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Preface

This volume contains the contributions to the First Open EIT ICT Labs Workshop on Cyber-
Physical Systems Engineering, held on May 24, 2013, in Trento, Italy (EIT CPSE 2013).

The ongoing integration of software-intensive embedded systems and global communication
networks into Cyber-Physical Systems (CPS) is considered to be the next revolution in ICT
with a great deal of game-changing business potential and novel business models for integrated
products and services. Many technology leaders are already in the midst of a global race of
repositioning and reinventing themselves by developing new dynamic CPS-inspired business
models.

Mastering the engineering of complex and trustworthy CPS is crucial to implementing such
business models. Current systems engineering frameworks, however, do not enable a conceptu-
alization and design for the deep interdependencies among engineered systems and the natural
world. Thus, there is a clear need for a new Cyber-Physical Systems Engineering (CPSE)
framework for apprehending the development and operation of highly efficient CPS upon which
people can almost blindly depend.

The aim of the workshop was to provide researchers and practicioners working in the realm
of CPS with a forum for discussion and interchange. The topics suggested for the workshop
included

• integrated processes based on the design-operation life-cycle continuum,

• multidisciplinary modelling and analysis of discrete-continuous systems,

• composition and integration frameworks for heterogeneous systems,

• scalable and evolvable system and software architectures,

• open and standardized tool integration frameworks for performance and trustworthiness
analysis,

• industrial experience on engineering CPS;

the selection procedure albeit was open to consider any further question related to this subject
of disruptive potential.

The Program Committee selected 7 submissions (from 16 different countries) of high scien-
tific quality, originality, and relevance to the workshop. Each paper was reviewed by at least
three Program Committee members or external referees. Additionally, the workshop invited two
outstanding researchers to present their advances in the area, namely Bill Roscoe (University
of Oxford, UK) and Radu Calinescu (University of York, UK).
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The automated verification of timewise
refinement (Draft)

A.W. Roscoe,

Oxford University Department of Computer Science

Abstract. While Hoare’s CSP models reactive systems without assign-
ing an exact time to events, Timed CSP records the exact times as non-
negative reals. Timed CSP therefore provides a more exact semantics of
systems, but it still makes sense to ask whether a timed process satisfies
an untimed specification. Indeed the question of whether such specifica-
tions are satisfied often reduces to the timing details of the implemen-
tation. Schneider showed how this could be understood at an abstract
level via the concept of timewise refinement. The recent implementation
of Timed CSP in the CSP refinement checker FDR (using Ouaknine’s
theory of digitisation) has at last provided the framework for automating
timewise refinement. In this paper we show how to do this, discovering
that it is subtle because of the need to reconcile infinite behaviours with
finite ones

1 Introduction

Hoare’s process algebra CSP [5, 11, 12] provides a framework for describing sys-
tems patterns of actions representing communications. It provides operators that
allows the description of implementations, typically consisting of parallel net-
works whose parts communicate by handshaking on their own action. It also
provides the means – including representations of nondeterminism, deadlock,
and other pathologies – for creating specifications.

The semantics of CSP in its original form cared about the order in which
actions happen, but not their exact times. The author and Mike Reed [8] intro-
duced an alternative view of the same notation, with the addition of the timed
constant process WAIT t that terminates successfully after t time units.

Substantial theories have been developed for both the untimed and timed
versions of CSP including abstract models and operational semantics. In the
timed models one records more details than in the untimed ones, and so one
would expect to have mappings which forget this extra detail and therefore cast
any system modelled in timed theories to values in corresponding untimed ones.

Timed systems may be expected to meet specifications which restrict the
times at which events happen, as well as ones that do not. In the latter case the
correctness of the system may well depend on timing details within a system
even though the specification is untimed.1 For such cases we would need the
1 A good example of this is provided by the level crossing described in [3, 11], where

the untimed specification that the gate is down when a train passes by it is only



detail of Timed CSP to create a model that establishes the specification, and
then to have a way of testing it against an untimed specification.

For untimed trace, or safety, specifications, there can be no doubt what this
means since there can be no doubt how to extract an untimed trace from a timed
behaviour: simply extract the sequence of events that occur in it.

Beyond traces, most used untimed models for CSP are failures and failures-
divergences. Each of these depends, in the usual operational formulation, on the
dual ideas of divergence (an unbroken infinite series of internal τ actions and
stability (reaching a state where no τ action is possible). While it is possible
to build timed models that capture this information such as the timed failures-
stability model [9], it is far from clear that this provides the most useful link
between Timed CSP the untimed failures model.

One argument for this is that divergence is a much less dangerous and difficult
phenomenon in the timed world than it is in the untimed one. On the “no-Zeno”
assumption that only finitely many events happen in a finite time, divergence
can only occur over an infinite interval, during which we can see the offers that
the process makes in a way that makes no sense over untimed models. Whereas
refusal sets only appear in the untimed models when they become permanent
through stability, in the timed models there is no choice but to record what is
refused at every instant – event when a τ will later become enabled from the
current state.

Schneider [15, 16] therefore described the timewise refinement relation be-
tween the failures model of untimed CSP and the timed failures model, in which
events are given times from the non-negative real numbers, and we record what
was (observed to have been) refused at each moment of time. PSF vTF Q2 if all
of the untimed traces that can be extracted from Q are permissible for P , and
furthermore whenever Q can perform the untimed trace s and from some time
beyond the end of s always refuse the whole of the set X of visible actions, then
(s,X ) is a failure of P .

Thanks to Ouaknine’s work on digitisation [6, 7], it has become possible to es-
tablish results about (continuous) Timed CSP processes3 by proving them about
a version of Timed CSP formulated over discrete time, which in turn is equiv-
alent to proving analogous results about a tock -CSP translation of the discrete
version. tock -CSP [11] is ordinary “untimed” CSP but with the special event
tock interpreted as the regular passage of time. This translation was described
in [6], and its implementation in the FDR refinement checker in [1].

That made it straightforward to check untimed trace properties of Timed
CSP processes on FDR: all one had to do was to check untimed trace refinement
of the untimed specification P by Q \ {tock} for the timed implementation Q .
In other words we can simply hide the special time event.

met because, inter alia, of the relationship of the speed of trains to the timing
characteristics of the physical gate.

2 This notation is borrowed from [16].
3 These results are restricted to processes in which all programmer- and

implementation-created delays are of integer length: integer Timed CSP.



The situation is not so simple for failures, since the permanent refusal of a set
of events in a tock -time process necessarily involves an infinite series of tocks and
quite possibly states that vary throughout time. In particular Q \ {tock} will
have no stable failures at all, since no discrete Timed CSP process ever refuses
tock . Therefore the inclusion of Timed CSP in FDR did not in itself solve the
problem of automating the question of timewise refinement.

Timed CSP’s semantics have the property known as maximal progress, mean-
ing that a process cannot do nothing when a τ action is possible. In the transla-
tion to tock -CSP this translates to the statement that no tock action can happen
when a τ is possible. Another way of saying the same thing is that τ must have
priority over tock .

For this and other reasons a priority operator has been implemented in FDR,
as proposed in [12]. We shall see in the present paper that priority also provides
the solution to the problem of characterising timewise refinement, using a similar
idea to that used to solve a problem of abstraction in [13]. Specifically, we will
find that way to map a Timed CSP process to a value that can be compared
against an untimed failures specification is to use the slow abstraction defined in
that paper.

This, in the present case, has the effect of turning any refusal (as opposed
to trace) counter-example to a failures refinement into a divergence that can be
detected by FDR.

The rest of this paper is organised as follows. In the next (background) sec-
tion we recall the essential details of CSP, Timed CSP and their models, giving
the formal definition of timewise refinement. In Section 4 we shown how slow
abstraction of {tock} provides an accurate characterisation of timewise refine-
ment for the discrete interpretation of Timed CSP, with digitisation extending
this result to the continuous interpretation.

In this paper we make the assumption that the underlying alphabet of actions
Σ is finite. This is necessary because of the way we check timewise refinement
later, and is common to [13]. Since FDR can only handle finite alphabets, this
is therefore no restriction at all at that level.

2 Background

2.1 CSP and its semantics

In this section we give an overview of untimed CSP and its models, as relevant
to the present paper. Far more extensive presentations can be found in [5, 11,
12]. CSP is based on instantaneous actions handshaken between a process and
its environment, whether that environment consists of processes it is interacting
with or some notional external observer. It enables the modelling and analysis of
patterns of interaction. The books [5, 11, 12, 16] all provide thorough introduc-
tions to CSP. The main constructs that we will be using in this paper are set
out below.



– The processes STOP , SKIP and div respectively do nothing, terminate
immediately with the signal X and diverge by repeating the internal action
τ . RunA and ChaosA can each perform any sequence of events from A,
but while RunA always offers the environment every member of A, ChaosA

can nondeterministically choose to offer just those members of A it selects,
including none at all.

– a → P prefixes P with the single communication a which belongs to the
set Σ of normal visible communications. Similarly ?x : A→ P(x ) offers the
choice A and then behaves accordingly.

– CSP has several choice operators. P � Q and P u Q respectively offer the
environment the first visible events of P and Q , make an internal decision
via τ actions whether to behave like P or Q .
The asymmetric choice operator P BQ offers the initial visible choices of P
until it performs a τ action and opts to behave like Q . In the cases of P � Q
and P BQ , the subsequent behaviour depends on what initial action occurs.

– P \ X (hiding) behaves like P except that all actions in X become (internal
and invisible) τs.

– P [[R]] (renaming) behaves like P except that whenever P performs an action
a, the renamed process must perform some b that is related to a under the
relation R.

– P ‖
A

Q is a parallel operator under which P and Q act independently except

that they have to agree (i.e. synchronise or handshake) on all communications
in A. A number of other parallel operators can be defined in terms of this,
including P ||| Q = P ‖

∅
Q in which no synchronisation happens at all.

– P ; Q behaves like P until it terminates successfully, and then like Q .

There are also other operators such as P 4 Q (interrupt) and P Θa Q (throwing
an exception) that do not play a direct role in this paper.

It is always asserted that the meaning, or semantics, of a CSP process is
the pattern of externally visible communication it exhibits. As shown in [11,
12], CSP has several styles of semantics, that can be shown to be appropriately
consistent with one another. The two styles that will concern us are operational
semantics, in which rules are given that interpret any closed process term as a
labelled transition system (LTS), and behavioural models, in which processes are
identified with sets of observations that might be made from the outside.

An LTS models a process as a set of states that it moves between via actions
in Στ , where τ cannot be seen or controlled by the environment. There may be
many actions with the same label a single state, in which case the environment
has has no control over which is followed. The best known behavioural models
of CSP are based on the following types of observation. Traces are sequences of
visible communications a process can perform. Failures are combinations (s,X )
of a finite trace s and a set of actions that the process can refuse in a stable
state reachable on s. A state is stable if it cannot perform τ . Divergences are
traces after which the process can perform an infinite uninterrupted sequence of
τ actions, in other words diverge. The models are then



– T in which a process is identified with its set of finite traces;
– F in which it is modelled by its (stable) failures and finite traces;
– N in which it is modelled by its sets of failures and divergences, both ex-

tended by all extensions of divergences: it is divergence strict.

2.2 Timed CSP and its semantics

For thorough presentations of Timed CSP and its models, the reader should
study [16, 8, 9].

Timed CSP has the same operators as CSP, plus a single constant with
explicit time: WAIT t where t is a non-negative number. This terminates with X
t time after it is started. More operators such as timeout and timed interrupt can
be defined in terms of the basic ones. The difference between the interpretation
of operators in CSP and Timed CSP is that in the latter we are precise about
when communications happen and become available, while remaining faithful to
the understanding contained in the untimed interpretation. So, for example the
process a → P still offers the event a until it occurs. P then starts some fixed
time (representing the time it takes the process to recover from, or perhaps
complete, a) before P starts. And P � Q still offers the choice of the initial
(visible) events of P and Q until one of them performs one. Thinking about this
makes it clear that P and Q evolve in time – perhaps performing their own τ
events – side by side until one of them has an action accepted, allowing the other
to be turned off.

Untimed CSP carries the assumption that an unstable state – one in which a
τ action is enabled – cannot persist, with a τ or some other action definitely hap-
pening quickly. In Timed CSP this has to be quantified, leading to the concept
of maximal progress: when a τ is enabled, some action must happen immediately.
This simple and seemingly straightforward translation of intuition has a major
effect on the semantic models that are available for Timed CSP.

