
Trading-off incrementality and
dynamic restart of multiple solvers

in IC3

Marco Palena
Formal Methods Group

Politecnico di Torino
marco.palena@polito.it

• Preliminaries
• IC3 algorithm
• Characterization of SAT solving in IC3
• Incremental loading of transition relation
• SAT solvers clean-up heuristics
• Conclusions and future works

2

• Preliminaries
• IC3 algorithm
• Characterization of SAT solving in IC3
• Incremental loading of transition relation
• SAT solvers clean-up heuristics
• Conclusions and future works

3

• Context: unbounded model checking for hardware verification
• Boolean circuits modelled as finite state transition systems:

– : state variables.
– : initial states.
– : transition relation.

• State = complete assignments to the state variables.
– Primed variables denotes future states

• Boolean formulas: represent set of states
– Literal is a state variable or its negation: e.g.
– Cube is a conjunction of literals: e.g.
– Clause is a disjunction of literals: e.g.
– CNF is a conjunction of clauses: e.g.

4

• An assignment s satisfies F if F evaluates to true under s:

• F is stronger than G if:

• When an assignment satisfies T:
– s is a predecessor of t
– t is a successor of s

• is a path if

F
s

G

F

s t
T

s0

T

s1

T

s2

T

sn-1 sn

T

5

• A state s is reachable if there exists a path
– Set of n-bounded reachable states of S:
– Set of reachable states of S:

• Given and property the invariant verification
problem (IVP) is:

6

• F is an inductive invariant of S:
– Base case:
– Inductive case:

• F is an inductive invariant relative to G:
– Base case:
– Inductive case:

• An inductive invariant P is an over-approximation to reachable
states⟹ IVP can be seen as the problem to find an inductive
invariant F stronger than the property P (inductive
strengthening of P):

7

• Preliminaries
• IC3 algorithm
• Characterization of SAT solving in IC3
• Incremental loading of transition relation
• SAT solvers clean-up strategies
• Conclusions and future works

8

• Incremental SAT-based invariant verification algorithm that
uses induction

• Maintains a set of over-approximations to bounded reachable
states (time frames):

– Tries to find an inductive strengthening of P incrementally refining
with relative inductive clauses

• The following conditions hold throughout the algorithm:
– (C1)

– For each :
• (C2)
• (C3)
• (C4)

9

• At iteration k, IC3 enumerates states of Fk that violate P:
SAT?[Fk∧ ¬P]

• Extends the bad state found into a bad cube
• Every state (or cube) that can reach violation of P discovered

for Fk must be blocked i.e. proved unreachable within k steps
from I

(Q1)

Fk-2 Fk-1 Fk

¬ PI = F0

10

• To block a cube c in , IC3 first tries to find out if ¬c is
inductive relative to :

SAT?[Fk-1 ∧ ¬c ∧ T ∧ c’]
• If not, a predecessor s is discovered ⟹ s must be blocked in

in first ⟹ blocking of c is delayed, the procedure tries to
block s in ⟹ blocking procedure iterates
– Eventually either ¬c become inductive relative to or a

predecessor in F0 is found (path from initial states to a bad cube)

(Q2)

Fk-2 Fk-1 Fk

¬ PI = F0

11

• If (Q2) is UNSAT, a clause ¬c that is inductive relative to is
found, then IC3 tries to remove literals from ¬c to obtain an
inductive generalization
– Removing literals can break relative induction!

• For each literal removed, relative induction must be checked
again:
– Inductive case: SAT?[Fk-1 ∧ cls ∧ T ∧ ¬cls’]
– Base case: SAT?[I ∧ ¬cls]

• A delayed cube can become blocked as a result of the blocking
of a deeper cube:
– When the blocking of a delayed cube is resumed, IC3 checks if it still

needs to be blocked:

(Q4)
(Q5)

SAT?[Fk∧ c] (Q3)

12

• When every bad state in Fk has been enumerated and blocked,
IC3 instantiates a new time frame and tries to propagate each
clause in forward on

– If SAT, the clause cls is added to Fk+1

• If during the propagation phase is discovered that for
some ⟹ Fi is an inductive strengthening for P

:

SAT?[Fk ∧ T ∧ ¬cls’] (Q6)

13

• Preliminaries
• IC3 algorithm
• Characterization of SAT solving in IC3
• Incremental loading of transition relation
• SAT solvers clean-up heuristics
• Conclusions and future works

14

• IC3 is a SAT-based invariant verification algorithm
– Each SAT call has a small size compared to other SAT-based

verification algorithms (no TR unrolling).
– Huge amount of SAT calls ()

• How to organize the underlying SAT solving work required?
– SAT solvers allocation strategies
– SAT solvers loading strategies
– SAT solvers clean-up strategies

• Our implementation adopts a multiple solver approach (one
solver for each time frame)

15

• Types of queries:
(Q1) - Target intersection checks: SAT?[Fi∧ ¬P]
(Q2) - Relative inductive check: SAT?[Fi∧ ¬cube∧ T ∧ cube’]
(Q3) - Blocked cube checks: SAT?[Fi∧ cube]
(Q4) - Inductive generalization check: SAT?[Fi∧ cls ∧ T ∧ ¬cls’]
(Q5) - Base of induction check: SAT?[I∧ ¬cls]
(Q6) - Clause propagation check: SAT?[Fi∧ T ∧ ¬cls’]

• HWMCC 2012 (time limit 900s, memory limit 2 GB): 70 solved instances/310

SAT call type % calls Num calls Solving time

Target intersection 0.1% 483 81 ms

Relative induction 7.6% 31172 334 ms

Blocked cube 6.8% 27891 219 ms

Generalize 34.7% 142327 575 ms

Induction base 35.9% 147248 112 ms

Propagation 14.9% 61114 681 ms
16

• CNF subject to SAT queries vary widely from call to call:
– Transition relation not always needed
– Some queries assume a next state cube

• IC3 needs an incremental SAT interface
– New clauses must be added
– Clauses from previous calls must be removed
– Literal assumptions must be made

• To remove clauses from the solver, activation literals are
used:
– Deactivated clauses slow down SAT solving!

