Quantitative Safety Analysis of
Non-Deterministic System Architectures

Adrian Beer

University of Konstanz
Department of Computer and Information Science
Chair for Software Engineering

Adrian.Beer@uni.kn

Uil

engineering

)

—

© = ETH
; —]

=

@

7))

Motivation

¢ Safety critical systems are everywhere

Pacemaker

¢ These systems have to be verified against
safety goals to ensure safe working

> Safety analysis should be easily .
supported during the development! .

> Best case: completely automatized

=Nl
=
sl

software

i I

Chair for Software Engineering - Adrian Beer 2 se.uni.kn A
engineering

Outline

2. Preliminaries

ENEN
EE=w W
T

software

i e I

Chair for Software Engineering - Adrian Beer 3 se.uni.kn SAAT
engineering

Preliminaries

Quantitative Safety Analysis

=NEN

==
[T

software

engineering

Chair for Software Engineering - Adrian Beer 4 se.uni.kn

Quantitative Safety Analysis

¢ Industrial Practice (some demanded by safety standards)

Qualitative Methods Quantitative Methods

Jdentify Failures” ,predict frequency of failures®

- Quantitative FMEA

- Qualitative FMEA - Quantitative Fault Tree Analysis
- Qualitative Fault Tree Analysis - Event Tree Analysis
- Event Tree Analysis - Markov models

- Reliability block diagrams

¢ Academia

Model Checking Probabilistic Model Checking

=NEN
T
i

software

25

Chair for Software Engineering - Adrian Beer 5 se.uni.kn A
engineering

Non-Deterministic

¢ How is non-determinism introduced in systems?

> Environmental behavior
— No probability for environmental factors
— Can happen non-deterministically at any point in time

> Concurrency
— Several processes / components run concurrently

— Scheduler resolves non-determinism by deciding
which process is allowed to take the next step

> Abstraction
— Some unknown aspects during design / modeling phase
— “Incompleteness” of the design model
— Simplification / abstraction of certain aspects in the system

=
S

i

i o
engineering

S|

software

Chair for Software Engineering - Adrian Beer 6 se.uni.kn

System Architectures

¢ Model-based Engineering

* Models help to structure, develop, analyze complex systems

¢ Model-based Engineering promoted / demanded by modern

standards
> 1ISO 26262
> DO-178C
> ARP 4754A
> ESAAR4

¢ Modeling languages
> UML / SysML
» Matlab Simulink
» AADL

» ASCET
>

UNIFIED 0

MODELING
LANGUAGE

=

=3

=

m

—
==
mowvo
t H

LANGUA

=NEN
g

Chair for Software Engineering - Adrian Beer

7 se.uni.kn

software

engineering

Outline

3. Safety Analysis of UML / SysML models

= The QuantUM approach

=NEN
g

engineering

software

Chair for Software Engineering - Adrian Beer 8 se.uni.kn

The QuantUM Approach

QuantUM

Quantitative Analysis of UML Models

¢ The Goal:

> Automatic verification of UML / SysML models easily m";g{:;go
applicable and consistent in industrial practice |

. OMG %
> Safety related information is directly encoded in the model ‘.Scei
using stereotypes

— Normal + failure behavior
— Quantitative information, i.e. failure rates

— Safety requirements encoded in state configurations of the
system

® Automatic translation into reachability properties

ENEN
EE=w W
T

engineering

software

Chair for Software Engineering - Adrian Beer o) se.uni.kn

The QuantUM Approach

QuantUM

Quantitative Analysis of UML Models

¢ The Goal:

> Automatic verification of UML / SysML models easily
applicable and consistent in industrial practice

I same semantic
| foundation

Program _ _|
Code

=NEN

==
[T

software

engineering

Chair for Software Engineering - Adrian Beer 10 se.uni.kn

The QuantUM Approach

QuantUM

Quantitative Analysis of UML Models

¢ QuantUM relies on the concept of model checking

» Automatic exploration of the state space of the model of a
system »