In forming a semantics for Timed CSP it is clear that we have to attach times
to the events that happen, since otherwise we would not be making distinctions
that we evidently want to make. We assume the No Zeno principle that no
process can perform infinitely many events (whether visible or invisible) in a
finite time, but do allow a sequence of events all to happen at the same time.
The main operator that constrains available models is hiding: in P \ X no X
event can be offered by P for more than zero time, for otherwise the process with
X hidden would violate the principle of maximal process. It turns out that this
means that we need to know what a timed process refuses at every moment of
time, with the refusal at the time t of an event corresponding to what is refused
instantaneously after the last event at t .

The combination of the principle of maximal progress and the need to make
models compositional under the CSP hiding operator (which turns visible actions
into τs that are forced before time passes) makes the range of models for Timed
CSP more restricted than for untimed. It is necessary to record the set of events
refused at every point in a behaviour where time advances. Divergence is a
much reduced issue, since thanks to the no-Zeno assumption any divergence



is necessarily spread over infinite time – which when we are modelling time
simplifies things greatly. In fact divergence will not be considered in the models
we use in this paper.

In the case of continuous time this means that we have to record refusals as
a subset of Σ × R+ to accompany traces which attach a time in R+ (the non-
negative real numbers) to each event, where the times increase, not necessarily
strictly, through the trace. In fact, timed refusals are unions of sets of the form
X × [t1, t2) where 0 ≤ t1 < t2 <∞ –refusal tokens. [t1, t2) is a half-open interval
that contains t1, all x with t1 < x < t2 but not t2. This corresponds to the idea
that if an event happens at time t then the refusal recorded at that time is the
set of events refused at the same time after the event. So in a → P , there will
be behaviours in which a occurs at time 1, all events other than a are refused
in the interval [0, 1) and, on the assumption that the event a takes time δ to
complete, all events including a are refused in the interval [1, 1 + δ).

So the Timed Failures model (FT ) representation of a process consists of
pairs of the form (t ,ℵ) (timed failures), where t us such a timed trace, and ℵ
is such a timed refusal. First introduced in [8], There have been a number of
variants of this model over the years. The author analysed these in [14] and in
this paper adopts the same version of FT , namely one

– Where causality is permitted within a single instant: for example one can
have the timed trace 〈(a, 1), (b, 1)〉 but not the timed trace 〈(b, 1), (a, 1)〉.

– Where timed traces (as recorded) are finite (i.e. have only finitely many
timed events) but where timed refusals can extend through all time, though
they are finitary in the sense that they are the union of a countable set of
refusal tokens X × [t1, t2) where the number of t1s less than any fixed t ∈ R+

is finite.
– Where unfolding recursion takes no time, but only time guarded recursions

in which no recursive call can be made before some δ > 0 are permitted. The
latter is to ensure that no process has a Zeno behaviour in which infinitely
many actions can occur in a finite time.

Timed failures can be extended, if we wish, by an analogue of the divergence
information used in N . However, rather than record that a particular timed
failure (s,ℵ) is divergent (i.e. is accompanied by an infinite series of τs) we
record the smallest time after the end of s (or ∞ if there is none) after which,
when observing (s,ℵ), we can be sure it must have become stable (i.e. no further
τ will be enabled if no further visible event occurs. So the Timed Failures Stability
Model FST represents a process as a set of triples (s,ℵ, t) where (s,ℵ) is one of
its timed failures and t is the unique stability time associated with this.

Just as it is easy to extract the untimed traces of a process by deleting the
times from timed traces, it is possible to extract natural values in the untimed
models F and N from a process’s representation in FST . Untimed divergences
come from timed triples (s, ∅,∞) by deleting the times in s to get untime(s).
Stable failures from triples (s,ℵ, t) with t < ∞: the latter gives the untimed
failure whose trace is untime(s) and which refuses {a | ∃ t ′.(a, t ′) ∈ ℵ ∧ t ′ ≥ t}.



In other words, anything that is refused after the time when the process must
have become stable becomes part of the untimed refusal set.

So, for any Timed CSP process, we have a way of constructing values in
each of the canonical untimed models. In each case this will refine the value you
could have calculated by mapping the syntax into untimed CSP (i.e. mapping
each WAIT t component to SKIP). This substantiates the statement that the
timed semantics is consistent with the untimed one, but the refinement might
well be strict since modelling at the timed level can give us certainty about how
nondeterminism in the untimed model will be resolved.

For example, consider ((a → P) � (WAIT 1; a → Q)) \ {a} (where WAIT 1
could be replaced by any process whose untimed semantics has just the traces
{〈〉, 〈X〉} and which always terminates on the empty trace after a non-zero time).
The untimed semantics will identify this with P \ {a} u Q \ {a} since they can-
not tell that the τ resulting from the hiding of the left-hand a will always happen
at time 0, with the a resolving the choice and excluding Q from doing anything
before it starts. So in this case we get proper refinement. While the above ap-
proach is arguably the most natural way of linking timed and untimed theories
from the perspective of the untimed theory, it misses out on two important things
from the point of view of the timed models.

– Firstly, it ignores the most natural Timed CSP model FT : divergence and
stability play no essential role in the semantics of Timed CSP as they do in
the untimed version.

– Secondly, it ignores the fact that we can easily observe permanent refusal
of a set of events X without stability: if no member of X is accepted in
the states that appear between an infinite series of τ events, necessarily
taking an infinite time, then we can reasonably equate this with untimed
(i.e. permanent) refusal.

The natural way of extracting failures from timed failures, recalling that our
version of FT permits refusals that extend over an infinite period, is to map
(s,ℵ) to (s ′,X ), where X is the largest X such that there is t ≥ end(s) with
X × [t ,∞) ⊆ ℵ. We will call this function from FT to sets of failures Ψ . This
gets the FT value of STOP just right, though applying it to the same value with
µ p.WAIT 1; p in mind gives (of course) the untimed semantics of STOP which
is nothing like that in any standard untimed model of µ p.WAIT 1; p.

What we have to accept is that, for processes that untimed CSP regards
as divergent, the above mapping calculates something that is different from –
and for some purposes superior to – the results calculated directly in the un-
timed models. After all µ p.SKIP ; p (the untimed analogue of µ p.WAIT 1; p)
will, from the perspective of the external user, sit there failing to accept any
communication offered to it, just like STOP .

The range of Ψ is precisely the sets of failures that can occur in N and
smaller than the set of those that occur in F because every untimed trace s ′ of
the underlying process P has (s ′, ∅) in Ψ(P): if s is any timed trace that maps
to s ′ then certainly (s, ∅) = (s, ∅× [end(s),∞)) is in P . In other words, Ψ maps
FT to the sets of failures of divergence-free processes.



Timewise refinement, as defined by Schneider, is a relation between untimed
specifications Spec, generally expressed as divergence-free CSP processes and
certainly members of the range of Ψ , and Timed CSP processes P :

SpecSF vTF P ⇔ Spec v Ψ(P)

where v is reverse containment over sets of failures.
We will see some examples to illustrate this definition later in this paper.

3 Digitisation and discrete time

FDR, as documented in [10, 12, 1] is a model checker for untimed CSP, whose
algorithms manipulate discrete representations of discrete state machines.The
key to verifying Timed CSP on it has been the theory of digitisation, in which
the notation is re-interpreted over a discrete time domain (the natural numbers
N) and results proved to establish links between the semantics of a process over
the two domains.

This restricts attention to integer Timed CSP, where all WAIT t processes
have t ∈ N, with these the only delays introduced by a process as opposed to
its environment. In the continuous semantics of this language, events can still
happen at any time in R+, but in the discrete semantics they only happen at
members of N. Corresponding to FT there is a discrete timed failures model
FDT in which there is a single refusal set following the zero or more events that
happen at each integer time. There are a number of possible representations of
this model, but we follow [14]: the extra event tock (which allows us to count
the present time, and has no analogue in the continuous model) represents the
regular passage of time, with all events between each pair of tocks being consid-
ered to happen at the same time as the preceding tock . (Events preceding the
first tock happen at time 0.) There is a refusal set before each tock in each such
trace. Traces are infinite but contain only finitely many non-tock events.

The theory of digitisation was introduced by Henzinger, Manna and Pnueli
in [4] as a way of proving properties about continuous systems (specifically, timed
automata) by analysing discrete approximations. It was adapted for Timed CSP
by Ouaknine [6, 7] who showed that one can prove certain properties of systems
over the continuous model FT by demonstrating analogous properties of the
same process’s discrete semantics over FDT. In particular he showed that every
integer Timed CSP program has the property of being closed under digitisation,
meaning that if (s,ℵ) is in its FT representation, then so is [(s,ℵ)]ε for each
0 < ε ≤ 1: this transforms each event and end-point of a refusal token X ×[t1, t2)
to itself is an integer, and to one of the two surrounding integers otherwise:

– t1 is btc, where btc is the largest integer no greater than t .
– For ε < 1, tε = btc for if frac(t) < ε and dte otherwise, where frac(t) = t−btc

and dte is the smallest integer no less than t .

Such integer behaviours map naturally to those recorded in FDT and are
in fact members of the process’s semantics in that model. It follows that if,



whenever the continuous time semantics of a process have a timed failure (s,ℵ)
that violates some specification S , there is some ε such that [(s,ℵ)]ε also fails
it, then we can determine whether an integer Timed CSP process satisfies S by
considering only the discrete semantics.

A good example is provided by timewise refinement: if P fails to be a timewise
refinement of the untimed specification S , this can only be because Ψ(P) contains
a failure not in S , or in other words there is a timed failure of the form (s,X ×
[t ,∞)) for some s, t ≥ end(s) and X such that (untime(s),X ) 6∈ S .

The digitisation property set out above implies that, in fact for any ε, [(s,X×
[t ,∞)]ε is an integer behaviour that Ψ maps to (untime(s),X ). It follows that
SSF vTF P if and only the same thing holds when judged over the discrete time
semantics.

As set out in [6, 12], the discrete time semantics for Timed CSP can be
calculated by systematically translating the Timed CSP language to tock -CSP,
namely the usual CSP language with the addition of the special event tock
representing the regular passage of time4. This translation has been automated
in both FDR2 [1] and prototypes of FDR3. The essence of this that any process
syntax contained within a Timed(et){...} section is automatically translated
into the corresponding tock -CSP processes, using the event timer et, namely a
mapping from events to the integer times taken to complete them.

The maximal progress property of Timed CSP is implemented by prioritising
internal τ actions over tock . In other words, tock actions can only occur from
stable states of the standard CSP operational semantics of the tock -CSP process.

This uses the priority operator Pri≤(P) specified in [13, 12], and now imple-
mented as prioritise(P,As) in which P is a process and As a list of disjoint
sets of events. head(As) consists of the events whose priority is equivalent to τ ,
which successive sets having lower priority. The operational semantics is that if
the priority of event x is higher than that of event y , then y cannot occur from
a state where P has x available. Events not in the union of As have no place in
the priority order: they neither prevent and nor are they prevented by others.
In the “blackboard” version Pri≤(P), ≤ represents a partial order on Σ ∪ {τ}
with some restrictions on the position of τ that are discussed in [13], and which
are automatically satisfied by this machine readable version.

4 Slow abstraction

The idea of slow abstraction was introduced in [13]. SA(P) represents how P
appears to a user who can see the complement of A, on the assumption that
events in that set are controlled by a user who habitually delays them, but not
permanently. Thus the process is not prevented in making its offers outside A,
but equally it is never permanently blocked by the abstracted user.

To consider SA(P) we assume (as with lazy abstraction) that P is divergence-
free. It differs from P \ A in that as well as recording the refusals P makes when
4 In fact this translation is to an extended version of tock -CSP since some Timed CSP

operators need new untimed operators as their analogues.



it can refuse the whole of A (so P \ A is stable), we also look at the series of sets
it can refuse prior to it accepting each member of A in an infinite sequence of
these. If all of these refuse a set X , then P will obviously not accept any member
of X along the sequence.

This makes sense in the context of slow abstraction because we can suppose
that all but finitely many A events happen from stable states, the abstracted
user having waited for the divergence-free process to complete all its urgent τs
before performing the next member of A.

Because such an unstable refusal can only happen at the end of an observed
behaviour, and necessarily each finite trace of P \ A is followed either a stable
or unstable refusal in SA(P), we identify it with a set of failures which always
corresponds to the failures of a member of the failures divergence model N .

