and other content, that relate to
the organization's processes. The term encompasses strategies, methods, and tools used throughout the
lifecycle of the content.

8.2 Use Case coverage and application

8.2.1 Use Case 3.3

Ensure information on reviewers/comments/date etc is all saved with all of the documents produced using
the requirements database as their source within a configuration management tool

8.2.2 Requirements fulfilled by initial tool/method version

Currently this is the official release storage database for all of the documents required within the audit flow
so it is allowing audit proofing for the ISO26262 standard.

8.2.3 What will be implemented/provided in the CRYSTAL project

The hierarchy within Documentum will be aligned over time with the other storage area hierarchies.

8.3 General Improvement
The definition of Technical Items will be part of the next phase of the project.

http://www.emc.com/domains/documentum/index.htm?id=902

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 30 of 54

8.4 Integration and Interoperability

8.4.1 Interoperability requirements

Documentum needs to have interoperability with KiD and with the release manager. This may be possible
with OSLC.

8.4.2 How will this brick be integrated in the UC

Documentum has an approval and acceptance flow that is essential for ensuring good audit proof
documentation storage. Although there is a new dita based flow with its own content management system
integrated, this is only storage for xml formats. There are a variety of other documents such as the
Requirement Traceability Reports (RTR’s) and FMEDA etc which are not of an xml types and as such
Documentum is required to ensure that these are safely signed off.

Figure 8-1: Documentum toolchain integration

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 31 of 54

9 Asuresign (B3.91)

9.1 Description

Name: Asuresign

Contact: Serrie.chapman@infineon.com

http://testandverification.com/solutions/requirements/

Operating
System

Windows/linux/solaris

Version N/A

Type of Input
Data

ARQE.xml

Type of Output
Data

ARQE.xml/PDF

Dependencies Requirements in ARQE.xml format

License Open global

Additional
information

This product is new and has been driven by Infineon UK to bridge the gap
between Requirements and Verification results in what we term "Requirements
driven verification"

Asuresign is essentially a data analyser and addresses the ‘proof of implementation’ issue. It is the bridge
between the requirements Traceability flow and the Test/verification/validation proof log files. It also analyses
results from reqressions overtime to assist with debug and managements of Verfication/Validation/Test
projects.

9.2 Use Case coverage and application

9.2.1 Use Case 3.3

Once a requirements traceability tree has been defined then it is a question of how we can prove
implementation. The ISO 26262 requires an argumented proof of a requirement being implemented
correctly.

Dependant on the requirement this may be proven in many ways, examples such as ‘There shall be an
FMEDA document” may be covered with the existence of the document, however most functional
requirements will need tracing down to some tests reports or results. When the proving of a requirement
may occur at multiple domain levels then things become more complex as the interoperability of multiple
tools and results and matching those into the requirements tracing tree is not a simple task.

Within Crystal Infineon plan to deploy a new external tool called asuresign from TVS – work to allow it to link
into the requirements tracing tree is currently under test. The tool essentially extracts data from regressions,
which it can analyse and do comparisons from. It can also determine whether or not a requirement has been
checked, define the pass criteria and translate that data for the requirements traceability reports information.

9.2.2 Requirements fulfilled by initial tool/method version

“Proof of implementation” will be fulfilled by the initial tooling. It will give the traceability flow the bility to
analyse and link into the bottom of the requirements traceability flow.

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 32 of 54

9.2.3 What will be implemented/provided in the CRYSTAL project

 Full seamless integration of the tool

 Automation of the analysis of the results

 Automation of the links and results back into the requirements tracing flow

 Extension across all the domains .. pre silicon, post silicon and sw

9.3 General Improvement

9.3.1 Implementation

The Tool is currently at the end of alpha testing and is in its first rollout phase. The flow around it is being
implemented within the CRYSTAL project and is at stage one of three towards completion.

The definition of Technical Items, which represent extensions, enhancements and improvements of Bricks
developed in CRYSTAL to meet the UC needs, except from Interoperability, will be part of the next phase of
the project.

9.4 Integration and Interoperability

9.4.1 Interoperability requirements

For interoperability asuresign fully supports the IFX ARQE.xml schema for import & export mechanisms. It is
currently under analysis how to automate the moving of xml’s from and to asuresign within the flow via the
release manager.