— PRISM model checker
® Probabilistic analysis
— SPIN model checker
Functional analysis
> Systematic search for modeling flaws in the system

=NEN
=
il

engineering

software

Chair for Software Engineering - Adrian Beer 11 se.uni.kn

The QuantUM Approach

QuantUM

Quantitative Analysis of UML Models

¢ The Problem:

* Model of computation until now:
Continuous Time Markov Chains

— Only stochastic transitions
— Modeling trick:

® Non-determinism is approximated using pseudo-
stochastic transitions

® Introduced error often very large

ENEN
EE=w W
T

engineering

software

Chair for Software Engineering - Adrian Beer 12 se.uni.kn

The QuantUM Approach

¢ Example:

» CTMC: ,pseudo-stochastic”
transition

Y- -
A=1/h 1075 /h
start —(S0 > S1 > 1

> Probability of reaching state s within 1his ~ 0.63

— Expectation: reaching state S within 1h should always give
a probability of 1

failure transition

> Even when setting A to a higher value this phenomenon has
an impact along long paths

ENEN
EE=w W
T

engineering

software

Chair for Software Engineering - Adrian Beer 13 se.uni.kn

The QuantUM Approach

¢ Solution: Use Markov Decision Processes

> MDPs support non-determinism by definition
> MDPs have a discrete time-basis
— No continuous failure rates are supported by MDPs

— Discretization is possible:
Approximation of continuous negative exponential
distribution with a discrete geometric distribution

® Introduced error is computable and orders of magnitude
smaller than the actual value

® Discretization step size has a significant effect on
computation time

=
S

i

i o
engineering

S|

software

Chair for Software Engineering - Adrian Beer 14 se.uni.kn

The QuantUM Approach

How Is the translation done?

PRISM Code

J’ ‘\
=y -
fﬁ-------. :
Program ,#" same semantic ¢
\ .
. foundation
Code \ e mmm———
o= Nl
© R
E = i
Chair for Software Engineering - Adrian Beer 15 se.uni.kn o= mtﬂﬁﬂﬁﬁl i

engineering

Outline

4. Case Studies

ENEN
EE=w W
T

software

i e I

Chair for Software Engineering - Adrian Beer 16 se.uni.kn SAAT
engineering

Case Studies

¢ Airbag System ¢ Airport Surveillance Radar

72 (74
Automotive & CASSlD |AN

=Nl
s

i

englneerlng

software

Chair for Software Engineering - Adrian Beer 17 se.uni.kn

Example: Airbag System

¢ UML Model of an Airbag System

E FET
. ; [Eg fetEnabled : Boolean
= MainSensor 1 e 5 enableFET ()
[E acceleration : Integer T censor transition(" Disabled”,"Enabled"] ()
1 '% transition("FETMormalBehavier”,"FETStuckHigh™) [}
Q MicroController 1 -fET|" 1
Eg criticalCrashLevel : Integer controlled by
1 [Eg criticalCrash : Boolean
1 %transitiDn["NormaIG'peratiu::-n"_."Micrc:-CDntrDIIerFaiIure"]l () Lihsic 1
] saf i = FAsIC
etySensor
[Eg acceleration : Integer - safetySensor 1 |5 fas?cA.rmEd + Boolean
[Eg fasicFired : Boclean
5{% armFASIC [)
g2 fireFASIC ()

% transition("FasicNermalBehavior”,"FASICShertage”) ()
5{% transition("Idle","&rmed"))

ﬁ% transition("Armed","Fired") [)

% transition("FASICMormalBehavior”,"FASICStuckHigh") ()

¢ Computation of ,Probability of an inadvertent deployment within 100h”

=Nl

PR

(O]

S
cfastesnes
E T
£

(@]