Slow abstraction was introduced and studied in [13], and in particular a
technique was introduced for deciding using FDR whether a failures specification
Spec is refined by SA(P). When an unstable failure of the latter violates Spec,
this necessarily takes an infinite number of steps, and so the only way that FDR
can detect this is as a divergence. This means that SA(P) cannot be realised
directly in the language of FDR, but rather we have to check the refinement
somewhat obliquely. We will introduce it below for the case relevant to the
present paper, namely when A = {tock} and P is the tock -CSP translation of
an integer Timed CSP implementation under the timed-priority model which
ensures that all tocks happen from stable states.

For such a process, P \ {tock} is never stable since no Timed CSP process
ever refuses tock . In fact it should not be too hard to see that S{tock}(P) consists
of exactly the failures Ψ(P) used in determining timewise refinement, so in fact
the statements Spec v S{tock}(P) and SpecSF vTF P are equivalent.

The method for deciding this is best introduced in two stages. Consider the
process

(Pri≤((P [[tock , tock ′
/tock , tock ]])) \ {tock})

where ≤ prioritises every event other than the new event tock ′ over tock ; tock ′

is incomparable with all. In this, the τs created by hiding tock can only happen
from states of P in which only tock is possible. On the other hand, every state
of P is reachable thanks to tock ′. Therefore the above process can diverge if and
only if P has a state which has an infinite behaviour consisting of a mixture of
τs and tocks, the latter from states offering just tock .

This is exactly equivalent to P being a timewise refinement of the deadlock
free specification

DF =u{a → DF | a ∈ Σ \ {tock , tock ′}}

We therefore know how to solve our problem for this specific Spec.
Following [13], we can generalise this to arbitrary Spec with the combination

of the trace check Spec vT P \ {tock} and checking the combination of P and
a testing process Test(Spec) against the unstable deadlock specification above.
Test(Spec) is constructed as follows.



If S is any process such that αS ⊆ αSpec and (〈〉, Σ) 6∈ failures(S ), we can
define NR(S ) to be the set of those X that are subset minimal with respect to
(〈〉,X ) 6∈ failures(S ). NR(S ) is nonempty because Σ is finite and (〈〉, Σ) 6∈ S .

If S is a process that can deadlock immediately, let NR(S ) = ∅.
Choose a new event d that is outside αSpec ∪{tock , tock ′}. (Note that αP ⊆

αSpec ∪ {tock , tock ′} because we are assuming that Spec vT P \ {tock , tock ′}.)
For a set of refusals R 6= ∅, let

T (R) =�
X∈R

d → (?x : X → DS )

and T (∅) = DS , where DS = d → DS . Note that T (R) ‖
αSpec

Q , for Q a process

such that S vT Q , can deadlock if and only if, when one of the sets X ∈ R is
offered to P when it has performed 〈〉, P refuses it. This parallel composition is
therefore deadlock free if no member of R is an initial (stable) refusal of P . Now
let

Test(S ) = (?x : S 0 → Test(S/〈x 〉)) � T (NR(S ))

For Q such that Spec vT Q , the parallel composition Test(Spec) ‖
αSpec

Q is then

deadlock free if and only if Spec vF Q , given that we know that S vT P : the
composition can deadlock if and only if, after one of its traces s, P can refuse
a set that S does not permit. In understanding this it is crucial to note that
the ds of T (NR(S )), including the one in the initial state of Test(S ), can occur
unfettered in the parallel composition because they are not synchronised with Q .
The first d that occurs fixes the present trace as the one after which Test(Spec)
checks to see that a disallowed refusal set (if any) does not appear in Q .

Our construction turns any case where Q fails Spec into a deadlock. It is
very similar to the “watchdog” transformation for the usual failures model set
out in [2]. The main difference is that ours is constructed with no τ actions: the
visible action d replaces τ .

Consider the case where Q is replaced by P . This has the additional event
tock which is not synchronised with Test(Spec), so the combination Test(Spec) ‖

αSpec

P can only deadlock in states where P \ {tock} has a stable failure illegal for
Spec. In fact this never happens for us because, as remarked above, P \ {tock}
is never stable.

We would like unstable failures of S{tock}(P) to turn into unstable “dead-
locks”, namely unstable refusals of Σ, in S{tock}(Test(Spec) ‖

αSpec
P). This is

confirmed by the following result, the proof of which is essentially the same as
that about general SA(P) in [13], when we take into account that in our case
P \ {tock} is never stable.

Theorem 1. Under our assumptions, including Spec vT P \ {tock}, S{tock}(P)
has an unstable failure that violates Spec if and only if S{tock}(Test(Spec) ‖

αSpec



P) has an unstable failure of the form (s, Σ). Furthermore S{tock}(P) wF Spec
if and only if

(Pri≤((Test(Spec) ‖
αSpec

(P [[tock , tock ′
/tock , tock ]])))) \ {tock}

is divergence-free.

When combined with our earlier observation that, thanks to a digitisation
argument, proving timewise refinement of a Spec for the tock -CSP translation
P ′ of an integer Timed CSP process P also proves for P , the above result gives
us a way of deciding questions of timewise refinement on FDR.

5 Examples

The above methods have proved both effective and efficient in the examples we
have experimented with to date. A variety of CSP files is included with version
of this paper posted on the author’s web site. These include Timed CSP versions
of the Alternating Bit and Sliding Window Protocols, which are naturally shown
to give timewise refinements of the untimed buffer specification. These files use
the same versions of these protocols used in example files published with [1],
but whereas the specifications proved of the original versions were inevitably
parameterised by timing details, the new versions show how to establish untimed
correctness in a form requiring no timing details.

This has the efficiency advantage that there is no need to experiment with
different timing parameters when verifying a timed system, and in many cases
the absence of timing in the specification reduces the overall number of states
visited for a given implementation P . However the need to use divergence check-
ing places extra demands on FDR which are always likely to impose moderate
restrictions on the size and speed of the check.5

Consider the following machine-readable Timed CSP description of a token
ring:

datatype Packet = Full.(Nodes,Nodes,Data) | Empty

channel ring:Nodes.Packet
channel input,output:Nodes.Nodes.Data
succ(n) = (n+1)%N

5 At the time of writing (May 2013) the author has the choice of using FDR2 or a
prototype FDR3. In FDR2 the data structures used make relatively small (say 8M or
less checks) typically almost as fast as checks for finitary properties, but slow down
substantially beyond that. FDR3’s checking for divergence is more efficient than
FDR2’s and less limited, but presently operates essentially sequentially, whereas
traces and stable failures checking use parallelism across multi-core devices. This
situation is likely to improve, but parallel checking of divergence properties is always
likely to be more difficult and less efficient than the parallelism available for checking
finitary properties.



allone(X) = 1

Timed(allone){
Token(k,Empty) = input.k?dest?x -> Token(k,Full.(k,dest,x))

[] (WAIT(1);ring.succ(k).Empty -> NoToken(k))

Token(k,Full.(f,t,x)) = if t==k then
output.k.f.x -> ring.succ(k).Empty -> NoToken(k)
else ring.succ(k).Full.(f,t,x) -> NoToken(k)

NoToken(k) = ring.k?p -> Token(k,p)

Alpha(k) = {|ring.k,ring.succ(k),input.k,output.k|}

init(k) = if k < Tokens then Token(k,Empty) else NoToken(k)

RING = (|| k:Nodes @[Alpha(k)]init(k))\{|ring|}
}

This sets up an N-place circular ring with Tokens tokens that rotate around it,
carrying messages between the nodes. We might ask the question of whether it
acts as a buffer between each ordered pair of nodes. An untimed specification
which expresses this for fixed nodes i and j is

Buff(i,j,<>) = input.i?k?x -> if j==k then Buff(i,j,<x>)
else Buff(i,j,<>)

Buff(i,j,xs^<x>) = output.j.i.x -> Buff(i,j,xs)
[] if #xs == Tokens-1 then STOP
else (STOP |~|

input.i?k?y -> if j==k then Buff(i,j,<y>^xs^<x>)
else Buff(i,j,xs^x>))

This has as its alphabet all inputs at node i and the outputs at j that come
from i.

The right way to judge our ring against this is to hide all other outputs
and lazily abstract all other inputs. This corresponds to the assumption that
users accept all outputs from the ring eagerly, and can arbitrarily decide what
messages other than those considered by the specification.

The main complication in checking timewise refinement they way we are
advocating is the need to need to transform the untimed specification into the
corresponding testing process. In our case this is

Test(i,j,<>) = [] x:Data @ d -> input.i.j.x -> DS
[] (|~| k:Nodes @ if k==j then

input.i.j?x -> Test(i,j,<x>)
else input.i.k?x -> Test(i,j,<>))



Test(i,j,xs^<y>) = d -> output.j.i.y -> DS
[] output.j.i.y -> Test(i,j,xs)
[] #xs < Tokens-1 & (|~| k:Nodes @ if k==j then

input.i.j?x -> Test(i,j,<x>^xs^<y>)
else input.i.k?x -> Test(i,j,xs^<y>))

Fortunately this process is automatable and could be implemented as prim-
itive in a future version of FDR.

The ring fails this specification because the other nodes might repeatedly fill
every token (in the lazy abstraction) before it reaches node i. In other words
it fails the aspect of the failures specification that the ring, when there is no
message in transport from i to j, it must eventually accept an input at i. The
error shows up as a divergence in FDR, whose debugger decomposes this into the
Test process constantly offering node i an input, and each of a cycle of states
of the token ring refusing that input.

This can be repaired by adjusting the tokens that pass around so that upon
being emptied they do not immediately gain the ability to transport another
message. Rather, successive tokens gain this ability when they reach one of the
nodes, where the node with this property rotates. Thus no node can indefinitely
be denied the ability to accept a message from its user.

The versions of the ring with and without this added control can be found
amongst the files available with this paper. The version with does satisfy the
requirement under timewise refinement.

The modified ring, in common with the original one set out above, only makes
input offers to each user for a single unit of time each time an empty token passes.
This illustrates the fact that satisfying a specification formulated in terms of
timewise refinement does not imply that offers the specification requires must
be made permanently beyond some point; rather that they must be made at an
infinite number of times beyond some point. The implementation is allowed to
make progress (in our case via the tokens circulating) and changing the set of
events offered.

6 Conclusions

We have given a practical and theoretically sound way of checking timewise
refinement in FDR. It proved to be straightforward to link the usual relation be-
tween specifications and continuous Timed CSP, to a tractable relation between
the same specification and the tock -CSP process corresponding to the continuous
one.

Testing this requires both a renaming and hiding trick which converts illegal
unstable failures into divergences, and the conversion of the specification into a
suitable watchdog process.

We have demonstrated that this approach works for a range of examples, and
hope that others find it useful. To enable this it would be helpful if functionality
were added to FDR to create a Test(Spec) process automatically from each Spec



References

1. P. Armstrong, G. Lowe, J. Ouaknine, and A.W. Roscoe, Model checking Timed
CSP, To appear in Proceedings of HOWARD, Easychair.

2. M.H. Goldsmith, N. Moffat, A.W. Roscoe, T. Whitworth and M.I. Zakiuddin,
Watchdog transformations for property-oriented model-checking, FME 2003: For-
mal Methods, LNCS 2805, 2003.

3. C.L. Heitmeyer, B.G. Labaw and R.D. Jeffords, A benchmark for comparing dif-
ferent approaches for specifying and verifying real-time systems, DTIC, 1993.

4. T.A. Henzinger, Z. Manna, and A. Pnueli, What good are digital clocks? In Pro-
ceedings of the Nineteenth International Colloquium on Automata, Languages, and
Programming (ICALP 92), volume 623, pages 545-558. Springer LNCS, 1992.

5. C.A.R. Hoare, Communicating sequential processes, Prentice Hall, 1985.
6. J. Ouaknine, Discrete analysis of continuous behaviour in real-time concurrent

systems, Oxford University D.Phil thesis, 2001.
7. J. Ouaknine, Digitisation and full abstraction for dense-time model checking,

TACAS Springer LNCS, 2002.
8. G.M. Reed and A.W. Roscoe, A timed model for communicating sequential pro-

cesses, Theoretical Computer Science 58, 249-261, 1988.
9. G.M. Reed and A.W. Roscoe, The timed failures-stability model for CSP, Theo-

retical Computer Science 211, 85-127, 1999.
10. A.W. Roscoe, Model checking CSP, in ‘A classical mind: essays in honour of C.A.R.

