
Reusing Precisions
for Efficient

Regression Verification

Dirk
Beyer

Evgeny
Novikov

Andreas
Stahlbauer

Philipp
Wendler

Stefan
Löwe

(Published in Proc. ESEC/FSE 2013, ACM.)

2

Regression
“We need this new feature, now!”

Risk of introducing bugs when
changing source code

→ Regression Testing
Verification

Picture: (c) Sean Bonner, 2013

Driver VerificationLinux

4

Revision Commit Message Safe?

3 Implement button detection support ✘
4 Free MICDET IRQ on error during probe ✘
5 fix typos in extcon-arizona ✘
6 Use bypass mode for MICVDD ✘
7 Merge tag ’driver-core-3.6’ of ... ✘
8 unlock mutex on error path in ... ✔
9 remove use of devexit ✘

10 remove use of devinit ✘
11 remove use of devexit p ✘
12 Merge tag ’pull req 20121122’ of ... ✔

Real-World Example

5

High Resource Consumption!

Software Verification is expensive

Verifying all safety properties for
all entry points of all revisions of a software ...

… is really expensive

 ≈ 580 days

 200 000 revisions
 * 10 properties
 * 5 entry points
 = 10 000 000 verification tasks
 * 5 seconds/verification task

6

Reuse of Verification Results

Drawbacks of existing approaches

– Too large: space on disk, time for loading

– Too sensitive to changes between revisions

– Too complex: modification of the verification algorithm

 ➡ Reuse the “precision”

7

Precision π

Defines the level of abstraction within an
abstract domain:

Information that an abstraction-based analysis

has to track to prove a property.

8

Advantages
of Reusing Precisions

✔ No modification of the verification algorithm

✔ Easy to extract from model checkers

✔ Small memory footprint

✔ Low sensitivity to changes
in the input programs

π

9

Examples for Precision

● Predicate Analysis

Set of predicates used to compute boolean
abstractions

● Explicit-State Analysis

Set of variables for which the explicit value has to
be tracked

● Shape Analysis

Set of pointer variables to track

π = {a > 0, k == 1 e == 0}∧

π = {a, k, e}

π = {p1, p2}

10

Example

ERROR
d := 2

c := 5 a := 0

a := 1

[a == 1]

[a != 1]

[b == 7]

[b != 7]

b := 0

Analysis Precision π

Explicit-State {b, a}

Predicate {b == 7, a == 1}

11

CEGAR

Counterexample infeasible

Check feasibility

π
0
 = {}

π
i+1

 = π
i

 Interpolant∪
i+1

Model Checking

Path to error
(counterexample)

Safe

Unsafe

Refine precision

Program

12

Path to error infeasible

Check feasibility

Model Checking

Path to error

Safe

Unsafe

Refine precision

Program

Costs of one (more) Iteration

Interpolation for refining
the precision of relevant
program locations

Recomputing affected
abstract states

Cut abstract reachability graph on
pivot state

13

Path to error infeasible

Check feasibility

Model Checking

Path to error

Safe

Unsafe

Refine precision

Program

Costs of one (more) Iteration

Interpolation for refining
the precision of relevant
program locations

Recomputing affected
abstract states

Cut abstract reachability graph on
pivot state

14

Path to error infeasible

Check feasibility

Model Checking

Path to error

Safe

Unsafe

Refine precision

Program

Costs of one (more) Iteration

Interpolation for refining
the precision of relevant
program locations

Recomputing affected
abstract states

Cut abstract reachability graph on
pivot state

15

Costs of one (more) Iteration

Path to error infeasible

Check feasibility

Model Checking

Path to error

Safe

Unsafe

Refine precision

No Precision Reuse

Program

Path to error infeasible

Check feasibility

Model Checking

Path to error

Safe

Unsafe

Refine precision

With Precision Reuse

Program + (π
0
 ≠)∅

16

Advantages
of Reusing Precisions

✔ No modification of the verification algorithm

✔ Easy to extract from model checkers

✔ Small memory footprint

✔ Low sensitivity to changes
in the input programs

π

17

Implementation

● Implemented in CPAchecker
– Predicate Analysis

– Explicit-State Analysis

● Common to both analyses:
– Lazy abstraction

– CEGAR

– Construct an abstract reachability graph

http://cpachecker.sosy-lab.org

18

Workflow

Revision N

Precision N-1

 ✘ ✔

Precision N

Input Output

19

Scope

Storing Precisions

(declare-fun |lock|() Real)
(declare-fun |x|() Real)
(define-fun t1() Bool (= |lock| 0))
(define-fun t2() Bool (<= |x| 1))

*:
(assert t1)

main f:
(assert t2)

*:
lock

main f:
x

Explicit-State Analysis Predicate Analysis

Really simple! Dump the precision if you have it!

20

Information to track

Storing Precisions

(declare-fun |lock|() Real)
(declare-fun |x|() Real)
(define-fun t1() Bool (= |lock| 0))
(define-fun t2() Bool (<= |x| 1))

*:
(assert t1)

main f:
(assert t2)

*:
lock

main f:
x

Explicit-State Analysis Predicate Analysis

Really simple! Dump the precision if you have it!

21

Global declarations and definitions

Storing Precisions

(declare-fun |lock|() Real)
(declare-fun |x|() Real)
(define-fun t1() Bool (= |lock| 0))
(define-fun t2() Bool (<= |x| 1))

*:
(assert t1)

main f:
(assert t2)

*:
lock

main f:
x

Explicit-State Analysis Predicate Analysis

Really simple! Dump the precision if you have it!

22

Benchmark Suite

● Derived from industrial code (Linux kernel)

– 4193 verification problems

– 59 Linux device drivers

– 1119 revisions

spanning more than 5 years of development

● Publicly available

http://sosy-lab.org/~dbeyer/cpa-reuse/

23

Benchmark Setup

● Processor: Intel i7 3.4 GHz Quad Core

● Time limit: 15 minutes
● Memory limit: 15 GB

= Setup of the Intl. Competition on Software Verification

better

worse
CPU time in seconds

With Reuse

Without Reusex

better

worse
Results for Predicate Analysis

Results for Predicate Analysis

Tasks 4 193

CPU Time
without Reuse 130 000

CPU Time
with Reuse 40 000

Speedup 3.7

Solved 4 001 + 56better

worse

27

Sensitivity to Changes

Analysis Revs. # Tasks Average
Difference
(Lines)

CPU Time
without
Reuse

CPU Time
with

Reuse

Speedup Solved

Predicate

All 4 193 688 130 000 40 000 3.7 4 001 +56

4th 1 090 1 579 34 000 14 000 3.2 1 045 +12

→ Low sensitivity to changes in the program code

Results for Explicit-State Analysis

Revs. #
Tasks

Different Lines
(Average)

CPU Time
without Reuse

CPU Time
with Reuse

Speedup Solved

All 4 193 688 27 000 20 000 1.4 4 191

4th 1 090 1 579 6 300 5 100 1.3 1 090

better

worse

Conclusion

● Drastically improves performance
Drastically reduces the number of refinements

● More problems can be solved
● Low sensitivity to changes in the program code

Precision reuse has a
significant positive effect!

Dirk Beyer, Stefan Löwe, Evgeny Novikov, Andreas Stahlbauer, Philipp Wendler

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

