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Before starting.. 

 

 Talk in part based on a paper we presented at 

DATE 2013 Conference: 

 

 Gianpiero Cabodi, C. Loiacono, D. Vendraminetto.  

Optimization techniques for craig interpolant 

compaction in unbounded model checking.  

DATE 2013: 1417-1422 
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Outline 

 Motivations & background 

 Hardware designs verification 

 Craig Interpolants in MC 

 ITP size compaction & scalability 

 Contributions 

 Redundancy removal and reduction of 

 UNSAT proofs 

 Craig interpolants 

 Heuristic procedure for scalable ITP compaction 

 Experimental results & Conclusions 
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Motivations 

 Can ITPs compete with IC3 ? 

 

 

 

 

 

 Main limitations of ITP 

 BMC-based model (vs. cube/clause-based reachability) 

 ITPs are highly redundant 

IC3 ITP 

2-level (AND-OR) 

characteristic functions 

Multiple level circuits 

Single instance of TR TR unrollings 
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Bounded Model Checking  

 Trading off completeness for productivity 
   

    find BUGs !!! 

I F 

T T T 

CNF clauses 
SAT 

solver 
Buggy states 

Initial states 

Gianpiero Cabodi - IBM2011 
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Interpolation [Craig’57] 

 Given AB = 0 

 A’ = interpolant(A,B) 

 A A’ 

 A’B = 0 

 A’ refers only to common variables of A,B 

 Interpolants from proofs  

 Given a resolution refutation of AB 

 A' is derived in linear time and space 

[Pudlak,Krajicek’97] 
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Interpolation [McMillan’03] 

 Interpolant as over-approx. image operator 

 Over-approximation 

 Variable quantification 

 Works whenever a representation of 

backward reachable space is given 

 A: From T (FWD) 

 B: paths to failure states (BWD) 

 A’: over-approx image  

 Approx image is called adequate w.r.t. B 



9 

ITP from refutation proof 
A B 

CNF clauses 

UNSAT 

problem 

(AB = 0) 
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ITP from refutation proof 
A B 

Resolution  

graph 

Null clause 
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ITP from refutation proof 
A B 

Resolution  

graph 

Null clause 

Unsatisfiable core 

Resolution rule  

(A  p) (p  B) 

(A  B) 

pivot variable  
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ITP from refutation proof 
A B 

Null clause 

Unsatisfiable core 

Resolution rule  

(A  p) (p  B) 

(A  B) 



13 

Interpolant from refutation 

proof 
A B 

Resolution  

graph 

Null clause 

AND-OR  

circuit 

1 

A’ = Interpolant (A,B) 
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Interpolant from refutation 

proof 
A B 

Resolution  

graph 

Null clause 

AND-OR  

circuit 

1 

A’ = Interpolant (A,B) 

A gate for each 

resolution node 



Interpolant rules 

 Interpolation is a circuit that follows the 

structure of the proof 
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A = (p)(p  q) B = (q  r)(r) 

(p) (p  q) 

(q) (q  r) 

(r) (r) 

^

^

^

^

q 

=q 
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W 
V V’ 

Image+ 

From 

T T 

To+ 

To 
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W 
V V’ 

Image+ 

From 

T T 

To+ 

To 

To+(V’) = IMG+(From,T) = 

 Approx((V,W)From(v)T(V,W,V’)) 
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Adequate Image+ 

From 

T T 

To+ B 

To 
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Adequate Image+ 

From 

T T 

To+ B 

To 

To+ adequate w.r.t. B 

if To outside B  

then To+ outside B 
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Adequate Image+ by 

Interpolant 

From 

T T 

To+ B 

To 

To+ = interpolant (From T,B) 
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ITP 

Rk,bwd 

F 
Fromi 

T T T T 

Toi 

T 

To+i 

Standard ITP: to+i computed from appr. Fromi 

A 

B 
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Why use adequate IMG+ ? 