Hoare’, Prentice Hall, 1994.
11. A.W. Roscoe, The theory and practice of concurrency Prentice Hall, 1997.
12. A.W. Roscoe, Understanding concurrent systems, Springer, 2010.
13. A.W. Roscoe and P.J. Hopcroft, Slow abstraction through priority, To appear in

Festschrift proceedings for He Jifeng, ICTAC 2013.
14. A.W. Roscoe, and Huang Jian Checking noninterference in Timed CSP, FAC, 25,

pp 1-33, 2013.
15. S.A. Schneider, Timewise refinement for communicating processes, Science of Com-

puter Programming, 28, pp 43–90, 1997.
16. S.A. Schneider, Concurrent and real-time systems: the CSP approach, Wiley, 2000.



Runtime Quantitative Verification: Applications

and Research Challenges

Radu Calinescu, Simos Gerasimou, Kenneth Johnson and Yasmin Rafiq

Department of Computer Science, University of York
Deramore Lane, Heslington, York YO10 5GH, United Kingdom
{radu.calinescu,sg778,kenneth.johnson,yr534}@york.ac.uk

Abstract

A growing number of software, embedded and cyber-physical systems are expected
to adapt continually to changes in the environments they operate in. Many of these
systems are deployed in safety-critical and business-critical applications from domains in-
cluding healthcare, finance and defence, and must comply with strict dependability and
performance requirements. To achieve such compliance, formal techniques traditionally
employed in the design of critical systems must also be used during their operation. This
paper describes how a formal technique termed quantitative verification can be exploited in
a runtime setting. We present several successful runtime applications of the technique, and
discuss the research challenges that must be addressed in order to extend its applicability
to other runtime scenarios.
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1 Introduction

Ensuring that today’s software, embedded and cyber-physical systems comply with their re-
quirements is a great challenge. Traditional verification approaches are often ineffective for these
systems, which are increasingly used in critical applications and required to evolve continually in
response to changes in their environment, objectives and internal state [6, 28]. Recent research
advocated the use of runtime variants of established verification techniques to address this chal-
lenge, leading to the development of techniques such as runtime verification [2, 3, 44, 45, 48],

1
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Figure 1: Quantitative verification

runtime certification [50] and runtime quantitative verification [8, 15, 17, 20, 22, 23]. This paper
discusses the advantages, applications and current limitations of the last of these techniques.

Quantitative verification is a mathematically based technique for analysing the correctness,
performance and reliability of systems that exhibit stochastic behaviour [25, 36, 39, 40]. The
technique operates with finite state-transition models comprising states that correspond to
different configurations of a real-world system, and edges associated with the possible transitions
between these states. Depending on the purpose of the analysis, the edges are annotated with
transition probabilities or transition rates. The types of models with probability-annotated
transitions include discrete-time Markov chains and Markov decision processes, while the edges
of continuous-time Markov chains are annotated with transition rates. Given one of these
models and a system property specified formally in temporal logic extended with probabilities
and costs/rewards, the technique analyses the model exhaustively in order to evaluate the
property. Examples of properties that can be established using the technique include the
probability that a fault occurs within a specified time period, the expected response time of a
service under a given workload, and the expected energy usage of a disk drive. Quantitative
verification is typically performed entirely automatically by tools termed probabilistic model
checkers, as illustrated in Figure 1. Widely used probabilistic model checkers include PRISM
[41], MRMC [37] and Ymer [52].

Runtime quantitative verification was introduced in [17, 20] and further refined in [8, 15,
16, 22, 23]. The technique and its typical use within the monitor-analyse-plan-execute (MAPE)
autonomic computing control loop [38] are described in Section 2. We then summarise several
successful applications of runtime quantitative applications in Section 3. These applications
come from our own work and that of other research groups, and span domains including dy-
namic power management, self-adaptive service-based systems and analysis of cloud-deployed
service reliability. In many of these scenarios, runtime quantitative verification is integrated into
small or medium-scale self-adaptive systems. The high computation overhead and large mem-
ory footprint of the technique need to be addressed before this success can be reproduced for
large-scale systems. This great challenge and preliminary work to identify ways of overcoming it
are detailed in Section 4, and several other research challenges are summarised in Section 5. We
conclude the paper with a brief analysis that summarises our view on the role of runtime quan-
titative verification in the development, management and operation of self-adaptive software,
embedded and cyber-physical systems.



Figure 2: Using runtime quantitative verification to implement the MAPE control loop

2 Runtime Quantitative Verification

Like most formal verification techniques, quantitative verification is traditionally used in off-
line settings, e.g., to evaluate the performance-cost tradeoffs of alternative system designs, and
to establish if existing systems comply with their reliability requirements. In the latter case,
systems in violation of their requirements undergo off-line maintenance, and are eventually
replaced with suitably modified system versions. This approach does not meet the demands of
emerging application scenarios in which systems need to be continually verified as they adapt
autonomously, as soon as a need for change is detected while they operate [5, 7].

Runtime quantitative verification addresses this need for continual verification of self-adaptive
systems. As illustrated in Fig. 2, a self-adaptive system that uses the approach (and its environ-
ment) are monitored at runtime, and relevant changes are identified and quantified using fast
on-line learning techniques. The resulting measurements enable the identification of the sce-
nario that the system operates in, and the selection of a suitable model from a family of system
models associated with different such scenarios. As an example, Bayesian learning techniques
are used in [10, 18, 20] to monitor the changing probabilities of successful service invocation for
a service-based system, and thus to determine the transition probabilities of a parameterised
Markovian chain that models the system.

The model selected through the monitoring process described above is then analysed us-
ing quantitative verification, to identify and/or predict violations of quality-of-service (QoS)
requirements such as response time, availability and cost. When requirement violations are
identified or predicted, the results of the analysis support the synthesis of a reconfiguration
plan. This plan comprises adaptation steps whose execution ensures that the system will con-
tinue to satisfy its requirements despite the changes identified in the monitoring step.

Using quantitative verification (or other formal methods [15, 13]) to implement the MAPE
control loop provides irrefutable guarantees about the compliance of the selected reconfiguration
plans with the considered system requirements. This key advantage has led to the successful
exploitation of runtime quantivative verification in a wide range of self-adaptive systems, several
of which are described in the next section.
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3 Applications

This part of the paper presents applications that illustrate the use of runtime quantitative
verification in three different domains. In the interest of readability and conciseness, all ap-
plications are presented at a high level, using a minimum of mathematical notation. For the
readers interested in the full technical details of any of these applications, we include references
to the work where each application was originally reported.

3.1 Dynamic Power Management

In this application, runtime quantitative verification is used to support the dynamic power man-
agement of a disk drive with the architecture shown in Fig. 3. The device consists of a service
provider that handles requests generated by a service requester and stored in a request queue.
The service provider has several possible states corresponding to different power consumption
and service rates, and its state transitions are controlled by a power manager that aims to opti-
mise power consumption while maintaining an acceptable level of service for the device. In our
work from [17], we implemented this power manager using the runtime quantitative verification
approach described in Section 2. This was achieved using a parameterised continuous-time
Markov chain (CTMC) model of a Fujitsu disk drive with the structure in Fig. 3, and which
was originally proposed in [49].

The CTMC model used for the application is parameterised by the request inter-arrival
rate and by the “switch-to-sleep” probability with which the power manager switches the disk
drive into a low-power “sleep” state when the request queue is empty. The changing value
of the former parameter is learnt through monitoring the length of the request queue, and
runtime quantitative verification is used to continually select the “switch-to-sleep” probability
that maximises a multi-objective utility function [4, 51]. This utility function has the generic
form

∑n
i=1 wiutility i, where the weights wi > 0, 1 ≤ i ≤ n, encode the trade-offs among n > 0

system objectives, and each objective function utility i, 1 ≤ i ≤ n, is an analytical expression of
the system parameters. As shown in Fig. 4a, the utility function for the disk drive is obtained
through combining two objective functions that partition the CTMC state space into optimal,
suboptimal and “zero-utility” regions based on the length of the request queue and the power
consumption associated with each state, respectively.

During the operation of the disk drive, changes in the monitored request inter-arrival rate
trigger a runtime quantitative verification step. This step establishes the expected power con-
sumption and request queue length associated with the new system state and a range of “switch-
to-sleep” probabilities that can be used to configure the power manager. Fig. 4b shows how



(a) (b)

Figure 4: (a) The disk drive utility function integrates energy usage and performance-related
objective functions that partition the CTMC state space into regions that are optimal (dark
shaded), suboptimal (light shaded) and of zero utility. (b) Runtime quantitative verification
enables the selection of the optimal configuration for the current state of the disk drive.

these possible configurations correspond to different system utility values, thus supporting the
selection of a new optimal “switch-to-sleep” probability for the reconfiguration plan from Fig. 2.

3.2 Self-Adaptive Service-Based Systems

In this application, runtime quantitative verification is used to drive the dynamic selection of
the components of service-based systems (SBSs). Built through the integration of third-party
services deployed on remote datacentres and accessed over the Internet, SBSs are increasingly
used in business- and safety-critical applications where they must comply with strict quality-of-
service (QoS) requirements. Self-adaptive SBSs achieve this QoS compliance by selecting the
concrete services for their operations dynamically, from sets of functionally equivalent third-
party services with different levels of performance, reliability and cost. Fig. 5 depicts a self-
adaptive SBS architecture in which this concrete service selection is underpinned by runtime
quantitative verification.

Originally proposed in [9] and further extended in [8, 12, 11], the self-adaptive SBS archi-
tecture from Fig. 5 comprises n ≥ 1 operations performed by remote third-party services. The
n ≥ 1 intelligent proxies in this architecture interface the SBS workflow with sets of remote
service such that the i-th SBS operation can be carried out by mi ≥ 1 functionally equiva-
lent services. The main role of the intelligent proxies is to ensure that each execution of an
SBS operation is carried out through the invocation of a concrete service selected as described
below. Whenever an instance of the i-th proxy is created, it is initialised with a sequence of
“promised” service-level agreements slaij = (p0ij , cij), 1 ≤ j ≤ mi, where p0ij ∈ [0, 1] and ci,j > 0
represent the provider-supplied probability of success and the cost for an invocation of service
si,j , respectively.

The n proxies are also responsible for notifying a model updater about each service invoca-
tion and its outcome. The model updater starts from a developer-supplied initial Markovian
model of the SBS workflow, and uses the online learning techniques from [10, 18] to adjust
the transition probabilities of the model in line with these proxy notifications. Finally, the up-
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Figure 5: Self-adaptive service-based system whose dynamic service selection is driven by run-
time quantitative verification, adapted from [12, 11].

to-date Markovian model maintained by the model updater is used by an autonomic manager
that performs runtime quantitative verification to select the service combination used by the n
proxies so that it satisfies the SBS requirements with minimal cost at all times. Accordingly,
the proxies, model updater and autonomic manager with its quantitative verification engine
implement the monitor-analyse-plan-execute (MAPE) autonomic computing loop from Fig. 2.

Our work from [10, 18] introduced a tool-supported SBS development framework in which
many of the components and artefacts described above are either generated automatically (e.g.,
starting from an annotated UML activity diagram of the SBS workflow and from the WSDL



Figure 6: Three-tiered architecture of a cloud-deployed service

specifications of its concrete services) or workflow-independent and therefore reusable. The
quantitative verification engine used by this framework is based on an embedded version of
the PRISM probabilistic model checker [41], and the experiments in [10, 18] show that it can
handle well the necessary “on the fly” analysis for a range of small-sized SBS workflows. Several
approaches to reducing the overheads of runtime quantitative verification in order to extend its
applicability to larger workflows are described in Section 4.

3.3 Continual Verification of Cloud-Deployed Services

The last application of runtime quantitative verification detailed in the paper was originally
proposed in [14, 34], and involves the continual verification of the reliability of software services
deployed on cloud computing infrastructure owned by the service provider. More specifically, we
are interested in tracking the probability that a cloud-deployed multi-tier software service be-
comes unavailable as the cloud resources allocated to the service change over time. A multi-tier
software service is a collection of interdependent components (or “functions”), each delivering
a specific functionality of the service. Figure 6 depicts the deployment of a service whose ar-
chitecture comprises three functions: web, application and database. Several instances of each
function run on different virtual machines (VMs) that are deployed across four physical servers
that are part of the cloud infrastructure.