9.4.2 How will this brick be integrated in the UC

Asuresign is integrated at the bottom of the toolchain as it is designed to link to the bottom of the
requirement tracing tree. As there will be multiple databases across the variants and within the work
products themselves relating to which test domain and which IP, Subsystem or System. It is therefore
necessary to ensure the correct data is implemented for each of the databases and as such there are a
variety of scripts being written and automated processes that are required to drive data in and out of the tool
and back to the Requirements trace flow

Figure 9-1: Asuresign toolchain integration

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 33 of 54

10 Rail Model (B5.1)

10.1 Description

Name: Rail Model

Contact: BARBERIO Gregorio (g.barberio@mateconsulting.it)

Operation
System/platform

Windows

Version N/A

Type of Input
Data

Behavioural description of the system under analysis, Formal Requirements

Type of Output
Data

Test cases in a formal language

Dependencies

License

Additional
information

This chapter discusses the specification of the B5.1 Rail Model brick – developed by Mate. Rail Model is a

complete modelling environment which can be adopted to model a complex and safety-critical system

(typical of the rail domain). In particular the brick shall allow the two following main functionalities:

a) the behavioural modelling of complex and asynchronous systems and the formal representation of
their requirements;

b) the semi-automatic generation of functional test scripts from the model itself.

This brick can be used in a chain with other bricks of the rail domain in order to support the validation
activities of a specific signalling system. In fact the output of this brick represent the input of the brick B5.3
which takes charge of transforming the test cases, here generated, in corresponding test cases written in the
IOP language (a standard language for the rail domain). The outputs of the test executions are then
analysed by the brick B5.4 in order to support their outcomes analysis.

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 34 of 54

Figure 10-1: Validation workflow and supporting bricks

The figure above lists the main validation activities of a system and shows the supporting brick for each step.
The step related to the execution of test case is not supported by bricks since it is performed by each railway
industry with proprietary artefacts and tools.

10.1.1 Modelling the behaviour and requirements of complex and safety critical
systems

The system modelling is the first step of the validation workflow; the brick B5.1 offers a complete modelling
environment which helps the V&V Engineers during this activity. As highly recommended by standards
applicable in the railway domain and as widely adopted by industries, this brick provides the modellers with
an ad-hoc extendible modelling language based on the Finite State Machine (FSM) formalism. The FSM
formalism allows defining the control structure of the system in terms of its states, possible inputs, and
obtained actions. In fact safety-critical systems shall be completely specified for every input in every state:
FSMs show how the system moves from one state to another as resulting from receipt of an input in a given
state.

The development of the brick B5.1 shall integrate this new modelling language which is able to provide the
modellers with all and only the concepts that she/he needs. The new language will implement a formal
semantics and will have a clear syntax since no ambiguities are admitted during the modelling of a safety-
critical system. The same modelling language shall support also the definition of Test Specifications which
reflects the system Requirements listed in apposite documents.

The definition of this new modelling language is also necessary to enable the automatic generation of Test
Cases [MOGENTES, 2008] with the information contained into source models. The generated Test Cases
are also expressed with the same modelling language in order to be opened, read and edited with the same
brick B5.1.

Hence the brick shall implements the following functionality for what concerning system modelling:

- definition of a the system model in terms of state machines;

- definition of communication mechanisms between state machines;

- modelling of test specifications and annotating of system related system requirements;

- static analysis of the model;

- generation of simulation traces from the source model.

Modeling the system and its requirements (Brick B5.1)

Verifying the model / Generating test cases (Brick B5.1)

Transforming test cases in IOP language (Brick B5.3)

Executing tests on the real system or on simulated
environments (external phase)

Analysing Test Logs (Brick B5.4)

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 35 of 54

10.1.2 Semi-automatic test case generation

After the complete definition of the system model and of the test specifications, it shall be possible to
generate test cases [Javed, 2007]. The brick B5.1 supports this activity allowing their automatic generation.

The brick shall allow the traceability between test specifications and test cases. The adopted technique
which helps the test case generation is based on model checking [Gargantini, 1999], , that allow to not
generating test cases only if the test specification is effectively infeasible; otherwise the brick eventually
generates the test case.

Generated test cases are transformed back into the source formalism in order to be showed to V&V
engineers with the same graphical editor and the same language used to model the system. Generated Test
Cases can be also edited by V&V Engineer, adding their specific knowledge of the system and of the
domain.

10.2 Use Case coverage and application
To achieve the objectives described in the previous paragraph, below a brief introduction to one of use cases
of the rail domain deeply described the deliverable D501.020.

The Radio Block Centre (RBC) is the basic component of the ETCS level2 signalling architecture: it is placed
in a special central place from which the system, via Command and Control, is kept under control; it also
manages the movement of trains. By means of radio transmission based on GSM-R standard, each train
receives all the parameters to be respected as:

 speed;

 constraints relative to the path;

 possible temporary slowdowns;

 text messages or other information;

It is necessary to maintain the proper spacing between trains in circulation. All trains report automatically
their exact position and direction of travel to the Radio Block Centre (RBC), at regular intervals. The Radio
Block Centre monitors train movements continually. The movement authority is transmitted to the vehicle
continuously via GSM-R together with speed information and route data. The information coming from the
Radio Block Centre is elaborated and displayed on the locomotive dashboard (DMI), which will indicate the
target rate, the free distance ahead and a range of information including the maximum allowed speed.

