
Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

Pluggable SAT-Solvers for SMT-Solvers

Bas Schaafsma

DISI, University of Trento
&

Fondazione Bruno Kessler

May 29, 2013

http://mathsat.fbk.eu/ 1

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

The SAT/SMT problem
Applications of SAT/SMT-Solvers
Motivation

The SMT problem

The SAT problem

Given a Boolean formula F , is there an assignment for which F
evaluates to true?

The SMT problem

SAT extended with a set of theories T1 ∪ T2 · · · ∪ Tn

Example (EUF ∪ LA(Z)):

(x + 2y = 6 ∨ y = 9) ∧ ¬(f (x) = f (y)) ∧ x = 2

http://mathsat.fbk.eu/ 2

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

The SAT/SMT problem
Applications of SAT/SMT-Solvers
Motivation

Some Useful Theories

Theory of Linear Arithmetic (LA)

FLA = L(x=) ∧ L(x<)

Theory of BitVectors (BV)

FBV = L(zext〈〉(x〈〉)) >u 〈〉)

Theory of Arrays (ARR)

FARR∪LA = L(read(a,)=) ∧ ¬L(read(write(a,,),i)=read(a,i))

http://mathsat.fbk.eu/ 3

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

The SAT/SMT problem
Applications of SAT/SMT-Solvers
Motivation

Applications of SMT-Solvers

• Bounded Model Checking

• Equivalence Testing [GPB01]

• Property Driven Reachability Testing [CNR12]

• Scheduling [ABP+11]

• Test Case Generation [GLM12]

• Software model checking through Predicate Abstraction
[FQ02]

• Program Synthesis [SGCF11]

• ...

http://mathsat.fbk.eu/ 4

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

The SAT/SMT problem
Applications of SAT/SMT-Solvers
Motivation

Pluggable SAT solvers: Motivation

• Developing a new (allround) SMT solver entails more than a
new SAT solver. → MathSAT5 ∼ 150kloc vs MiniSAT ∼
6kloc

• Success of SAT solvers highly dependent on heuristics.

• Tuning SAT solvers requires investment of time and money.

• SAT-Solver is a deciding factor for BV & BV ∪ ARR
instances.

• We want to combine state-of-the-art SAT solvers & SMT
solvers.

• This is NOT a straight forward bitblasting approach.

http://mathsat.fbk.eu/ 5

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

The SAT/SMT problem
Applications of SAT/SMT-Solvers
Motivation

1 Introduction

2 The DPLL and DPLL(T) algorithms

3 Architecture & Implementation

4 Experimental Evaluation

5 Demo

6 Conclusion & Future Work

http://mathsat.fbk.eu/ 6

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

The DPLL algorithm
The DPLL(T) algorithm

The DPLL algorithm
1: Preprocess(F)
2: while true do

3: BCP(F)
4: if not conflict then
5: if all variables assigned then

6: return SAT
7: end if

8: decide()
9: else

10: Cconflict ←analyze()
11: if top level conflict found then

12: return UNSAT
13: end if

14: backtrack(Cconflict)
15: end if

16: end whilehttp://mathsat.fbk.eu/ 7

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

The DPLL algorithm
The DPLL(T) algorithm

DPLL(T) = DPLL + ..

• For correctness:

Theory consistency checks.
Case splitting.

• For optimization:

Early pruning.
Theory deductions.

• (Incrementality)

For specific details check [ST09].

http://mathsat.fbk.eu/ 8

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

The DPLL algorithm
The DPLL(T) algorithm

(Simplified) DPLL(T) algorithm
1: Preprocess(F)
2: while true do

3: BCP(F)
4: if not conflict and theories consistent then
5: if all variables assigned and no case splitting needed.

then

6: return SAT
7: end if

8: decide()
9: else

10: Cconflict ←analyze()
11: if top level conflict found then

12: return UNSAT
13: end if

14: backtrack(Cconflict)
15: end if

16: end whilehttp://mathsat.fbk.eu/ 9

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

Architectural Overview
Communication Protocols
Case Studies

DPLL(T) Architectural Overview

Theory Manager

T -Solver1 T -Solvern
..