Services deployed on cloud infrastructure take advantage of its elastic nature, scaling rapidly
to meet demands by adding new servers, virtual machines and function instances. These types
of changes are governed by policies and are often carried out programatically in response to
fluctuations in the service workload. Other changes to the service happen unexpectedly. Ex-
amples of unexpected changes include hardware failure of physical servers or failure of one
or more function instances arising from software faults. By applying quantitative verification
at runtime, administrators of multi-tier services can gain valuable insight of the impact each
change has on the service’s reliability by obtaining precise answers to questions such as

Q1 What is the maximum probability of a service failing over a one-month time period?1

Q2 How will the probability of failure for my service be affected if one of its database instances
is switched off to reflect a decrease in service workload?

1A service is deemed to have failed if all instances of one of its functions are unavailable.



Administrators (or automated scripts) then have the option of reacting with remedial action if
the service fails to comply with its requirements as a result of an observed change (e.g., a failure
of a hard disk on a physical server). They can also discard planned changes (e.g., a removal of
a function instance) whose implementation would violate these requirements.

To achieve these objectives, our runtime quantitative verification approach from [14, 34]
models the behaviour of the service components from Fig. 6 as probabilistic automata param-
eterised by the configuration variables and failure probabilities of these components. These
parameters are updated to reflect the state of the cloud-deployed service after each observed or
planned change. Safety properties encoded in probabilistic temporal logic and expressing the
service reliability requirements are then reverified to quantify the impact of the change.

4 Towards Efficient Runtime Quantitative Verification

Formal verification is a well-established means for ascertaining the correctness, reliability and
other QoS properties of software, embedded and cyber-physical systems. Nevertheless, existing
formal verification techniques are notorious for their large computation overheads and memory
footprints—a characteristic shared by quantitative verification. As an example, a complete
model of the relatively simple cloud-deployed software service from Fig 6 was shown to comprise
176, 381, 406, 182, 650 states and its properties could not be verified on a standard computer
[14]. This state explosion [1] has a major impact when quantitative verification is used in an
on-line setting, limiting the applicability of standard runtime quantitative verification to small-
scale systems [28]. Overcoming this limitation represents the greatest challenge of runtime
quantitative verification. In the remainder of this section, we present recent research that aims
to address this challenge [14, 21, 22, 26, 31, 32, 34, 42, 43]. In doing so, we will organise the
results of this research into three categories of approaches—incremental, compositional and
parametric runtime quantitative verification.

4.1 Compositional Quantitative Verification

Many large-scale systems are assembled from n > 1 interdependent components. When this
is the case, the formal verification of a large system involves the construction and analysis of
a model of the form M = M1 ‖ M2 ‖ . . . ‖ Mn, where Mi represents the model for the i-th
system component. As verifying M as a monolithic model is associated with high overheads or
may be intractable, compositional verification aims to establish system-level model properties
from the properties derived through the analysis of its component-level models M1 to Mn.

In its original form proposed in the seminal work of Pnueli [47], compositional verification
involves establishing that the parallel composition of two models M1 ‖ M2 satisfies a global
property G through verifying two premises independently. The first premise is that M2 satisfies
G when it is part of a system that satisfies an assumption (i.e., property) A. The second premise
is that A is satisfied by the remainder of the system (i.e., by M1) under all circumstances. This
can be expressed formally as a proof tree by using Pnueli’s generalisation [47] of the Hoare
triple notation [33]:

〈true〉M1〈A〉, 〈A〉M2〈G〉
〈true〉M1 ‖M2〈G〉 .

The technique is termed assume-guarantee reasoning, to distinguish it from other compositional
verification approaches that have emerged more recently. Assume-guarantee reasoning has been



extended to probabilistic systems in [42], through the introduction of the probabilistic assume-
guarantee rule

〈true〉M1〈A〉≥p1 , 〈A〉≥p1M2〈G〉≥p2

〈true〉M1 ‖M2〈G〉≥p2

,

where the models M1 and M2 are probabilistic automata, and the probabilistic safety properties
〈A〉≥p1

, 〈G〉≥p2
encode the requirements that the “desirable outcomes” A and G are achieved

with at least probabilities p1 and p2, respectively. The experiments carried out in [42] show that
the approach can reduce the memory footprint and running time of quantitative verification
by several orders of magnitude, and, in some cases, enable the verification of systems whose
monolithic models could not fit in memory or whose verification did not terminate within
24 hours. Among other successful applications, the approach made possible the continual
verification of cloud-deployed services described in Section 3.3.

4.2 Incremental Quantitative Verification

Changes occurring in a technical system are typically localised: they often affect only a small
subset of system elements [28]. This creates the opportunity to speed up a sequence of runtime
quantitative verifications of successive system configurations by reusing at least some verifica-
tion results from one step of the sequence in the next step. Thus, incremental quantitative
verification involves finding exactly what changed, and (re)verifying only the affected parts of
the model, while exploiting in as much as possible the results of previous verification steps.

An approach that belongs to this category is proposed in [43], where the underlying graph
of a Markov model is decomposed into Strongly Connected Components (SCCs), i.e., sets of
states in which there is a path between any two states and which are maximal in the sense that
no supersets are also strongly connected. This state partition permits a two-stage verification
of the model in which each SCC is verified individually in the first stage, and the system-level
verification involves integrating the SCC-level verification results in the second stage. When a
change in state transition probabilities occurs, the technique reverifies only the SCCs affected
by the change in its first stage, and reuses the previous verification results for the unaffected
SSCs in its second stage.

The work from [43] is extended in [26], where the authors introduce incremental techniques
for model construction and quantitative verification. Model construction is defined as the
problem of synthesising a Markov decision process (MDP) from its description in a high-level
modelling language. The incremental model construction technique in [26] identifies the states
that need to be rebuilt after a change in the model description, reducing the set of high-level
description statements that are evaluated in order to rebuild the updated MDP. For quantitative
verification, [26] decomposes the system model into SCCs, as in [43]. However, [26] uses policy
iteration to establish the correctness of a formula, while [43] applies value iteration. Experiments
performed on a set of case studies showed significant improvement in computation time in both
[43] and [26].

Finally, the approach introduced in [14, 34] extends the set of probabilistic assume-guarantee
rules from [42] and uses the extended rule set to assemble probabilistic assume-guarantee proof
trees for the verified safety properties. Changes in a component-based system are mapped to
changes of individual nodes in this proof tree. As a result, the reverification of a safety property
after a change can be performed incrementally, by analysing only the node directly affected by
the change and, depending on the results of this analysis, its ancestor nodes affected by the
new results. The approach was used successfully in the application described in Section 3.3, to
reverify reliability properties of cloud-deployed services after individual component failures and



prior to carrying out system reconfigurations meant to reduce resource usage but which might
violate safety system requirements [14, 34].

4.3 Parametric Quantitative Verification

Parametric quantitative verification techniques work by transforming system requirements into
algebraic formulae which can then be evaluated efficiently at runtime. Daws’ work on parametric
model checking [19] introduces a new language-theoretic technique for the symbolic probabilis-
tic model checking of a subset of probabilistic computation tree logic (PCTL) formulae over
discrete-time Markov chains (DTMCs). The technique comprises three steps:

(i) the conversion of the analysed DTMC into a finite state automaton in which the transition
probabilities are modelled as letters of an alphabet;

(ii) the synthesis of a regular expression that describes the language recognised by the au-
tomaton, through applying state elimination or inductive algorithms;

(iii) the recursive evaluation of the regular expression, yielding an exact rational value when
the original transition probabilities are rational or a rational function when the DTMC
is parameterised.

Runtime quantitative verification can be sped up by using this technique off-line, to reduce
the requirements of a system to algebraic formulae that are then evaluated efficiently at run-
time, when the actual values of their parameters are obtained through monitoring the system.
This section presents two types of approaches based on this principle—state elimination algo-
rithms [31, 32] and linear algebra approaches [21, 22, 24].

Elimination Algorithms for Parametric Verification. Hahn et al. [32], drawing upon
the results from [19], devise an effective algorithm for computing reachability properties in
parametric Markov models. The novelty compared to [19] resides in intertwining the state
elimination with an early evaluation of the target rational function. In particular, in each
iteration after the state elimination step, transitions are labelled directly with the rational
function instead of regular expression. This allows the on-the-fly simplification of the rational
function in each iteration, by taking advantage of cancellations, symmetries and simplifications
of arithmetic expressions and by replacing numerical expressions with their values.

In their later work from [31], Hahn et al. consider the problem of parameter synthesis for the
PCTL formulae associated with parametric models. The aim is to synthesise sets of parameter
values for which a given PCTL formula holds. The approach applies state-space exploration
techniques that partition the parameter space into rectangular regions with the property that
either the PCTL formula holds for all parameter values in the region or it does not. The size
of these regions is decreased over a number of recursive iterations, although the approach can
leave a limited area of the state space undecided in the interest of efficiency.

Linear Algebra Approaches for Parametric Verification. In [22], Filieri et al. propose
a two-stage approach for efficient runtime probabilistic model checking that exploits the results
from [19, 32]. The two stages of the approach, termed pre-computation and verification, are
executed at design time and runtime, respectively. At design time, the approach starts from
a DTMC model of a system, a set of reliability-related system requirements, and a set of
variables representing unknown DTMC transition probabilities whose values can be appraised
only at runtime. Given this information, the pre-computation stage translates the system



requirements into equivalent algebraic expressions parameterised by the variables associated
with the unknown transition probabilities. These expressions are then evaluated efficiently
in the runtime verification stage, by replacing the variables with their actual values obtained
while monitoring the system. The approach is extended to DTMCs augmented with reward
structures in [21, 24].

5 Other Research Challenges

With a number of efficient techniques for runtime quantitative verification starting to emerge
as explained in the previous section, several other challenges will also need to be addressed to
enable the adoption of the approach in mainstream engineering practice. First, practitioners
should be relieved from the error-prone task of having to manually assemble the parametric
system models underpinning runtime quantitative verification. These parametric models should
be synthesised automatically from available data such as application logs and runtime obser-
vations of the system, or from models that practitioners are familiar with (e.g., UML models).
Preliminary research to automate the model synthesis by using the two types of solutions has
been reported in [29, 35, 46] and [11, 27], respectively.

Another area requiring significant work is the continual updating of the parametric system
models, e.g., through fixing the values of their parameters based on runtime observations. The
positive results reported, for instance, in [10, 12, 18, 20, 27] need to be extended and integrated
into reusable components that practitioners can use in their applications.

Finally, practitioners should also be offered tools that automate the translation of system
requirements into the temporal logic formulae used by runtime quantitative verification. Per-
forming this translation manually is known to be error prone, and requires formal verification
expertise that is not currently common in industry. The extensive study in [30] and the success-
ful adoption of its results in [9] confirm that the process can be automated when the original
system requirements are expressed in a domain-specific language that practitioners are familiar
with.

6 Conclusion

We overviewed recent research on runtime quantitative verification, a technique used to es-
tablish the correctness of reconfiguration actions undertaken by self-adaptive systems. The
technique has been adopted successfully in multiple application domains, and we described
several applications from these domains in order to illustrate its role within the closed control
loop of self-adaptive systems.

So far, most self-adaptive systems whose reconfiguration is driven by runtime quantita-
tive verification are small or medium-scale. Extending the applicability of the technique to
large-scale systems is hindered by its high computation overheads and large memory footprint.
Devising the much lighter-weight variants of runtime quantitative verification that are required
for this extension represents a great challenge. The compositional, incremental and paramet-
ric quantitative verification techniques proposed in recent years and summarised in Section 4
represent promising approaches to addressing this challenge. Nevertheless, significant research
is still needed to evaluate the effectiveness of these new techniques in real-world applications,
to identify their benefits and address their limitations, and to provide tools that practitioners
who are not experts in formal verification can use to exploit the approach.
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Abstract

Machines incorporating embedded systems display a trend towards increasing auton-

omy. In this position paper, we outline an approach for introducing autonomy in embed-

ded system architectures. The approach involves the creation of an arti�cial consciousness

within the machine. We propose that the arti�cial consciousness may be represented in

the form of domain speci�c reference architectures. We illustrate the approach with the

aid of a validated reference architecture for cooperative driving.

1 Introduction

Two trends are apparent in the design and construction of many machines that surround us:

1. There is an increasing usage of electronics, computers and software within the machines
(a.k.a embedded systems)

2. There is an increasing desire to make the machines autonomous, where autonomy is
de�ned as 'operation without direct human intervention'.

Therefore, a question that will gain increasing importance is:

What should the hardware and software architecture of a machine look like, so

that autonomous operation is easy to achieve?