Each new implementation of the RBC requires the application of a new validation cycle which requires the
definition of test cases, their execution on the system and the log analysis. In particular the generation of test
cases is actually performed manually with a great effort in terms of time and costs. This effort corresponds to
a great investment in terms of involved people and to, sometimes, delayed deadlines (with the payment of
economic penalties in some cases). The brick B5.1 shall help the V&V engineers in performing this activity,
reducing time and costs of the test case generation step.

Another important improvement given by the adoption of this brick resides in the supporting of regression
testing [Jouault, 2006]: this brick and the others mentioned above (B5.3 and B5.4) shall help the V&V
Engineers to invalidate a set of test cases after an update of the source model (those invalid given the
update) and to regenerate them in a revised version. In this way it would be also possible to maintain
artefacts between similar projects.

10.3 General Improvement
Here a description of the Technical Items offered by this Brick.

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 36 of 54

TI NAME: Non-functional improvements

TI_ID CRYSTAL_TI_612_10_1
Kind
of TI

G
Contact

email
TBD

Description:

In this technical item are achieved the following results:

 Storage: The system contains a unique repository for the storage of all data managed by tools
belonging to the chain. The requirement can be satisfied having the possibility to navigate
through the contents of different archive using a common interface.

 Security: An authentication process is required for accessing the functionality of the system.

 Scalability/Expandability: The system should be able to handle the increasing size of the data
managed.

 Usability: The system must be easy to use. A user interface should give access to all system
functionalities providing easy navigation through all features.

Link to internal working documents:

TI NAME: Support in the creation of System Models

TI_ID CRYSTAL_TI_612_10_2
Kind
of TI

G
Contact

email
TBD

Description:

This technical item consists of modelling the behaviour and requirements of complex and asynchronous
systems, taking into account composition of different subparts. The modelling language adopted in the
tool is an ad-hoc language, defined for railway systems. The system supports the creation, editing and
updating of the system model.

Link to internal working documents:

TI NAME: Generation of System Tests

TI_ID CRYSTAL_TI_612_10_3
Kind
of TI

G
Contact

email
TBD

Description:

This technical item is a solution to achieve two objectives: definition of test specification from the model
itself and semi-automatic generation of test cases. A Test Specification verifies one or more
requirements: this link shall be clearly traced; in this way, after the test execution phase, it's possible to
track requirements not correctly implemented and test cases failed. Within the Generation of test cases,
Test Specifications are translated in a formal language comprehensible by the V&V Engineers; in this
way it’s possible to operate on Test Cases and to have an idea of the model portion stressed by each
Test Case.

Link to internal working documents:

10.4 Integration and Interoperability
Here a description of solution based on Technical Items allocated for this Brick.

TI NAME: Shared data consistency and Traceability

TI_ID CRYSTAL_TI_612_10_6
Kind
of TI

I
Contact

email
TBD

Description:

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 37 of 54

The results achieved in this technical item are divided in two parts: Shared data consistency and
Traceability. Below are described in more detail:

Shared data consistency : Some data is shared between the entire tool chain, for example:

 model that is created in the first tool, is used for the generation of test cases in the subsequent
steps of the tool chain.

For these reasons, the system must ensure that the data shared within and outside the tool chain have
the specification of consistency. If this requirement is not satisfied all results are ambiguous.

The consistency of the data shared between the various tools is achieved by means of a software layer
that implements the collaborative environment between the different tools and defines the ways in which
the tools are able to access this data. It is important to specify that between the various tools there isn't
an exchange of information but a data sharing for collaborative purposes. The tools have direct access
to shared data, then if the environment of sharing does not ensure a consistent representation of the
data, the results of the entire tool chain may not be reliable.

Traceability between the system requirements and test cases: The system must ensure traceability
between the failed tests and requirements that are not correctly implemented due to the failure. This
requirement is very important because it allows identifying, in the analysis phase, the causes of the
failure of the test case; otherwise, the end-user does not find the condition to be corrected. In addition,
the system must ensure that in a not failed test case, there are not requirements not correctly
implemented. Obviously, the traceability requirement is not satisfied if the collaborative environment
does not guarantee the specification of data consistency. Then this requirement is based on the
consistency requirement. This is possible through linking of different objects (i.e. Requirements and
safety artifacts shall be linked to test models and test results for test coverage analysis);

Link to internal working documents:

TI NAME: Semi-automatic modification of test cases

TI_ID CRYSTAL_TI_612_10_7
Kind
of TI

I
Contact

email
TBD

Description:

This technical item is a solution to the semi-automatic modification of tests case after a modification of
system requirements. Here some example about the possible behaviours supported by the tool chain:

 if the user change the requirement of a system, the system shows the tests related to the
requirement that has been changed;

 if a requirement is deleted from the model, the system automatically removes the test that
involves only the requirement eliminated

 if a new requirement is added into the model, automatically, it must also be generated tests for
the new requirement.

