

Fondazione Bruno Kessler

Marco Bozzano, Alessandro Cimatti, and **Cristian Mattarei** Alpine Verification Meeting, 2013

Outline

- Architectural Design in Critical Systems
 - Redundant systems
 - Reliability Analysis
- Automated Approaches
 - EUF modeling and Fault Tree Analysis
 - Efficient Analysis via predicate abstraction
- Conclusion

Power system: ... in a perfect world

Power system: ... in real world

Power system: ...in real world

Power system: ... in real world

Power system: ...in real world

Outline

• Architectural Design in Critical Systems

- Redundant Systems
- Reliability Analysis
- Automated Approaches
 - EUF modeling and Fault Tree Analysis
 - Efficient Analysis via Predicate Abstraction
- Conclusion

Redundant systems definition: TMR [Abraham74]

Nominal architecture

Redundant systems definition: TMR [Abraham74]

Nominal architecture

Redundant architecture

- Increase reliability for critical design
- Usage of redundant scheme (e.g. Triple Modular Redundancy)
- Hard to analyze and optimize system reliability

Triple Modular Redundancy patterns

2 voters 1 voter 3 voters М М Μ M М М М Μ М ์ M โ M M M Μ Μ M М M м М м

15

17

Reliability analysis: manual approach

- Time expensive and error prone reliability computation
- Specific approach for linear structures (not generalizable)
- Needs space discretization

Outline

- Architectural Design in Critical Systems
 - Redundant Systems
 - Reliability Analysis
- Automated Approaches
 - EUF modeling and Fault Tree Analysis
 - Efficient Analysis via Predicate Abstraction
- Conclusion

Modeling of the extended system

Modeling of the extended system

- Duplicate the behavior (nominal and faulty)
- Introduce a multiplexer, triggered by the fault event
- Model the (generic) behavior of components using uninterpreted functions (e.g. x = y → f(x) = f(y))

Modeling of the extended system

Fault Tree Analysis: equivalence check

 $TLE(I,F) = Nominal(I) \neq Redundant(I,F)$ $FT(F,TLE) = \{f \in 2^{F} | \exists i \in I.TLE(i,f) \land f \text{ is minimal} \}$

Fault Tree Analysis: equivalence check

 $FT = (FM_{11} \land FM_{12}) \lor (FM_{11} \land FM_{13}) \lor \cdots \lor (FM_{23} \land FV_2)$

 $F_{sys}: \mathbb{R}^{[0,1]} \times \cdots \times \mathbb{R}^{[0,1]} \mapsto \mathbb{R}^{[0,1]}$

 $F_{sys}: \mathbb{R}^{[0,1]} \times \cdots \times \mathbb{R}^{[0,1]} \mapsto \mathbb{R}^{[0,1]}$

 $F_{sys}(F_{v}, F_{m1}, F_{m2}, F_{m3}) =$

$$F_{sys}: \mathbb{R}^{[0,1]} \times \cdots \times \mathbb{R}^{[0,1]} \mapsto \mathbb{R}^{[0,1]}$$

$$F_{sys}(F_{v}, F_{m1}, F_{m2}, F_{m3}) =$$

$$F_{v} +$$

$$+ (\mathbf{1} - F_{v}) * F_{m1} * F_{m2} +$$

$$F_{sys}: \mathbb{R}^{[0,1]} \times \dots \times \mathbb{R}^{[0,1]} \mapsto \mathbb{R}^{[0,1]}$$

$$F_{sys}(F_{v}, F_{m1}, F_{m2}, F_{m3}) =$$

$$F_{v} +$$

$$+(1 - F_{v}) * F_{m1} * F_{m2} +$$

$$+(1 - F_{v}) * F_{m1} * (1 - F_{m2}) * F_{m3} +$$

m[0,1] m[0,1] m[0,1]

$$F_{sys}: \mathbb{R}^{[0,1]} \times \cdots \times \mathbb{R}^{[0,1]} \mapsto \mathbb{R}^{[0,1]}$$

$$F_{sys}(F_{v}, F_{m1}, F_{m2}, F_{m3}) =$$

$$F_{v} +$$

$$+(1 - F_{v}) * F_{m1} * F_{m2} +$$

$$+(1 - F_{v}) * F_{m1} * (1 - F_{m2}) * F_{m3} +$$

$$+(1 - F_{v}) * (1 - F_{m1}) * F_{m2} * F_{m3}$$

$$F_{sys}: \mathbb{R}^{[0,1]} \times \dots \times \mathbb{R}^{[0,1]} \mapsto \mathbb{R}^{[0,1]}$$

$$F_{sys}(F_{v}, F_{m1}, F_{m2}, F_{m3}) =$$

$$F_{v} +$$

$$+(1 - F_{v}) * F_{m1} * F_{m2} +$$

$$+(1 - F_{v}) * F_{m1} * (1 - F_{m2}) * F_{m3} +$$

$$+(1 - F_{v}) * (1 - F_{m1}) * F_{m2} * F_{m3}$$

- 1. Model the extended system with uninterpreted functions
- 2. Perform Fault Tree Analysis
- 3. Extract Reliability Function, from BDD representation of Fault Tree

- 1. Model the extended system with uninterpreted functions
- 2. Perform Fault Tree Analysis
- 3. Extract Reliability Function, from BDD representation of Fault Tree
- Evaluate the results with analytical tools (Octave/Matlab)

Triple Redundant Module comparison (1 voter)

10

а

10⁻³

Uniform probability analysis

1 voter patterns comparison (2D)

1 voter patterns comparison (3D)

Uniform probability analysis

Not uniform probability analysis

Varying F_m for M_1 (1 voter)

Varying F_{v} for V_{1} (2 voters)

- Full automated technique for the Analysis of Reliability Architecture
- Symbolic technique (it generates the closed form of Reliability function)
- Allows for the reusability of analysis results (i.e. generation of Reliability Functions Libraries)
- AllSMT approach: Hard to deal with big system definition (> 10 stages)

Outline

- Architectural Design in Critical Systems
 - Redundant Systems
 - Reliability Analysis
- Automated Approaches
 - EUF modeling and Fault Tree Analysis
 - Efficient Analysis via Predicate Abstraction
- Conclusion

Modular Abstraction

Modular Abstraction

Modular Abstraction

Concrete vs Abstraction: linear

DAG like example with 60 modules

Concrete vs Abstraction: Tree and DAG (< 15 modules)

Abstraction: Tree and DAG

Outline

- Architectural Design in Critical Systems
 - Redundant Systems
 - Reliability Analysis
- Manual Reliability techniques
- Automated Approaches
 - EUF modeling and Fault Tree Analysis
 - Efficient Analysis via Predicate Abstraction
- Conclusion

Conclusion

- Automated technique for the analysis of reliability architectures
- Management of linear, Tree and DAG like structures
- Efficient analysis of large systems (> 140 modules) via predicate abstraction

Automated Analysis of Reliability Architectures

Marco Bozzano, Alessandro Cimatti and Cristian Mattarei In proc. of ICECCS 2013

Efficient Analysis of Reliability Architectures via Predicate Abstraction Marco Bozzano, Alessandro Cimatti and Cristian Mattarei *Under review of FMCAD 2013*

Thank you!

Cristian Mattarei Fondazione Bruno Kessler FBK ES-Group mattarei@fbk.eu