This work proposes an approach for answering the above question. The approach is valid
under a speci�c set of pre-conditions and constraints, which are also described in this work.

The proposed approach is still a work in progress. Nevertheless, an application of the ap-
proach in the form of an automotive reference architecture for cooperative driving[3, 4] and two
instantiations thereof has already been made. This text describes the approach, the reference
architecture and its instantiations as well a non-exhaustive list of questions whose solutions
need to be found, to develop the approach further.

2 Proposed approach

2.1 Autonomy, intelligence and machine consciousness

One of the principal aids to achieving machine autonomy is machine intelligence. Intelligence
can be de�ned as the ability of a system to act appropriately in an uncertain environment,
where appropriate action is that which increases the probability of success, and success is the
achievement of behavioral sub-goals that support the system's ultimate goal[1]. There may be
several ways to construct a machine so that it displays intelligence. The display of intelligence
can be evaluated solely by observing external behavior, without concerning oneself with the
mechanisms within the machine that generate the displayed intelligent behavior (If it looks,

1
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walks and quacks like a duck... ). If the external behavior of the machine is indistinguishable
from that which would be generated by an intelligent entity, then the machine may be considered
as intelligent[7] (a.k.a the 'Turing test'). The external display of intelligence must, however, be
di�erentiated from the internal mechanisms in the machine that give rise to that behavior.

For the purpose of this text, we constrain1 the term 'consciousness' as the quality or state
of being aware of something within oneself. This leads to the question, "Who, or What, is it
that is being aware?" This question must be answered. We will answer it in section 2.3.

It must be pointed out that consciousness does not imply intelligence and intelligence does
not imply autonomy. The converse is also true: intelligence does not imply consciousness, nor
does autonomy imply intelligence.

We claim that the combination of consciousness and intelligence is a useful en-

gineering method to achieve machine autonomy, when the machine is a system

composed out of multiple sub-systems. In the context of such a machine, our notion of
consciousness can be rei�ed by a distinct sub-system that

1. is aware of the overall purpose(s) of the machine, can understand the short term goals of
the machine's user and the behavior expected for the ful�llment of those goals

2. recognizes the presence of the other sub-systems of the machine, and knows how they
should interact to generate expected machine behavior

3. understands the environment that the machine operates in, and the expected interactions
of the machine with its environment

4. is capable of interpreting the commands of the machine's user and orchestrating behavior
of other sub-systems in order to execute those commands

Such a consciousness subsystem may contain algorithms for machine learning and intelligence,
which could be combined with elements of intelligence present in other sub-systems. With such
a construction, the machine may be deemed to be equipped with mechanisms for understanding
the commands of its user, and for executing those commands. This is nothing but the essence
of machine autonomy.

2.2 Pre-conditions and constraints

Our approach to machine autonomy assumes the existence of the following pre-conditions and
constraints

• Embedded computer systems and software are the primary means to generate and control
machine behavior

• The embedded systems are the sole focus area for the achievement of machine autonomy.
All e�orts to realize machine autonomy will be concentrated on the embedded hardware
and software only.

• The embedded systems within a machine are organized into sub-systems. Each sub-system
consists of one (or a small group of) computers.

1The terms 'conscious' and 'consciousness' have been expounded with signi�cantly greater meaning elsewhere.
See for example Van Gulick [8]

2



Towards autonomous embedded systems Behere, Törngren, El-khoury and Chen

• There is constant communication between the embedded sub-systems. This communi-
cation may be used for exchanging data and/or altering the speci�c software functions
being executed by a sub-system.

• There exist legacies of proven sub-system designs, together with strong reasons for mini-
mizing changes to these sub-system designs.

2.3 The Self and progressive autonomy

Our approach to embedded systems autonomy consists of introducing into the system architec-
ture a sub-system that rei�es the notion of machine consciousness. We denote such a sub-system
by the term 'Self'. It is this Self that lends an identity to the machine. Users interacting with
the machine are in fact interacting with the Self. Earlier in section 2.1 we asked, "Who, or
What is it that is aware within the machine?" The answer is: the Self. In this way, our approach
endeavors to partially mimic the notion of consciousness and self-awareness in human beings.

From the architectural perspective, some interesting questions are:

• What should be the structure and interfaces of the Self?

• What are the patterns of interaction between the Self and the other sub-systems?

• How should the sub-systems be designed so that they can interact more easily with the
Self?

• What particular sequence of design iterations should be followed to evolve existing archi-
tectures towards those that incorporate and utilize the Self?

• How are cross-cutting extra-functional properties like system safety, reliability, error man-
agement etc. a�ected by the Self? Can the presence of the Self be exploited to favorably
a�ect these properties?

Introduction of the Self into the architecture needs to be complemented by examination of
aspects related to formal representations of system construction and desired behavior. Formal
representations provide the Self with the knowledge necessary for appropriate reasoning and
control of the system. The representations in turn will be a�ected by the algorithms used by the
Self for reasoning and decision making. Given the dependency of these aspects on the domain,
task and implementation speci�c details, it might not be possible to specify a su�ciently general
solution that works for all types of embedded systems. General solutions however, could be in
the form of domain speci�c reference architectures that are instantiable for speci�c use cases.
Reference architectures[5] are essentially proven solution templates and patterns that are useful
for solving a speci�c category of problems. An example of a reference architecture based on our
approach is given in section 3.

One particular salient bene�t of our approach must be highlighted. The bene�t is that the
approach enables progressive autonomy. Progressive autonomy means that the autonomy of the
system is gradually increased over successive design iterations. This implies that the degree of
human intervention needed to operate the machine decreases over successive product versions.
Progressive autonomy is important for two reasons

1. It enables cautious increase in capabilities of a function that is inherently susceptible to
uncertainty and errors that have safety consequences.

3



Towards autonomous embedded systems Behere, Törngren, El-khoury and Chen

2. Existing and legacy systems can be the starting point. These can be gradually evolved
towards autonomy, making large design changes unnecessary. This is appreciated by
commercial companies whose products are already in the market (example: automotive
manufacturers).

The reason why progressive autonomy is enabled by our approach is that the capabilities of the
Self (together with the architectural changes necessary to take advantage of those capabilities)
can be developed in an incremental fashion. At its simplest, the Self need be no more than a
passive component that is fed some status data by the rest of the subsystems. It need take no
active role in determining and a�ecting the system behavior, but could be used, for example,
to provide diagnostic information and/or warnings. Next, the Self may be allowed to interpret
user inputs as intentions to achieve speci�c system behaviors, while still permitting the Self no
control over the other sub-systems. The inputs and internal reasoning performed by the Self
could be logged over time to validate the correctness of the related algorithms, and only then
could the Self be granted executive powers that a�ect the functioning of the system.

3 Application example: A reference architecture for coop-

erative driving

This section gives an example of adding a Self as an additional sub-system to a set of existing
sub-systems. The example also demonstrates a recursive characteristic of the approach: the
Self is implemented as an additional sub-system which in turn consists of sub-subsystems. One
of the sub-subsystems is a Self (sub-Self?)!

3.1 A Self for cooperative driving

The electrical/electronic (E/E) sub-systems of a modern automobile meet the constraints listed
in section 2.2. For the purpose of introducing autonomy, an automobile can be considered as a
set of interconnected, embedded computer (sub-)systems, each of which has a speci�c purpose.
Our approach to autonomy suggests the addition of another sub-system (the Self) that can
function as the system's consciousness. To illustrate this approach, we considered the speci�c
problem of creating autonomous motion under cooperative driving conditions. Cooperative
driving conditions are those where continuous wireless communication exists between a vehicle
and its surroundings, which consist of the local road infrastructure as well as the other vehicles
in the vicinity. The Self of the autonomous system should then understand that

1. the purpose of the system is autonomous driving (under cooperative driving conditions)
and the short term goals of the system are to navigate the vehicle in a speci�c environment

2. there are other sub-systems in the vehicle (like the engine, the brakes and the transmission)
which have de�ned roles and that the correct interaction of these sub-systems will generate
the desired behavior

3. the environment of the vehicle consists of objects that include other vehicles and road
infrastructure (tra�c lights, speed limit signs etc.) and how the vehicle should react to
the presence/absence of these objects

When given the appropriate commands by the user, the cooperative driving Self should be
able to correctly interpret the commands and orchestrate the other sub-systems to realize safe,
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ECU
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Overall system

Figure 1: Recursive Selves

cooperative driving. This problem is domain speci�c and su�ciently detailed to generate a
reference architecture for the Self, as mentioned in section 2.3.

Accordingly, a reference architecture for cooperative driving was created, which is described
in [4]. This reference architecture was instantiated[6, 2] on two separate occasions, one of which
was the Grand Cooperative Driving Challenge (GCDC) 2011. The GCDC consisted of vehicle
platooning on public roads. An instantiation of the reference architecture was installed on
a Scania R730 commercial truck, and the modi�ed truck successfully completed the driving
challenge. A second instantiation of the reference architecture was installed on a Scania R480
commercial truck, which was then utilized during further cooperative driving demonstrations.
The two instantiations di�ered in capabilities and had very little in common.

Thus, on two separate occasions, the concept of adding a Self i.e. consciousness sub-system
(for the purpose of autonomous cooperative driving) was demonstrated to produce desired
system behavior.

3.2 A Self within a Self

The introduction of a Self happens in the form of an extra sub-system in the system architec-
ture (see Figure 1). If we denote this extra sub-system as 'Self0', then it is entirely possible
that Self0 itself comprises of multiple sub-subsystems and that one of these sub-subsystems
is a Self (denoted 'Self1' in Figure 1) and so on. Thus, the approach demonstrates recursive
characteristics.

In the case of our particular reference architecture for cooperative driving, one of the key
architectural elements is a Self, present in the form of a Supervisor component. Speci�cally,
"..It is the supervisor that encodes an understanding of the various architectural elements, their

5



Towards autonomous embedded systems Behere, Törngren, El-khoury and Chen

capabilities and limitations. Thus, it is the supervisor that is aware of the presence of the world

model, the control and other elements[of the reference architecture] and how they must function

in order to generate speci�c behaviors of the cooperative driving system. The supervisor "knows"

what behavior is expected of the cooperative driving system in a given context and uses them

to achieve the expected behavior. The elements in turn pass on all unknown inputs, locally

unresolvable errors and requests to the supervisor and expect instructions on how they should

proceed." [4].
Thus the reference architecture provides a blueprint for a Self (Self0, as per Figure 1) that

generates autonomous behavior in the vehicle. Within the reference architecture, there is an-
other Self (Self1, as per Figure 1) that generates the desired behavior of the reference architec-
ture. This "second-level Self" illustrates precisely the same principles of creating autonomous
embedded systems as outlined by our proposed approach.

4 Conclusions and future work

We have outlined an approach towards embedded systems architecture to achieve machine
autonomy. Parts of the approach have been validated in the context of cooperative driving for
which a reference architecture was developed.

Further work is required to elaborate the approach and to encompass other autonomy set-
tings. Introducing autonomy will also require speci�c e�orts for addressing safety and reliability
aspects. In particular there is a dichotomy between the determinism required by safety prac-
tices vs. the dynamic behavior which is inherent in autonomy. Safety standards, legislation
and supporting technology all need further work
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Abstract

Systems engineers often use SysML as a vendor-independent language to model cyber-
physical systems. However, SysML does not provide an executable form of behaviors which
is needed for simulation to detect critical issues as soon as possible. In this paper, we there-
fore present an action language for foundational UML (Alf) specialization that introduces
the synchronous-reactive model of computation to SysML. This is done by definition of not
explicitly constrained semantics of timing, concurrency, and inter-object communication.
The smart parking system, a well-known cyber-physical system benchmark, was selected
to evaluate this specialization. Our initial results show that the proposed specialization
does not add complexity to the task of modeling using SysML, and leads to concise and
precise behavioral definitions.

1 Introduction

Cyber-physical systems (CPSs) are obtained by integration of computational and physical pro-
cesses: Embedded computers and networks monitor and control physical processes with feed-
back loops where physical processes affect computations and vice versa [17]. According to
Cartwright et. al. [9], the difficulty in modeling CPSs comes from the diversity of these sys-
tems. Therefore, the most promising approach to mitigate this problem is to develop expressive
and precise modeling languages.

As a result, a large number of languages and formalisms have been proposed to model
CPSs [8]. One particular branch of these languages follows the synchronous-reactive model of
computation (MoC) [4], which has several advantages for specifying, modeling, and verifying of
reactive real-time systems [17].

