

Fast Cone-Of-Influence Computation and Estimation in
Problems with Multiple Properties

C. Loiacono, M. Palena, P. Pasini, D. Patti, S. Quer, S. Ricossa,
D. Vendraminetto

 joint work with

 J. Baumgartner
IBM Corporation USA

This work is related to a Date 2013 Conference Poster

Outline

● Introduction
● Standard Cone Of Influence(COI) computation
● Labeled COI computation
● Using COI
● Experimental results
● Conclusions

Introduction

● The Cone of influence reduction(COI) is a
fundamental technique to simplify designs in
Hardware Model Checking

● Given a model represented as Finite State
Machine (FSM)

– specified using some state variables

– the COI reduction simplifies the size of the
model by eliminating variables not relevant to
the property under verification

Introduction

● We address the frameworks where repeated
COI computations are required for

– multiple properties

– Internal model nodes

to avoid potentially quadratic slow down
● We wish to use COI information as property

and/or variable scoring heuristics in various
Model Checking algorithms

COI Reduction

PI
F

T

State
Reg

F
T T TT

PI
F

T

State
Reg

Standard COI computation

● The standard algorithm for computing COI(V) works
on the variable dependency graph a bipartite graph
where:

● V(present state) and V'(next state) variables are the
nodes

● all (vj,vi') edges represent a dependency of the next
state variable vi' upon present state variable vj

Standard COI computation

● The algorithm basically implements a backward
traversal of the graph starting from all variables of

● The final COI is the subset of the reached V nodes

v1'

v2'

v3'

v1

v2

v3

V

v1' v2' v3'

v1 v2 v3

V̂

V̂

Standard COI computation

● Though computing each COI has a linear-time solution this
process may become computationally expensive when
repeated COI evaluations are necessary

● For example, when multiple properties need to be verified, and
each requires an independent COI computation

● The base algorithm described would need to be applied
repeatedly. This entails obvious overhead when multiple
properties have overlapping COIs due to the sub-graph re-
traversal

● The overall COI computation process may degrade to
requiring quadratic resources

Labeled COI computation

● Our approach follows the graph labeling approach, in
which graph nodes are assigned labels such that after
labeling , the mutual reachability between nodes can be
decided by inspecting labels alone.

● We associate to all nodes a visited flag and a bit array
encoding → Bitmap where i-th bit correlates to the i-th
present state variable vi

● Our bitmaps thus have one bit per state variable.

Labeled COI computation

v1'

v2'

v3'

v1

v2

v3

VcapV
T

t1

t2

Labeled COI computation

● Initially all visited flag are set to false, and all nodes
except present state are labeled with a 0 bitmap(Bmp)

● V nodes are labeled with a one-hot encoding of their
variable index:

Bmp(vi)= OneHot(i)

OneHot(0)=..00001

OneHot(1)=..00010

Labeled COI computation

● For each target ti we perform a backward depth-first
traversal of unvisited nodes.

● “backward” refers to the direction followed for edges in
the dependency graph

● Bitmaps are propagated in the forward direction

● For each node, set the visited flag to true, and we recur
for all adjacent fan in nodes

Labeled COI computation

● Whenever node nj is reached by node ni the label of nj is
bitwise Ored with the label of ni:

Bmp(nj)=Bmp(nj)|Bmp(ni)

● The topological order followed by the DFV guarantees
that labels fully represent COI dependencies

Labeled COI computation

v1'

v2'

v3'

v1

v2

v3

001

010

100

000

000

000

InitializationsInitializations

Labeled COI computation

v1'

v2'

v3'

v1

v2

v3

001

010

100

011

010

110

Final result

Labeled COI computation

v1'

v2'

v3'

v1

v2

v3

P2

P1

Strong Connected Component
reduction

● Many circuits comprise one or more SCCs within
each node may reach each other node

● SCC can be identified using Tarian's linear time
algorithm

● Each SCC can be collapsed into a single
representative node

● SCC can be used to avoid loops in the dependency
graph

Using COI

Sorting and Grouping/Clustering Properties

● A first application of multiple COIs is the verification of
multiple properties of the same model

● Whenever the number of properties is high COIs can be
exploited for:

– Sorting properties based on COI size

– Grouping/clustering two or more properties into a
single verification problem

Sorting and grouping/clustering variables

● Another potential application for multiple COI analysis is to augment
existing algorithms that statically and/or dynamically sort/group
state variables, in BDD and SAT-based model checking

● We propose to compute COIs of individual state variables and
consider COI statistics as a base for

– Exploit heuristics for variable sorting

– Partitioned transition relation management

– Partitioned image computation

Using COI

Partitioned transition relation management using COI (On going work)

● We are investigating the question of how to perform partitioning in
reachability based verification using COI informations

● Clustering algorithms

– K-means

– Hierarchical

● Single
● Complete
● Average

Using COI

● We run experiments on the multi-property suite of the
HWCC'11

● HWCC'11 consists of 24 benchmarks a some of them
with more than 1000 properties

● Our prototype ran an Intel i7 860470/2010 Workstation
with 8 MB cache memory, a clock speed of 2.8 G Hz, 4
cores 8 threads, 8 GB of main memory DDR III 1333, and
hosting a Ubuntu 12.04 LTS Linux distribution

Experimental Results

Experimental Results

BETTER

WORSE

● The work introduces new techniques for a fast
computation, estimation , and application of the COI of
multiple properties

● In order to avoid multiple repeated traversals of the same
some sub-graph our algorithm is based on graph node
labeling, and it performs a single visit of the variable
dependency graph

● It costs is linear in time but quadratic in memory

Conclusions

Fast Cone-Of-Influence Computation and Estimation in
Problems with Multiple Properties

C. Loiacono, M. Palena, P. Pasini, D. Patti, S. Quer, S. Ricossa,
D. Vendraminetto

 Joint work with

 J. Baumgartner
IBM Corporation USA

This work is related to a Poster published on Date
2013 Conference

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 7
	Slide 9
	Slide 10
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

