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The SMT problem

The SAT problem

Given a Boolean formula F , is there an assignment for which F
evaluates to true?

The SMT problem

SAT extended with a set of theories T1 ∪ T2 · · · ∪ Tn

Example (EUF ∪ LA(Z)):

(x + 2y = 6 ∨ y = 9) ∧ ¬(f (x) = f (y)) ∧ x = 2
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Some Useful Theories

Theory of Linear Arithmetic (LA)

FLA = L(x=) ∧ L(x<)

Theory of BitVectors (BV)

FBV = L(zext〈〉(x〈〉)) >u 〈〉)

Theory of Arrays (ARR)

FARR∪LA = L(read(a,)=) ∧ ¬L(read(write(a,,),i)=read(a,i))
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Applications of SMT-Solvers

• Bounded Model Checking

• Equivalence Testing [GPB01]

• Property Driven Reachability Testing [CNR12]

• Scheduling [ABP+11]

• Test Case Generation [GLM12]

• Software model checking through Predicate Abstraction
[FQ02]

• Program Synthesis [SGCF11]

• ...
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Pluggable SAT solvers: Motivation

• Developing a new (allround) SMT solver entails more than a
new SAT solver. → MathSAT5 ∼ 150kloc vs MiniSAT ∼
6kloc

• Success of SAT solvers highly dependent on heuristics.

• Tuning SAT solvers requires investment of time and money.

• SAT-Solver is a deciding factor for BV & BV ∪ ARR
instances.

• We want to combine state-of-the-art SAT solvers & SMT
solvers.

• This is NOT a straight forward bitblasting approach.
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The DPLL algorithm
1: Preprocess(F)
2: while true do

3: BCP(F)
4: if not conflict then
5: if all variables assigned then

6: return SAT
7: end if

8: decide()
9: else

10: Cconflict ←analyze()
11: if top level conflict found then

12: return UNSAT
13: end if

14: backtrack(Cconflict)
15: end if

16: end whilehttp://mathsat.fbk.eu/ 7
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The DPLL(T ) algorithm

DPLL(T ) = DPLL + ..

• For correctness:

Theory consistency checks.
Case splitting.

• For optimization:

Early pruning.
Theory deductions.

• (Incrementality)

For specific details check [ST09].
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(Simplified) DPLL(T ) algorithm
1: Preprocess(F)
2: while true do

3: BCP(F)
4: if not conflict and theories consistent then
5: if all variables assigned and no case splitting needed.

then

6: return SAT
7: end if

8: decide()
9: else

10: Cconflict ←analyze()
11: if top level conflict found then

12: return UNSAT
13: end if

14: backtrack(Cconflict)
15: end if

16: end whilehttp://mathsat.fbk.eu/ 9
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DPLL(T ) Architectural Overview

Theory Manager

T -Solver1 T -Solvern
..

SAT/UNSAT

Predicate Assignments

Conflicts/ Generated Lemmas

Finput

UNSAT Core / Interpolant / Model

Internal SAT-Solver

API

Theory Solvers
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DPLL(T ) + Pluggable Solver Architectural Overview

Theory Manager

T -Solver1 T -Solvern
..

SAT/UNSAT

Predicate Assignments

Conflicts/ Generated Lemmas

Finput

UNSAT Core / Interpolant / Model

SAT-Solver Stub

API

Theory Solvers

Pluggable Solver

Callback functions SAT API calls
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Pluggable SAT solvers: A quick overview

• 3rd Party SAT solvers can be plugged in MathSAT5 by:

Implementing a worker interface.
Invoking required callback functions during search.

• The worker interface allows MathSAT5 to:

Specify the problem for the SAT solver to solve.
Communicate deduced values.

• Callbacks allow the SAT solver to:

Communicate found (partial) models to MathSAT5

Invoke T -consistency checks.
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Pluggable SAT solvers: Requirements

• Must be able to act as an enumerator.

• Should support, solving under assumptions.

• Able to create new variables, add new clauses during search.

• Support variable freezing and reintroduction of eliminated
variables.

• In order to support popping, must be able to delete all clauses
containing certain variables.
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Worker Interface Functions

vo i d s o l v e ( s td : : v ec to r<i n t>& assump ,
s td : : v ec to r<i n t>& c assump ) ;

boo l a dd c l a u s e ( s td : : v ec to r<i n t>& c l au s e ,
boo l permanent ,
boo l d u r i n g c a l l b a c k ) ;

vo i d s e t f r o z e n ( i n t var , boo l b ) ;

i n t new var ( boo l p o l a r i t y , boo l dva r ) ;

vo i d enqueue a s s i gnment ( i n t a s s i gnment ) ;

vo i d r emov e c l a u s e s c o n t a i n i n g ( i n t v ) ;
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Callback functions

TCODE n o c o n f l i c t a t e r b c p ( s td : : v ec to r<i n t>& con f ) ;

TCODE mode l found ( s td : : v ec to r<i n t>& c o n f l i c t ) ;

vo i d i n f o rm hook o f a s s i gnmen t ( i n t a s s i gnment ) ;

vo i d i n f o rm hook o f n ew l e v e l ( ) ;

vo i d i n f o rm hook o f b a c k t r a c k ( i n t l e v e l ) ;

vo i d a s k h o o k f o r t r e a s o n ( i n t ass ignment ,
s t d : : v ec to r<i n t>& r ) ;
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Pluggable SAT solvers: Two Case Studies

• Extending Minisat (& Cleaneling).

• Extending Fiver.
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Case Study A: Extending Minisat

• The internal addClause method should be changed such that:

Clauses are added at the correct level.
For conflicts, jump back to the level, the conflict was
introduced.

• The analyze method must take into account that assignments
can be from deductions, asking the reason if necessary.

• After each round of BCP, in search which does not result in,
theory propagation should be called -until fixpoint-.
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• Once a complete model has been found a complete theory
check should be called.

• Changing cleaneling is pretty similar!

• Example implementations for pluggable versions of Minisat &
Cleaneling are available @ http://mathsat.fbk.eu.

• The changes required for each solver are around 180 lines of
code.

• Does not support variable elimination.
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Case Study B: Extending Fiver

• Done completely at Intel. -minus some help in debugging-

• Supports preprocessing!
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Industrial BV instances
SMT-Comp BV ∪ ARR instances

Analysis of pluggable solver performance on Intel BV

instances
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Industrial BV instances
SMT-Comp BV ∪ ARR instances

Analysis of pluggable solver performance on BV ∪ ARR

instances

Benchmark Family Size
MathSAT5MiniSat

#Solved RT (sec) #TO #MO

brummayerbiere2 22 15 1831 5 2

brummayerbiere 293 184 17044 97 12

calc2 36 36 4183 0 0

stp 40 29 1765 3 8

Benchmark Family Size
MathSAT5

#Solved RT (sec) #TO #MO

brummayerbiere2 22 15 2218 5 2

brummayerbiere 293 229 25698 64 0

calc2 36 30 7855 6 0

stp 40 26 2659 6 8
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Conclusion

We have presented a framework with which SAT-Solvers can be
plugged in MathSAT5 and used transparently. Next we have
demonstrated the utility of such an approach on different instances.

http://mathsat.fbk.eu/ 23



Introduction
The DPLL and DPLL(T ) algorithms

Architecture & Implementation
Experimental Evaluation

Demo
Conclusion & Future Work

Conclusion
Future Work

Future Work

• Provide support for proof logging, needed for other MathSAT
functionalities such as Interpolation.

• Experiment with different type enumerators such as
look-ahead Solvers.

• Experiment with pluggable Theory Solvers.
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Questions?
http://mathsat.fbk.eu
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