SAT/UNSAT

Predicate Assignments

Conflicts/ Generated Lemmas

Finput

UNSAT Core / Interpolant / Model

Internal SAT-Solver

API

Theory Solvers

http://mathsat.fbk.eu/ 10

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

Architectural Overview
Communication Protocols
Case Studies

DPLL(T) + Pluggable Solver Architectural Overview

Theory Manager

T -Solver1 T -Solvern
..

SAT/UNSAT

Predicate Assignments

Conflicts/ Generated Lemmas

Finput

UNSAT Core / Interpolant / Model

SAT-Solver Stub

API

Theory Solvers

Pluggable Solver

Callback functions SAT API calls

http://mathsat.fbk.eu/ 11

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

Architectural Overview
Communication Protocols
Case Studies

Pluggable SAT solvers: A quick overview

• 3rd Party SAT solvers can be plugged in MathSAT5 by:

Implementing a worker interface.
Invoking required callback functions during search.

• The worker interface allows MathSAT5 to:

Specify the problem for the SAT solver to solve.
Communicate deduced values.

• Callbacks allow the SAT solver to:

Communicate found (partial) models to MathSAT5

Invoke T -consistency checks.

http://mathsat.fbk.eu/ 12

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

Architectural Overview
Communication Protocols
Case Studies

Pluggable SAT solvers: Requirements

• Must be able to act as an enumerator.

• Should support, solving under assumptions.

• Able to create new variables, add new clauses during search.

• Support variable freezing and reintroduction of eliminated
variables.

• In order to support popping, must be able to delete all clauses
containing certain variables.

http://mathsat.fbk.eu/ 13

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

Architectural Overview
Communication Protocols
Case Studies

Worker Interface Functions

vo i d s o l v e (s td : : v ec to r<i n t>& assump ,
s td : : v ec to r<i n t>& c assump) ;

boo l a dd c l a u s e (s td : : v ec to r<i n t>& c l au s e ,
boo l permanent ,
boo l d u r i n g c a l l b a c k) ;

vo i d s e t f r o z e n (i n t var , boo l b) ;

i n t new var (boo l p o l a r i t y , boo l dva r) ;

vo i d enqueue a s s i gnment (i n t a s s i gnment) ;

vo i d r emov e c l a u s e s c o n t a i n i n g (i n t v) ;
http://mathsat.fbk.eu/ 14

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

Architectural Overview
Communication Protocols
Case Studies

Callback functions

TCODE n o c o n f l i c t a t e r b c p (s td : : v ec to r<i n t>& con f) ;

TCODE mode l found (s td : : v ec to r<i n t>& c o n f l i c t) ;

vo i d i n f o rm hook o f a s s i gnmen t (i n t a s s i gnment) ;

vo i d i n f o rm hook o f n ew l e v e l () ;

vo i d i n f o rm hook o f b a c k t r a c k (i n t l e v e l) ;

vo i d a s k h o o k f o r t r e a s o n (i n t ass ignment ,
s t d : : v ec to r<i n t>& r) ;

http://mathsat.fbk.eu/ 15

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

Architectural Overview
Communication Protocols
Case Studies

Pluggable SAT solvers: Two Case Studies

• Extending Minisat (& Cleaneling).

• Extending Fiver.

http://mathsat.fbk.eu/ 16

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

Architectural Overview
Communication Protocols
Case Studies

Case Study A: Extending Minisat

• The internal addClause method should be changed such that:

Clauses are added at the correct level.
For conflicts, jump back to the level, the conflict was
introduced.

• The analyze method must take into account that assignments
can be from deductions, asking the reason if necessary.

• After each round of BCP, in search which does not result in,
theory propagation should be called -until fixpoint-.

http://mathsat.fbk.eu/ 17

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

Architectural Overview
Communication Protocols
Case Studies

• Once a complete model has been found a complete theory
check should be called.

• Changing cleaneling is pretty similar!

• Example implementations for pluggable versions of Minisat &
Cleaneling are available @ http://mathsat.fbk.eu.