 Warning when there are newer versions of the inputs used;

Link to internal working documents:

TI NAME: Collaborative environment resource management

TI_ID CRYSTAL_TI_612_10_8
Kind
of TI

I
Contact
email

TBD

Description:

This technical item is a set of results for collaborative environment resource management. Below are
described in more detail:

 Versioning of files / managing of history;

 Commit atomicity (it should be NOT possible to have partial file committed);

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 38 of 54

 Obligatory description (each time a file is saved/modified/deleted, the user shall provide a
rationale of the action);

 Mutual exclusion of single file (smart management of contemporary modifications to the same
file);

 Warning when used inputs are locked by other users (more tools can access to the same file; if
a tool/user is accessing as read-only to a file, it shall be warned whether the same file is under
modification by another tool/user);

 Warning for the insertion of new files in project;

 File can belong to multiple projects (management of tags or similar methodologies to allow a
single file to belong to different projects/workspaces).

Link to internal working documents:

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 39 of 54

11 IOP test writer (B5.3)

11.1 Description

Name: IOP test writer

Contact: BARBERIO Gregorio (g.barberio@mateconsulting.it)

Operation
System/platform

Windows

Version N/A

Type of Input
Data

Test cases in a formal language

Type of Output
Data

Test cases in a standard language

Dependencies Rail Model

License

Additional
information

IOP test writer consists of the implementation of a tool that allows the creation of test scripts defined in IOP
language. The tool should be used in a chain as described in §10. The test scripts are generated by Rail
Model in a meta-language that allows the tool to be used also on different industrial domains.

The test case meta language, depends strictly on the languages and formalities adopted in the tools

described in the brick B5.1, moreover the file format depends directly on the formats supported by the tools

used. Now the test cases must be converted into a language specific for rail domain independent from the

tools previously used. In this way it will be possible, in the future, to change for example the model checker

without changing the tools that use the tests furthermore using a specific domain language, guarantees the

technical interoperability of tests with other platform. The target IOP language, defined by UNISIG

consortium (being standardizing) allow the execution of interoperable tests in a multi-suppliers environment.

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 40 of 54

Figure 11-1: IOP Test writer tool Input-Output

11.2 Use Case coverage and application
Before introducing the requirements of the tool, here a brief introduction to the scenario.

The European Rail Traffic Management System (ERTMS) is an initiative backed by the European Union to

enhance cross-border interoperability and the procurement of signalling equipment by creating a single

Europe-wide standard for train control and command systems.

Companies developing ERTMS systems includes UNISIG (Union industry of signalling) members.

The ERTMS specifications give some freedom to implement functionalities. Given this freedom, there is no

100% evidence whether a track side and on-board "fit" together even when both are compliant with the

specifications.

However, a good starting point will be the use of a common language to use in the test environment; the

UNISIG is responsible to define that language: IOP language.

IOP (Interoperability testing) is intended to provide a common understanding of how to organize tests for

ETCS projects which helps to improve collaboration of suppliers, customers and authorities for ETCS Tests.

The purpose of the standardization is to make IOP tests interoperable, that means to support cooperative

tests between different suppliers.

Basically, the main requirement of the tool is the transformation of test cases, generated in a meta language,

in IOP language.

After test cases generation phase ended, end-user utilizes the transform function to translate the test case in
IOP language.

Test cases in a custom meta language

Test cases in a specific domain
language

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 41 of 54

11.3 General Improvement
Here a description of solution based on Technical Items allocated for this Brick.

TI NAME: Non-functional improvements

TI_ID CRYSTAL_TI_612_10_1
Kind
of TI

G
Contact

email
TBD

Description:

In this technical item are achieved the following results:

 Storage: The system contains a unique repository for the storage of all data managed by tools
belonging to the chain. The requirement can be satisfied having the possibility to navigate
through the contents of different archive using a common interface.

 Security: An authentication process is required for accessing the functionality of the system.

 Scalability/Expandability: The system should be able to handle the increasing size of the data
managed.

 Usability: The system must be easy to use. A user interface should give access to all system
functionalities providing easy navigation through all features.