The synchronous-reactive MoC provides a precise behavioral model using discrete reaction
steps as the fundamental model of time, while computation and communication are executed in
zero-time, and parallel composition is defined as a conjunction of behaviors [4]. There is a solid
mathematical foundation that supports synchronous-reactive MoCs, which allows in particular
formal analysis and verification. Languages based on this MoC, like Esterel [6], have therefore
been developed and used for safety-critical systems [4, 28]. Some of them, like Quartz [29], have
been extended for CPSs [3] by special kinds of variables and statements to deal with continuous
time.

Comparing an implementation based on the synchronous-reactive MoC with an alternative
asynchronous implementation for a dual redundant flight guidance system, Miller et. al. [20]
made the following observation: “the properties themselves are more difficult to state, were
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weaker than could be achieved in the synchronous case, and required considerable complexity to
be added to the model to ensure that even the weakened properties were true”.

Meanwhile, the Object Management Group (OMG) and the International Council on Sys-
tems Engineering (INCOSE) are developing the Systems Modeling Language (SysML) [25, 31];
a general-purpose modeling language for systems engineering applications based on the Unified
Modeling Language (UML) [23]. SysML has demonstrated a capability for top-down design
refinement, but the lack of formal foundations of SysML results in imprecise behavioral models.

In this paper, we present a specialization to the action language for foundational UML (Alf)
[26] for behavioral modeling of CPSs. The hypothesis of this work is that a specialization of Alf
according to the synchronous-reactive MoC can be sufficiently expressive to model the discrete
behavior of CPSs using SysML. Consequently, adhering to the synchronous-reactive MoC, we
will benefit from a solid mathematical foundation [4, 6, 29].

The remainder of this paper is organized as follows: in Section 2, related works are explored
briefly; in Section 3, we present the initial approach; in Section 4, a case study is presented;
in Section 5, we briefly discuss the initial approach and the case study; finally, conclusions are
shared in the final section.

2 Related Work

There is a large number of research papers about formalizing the semantics of models using
UML, and consequently, also about SysML. Hußmann [16] proposes the following classification
for approaches concerning structural semantics: (a) naive set-theory, (b) meta-modeling, and
(c) translation. This classification can be used for the works focused on behavioral semantics.

For example, Graves and Bijan [15] propose an approach where behaviors defined using
SysML state machine diagrams are axiomatized using set/type theory. Alf [26], and the foun-
dational subset for executable UML models (fUML) [24], follow the meta-modeling approach
because the semantics of behaviors is described operationally using fUML itself. The circularity
is broken by the base semantics of fUML which is specified using first order logic. However,
Benyahia et. al. [5] show that fUML, and also Alf, are not directly feasible to safety-critical
systems because the MoC defined in the fUML execution model (as it is) is nondeterministic
and sequential.

Following (c), i.e., translation, Bousse et. al. [7] define a method to transform a subset
of SysML in B method representations; the selected subset of SysML covers behavioral defi-
nitions expressed by Alf. Later, the B method representation is proved by a specialized tool.
Abdelhalim et. al. [1] define a method that receiving state machine diagrams and activity
diagrams (according to fUML) applies a transformation to communicating sequential process
(CSP). Then, the CSP representation is verified by a specialized tool.

3 Initial Approach

Execution and verification of models is the cornerstone of any model-driven development
(MDD). One prominent alternative for MDD is model-driven architecture (MDA) established
by OMG [22]. MDA defines three levels of abstraction:

(A) Computational Independent Model (CIM): to focus on the environment of the mis-
sion and mission’s requirements;



(B) Platform Independent Model (PIM): to define requirements, structure, and behav-
ior for candidate abstract solutions;

(C) PSM (Platform Specification Model): to describe concrete solutions.

MDA established a large number of specifications, but for this paper, the most important one
is Alf [26]. Alf is the concrete syntax for the abstract action language defined by fUML [24],
i.e., a subset of UML [23]. The execution semantics for Alf is therefore given directly by fUML.
According to INCOSE [27], fUML and Alf are MDA pillars for the definition of PIMs.

fUML [24], which defines the semantics for Alf, is designed to support more than one MoC.
This is pursued with leaving the semantics of some elements unconstrained. These elements de-
fine aspects of concurrency and inter-object communication which work for simulation, whereas
they are not suitable for formal verification. In particular, fUML does not define semantics for:
(A) timing, (B) concurrency, and (C) inter-object communication.

Our initial approach is as follows: Given the semantics defined by fUML, we specialize
the explicitly unconstrained elements with the purpose of precise definitions of models using
Alf. In order to do this, we discuss proposed changes in the semantics of fUML. Further,
we choose to discuss the semantics in an informal way, and to present a concrete additional
language construct for the specialization of Alf. This additional language construct is defined
using annotation, which is a way to identify a modification to the behavior of an annotated
statement [26]. The applied approach allows early evaluation of the proposed specialization.

3.1 Timing

The timing semantics used divides the time scale in a discrete succession of instants. Similar to
languages based on the synchronous-reactive MoC, each instant corresponds to one macro-step
as defined in the next subsection.

3.2 Concurrency

Concurrency can be achieved in Alf using two complementary techniques: (A) multiple active
objects that, in general, imply the necessity of inter-object communication; or (B) inside a given
definition by the use of the annotation @parallel.

Active objects are the source of all behaviors in a system modeled with UML [22], SysML,
fUML, and Alf. An active object is an instance of an active class. An active class must
have a ClassifierBehavior that defines the class behavior. Each active object is executed
independently, and the only way to communicate with other active objects is through signals
[23].

One alternative to provide a combination of concurrency and synchrony (where computation
and communication are instantaneous) is by using the synchronous-reactive MoC. According
to this MoC, a program can be defined by so-called micro and macro steps. Each macro step
is divided into finitely many micro steps, which are all executed in zero time and within the
same variable environment (i.e., the ordering of micro steps does not influence the semantics
of a model). As a consequence, the values of the variables are uniquely defined for each macro
step. Macro steps correspond to reactions of reactive systems, while micro steps correspond
with atomic actions, e.g., assignments of the model that implements these reactions [29].

The demarcation of macro steps was introduced by the annotation @pausable; it is one of
two ways to define demarcation between two macro steps. The second way is the use of the
accept statement of Alf. This annotation is designed to be used with loop constructs (while,



for, do while), and the semantics is as follows: after each execution of the loop body, it waits
for the next macro step. It follows that all concurrent behaviors run in lockstep: they execute
the actions inside the loop in zero time, and synchronize before the next iteration.

The annotation @parallel can be used to define that all the statements in the block are
executed concurrently. The block does not complete execution until all statements complete
their execution; i.e., there is an implicit join of the concurrent executions of the statements [26].

3.3 Inter-Object Communication

Inter-object communication in Alf is performed sending signals (SendSignalAction) to other
active objects [24]. Further, this action is not blocking, i.e., an object sends a signal and
continues with its execution (it does neither wait for a response nor for an acknowledgment).
A signal is a specification of what can be carried. Furthermore, a signal event represents the
receipt of a signal instance in an active object [24].

Signals are based on the paradigm of message passing. Furthermore, fUML provides a
point-to-point (also known as unicast) message pattern [24]. A signal is sent to a receiver
(active object) using a reference to it. In contrast, multicasting is required in many safety-
critical systems, e.g., fault-tolerance by active redundancy [21]. Multicasting also supports the
non-intrusive observation of component interactions by an independent object. Moreover, it
enables a better composition.

Multicasting was introduced by an active class called MessageDispatcher that provides
the service for multicast message exchange. Instances of this class work as bus transferring
instances of signals between previously registered active objects, which generate events in the
target active object.

Every signal handled by MessageDispatcher has a specific identifiable sender, and zero
or more receivers. The set of active objects (receivers) is defined by the existence of the
reception of that signal. All signals generated in the current macro-step are instantaneously
available. Moreover, signals not used during a macro step are lost. It is possible to receive
signals individually or as a set. Receiving a set of signals is important for those active objects
that need to process all signals sent for it in the current macro-step.

4 Case Study

We evaluated our initial approach by a case study called SmartParking that is due to [13].
The points discussed in the previous section were applied to model a part of this system. The
SmartParking benchmark has been chosen for three respective reasons: (1) it is a real-world
cyber-physical system, (2) it can be modeled as a discrete system [13], and (3) Geng and Cas-
sandras [13] provide a detailed concrete solution. According to [11, 14], the case study is defined
using MDA. The case study focuses on aspects related to computation and communication at
the PIM abstraction level. A way to cover the control aspect is presented in [13].

4.1 Mission Context and Requirements

Mission context and mission requirements were gathered and modeled in a SysML CIM Model.
The mission is summarized as follows: A user inside a vehicle shall be able to request a parking
space. The request for a parking space shall be evaluated considering two constraints given by
the user: (a) maximum distance from current position, and (b) maximum cost that the user
wants to pay. The user shall receive a response indicating the best parking space that satisfies



Figure 1: BDD system components (PIM level).

the imposed constraints. The user shall be able to accept or reject this response. The user
shall be informed about where the parking space reserved for him/her is, as well as, about the
availability of all other parking spaces up to 10 meters away from his/her current position. The
vehicle shall be able to send its current position. The vehicle shall be detected when it arrives
at a parking space, and when it leaves a parking space.

4.2 An Abstract Solution

Figure 1 shows the block definition diagram (BDD) for an abstract solution which is compatible
with the concrete solution defined in [13]. The SmartParking system was decomposed in three
main parts: SmartParkingEnablerDevice, SmartParkingAllocationCenter, and Spot. All
of them are active classes.

The connections between these elements are not static. Therefore, they are not presented
in Figure 1 as associations. The connections are showed in the internal block diagram (IBD)
presented in Figure 2. In contrast to associations, which specify links between any instances
of the associated classifiers, connectors specify links between instances playing the connected
parts only [23]. The inter-object communication is provided by the multicast message exchange
service (MessageDispatcher). Further, each active object has a reference to the same instance



Figure 2: IBD system abstract solution (PIM level).

of MessageDispatcher.

SmartParkingEnablerDevice models a device inside the vehicle. It receives Position from
vehicle, and has a UserInterface (both interactions with the environment are depicted in the
upper left corner in Figure 2). Each vehicle has a corresponding SmartParkingEnablerDevice

active object. The abstraction used in this case study makes the internal structure of this com-
ponent irrelevant. It, as well as other components, could be modeled later as software, hardware
or a composition of both. For example, SmartParkingEnablerDevice could be implemented
as software in a smartphone [13].

Each parking space managed by the system is an active object Spot, and each Spot

has two interactions with the environment: (a) detecting that a vehicle arrived at a Spot

(VehiclePresenceSensor) and (b) indicating the current state of the Spot to the user, and
which one is reserved for him/her (LightsActuator). Spot and SmartParkingEnablerDevice

(plant) are both managed by a block SmartParkingAllocationCenter (controller). In this
case study, there is only one active object of this block, which is responsible in each macro step
for: (a) gathering system state and events; and (b) determining the control output.

From the viewpoint of discrete event systems (DES) control, considering signals handled by
SmartParkingAllocationCenter, the system can be described as follows:

X(t) = {D(t), P (t)} (1)

E = ECent ∪ ED ∪ ESpot (2)



ECent = {RequestForSpotSP,AcceptSP,RejectSP} (3)

ED = {SpotAvailableSP, SpotUnavailableSP, SpotT imeoutSP} (4)

ESpot = {AllocatedSP,UnallocatedSP} (5)

X(t + 1) = f(X(t), U(t),W (t)) (6)

where: Equation (1) defines the discrete state space X(t) composed of D(t) = {k ∈ N |
SmartParkingEnablerDevice k in the system} (determined in each macro step by signal events
of the signal DeviceStateSP) and P (t) = {k ∈ N | Spot k in the system} (determined in each
macro step by signal events of the signal SpotStateSP). Equation (2) determines the discrete
event set which is composed of signals ECent, ED, and ESpot as defined by the next equations:
ECent (equation (3)) is received from SmartParkingEnablerDevice; ED (equation (4)) is
sent to SmartParkingEnablerDevice, and ESpot (equation (5)) is sent to Spot. Equation (6)
defines the evolution of the system over time, where the state X in the next macro step (t+ 1)
is defined by the current state X(t), the current events W (t), and the current control signals
U(t), where W (t) = {k ∈ N, i ∈ ECent | instance ik} is determined by instances of signals
defined in the set ECent, and U(t) = {k ∈ N, i ∈ ED ∨ i ∈ ESpot | instance ik} is determined
by instances of the signals defined in the sets ED and ESpot.