 FWD approximate reachable states 
 computed by adequate IMG+ 

 do not intersect BWD reachable states  

Rbwd 
R+ 

I F 

IMG+ 

adequate 

… 
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ITP compaction 

Proof reduction ITP circuit compaction 

 

 

 

 

 

Alternative proofs 

• different resolution schemes 

BDD/SAT 

sweeping 

Const 

propagation 

Equivalent proofs 

• redundancy removal 
ODC Refactor 

rewrite 

Resolution 

graph 

AND-OR  
circuit 

1 
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ITP compaction 

Proof reduction ITP circuit compaction 

 

 

 

 

 

Alternative proofs 

• different resolution schemes 

BDD/SAT 

sweeping 

Const 

propagation 

Equivalent proofs 

• redundancy removal 
ODC Refactor 

rewrite 

Resolution 

graph 

AND-OR  
circuit 

1 
Problem #1: 

• SCALABILITY 
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Proof reduction 

 Recycle-pivots [Bar-Inal & al. HVC08] 

C1 (1 2 3) C2 (-2 4) 

C3 (1 3 4) C4 (-1 -2 5) 

C6 (2 6) C5 (-2 3 4 5) 

C7 (3 4 5 6) 

C1 (1 2 3) C2 (-2 4) 

C3 (1 3 4) C4 (-1 -2 5) 

C6 (2 6) C5 (-2 3 4 5) 

C7 (3 4 5 6) 



C1 (1 2 3) C2 (-2 4) 

C3 (1 3 4) C4 (-1 -2 5) 

C6 (2 6) C5 (-2 3 4 5) 

C7 (3 4 5 6) 

C2 (-2 4) 

C3 (-2 4) 

C6 (2 6) C5 (-2 4) 

C7 (4 6) 

RL = {-2 1} 

RL = {-2} 

RL denotes the Removable-Literals 

Proof reduction 
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 Recycle-pivots + restruct proof [Bar-Inal & al. 
HVC08] 
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Our Contribution: 

exploit proof topology 
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Our Contribution: 

exploit proof topology 

Proof node chain  

 Simpler data structure for proof reduction algorithms 
and further techniques 



ITP Circuit Compaction 

 Logic synthesis manipulations on the proof 

 Constant propagation 

 BDD-based sweeping (for equivalences) 

 Observability Don’t Care (lightweight) 
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 Proof into AIG 

 ODC (lightweight) 

 Logic synthesis 

 rewrite / refactor, using ABC tool 

 AIG balance 

 ITE-based decomposition (iff necessary) 

 

 

 



Observability don’t care 
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 If A == 0   out = 0 ; no matters f(.) or g(.)  

 don’t-care set 

 

A 

f(x, .. , A) 

g(x, .. , A) 

out 



Observability don’t care 
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 If A == 1   f(.) and g(.) can be simplified 

 care set 

A 

f(x, .. , 1) 

g(x, .. , 1) 

out 



ITP ITE decomposition 

32 

x1 

xN 

ITP 



ITP ITE decomposition 
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x1 

xN 

ITP 1 



ITP ITE decomposition 
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x1 

xN 

ITP 1 
Ni 



ITP0 

ITP ITE decomposition 
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x1 

xN 

ITP1 
1 1 

MUX 

1 

0 

X 

Ni   

ITP1  

ITP0  

ITP  

1 0 

x1 

xN 



Ad-Hoc ITP compaction 
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AigIteDecomp (ITP) 

 if (max recursions || |ITP| < th) 

  standardLogicSynth (ITP) 

 do  

        search node Ni with highest FO 

       ITE(Ni,ITP1,ITP0) //compute cofactors; equals to ITP 

        if (accept (ITE decomp))    //size-based heuristic 

   AigIteDecomp (Ni) 

   AigIteDecomp (ITP1) 

   AigIteDecomp (ITP0) 

   ITP = ITE(Ni,ITP1,ITP0) 

 while max try reached 
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Experimental results 

 Framework: PdTrav  

 State-of-the-art academic Model Checker  

 HWMCC ’07 to ‘12  

 Ranked 1st at 2010 Model Checking Competition – UNSAT 

category 

 ITP compaction => better MC runs 

 Experience on IBM & Intel benchmarks 
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Experimental results 
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Conclusions 

 ITP-based MC heavily relies on scalability, 

i.e. ability to compact ITPs 

 We developed effective techniques to 

compact ITPs. 

 Scalable techniques, applied incrementally 

 Best suited as a second engine 

 Hard-to-prove properties (hard for IC3) 

 Explosion of standard interpolation 

 Can afford extra time (for memory) 
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Thank you! 