Link to internal working documents:

TI NAME: Generation of System Tests

TI_ID CRYSTAL_TI_612_10_3
Kind
of TI

G
Contact

email
TBD

Description:

This technical item is a solution to achieve two objectives: definition of test specification from the model
itself and semi-automatic generation of test cases. A Test Specification verifies one or more
requirements: this link shall be clearly traced; in this way, after the test execution phase, it's possible to
track requirements not correctly implemented and test cases failed. Within the Generation of test cases,
Test Specifications are translated in a formal language comprehensible by the V&V Engineers; in this
way it’s possible to operate on Test Cases and to have an idea of the model portion stressed by each
Test Case.

Link to internal working documents:

11.4 Integration and Interoperability
Here a description of solution based on Technical Items allocated for this Brick.

TI NAME: Shared data consistency and Traceability

TI_ID CRYSTAL_TI_612_10_6
Kind
of TI

I
Contact

email
TBD

Description:

The results achieved in this technical item are divided in two parts: Shared data consistency and
Traceability. Below are described in more detail:

Shared data consistency : Some data is shared between the entire tool chain, for example:

 model that is created in the first tool, is used for the generation of test cases in the subsequent

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 42 of 54

steps of the tool chain.

For these reasons, the system must ensure that the data shared within and outside the tool chain have
the specification of consistency. If this requirement is not satisfied all results are ambiguous.

The consistency of the data shared between the various tools is achieved by means of a software layer
that implements the collaborative environment between the different tools and defines the ways in which
the tools are able to access this data. It is important to specify that between the various tools there isn't
an exchange of information but a data sharing for collaborative purposes. The tools have direct access
to shared data, then if the environment of sharing does not ensure a consistent representation of the
data, the results of the entire tool chain may not be reliable.

Traceability between the system requirements and test cases: The system must ensure traceability
between the failed tests and requirements that are not correctly implemented due to the failure. This
requirement is very important because it allows identifying, in the analysis phase, the causes of the
failure of the test case; otherwise, the end-user does not find the condition to be corrected. In addition,
the system must ensure that in a not failed test case, there are not requirements not correctly
implemented. Obviously, the traceability requirement is not satisfied if the collaborative environment
does not guarantee the specification of data consistency. Then this requirement is based on the
consistency requirement. This is possible through linking of different objects (i.e. Requirements and
safety artifacts shall be linked to test models and test results for test coverage analysis);

Link to internal working documents:

TI NAME: Semi-automatic modification of test cases

TI_ID CRYSTAL_TI_612_10_7
Kind
of TI

I
Contact

email
TBD

Description:

This technical item is a solution to the semi-automatic modification of tests case after a modification of
system requirements. Here some example about the possible behaviours supported by the tool chain:

 if the user change the requirement of a system, the system shows the tests related to the
requirement that has been changed;

 if a requirement is deleted from the model, the system automatically removes the test that
involves only the requirement eliminated

 if a new requirement is added into the model, automatically, it must also be generated tests for
the new requirement.

 Warning when there are newer versions of the inputs used;

Link to internal working documents:

TI NAME: Collaborative environment resource management

TI_ID CRYSTAL_TI_612_10_8
Kind

of TI
I

Contact

email
TBD

Description:

This technical item is a set of results for collaborative environment resource management. Below are

described in more detail:

 Versioning of files / managing of history;

 Commit atomicity (it should be NOT possible to have partial file committed);

 Obligatory description (each time a file is saved/modified/deleted, the user shall provide a

rationale of the action);

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 43 of 54

 Mutual exclusion of single file (smart management of contemporary modifications to the same

file);

 Warning when used inputs are locked by other users (more tools can access to the same file; if

a tool/user is accessing as read-only to a file, it shall be warned whether the same file is under

modification by another tool/user);

 Warning for the insertion of new files in project;

 File can belong to multiple projects (management of tags or similar methodologies to allow a

single file to belong to different projects/workspaces).

Link to internal working documents:

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 44 of 54

12 Log Analyzer (B5.4)

12.1 Description

Name: Log Analyzer

Contact: BARBERIO Gregorio (g.barberio@mateconsulting.it)

Operation
System/platform

Windows

Version N/A

Type of Input
Data

Execution log in a custom format

Type of Output
Data

Report in pdf format

Dependencies Rail Model / IOP test writer

License

Additional
information

The Log Analyzer tool represents the implementation of a tool that relying on the tracing information written
by RailModel, allows the easy identification of failed tests and, more important, of the requirements non-right
implemented. The result of the test campaign is written in a test report document. This tool should be used in
a chain as described in §10.

End-user selects this function by interacting with the GUI of tool chain and have access to log analyzer tool.
To continue with the analysis phase, the tests must have been performed (the test execution task is not part
of the tool chain) and the tests results must be available (we suppose the test execution phase produce a log
in a known format).