⟹ Load as less clauses as needed
⟹ Clean-up periodically each solver

17

• Preliminaries
• IC3 algorithm
• Characterization of SAT solving in IC3
• Incremental loading of transition relation
• SAT solvers clean-up heuristics
• Conclusions and future works

18

• No need to load the whole TR in each solver
– Not every SAT call needs it
– Every SAT call that needs it, also makes a literal assumption on next state
⟹ Load just the transitive fanin (logic cone) of each variable in
the next state cube assumed in the query

• Proved to be very effective!
• Problem: logic cones loaded from previous queries accumulate in

each solver!

[Een,Mishchenko,Brayton 2011]

19

• Each SAT query that needs TR, constraints next states with a
cube c’ ⟹ underlying TR’s AIG is a constrained boolean circuit

• Plaisted-Greenbaum encoding (PG):
– Translates a constrained boolean circuit into a minimal set of clauses

using gate polarities: {+} or {-}
– Introduces for each gate an auxiliary variable x

logically linked to its boolean function by means
of a bi-implication

• Equisatisfiable CNF can be found translating just the left side of the
bi-implication for {-} gates and/or the right side for {+} gates

20

• Every time a logic cone must be loaded into the solver, make a
structural recursive visit of TR’s AIG:
– Carrying a flag that represents the polarity of the path:

• Initialized with constrained value of output
• Toggled every time an inverted edge is crossed

– Load the right (left) side clauses of every gate that is reached by a {+}
({-}) path of recursion and that have not been loaded in that polarity yet

• Percentage of TR that is needed per SAT query in average:

– About 30% reduction of logic cones
– Using PG are solved 75 (68 +7) instances of HWMCC 2012

SAT call type % TR % TR (PG)

Relative
induction

52.8% 37.2%

Generalize 36.6% 26.5%

Propagation 40.6% 28.2%

21

• Preliminaries
• IC3 algorithm
• Characterization of SAT solving in IC3
• Incremental loading of transition relation
• SAT solvers clean-up heuristics
• Conclusions and future works

22

• As verification proceeds clauses loaded from previous queries
accumulate in solvers
– Portions of previoulsy loaded TR’s logic cones + deactivated clauses
– The more clauses are loaded into the solver the slower BCP will be!

• Periodic clean-ups of the solvers are needed
– IC3 performance degrades quickly without clean-ups
– But they introduce some overhead:

clauses must be reloaded into the solver + learning must be redone

• Clean-up heuristics try to find a tradeoff between clean-up
overhead and BCP speedup

23

• Clean-up heuristics checks periodically if an heuristic measure
u (estimate of the amount of “useless” clauses loaded in the
solver) exceeds a given threshold t
– if the solver is cleaned

• Two types of clean-up heuristics
– Static: the threshold is a fixed value determined experimentally
– Dynamic: the threshold varies dynamically in relation to some

parameters of the solver

24

• Typically u corresponds to the number of deactivated clauses a
• Cube-dependent utility: based both on a and on the

estimated size of useless loaded cones
– l(xi’): 0 if the logic cone of xi’ is not loaded, the number of clauses of

that cone otherwise

25

• Three heuristics compared:
– (H1) Static:

– (H2) Dynamic:

– (H3) Dynamic:

– Surprisingly H1 stands out as a clear winner!

SAT call type H1 solving time H2 solving time H3 solving time

Relative induction 334 ms 1536 ms 707 ms

Generalize 575 ms 1877 ms 1039 ms

Propagation 681 ms 2426 ms 1397 ms

[Een, Mishchenko, Brayton 2011]

26

• Preliminaries
• IC3 algorithm
• Characterization of SAT solving in IC3
• Incremental loading of transition relation
• SAT solvers clean-up heuristics
• Conclusions and future works

27

• The use of the Plaisted-Greenbaum encoding in TR loading
showed to be effective in reducing the size of loaded logic
cones.

• Some previously unsolved instances are now solved
– Can be profitably exploited in the context of a portfolio-based

approach
• Our clean-up heuristic didn’t proved to be effective, by now.

Finding a tradeoff for solvers clean-up is not a trivial task.
– Our research on the subject is still ongoing. It seems that cleaning-up

solvers frequently achieves better results
• Future works:

– Experiment different thresholds for the proposed clean-up heuristics
– Investigate the use of specialized solver for expensive queries

(generalization and propagation)
– Collaborate with Berkley on the subject

28

Thank you!

29

Questions?

30

	Trading-off incrementality and dynamic restart of multiple solvers in IC3
	Diapositiva numero 2
	Diapositiva numero 3
	Preliminaries
	Diapositiva numero 5
	Diapositiva numero 6
	Diapositiva numero 7
	Diapositiva numero 8
	Diapositiva numero 9
	Diapositiva numero 10
	Diapositiva numero 11
	Diapositiva numero 12
	Diapositiva numero 13
	Diapositiva numero 14
	Diapositiva numero 15
	Diapositiva numero 16
	Diapositiva numero 17
	Diapositiva numero 18
	Diapositiva numero 19
	Diapositiva numero 20
	Diapositiva numero 21
	Diapositiva numero 22
	Diapositiva numero 23
	Diapositiva numero 24
	Diapositiva numero 25
	Diapositiva numero 26
	Diapositiva numero 27
	Diapositiva numero 28
	Thank you!
	Questions?