• The changes required for each solver are around 180 lines of
code.

• Does not support variable elimination.

http://mathsat.fbk.eu/ 18

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

Architectural Overview
Communication Protocols
Case Studies

Case Study B: Extending Fiver

• Done completely at Intel. -minus some help in debugging-

• Supports preprocessing!

http://mathsat.fbk.eu/ 19

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

Industrial BV instances
SMT-Comp BV ∪ ARR instances

Analysis of pluggable solver performance on Intel BV

instances

 0

 10

 20

 30

 40

 50

 60

 70
 1

0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

R
ea

ch
ed

 b
ou

nd

Instance #

MathSAT
MathSAT + Fiver

http://mathsat.fbk.eu/ 20

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

Industrial BV instances
SMT-Comp BV ∪ ARR instances

Analysis of pluggable solver performance on BV ∪ ARR

instances

Benchmark Family Size
MathSAT5MiniSat

#Solved RT (sec) #TO #MO

brummayerbiere2 22 15 1831 5 2

brummayerbiere 293 184 17044 97 12

calc2 36 36 4183 0 0

stp 40 29 1765 3 8

Benchmark Family Size
MathSAT5

#Solved RT (sec) #TO #MO

brummayerbiere2 22 15 2218 5 2

brummayerbiere 293 229 25698 64 0

calc2 36 30 7855 6 0

stp 40 26 2659 6 8

http://mathsat.fbk.eu/ 21

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

DEMO

http://mathsat.fbk.eu/ 22

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

Conclusion
Future Work

Conclusion

We have presented a framework with which SAT-Solvers can be
plugged in MathSAT5 and used transparently. Next we have
demonstrated the utility of such an approach on different instances.

http://mathsat.fbk.eu/ 23

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

Conclusion
Future Work

Future Work

• Provide support for proof logging, needed for other MathSAT
functionalities such as Interpolation.

• Experiment with different type enumerators such as
look-ahead Solvers.

• Experiment with pluggable Theory Solvers.

http://mathsat.fbk.eu/ 24

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

Conclusion
Future Work

Questions?
http://mathsat.fbk.eu

http://mathsat.fbk.eu/ 25

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

Conclusion
Future Work

References I

[ABP+11] Carlos Ansótegui, Miquel Bofill, Miquel Palah́ı, Josep
Suy, and Mateu Villaret.
Satisfiability modulo theories: An efficient approach for
the resource-constrained project scheduling problem.
In SARA, 2011.

[CNR12] Alessandro Cimatti, Iman Narasamdya, and Marco
Roveri.
Verification of Parametric System Designs.
In Proc. FMCAD. FMCAD, 2012.

http://mathsat.fbk.eu/ 26

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

Conclusion
Future Work

References II

[FQ02] Cormac Flanagan and Shaz Qadeer.
Predicate abstraction for software verification.
In Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
POPL ’02, pages 191–202, New York, NY, USA, 2002.
ACM.

[GLM12] Patrice Godefroid, Michael Y. Levin, and David Molnar.

Sage: Whitebox fuzzing for security testing.
Queue, 10(1):20:20–20:27, January 2012.

[GPB01] Evgueni Goldberg, Mukul R. Prasad, and Robert K.
Brayton.
Using sat for combinational equivalence checking, 2001.

http://mathsat.fbk.eu/ 27

Introduction
The DPLL and DPLL(T) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

Conclusion
Future Work

References III

[SGCF11] Saurabh Srivastava, Sumit Gulwani, Swarat Chaudhuri,
and Jeffrey S. Foster.
Path-based inductive synthesis for program inversion.
In PLDI, pages 492–503, 2011.

[ST09] Roberto Sebastiani and Armando Tacchella.
SAT Techniques for Modal and Description Logics.
In Handbook of Satisfiability, chapter 25, pages
781–824. IOS Press, 2009.

http://mathsat.fbk.eu/ 28

	Introduction
	The SAT/SMT problem
	Applications of SAT/SMT-Solvers
	Motivation