Through this feature, it is possible:

 to identify failed tests;

 to analyse failed tests;

 to find the requirements not correctly implemented.

12.1.1 Failed test identification

In this step, end-user identifies the failed tests. To access failed tests, the user, after loading the appropriate
log, starts the process of displaying failed tests. The tool responds to the user request by showing the set of
tests in which there has been a failure.

Test ID Test status Requirements passed Requirements not passed

TS_1 OK Req1, Req2

TS_2 OK Req2, Req3, Req4

TS_3 KO Req2, Req3, Req5 Req4

Table 12-1: Example of report for failed tests

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 45 of 54

For every test, this function shows:

 Test ID, a unique identifier of a test;

 Test status, OK - if the test case is not failed / KO - if the test case is failed;

 Requirement passed, requirements satisfied by OK tests;

 Requirement not passed, requirement not satisfied by tests;

12.1.2 Requirements not correctly implemented identification

An alternative report produced by the tool shows the requirements not satisfied, for each requirement the
following information are displayed:

 Req ID, a unique identifier of the requirement, valid in any point of chain;

 Req Status, OK – if all tests that have impact on the requirement are satisfied / KO – if at least a test
that have impact on the requirement has failed;

 Test passed, the lists of the tests correctly executed;

 Test failed, the lists of the tests failed.

Req ID Req status Tests passed Tests not passed

Req1 OK TS_1

Req2 OK TS_1, TS_2, TS_3

Req4 KO TS_1, TS_2 TS_3

Table 12-2: Example of report for failed Requirements

To identify the requirements not correctly implemented that caused failed test, the tool implements a
selection function that allow the user to visualize the execution of the state machine that generated the
failure of the system.

12.2 Use Case coverage and application

12.2.1 [B5.4] LOGANALYZER TOOL

The last tool of the chain explained in Brick 5.1 support the users in the analysis of test results. The used

method is called the oracle, and is often applied by an automated agent to generate the correct results to be

used as comparison during the test. In this phase an execution log, generated by a system external to the

chain, and the test cases (described in a meta language), generated by the previous tool, are given as input

to the analyzer that will produce a set of reports about the analysis.

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 46 of 54

Figure 12-1: LogAnalyzer Tool Input-Output

The oracle and the model to be analyzed must share identical test conditions, input data and test

environment.

12.3 General Improvement
Here a description of solution based on Technical Items allocated for this Brick.

TI NAME: Non-functional improvements

TI_ID CRYSTAL_TI_612_10_1
Kind
of TI

G
Contact

email
TBD

Description:

In this technical item are achieved the following results:

 Storage: The system contains a unique repository for the storage of all data managed by tools
belonging to the chain. The requirement can be satisfied having the possibility to navigate
through the contents of different archive using a common interface.

 Security: An authentication process is required for accessing the functionality of the system.

 Scalability/Expandability: The system should be able to handle the increasing size of the data
managed.

 Usability: The system must be easy to use. A user interface should give access to all system
functionalities providing easy navigation through all features.

Link to internal working documents:

TI NAME: Generate Test Report

TI_ID CRYSTAL_TI_612_10_4
Kind
of TI

G
Contact

email
TBD

Description:

This technical item is a solution to generate test report after tests execution.

Link to internal working documents:

Test cases meta language +
Execution log

Analysis report

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 47 of 54

12.4 Integration and Interoperability
Here a description of solution based on Technical Items allocated for this Brick.

TI NAME: Shared data consistency and Traceability

TI_ID CRYSTAL_TI_612_10_6
Kind
of TI

I
Contact

email
TBD

Description:

The results achieved in this technical item are divided in two parts: Shared data consistency and
Traceability. Below are described in more detail:

Shared data consistency : Some data is shared between the entire tool chain, for example:

 model that is created in the first tool, is used for the generation of test cases in the subsequent
steps of the tool chain.

For these reasons, the system must ensure that the data shared within and outside the tool chain have
the specification of consistency. If this requirement is not satisfied all results are ambiguous.

The consistency of the data shared between the various tools is achieved by means of a software layer
that implements the collaborative environment between the different tools and defines the ways in which
the tools are able to access this data. It is important to specify that between the various tools there isn't
an exchange of information but a data sharing for collaborative purposes. The tools have direct access
to shared data, then if the environment of sharing does not ensure a consistent representation of the
data, the results of the entire tool chain may not be reliable.

