Quantitative Safety Analysis of Non-Deterministic System Architectures

Adrian Beer

University of Konstanz Department of Computer and Information Science Chair for Software Engineering

Adrian.Beer@uni.kn

Motivation

• Safety critical systems are everywhere

- These systems have to be verified against safety goals to ensure safe working
 - Safety analysis should be easily supported during the development!
 - Best case: completely automatized

1. Motivation

2. Preliminaries

3. Safety Analysis of UML / SysML models

- The QuantUM approach
- 4. Case Studies
- 5. Conclusion

Quantitative Safety Analysis of Non-Deterministic System Architectures

Quantitative Safety Analysis of Non-Deterministic System Architectures

Industrial Practice (some demanded by safety standards)

Qualitative Methods

"identify Failures"

- Qualitative FMEA
- Qualitative Fault Tree Analysis
- Event Tree Analysis

Quantitative Methods

"predict frequency of failures"

- Quantitative FMEA
- Quantitative Fault Tree Analysis
- Event Tree Analysis
- Markov models
- Reliability block diagrams

Academia

Model Checking

Probabilistic Model Checking

• How is non-determinism introduced in systems?

- Environmental behavior
 - No probability for environmental factors
 - Can happen non-deterministically at any point in time
- Concurrency
 - Several processes / components run concurrently
 - Scheduler resolves non-determinism by deciding which process is allowed to take the next step
- Abstraction
 - Some unknown aspects during design / modeling phase
 - "Incompleteness" of the design model
 - Simplification / abstraction of certain aspects in the system

Model-based Engineering

- Models help to structure, develop, analyze complex systems
- Model-based Engineering promoted / demanded by modern standards
 - ISO 26262
 - DO-178C
 - ARP 4754A
 - ESAAR4

Modeling languages

- UML / SysML
- Matlab Simulink
- AADL
- ASCET

- 1. Motivation
- 2. Preliminaries

3. Safety Analysis of UML / SysML models

- The QuantUM approach
- 4. Case Studies
- 5. Conclusion

• The Goal:

- Automatic verification of UML / SysML models easily applicable and consistent in industrial practice
- Safety related information is directly encoded in the model using stereotypes
 - Normal + failure behavior
 - Quantitative information, i.e. failure rates
 - Safety requirements encoded in state configurations of the system
 - Automatic translation into reachability properties

• The Goal:

Automatic verification of UML / SysML models easily applicable and consistent in industrial practice

QuantUM relies on the concept of model checking

- Automatic exploration of the state space of the model of a system
 - PRISM model checker
 - Probabilistic analysis
 - SPIN model checker
 - Functional analysis
- Systematic search for modeling flaws in the system

• The Problem:

- Model of computation until now: Continuous Time Markov Chains
 - Only stochastic transitions
 - Modeling trick:
 - Non-determinism is approximated using pseudostochastic transitions
 - Introduced error often very large

- Probability of reaching state s_1 within 1h is \approx 0.63
 - Expectation: reaching state s_1 within 1h should always give a probability of 1
- Even when setting λ to a higher value this phenomenon has an impact along long paths

- Solution: Use Markov Decision Processes
 - MDPs support non-determinism by definition
 - MDPs have a discrete time-basis
 - No continuous failure rates are supported by MDPs
 - Discretization is possible:
 - Approximation of continuous negative exponential distribution with a discrete geometric distribution
 - Introduced error is computable and orders of magnitude smaller than the actual value
 - Discretization step size has a significant effect on computation time

How is the translation done?

Outline

- 1. Motivation
- 2. Preliminaries
- 3. Safety Analysis of UML / SysML models
 - The QuantUM approach
- 4. Case Studies
- 5. Conclusion

Case Studies

Airbag System

• Airport Surveillance Radar

• UML Model of an Airbag System

Computation of "Probability of an inadvertent deployment within 100h"

• Statechart of the Microcontroller

engineering

endmodule

Chair for Software Engineering - Adrian Beer

engineering

Evaluation

• Computation of failure probabilities for the inadvertent deployment

	CTMC λ = 1	CTMC λ = 100	MDP (non-det.)
Airbag (probability)	$2.0 \cdot 10^{-4}$	$2.7\cdot 10^{-4}$	$9.98 \cdot 10^{-4} (\pm 8.32 \cdot 10^{-11})$
Airbag (time)	0.1 sec.	258.1 sec.	3.94 sec.
Radar (probability)	$8.8 \cdot 10^{-22}$	$8.231 \cdot 10^{-20}$	$4.81 \cdot 10^{-13} (\pm 1.39 \cdot 10^{-20})$
Radar (time)	22.57 min	68.88 min	277.27 min

- ASR: "Probability of wrong information being displayed to the air traffic manager within 1h"
- Model sizes:
 - Airbag: \approx 7000 states + 50.000 transitions
 - ASR: \approx 200 mio. states + 2 billion transitions

• Summary: QuantUM Approach

- Quantitative model-based safety analysis
- Automatic translation of UML / SysML models into model checking code
- Non-determinism + continuous failure rates can now be handled while maintaining the computation error
- Computation is adaptable to the purposes of the results
 - Certification or just coarse evaluation of design

Outlook

- Automatic Fault Tree generation for MDPs
- Automatic Failure Mode and Effect Analysis
- Result interpretation as UML sequence diagrams
- Further integration into certification and validation standards
 - ISO26262, ARP 4754A