(7]

i e I

Chair for Software Engineering - Adrian Beer 18 se.uni.kn SAAT
engineering

Example: Airbag System

¢ Statechart of the Microcontroller

- Nomn alO peration R
.
EvaluateCrash
I Evaluation [MainSensor.acceleration == 3] M ain SensorCritical ‘
passedtime
| idle _20ms
| ‘ [M ainSensor.acceleration < 3] ' [SafetySensor acceleration »= 3]
SafetySensorCritical (2
NotCritical @ Reactions
[SafetySensor.acceleration < 3]
[criticalCrashLevel ==3]
[criticalCrash = false]
. L
\q EraluationDene [criticalCrashLeel < 3] Crash @1
L J
ylcriticalCrash = true]
(Crash \]
ArmFasic (2 EnableFet (3 FasicFire (3]
*—» L
- v
= NI
ST
E il
: —— : , O i
Chair for Software Engineering - Adrian Beer 19 se.uni.kn vE==ETH

engineering

Example: Airbag System

¢ PRISM Code

module MicroController

NormalOperation active: [0..19]

/ / initial state 4 [SafetySensor.acceleration »= 3]
[] (NormalOperation active = 0) [saktySensorCriical)
-> NormalOperation active '= 1); Fescuians
[] (NormalOperation active = 6) }
& (MicroController criticalCrashLevel >=3) D | [criticalCrashLevel >=3]
-> (NormalOperation active '= 7) & 1
(MicroController criticalCrash '=true); | Crash B
endmodule
D
© FEEEEETE
= maiima
Chair for Software Engineering - Adrian Beer 20 Se.uni.kn 3ot

engineering

Example: Airbag System

* i
-1 - q———*‘r—)j
¢ C COde \ﬂai[EaluationDone [criticalCrashLevel < 3]
switch (NormalOperation active) { -
......... // some code
, wlcriticalCrash = true]
case EvaluationDone: C o

{

if (IS _EVENT TYPE OF (OMNullEventId))

{ //## transition 2
1f(criticalCrash = false) I
{

EvaluateCrash exit(); ‘ ‘
NormalOperation subState = Idle; ‘
rootState active = Idle; %>T

res = eventConsumed;

}

1f (res == eventNotConsumed)

{

res = EvaluateCrash handleEvent();

}) —

} EvaluationDone

[crticalCrashLevel = 3]

break; > \

......... // some code \
} N ylcriticalCrash = true]

l/_ r‘rw
Chair for Software Engineering - Adrian Beer 21 se.uni.kn

=NEN
g

i e I

engineering

software

Evaluation

¢ Computation of failure probabilities for the inadvertent deployment

CTMCA=1 | CTMCA =100 MDP (non-det.)
(pmbﬁgitl’%% 2.0-10~* 2.7-10~* 9.98 - 10™#(£8.32- 10~ 1)
A(\Llrrt:]aeg; 0.1 sec. 258.1 sec. 3.94 sec.
Radar o9 0 o N
(probability) | 3-8+ 10 8.231- 10 4.81-10713(£1.39 - 10729)
R
(t?rgg 22.57 min 68.88 min 277.27 min

¢ ASR: “Probability of wrong information being displayed to the air traffic
manager within 1h”

¢ Model sizes:
> Airbag: = 7000 states + 50.000 transitions
» ASR: ~ 200 mio. states + 2 billion transitions

=
S

i

i o
engineering

S|

software

Chair for Software Engineering - Adrian Beer 22 se.uni.kn

Conclusion

¢ Summary: QuantUM Approach
> Quantitative model-based safety analysis

> Automatic translation of UML / SysML models into
model checking code

> Non-determinism + continuous failure rates can now be
handled while maintaining the computation error

> Computation is adaptable to the purposes of the results
— Certification or just coarse evaluation of design

¢ Outlook
» Automatic Fault Tree generation for MDPs
» Automatic Failure Mode and Effect Analysis
» Result interpretation as UML sequence diagrams

> Further integration into certification and validation
standards

— 15026262, ARP 4754A

=
S

i

i o
engineering

S|

software

Chair for Software Engineering - Adrian Beer 23 se.uni.kn

