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Introduction

● The Cone of influence reduction(COI) is a 
fundamental technique to simplify designs in 
Hardware Model Checking

● Given a model represented as Finite State 
Machine (FSM)

– specified using some state variables

– the COI reduction simplifies the size of the 
model by eliminating variables not relevant to 
the property under verification     



  

Introduction

● We address the frameworks where repeated 
COI computations are required for 

– multiple properties 

– Internal model nodes 

to avoid potentially quadratic slow down
● We wish  to use COI information as property 

and/or variable scoring heuristics in various 
Model Checking algorithms   
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Standard COI computation

● The standard algorithm for computing COI(V) works 
on the variable dependency graph a bipartite graph 
where: 

● V(present state) and V'(next state) variables are the 
nodes

● all (vj,vi') edges represent a dependency of the next 
state variable vi' upon present state variable vj

     



  

Standard COI computation

● The algorithm basically implements a backward 
traversal of the graph  starting from all variables of 

● The final COI is the subset of the reached V nodes
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Standard COI computation

● Though computing each COI has a linear-time solution this 
process may become computationally expensive when 
repeated COI evaluations are necessary  

● For example, when multiple properties need to be verified, and 
each requires an independent COI computation

● The base algorithm described would need to be applied 
repeatedly. This entails obvious overhead when multiple 
properties have overlapping COIs due to the sub-graph re-
traversal  

● The overall COI computation process may degrade to 
requiring quadratic resources 

     



  

Labeled COI computation

● Our approach follows the graph labeling approach, in 
which graph nodes are assigned labels such that after 
labeling , the mutual reachability between nodes can be 
decided by inspecting labels alone.

● We associate to all nodes a visited flag and a bit array 
encoding → Bitmap where i-th bit correlates to the i-th 
present state variable vi  

● Our bitmaps thus have one bit per state variable.



  

Labeled COI computation
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Labeled COI computation

● Initially all visited flag are set to false, and all nodes 
except present state are labeled with a 0 bitmap(Bmp)

● V nodes are labeled with a one-hot encoding of their 
variable index: 

Bmp(vi)= OneHot(i) 

OneHot(0)=..00001

OneHot(1)=..00010 



  

Labeled COI computation

● For each target ti we perform a backward depth-first 
traversal of unvisited nodes.

● “backward” refers to the direction followed for edges in 
the dependency graph

● Bitmaps are propagated in the forward direction

● For each node, set the visited flag to true, and we recur 
for all adjacent fan in nodes  



  

Labeled COI computation

● Whenever node nj is reached by node ni the label of nj is 
bitwise Ored with the label of ni:

Bmp(nj)=Bmp(nj)|Bmp(ni)

● The topological order followed by the DFV guarantees 
that labels fully represent COI dependencies

  



  

Labeled COI computation
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Labeled COI computation
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Labeled COI computation
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Strong Connected Component 
reduction

 

● Many circuits comprise one or more SCCs within 
each node may reach each other node

● SCC can be identified using Tarian's linear time 
algorithm

● Each SCC can be collapsed into a single 
representative node

● SCC can be used to avoid loops in the dependency 
graph    

     



  

Using COI 

Sorting and Grouping/Clustering Properties 

● A first application of multiple COIs is the verification of 
multiple properties of the same model

● Whenever the number of properties is high COIs can be 
exploited for:

– Sorting properties based on COI size

– Grouping/clustering two or more properties into a 
single verification problem 

  



  

Sorting and grouping/clustering variables 

● Another potential application for multiple COI analysis is to augment 
existing algorithms that statically and/or dynamically sort/group 
state variables, in BDD and SAT-based model checking 

● We propose to compute COIs of individual state variables and 
consider COI statistics as a base for

– Exploit heuristics for variable sorting 

– Partitioned transition relation management

– Partitioned image computation 

Using COI 



  

Partitioned transition relation management using COI (On going work)

● We are investigating the question of how to perform partitioning in 
reachability based verification using COI informations

● Clustering algorithms

– K-means

– Hierarchical

● Single
● Complete
● Average

Using COI 



  

● We run experiments on the multi-property suite of the 
HWCC'11

● HWCC'11 consists of 24 benchmarks a some of them 
with more than 1000 properties

● Our prototype ran an Intel i7 860470/2010 Workstation 
with 8 MB cache memory, a clock speed of 2.8 G Hz, 4 
cores 8 threads, 8 GB of main memory DDR III 1333, and 
hosting a Ubuntu 12.04 LTS Linux distribution

Experimental Results 
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● The work introduces new techniques for a fast 
computation, estimation , and application of the COI of 
multiple properties

● In order to avoid multiple repeated traversals of the same 
some sub-graph our algorithm is based on graph node 
labeling, and it performs a single visit of the variable 
dependency graph

● It costs is linear in time but quadratic in memory      

Conclusions 
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