Traceability between the system requirements and test cases: The system must ensure traceability
between the failed tests and requirements that are not correctly implemented due to the failure. This
requirement is very important because it allows identifying, in the analysis phase, the causes of the
failure of the test case; otherwise, the end-user does not find the condition to be corrected. In addition,
the system must ensure that in a not failed test case, there are not requirements not correctly
implemented. Obviously, the traceability requirement is not satisfied if the collaborative environment
does not guarantee the specification of data consistency. Then this requirement is based on the
consistency requirement. This is possible through linking of different objects (i.e. Requirements and
safety artifacts shall be linked to test models and test results for test coverage analysis);

Link to internal working documents:

TI NAME: Semi-automatic modification of test cases

TI_ID CRYSTAL_TI_612_10_7
Kind
of TI

I
Contact

email
TBD

Description:

This technical item is a solution to the semi-automatic modification of tests case after a modification of
system requirements. Here some example about the possible behaviours supported by the tool chain:

 if the user change the requirement of a system, the system shows the tests related to the
requirement that has been changed;

 if a requirement is deleted from the model, the system automatically removes the test that
involves only the requirement eliminated

 if a new requirement is added into the model, automatically, it must also be generated tests for
the new requirement.

 Warning when there are newer versions of the inputs used;

Link to internal working documents:

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 48 of 54

TI NAME: Collaborative environment resource management

TI_ID CRYSTAL_TI_612_10_8
Kind

of TI
I

Contact

email
TBD

Description:

This technical item is a set of results for collaborative environment resource management. Below are

described in more detail:

 Versioning of files / managing of history;

 Commit atomicity (it should be NOT possible to have partial file committed);

 Obligatory description (each time a file is saved/modified/deleted, the user shall provide a

rationale of the action);

 Mutual exclusion of single file (smart management of contemporary modifications to the same

file);

 Warning when used inputs are locked by other users (more tools can access to the same file; if

a tool/user is accessing as read-only to a file, it shall be warned whether the same file is under

modification by another tool/user);

 Warning for the insertion of new files in project;

 File can belong to multiple projects (management of tags or similar methodologies to allow a

single file to belong to different projects/workspaces).

Link to internal working documents:

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 49 of 54

13 Embedded Verification Platform (B3.100)

13.1 Description

Name: Integrated Tool Environment for embedded controls development

Contact: Joerg Settelmeier (Joerg.Settelmeier@avl.com)

Operation
System/platform

Windows / Matlab Simulink

Version V2.4.2.5

Type of Input Data Formal Requirements, Matlab Simulation models

Type of Output Data Test Cases

Dependencies nothing

License N/A

Additional information N/A

Various tools are used for the different development steps throughout the software development V-Cycle as
illustrated in Figure 13-1.

Figure 13-1: Development process including tool landscape

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 50 of 54

AVL-R is currently using the Integrated Tool Environment (AVLab) as a common user interface which is a
single point of contact for all related tools, i.e. AVLab bundles several tools supporting each development
activity steps from modeling over testing to code generation => seamless tool chain

• ADD (Visu-IT!) Simulink: Data synchronization via SyncTool

• Integrity (PTC) Matlab: Support and Integration of PTC Integrity Source in AVLab

• Simulink (The Mathworks) AVL Concerto: allowed Concerto Plots for data visualization via AVLab

• MXAM (MES) with AVL modeling rules is started from AVLab

• MIL / SIL / back2back tests supported by AVLab

• Code Generation

It also provides some kind of guidance for the developer through the development process (requirement
management, architecture, model development, tests, and code generation).

Further background is the harmonization of the process & tool environment for PTE Controls.

Key points for this harmonization are:

• Component based development approach is enforced.

• Scheduling of components in function groups (and domain) is enforced by model template in
AVLab.

• SW Architecture is based on PSF definitions and enforced by ADD as architecture tooling.

• Code generation for SW components is supported by tool environment in Embedded Coder and
Target Link. Code generator configuration is unified.

• Build environment (= generation of flash able hex file) is based on generated and archived C-
Code.

• Integrated test framework enforces common way of testing.

AVLab also shall support function development from model development over model testing to code
generation in a Matlab/Simulink environment, with Embedded Coder or TargetLink as code generator. In
addition, AVLab shall support the methods in engineering area:

• A 3 Level Architecture is the basement of the component-based development

• Naming is ensured by the usage of the Name Checker inside ADD

• Modeling Guidelines are checked by the usage of MXAM (model style checker)

• Product Documentation is ensured by the usage of FunDoc (Visu-IT)

• Verification/Validation is supported via MiL, SiL and Back-to-back testing in AVLab

• Coding Guidelines are supported via Code Generation Helpers (Embedded Coder Toolbar or TL
Code Generator)

• Build is directly supporting component-based approach

13.2 Use Case coverage and application
AVLab is used only in WP3.4b.

The current implementation of AVLab increases the efficiency / quality of function development.

• Provide a template for modeling, with operating system to allow a simulation closer to the reality than
a pure Simulink simulation.

