
Optimization Techniques For Craig

Interpolant Compaction In

Unbounded Model Checking

Danilo Vendraminetto

PhD student at Formal Methods Group, Politecnico di Torino, Torino, Italy.

Alpine Verification Meeting 2013, FBK, Trento, Italy.

Before starting..

 Talk in part based on a paper we presented at

DATE 2013 Conference:

 Gianpiero Cabodi, C. Loiacono, D. Vendraminetto.

Optimization techniques for craig interpolant

compaction in unbounded model checking.

DATE 2013: 1417-1422

3

Outline

 Motivations & background

 Hardware designs verification

 Craig Interpolants in MC

 ITP size compaction & scalability

 Contributions

 Redundancy removal and reduction of

 UNSAT proofs

 Craig interpolants

 Heuristic procedure for scalable ITP compaction

 Experimental results & Conclusions

4

Motivations

 Can ITPs compete with IC3 ?

 Main limitations of ITP

 BMC-based model (vs. cube/clause-based reachability)

 ITPs are highly redundant

IC3 ITP

2-level (AND-OR)

characteristic functions

Multiple level circuits

Single instance of TR TR unrollings

5

Motivations

 Can ITPs compete with IC3 ?

 Main limitations of ITP

 BMC-based model (vs. cube/clause-based reachability)

 ITPs are highly redundant

IC3 ITP

2-level (AND-OR)

characteristic functions

Multiple level circuits

Single instance of TR TR unrollings

6

Bounded Model Checking

 Trading off completeness for productivity

 find BUGs !!!

I F

T T T

CNF clauses
SAT

solver
Buggy states

Initial states

Gianpiero Cabodi - IBM2011

7

Interpolation [Craig’57]

 Given AB = 0

 A’ = interpolant(A,B)

 A A’

 A’B = 0

 A’ refers only to common variables of A,B

 Interpolants from proofs

 Given a resolution refutation of AB

 A' is derived in linear time and space

[Pudlak,Krajicek’97]

8

Interpolation [McMillan’03]

 Interpolant as over-approx. image operator

 Over-approximation

 Variable quantification

 Works whenever a representation of

backward reachable space is given

 A: From T (FWD)

 B: paths to failure states (BWD)

 A’: over-approx image

 Approx image is called adequate w.r.t. B

9

ITP from refutation proof
A B

CNF clauses

UNSAT

problem

(AB = 0)

10

ITP from refutation proof
A B

Resolution

graph

Null clause

11

ITP from refutation proof
A B

Resolution

graph

Null clause

Unsatisfiable core

Resolution rule

(A  p) (p  B)

(A  B)

pivot variable

12

ITP from refutation proof
A B

Null clause

Unsatisfiable core

Resolution rule

(A  p) (p  B)

(A  B)

13

Interpolant from refutation

proof
A B

Resolution

graph

Null clause

AND-OR

circuit

1

A’ = Interpolant (A,B)

14

Interpolant from refutation

proof
A B

Resolution

graph

Null clause

AND-OR

circuit

1

A’ = Interpolant (A,B)

A gate for each

resolution node

Interpolant rules

 Interpolation is a circuit that follows the

structure of the proof

15

A = (p)(p  q) B = (q  r)(r)

(p) (p  q)

(q) (q  r)

(r) (r)

^

^

^

^

q

=q

16

W
V V’

Image+

From

T T

To+

To

17

W
V V’

Image+

From

T T

To+

To

To+(V’) = IMG+(From,T) =

 Approx((V,W)From(v)T(V,W,V’))

18

Adequate Image+

From

T T

To+ B

To

19

Adequate Image+

From

T T

To+ B

To

To+ adequate w.r.t. B

if To outside B

then To+ outside B

20

Adequate Image+ by

Interpolant

From

T T

To+ B

To

To+ = interpolant (From T,B)

21

ITP

Rk,bwd

F
Fromi

T T T T

Toi

T

To+i

Standard ITP: to+i computed from appr. Fromi

A

B

22

Why use adequate IMG+ ?