• Simulink toolbar, with shortcuts for faster action in Simulink

• Traceability between Model, ADD Container, Integrity

http://rgb-wiki.avl.com/rgbwiki/index.php/MXAM

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 51 of 54

13.3 General Improvement
The interconnection between several tools and AVLab is currently realized in a not standardized way and
has to be improved.

For an improvement it has to be analyzed about an IOS implementation. Furthermore, the “Integrated Tool
Environment” provides a single point of control during all development steps including MiL/SiL Tests. An
extension to support automatically HiL / Engine Bench tests which are currently done manually.

13.4 Integration and Interoperability
AVLab needs to improve its interoperability capabilities with the tool chain.

The aim (interoperability challenge) is to provide a standardized interface for the “Integrated Tool

Environment” in order to harmonize interfaces, facilitate the substitution of tools, and to be more independent

of concrete tool versions. Furthermore, seamless traceability between all artifacts should be supported.

The description of Technical Items will be part of the next phase of the project.

TI NAME: Analysis of IOS and OSLC usage

TI_ID CRYSTAL_TI_612_13_1
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working documents:

TI NAME: Piloting of IOS/OSLC with Integrity

TI_ID CRYSTAL_TI_612_13_2
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working documents:

TI NAME: Analysis of needed interfaces between AVLab and Integrity

TI_ID CRYSTAL_TI_612_13_3
Kind
of TI

T, M, MM,
G

Contact
email

TBD

Description:

TBD

Link to internal working documents:

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 52 of 54

14 Terms, Abbreviations and Definitions

ADD Automotive Data Dictionary

CESAR Cost-Efficient methods and processes for SAfety Relevant embedded systems

CRYSTAL CRitical SYSTem Engineering AcceLeration

CO Confidential, only for members of the consortium (including the JU).

D Demonstrator

DMI Driver-Machine Interface

ERTMS European Rail Traffic Management System

ETCS European Train Control System

FSM Finite State Machine

GSM-R Global System for Mobile Communications – Railway

GUI Graphical User Interface

HiL Hardware in the Loop

IOP Interoperability testing

IOS Interoperability Specification

MAGIC
Measurement Analysis & GraphICs tool from AVL for measured data pre/post-
processing

MiL Model in the Loop

O Other

OSLC Open Services for Lifecycle Collaboration

P Prototype

PP Restricted to other program participants (including the JU).

PROMELA Process/Protocol Meta Language

PSF Powertrain Software Framework

PU Public

R Report

RBC Radio Block Centre

RE Restricted to a group specified by the consortium (including the JU).

ReqIf Requirements Interchange Format

SiL Software in the Loop

SP Subproject

TSR Temporary Speed Restriction

UES Unconditional Emergency Stop

UML Unified Modeling Language

UNISIG Union industry of signalling

VEVAT VErification & VAlidation Tool from AVL for software resp. system testing

V&V Verification and Validation

WP Work Package

XMI XML Metadata Interchange

Table 14-1: Terms, Abbreviations and Definitions

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 53 of 54

15 References

CESAR http://www.cesarproject.eu/

[Gargantini,

1999]

A. Gargantini, C. Heitmeyer; Using model checking to generate tests from requirements

specifications; ESEC/FSE-7 Proceedings of the 7th European software engineering

conference held jointly with the 7th ACM SIGSOFT international symposium on

Foundations of software engineering, 1999: 146-162 .

[Javed, 2007] A.Z. Javed, P.A. Strooper, G.N. Watson; Automated generation of test cases using model

driven architecture; In Proc. of the ICSE 2nd International Workshop on Automation of

Software Test (AST), 2007.

[MOGENTES,

2008]

MOGENTES research team, MOGENTES: Model-Based Generation of Test-Cases for

Embedded Systems - State of the Art Survey - Part a: Model-based Test Case Generation

Techniques Vers. 1-19a 1.1r; 2008.

[Jouault,

2006]

F. Jouault and I. Kurtev; Transforming models with ATL; In Satellite Events at the

MoDELS 2005 Conference, pages 128–138. Springer, 2006.

Frank

Budinsky

Eclipse Modeling Framework: A Developer's Guide

E Biermann, K

Ehrig, C

Köhler, G

Kuhns

Graphical definition of in-place transformations in the eclipse modeling framework

DS Kolovos,

LM Rose, RF

Paige

Raising the level of abstraction in the development of GMF-based graphical model editors

K Ehrig, C

Ermel, S

Hänsgen, G

Taentzer

Generation of visual editors as eclipse plug-ins

Table 15-1: References

D612.011

Specification, Development
and Assessment for

Validation Models - V1

Version Nature Date Page

V3.00 R 2014-01-29 54 of 54

16 Annex

No annex in this document version.