 FWD approximate reachable states
 computed by adequate IMG+

 do not intersect BWD reachable states

Rbwd
R+

I F

IMG+

adequate

…

23

ITP compaction

Proof reduction ITP circuit compaction

Alternative proofs

• different resolution schemes

BDD/SAT

sweeping

Const

propagation

Equivalent proofs

• redundancy removal
ODC Refactor

rewrite

Resolution

graph

AND-OR
circuit

1

24

ITP compaction

Proof reduction ITP circuit compaction

Alternative proofs

• different resolution schemes

BDD/SAT

sweeping

Const

propagation

Equivalent proofs

• redundancy removal
ODC Refactor

rewrite

Resolution

graph

AND-OR
circuit

1
Problem #1:

• SCALABILITY

25

Proof reduction

 Recycle-pivots [Bar-Inal & al. HVC08]

C1 (1 2 3) C2 (-2 4)

C3 (1 3 4) C4 (-1 -2 5)

C6 (2 6) C5 (-2 3 4 5)

C7 (3 4 5 6)

C1 (1 2 3) C2 (-2 4)

C3 (1 3 4) C4 (-1 -2 5)

C6 (2 6) C5 (-2 3 4 5)

C7 (3 4 5 6)

C1 (1 2 3) C2 (-2 4)

C3 (1 3 4) C4 (-1 -2 5)

C6 (2 6) C5 (-2 3 4 5)

C7 (3 4 5 6)

C2 (-2 4)

C3 (-2 4)

C6 (2 6) C5 (-2 4)

C7 (4 6)

RL = {-2 1}

RL = {-2}

RL denotes the Removable-Literals

Proof reduction

26

 Recycle-pivots + restruct proof [Bar-Inal & al.
HVC08]

27

Our Contribution:

exploit proof topology

28

Our Contribution:

exploit proof topology

Proof node chain

 Simpler data structure for proof reduction algorithms
and further techniques

ITP Circuit Compaction

 Logic synthesis manipulations on the proof

 Constant propagation

 BDD-based sweeping (for equivalences)

 Observability Don’t Care (lightweight)

29

 Proof into AIG

 ODC (lightweight)

 Logic synthesis

 rewrite / refactor, using ABC tool

 AIG balance

 ITE-based decomposition (iff necessary)

Observability don’t care

30

 If A == 0  out = 0 ; no matters f(.) or g(.)

 don’t-care set

A

f(x, .. , A)

g(x, .. , A)

out

Observability don’t care

31

 If A == 1  f(.) and g(.) can be simplified

 care set

A

f(x, .. , 1)

g(x, .. , 1)

out

ITP ITE decomposition

32

x1

xN

ITP

ITP ITE decomposition

33

x1

xN

ITP 1

ITP ITE decomposition

34

x1

xN

ITP 1
Ni

ITP0

ITP ITE decomposition

35

x1

xN

ITP1
1 1

MUX

1

0

X

Ni

ITP1

ITP0

ITP

1 0

x1

xN

Ad-Hoc ITP compaction

36

AigIteDecomp (ITP)

 if (max recursions || |ITP| < th)

 standardLogicSynth (ITP)

 do

 search node Ni with highest FO

 ITE(Ni,ITP1,ITP0) //compute cofactors; equals to ITP

 if (accept (ITE decomp)) //size-based heuristic

 AigIteDecomp (Ni)

 AigIteDecomp (ITP1)

 AigIteDecomp (ITP0)

 ITP = ITE(Ni,ITP1,ITP0)

 while max try reached

37

Experimental results

 Framework: PdTrav

 State-of-the-art academic Model Checker

 HWMCC ’07 to ‘12

 Ranked 1st at 2010 Model Checking Competition – UNSAT

category

 ITP compaction => better MC runs

 Experience on IBM & Intel benchmarks

0

200

400

600

800

1000

1200

T
im

e
 [

s
]

Circuit name

Best Opt Time

Std Itp Time

Experimental results

39

Conclusions

 ITP-based MC heavily relies on scalability,

i.e. ability to compact ITPs

 We developed effective techniques to

compact ITPs.

 Scalable techniques, applied incrementally

 Best suited as a second engine

 Hard-to-prove properties (hard for IC3)

 Explosion of standard interpolation

 Can afford extra time (for memory)

40

Thank you!