Figure 3 shows that the Alf ClassifierBehavior of the SmartParkingEnablerDevice has
two concurrent infinite loops. The first infinite loop depicted in Figure 3 is annotated with
@pausable, which means that it sends the current state of device. Thereupon, it waits for the
next macro step (synchronization point, before next iteration). The current state is composed
by the actual position and the state of current reservation, and is represented by an instance
of the signal DeviceStateSP. Each active object sends this signal in each macro step using an
instance of MessageDispatcher that is responsible for delivering a copy of these messages to
every registered active object that has a reception for this signal.

The second infinite loop defines the expected reactions of the device for events received
from UserInterface and from SmartParkingAllocationCenter. It starts with an accept

statement, which blocks execution (possible during many macro steps) until the expected
event occurs. Subsequently, it uses the same mechanisms described above to send signals for
other active objects. Moreover, it uses a compound accept statement that determines which
block will be activated based on the type of the signal received from UserInterface and from
SmartParkingAllocationCenter.

The SmartParkingAllocationCenter behavior is shown in Figure 4. It has an infinite loop
annotated with @pausable that defines a synchronization point at the end of each execution
of the loop body. The loop body starts with five concurrent accept statements, which means
that it waits until no more signals of these types can be generated. Later, it applies the control
law, and sends the response for other active objects (SmartParkingEnablerDevice and Spot)
using the mechanism described above.

The Alf ClassifierBehavior of the Spot and the SmartParkingEnablerDevice are
organized in the same way. There are two concurrent infinite loops: one sending sig-
nals about its state (with a synchronization point defined using @pausable), and an-
other one defining reactions for the received events from VehiclePresenceSensor and from
SmartParkingAllocationCenter.



Figure 3: Alf ClassifierBehavior of SmartParkingEnablerDevice.



Figure 4: Alf ClassifierBehavior of SmartParkingAllocationCenter.

5 Discussion

The case study defines an abstract solution (PIM) for the mission that was modeled to explore
concurrency, synchronization, and multicast messages. The solution is neither complete nor
optimized, e.g., signals can be removed by a centralized version of the state of the system. A
tradeoff could be evaluated taking into account an objective function defined at CIM level, e.g.,
considering the analysis of the messages (communication) during macro steps. In addition, the
abstract solution has an important difference compared to the solution presented in [13]: there
are no queues. This is a consequence of the synchronous-reactive MoC: All signals are received
and processed in the same macro step. The SmartParkingEnablerDevice does not have the
state “Waiting for Assignment” [13] because, given a macro step, the system state is gathered
instantaneously. Afterwards, the control law is applied and all active objects in SmartParking



immediately receive an adequate response.
From the viewpoint of DES control [10], the case study satisfies the following key properties:

(a) its state space is a discrete set, as defined in (1) and (b) the state transition mechanism is
event-driven, which means that the state can only change as a result of asynchronously occurring
instantaneous events over time [10]. Apart from that, the second property has a time window
to occur during a macro step. In the case study, it is mandatory that many events occur in
the same macro step, and the resulting state transition reflects the occurrence of all. However,
some combinations of signals in the same macro step are not allowed, e.g., if a naive device
sends in a given macro step one signal for requesting a spot, and one signal for acceptance, then
the last one will be lost.

Concerning modeling, state machines and state machine diagrams are commonly used for
modeling state-dependent behavior. A variation of these diagrams is used to express state-
dependent behavior in [13]. However, UML, fUML, SysML, and Alf do not define precise
semantics for state machines [12, 30]. This is ratified by Alf, which states that a normative
semantic integration of state machines with Alf will be formalized later as a part of future
standards [26]. Indeed, environments of synchronous languages offer tools to visualize the
resulting automata from a given textual representation [6], e.g. Figure 3 can be automatically
transformed in a state machine diagram. Languages have been developed to conciliate precise
semantics and automata visual modeling as e.g. [2, 18].

The nondeterminism in the fUML MoC, which was recognized by Benyahia et. al. [5], can be
removed using the proposed specialization. In fact, the proposed specialization adheres the idea
of introducing the synchronous-reactive MoC during early stages of a system development [4]. It
avoids asynchronous complexity in early stages of system modeling, analyzing, and verification.
Furthermore, the synchronous-reactive MoC enables abstract solutions to be synthesized [28]
in a concrete solution using globally asynchronous locally synchronous architectures (GALS)
[20], or physically asynchronous locally synchronous architectures (PALS) [19].

The initial approach presented here provides rather a starting point than a complete result.
It informally defines the semantics for two complementary constructs for Alf that together can
transform Alf into a synchronous action language. However, the changes needed in the fUML
execution model to support it must be defined, and the points about nondeterminism stated in
[5] have to be addressed.

CPS is about the intersection of the computation, communication, and control [17]. The
initial approach focuses on the computational and communicational aspects of CPSs, and it
can be composed with control. The case study shows that our initial approach can transfer
the solid mathematical foundation of synchronous languages to SysML executable models. We
consider this step, as an intermediary step, before a formal verification of executable discrete
SysML models.

6 Conclusions

This paper shows the initial results of our research that has the following basic hypothesis: A
specialization of Alf according to the synchronous-reactive MoC can be sufficiently expressive
to model the discrete behavior of CPSs systems using SysML. These results show that the
proposed specialization does not add complexity to the task of modeling using SysML, and
enables concise and precise behavior definition. We believe that specializing well-known vendor-
independent specifications (Alf and SysML) can provide an understandable set of languages for
modeling, analyzing and verification of CPSs. Moreover, such a set of languages can enable
formal verification for discrete parts of CPSs.
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1 Introduction

The technological achievements of the Information and Communication Technology are re-
shaping our life. The constant access to the network offered by the new generation of mobile
devices discloses important and unprecedented opportunities for business users and for “simple”
consumers alike. The next thrust is expected to come from the so-called cyberphysical systems
(CPS) [4].

A CPS is in the common lingo a device or a system where the computation units are deeply
interconnected with the physical system they control. This definition is apparently very close
to that of a “classic” embedded system (ES). However, CPSs are usually characterized by
a heterogeneous and distributed architecture and, more frequently, have the ability to share
information and services with other CPSs disseminated in the environment setting the basis for
an “internet of things” [1]. Another difference is the number and complexity of control functions
and their interconnection which is supported by a variety of sophisticated sensing devices and
the related perception algorithms. The overall complexity is due to the need for a high degree
of autonomy, and for reconfiguration and adaptation capabilities which provide robustness to
changing and unanticipated environment conditions.

We have just outlined some of the requirements posed to the upcoming generation of CPSs,
but they are sufficient to suggest the challenging difficulty of the development. We believe
that this level of complexity requires out-and-out science of CPSs, where some of the tradi-
tional methodologies developed for ESs will be revisited and integrated with new ideas and
paradigms [3]. What we find it is lacking in the literature is the presence of system examples
to use as benchmark for those methodologies. Available examples tend to be artificial and do
not cover “pratical” aspects of the application. There is a need for case studies which are easy
to replicate in research labs.

The objective of this paper is to offer one of these examples which is a trade-off between
complexity and tractability. The case study could support, as benchmark, different research
activities, such as: 1) automated-mapping of functional models onto software/hardware archi-
tecture (e.g., as shown by Zheng et al. [8], 2) end-to-end design of distributed real-time systems,
3) specification languages and planning for autonomous robots, 4) resource aware control (e.g,
[7]).

In Section II we describe the system giving details about the hardware and software used
in the architecture, the set of sensors and actuators and the consequent description of the
capabilities of the system, and an overall view of the functional scheme. In particular, Section
II gives some hints for potential research topics which could find applicability in our case study.
In Section III we conclude the paper outlining the structure and content of the website that
will be used for distribution of the case study.
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Figure 1: Functional organization of the system. Sensing and actuating blocks are involved
in control loops. Contollers are connected in a nested structure, with the planner being the
driving block of the entire system. Each loop is associated with a period.

2 System Description

The case study considered in this paper is deeply inspired by the automotive industry. We
consider a robotic car, which we have prototyped using a scaled model in our laboratory. In
the following text, we will first describe the main functional components of the car. Then we
will move on to describing the hardware/software architecture used for its implementation.

Functional View. The system can be considered as a particular instance of a much larger
class of similar cyberphysical systems. It is interconnected to a physical environment, which is
comprised of the road where the car moves (along with external objects and agents) and by the
physical components of the system. Sensors collect information (in our case position, attitude
and velocity of the car), while actuators are the means that the system has for environment
manipulation (in our case the engine and the steering wheels).

Sensors and actuators are involved in the computational activities that implement the feed-
back control loops for system stabilisation, which in our case enable the system to follow a
predefined line. The complexity of the system requires a planner, which decides the system
goals and supervises their fulfilment. In the presented case, the planner decides how to follow
the line, in essence a sequence of manoeuvres such as go straight with speed X, turn with radius
Y and speed Z etc. This decision is determined by different considerations, such as saving time,
saving energy, overtaking slower vehicles, avoiding fixed obstacles etc. In order to have a full
control over the system, a cooperation between planning and sensing part has to be established.
The planned path is tracked by the low level controllers.

From a high level perspective, the system comprises a set of nested control loops. Each
control loop is activated periodically and has a different frequency, as shown in Fig. 1. Analyzing
the model from a closer view point, at the low level the robot is equipped with two servos: one
is the engine used to move the car (which operates on the four wheels), and one is used to
control the steering angle. The two servos are controlled by a PWM signal. Each wheel has a
relative encoder for speed monitoring, and, on the front of the car, a potentiometer is mounted
in order to get a feedback of the steering position. Such sensors are used by two low level
feedback loops (activated with a period of 2 ms and 4 ms), which implement PID controllers
used to regulate the speed and the turning angle. A basic Inertial Platform, composed by gyros

2
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Figure 2: The task set generated from the functional diagram. Each node represents a task and
is labeled with its average and worst case execution, both in ms. Edges represent communication
between tasks, and bitrate (bit/s) and payload (bytes) are specified. The diagram also shows
the allocation of the tasks in the computing units used in the system.

and accelerometers, completes the set of low level sensors and is used to improve the estimate
of the car position.

The information collected in the low level are fed to a line following algorithm that controls
the position of the car with respect to its ideal trajectory. The algorithm utilises a high frame
rate camera, pointing sideways and used to estimate position and attitude of the car with respect
to the road line. The line following algorithm and the speed controller receive set points from
a manoeuvre controller that decides the sequence of manoeuvres and monitors their execution
using encoders and the inertial platform to estimate the progress along the planned line.

A second camera, mounted on the front of the vehicle, is used for path reconstruction
and obstacles detection. This camera is activated with a relatively low rate (5 frame per
seconds). The Planner receives an image captured through the camera, reconstructs the path
and extracts other meaningful information (e.g., obstacles). The Planner, therefore, decides
which manoeuvre the vehicle has to perform and communicates it to the Manoeuvre Controller.

The vision algorithms used for each camera use a combination of Randomised algorithms
(RANSAC) and Kalman Filtering [5, 6]. Such sensing activities generate a widely changing
computing workload, a situation difficult to manage with the standard tools of digital control [2].

Hardware Architecture. The computing system is a balanced blend of microcontrollers and
microprocessors. There are three main components. The first one is the FLEX: a development
board based on a 16 bit dsPIC. The board is provided with a complete software infrastructure
based on Erika which is a RTOS OSEK compliant. The PIC technology allows developers to
interface the microcontroller with external objects by means of common digital interfaces like
low power communication systems (SPI or I2C), or PWM. The FLEX also supports advanced
communication technologies like Ethernet and CAN bus.
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Figure 3: The hardware architecture of the system. Pandaboard, Beagleboard and FLEX are
connected with a CAN bus, while each board has specific connections for communication with
sensors and actuators.

The other two components are two ARM–based evaluation boards: Beagleboard and Pand-
aboard. Both are Texas Instruments products and are based respectively on OMAP3 and
OMAP4 processors version. The RTOS used for these components is a Linux kernel modified
with RTpreempt patches, which improve its real–time performance. The two boards export
SPI and I2C interfaces for connection with sensors and other low level peripheral; other con-
nectivity solutions are the classic USB, Ethernet, Bluetooth and IEEE802.11 which facilitate
remote control and telemetry. Such boards have a sufficient computing power to support the
functional blocks described above, but have a limited power consumption and a low cost, both
desirable features for autonomous mobile robots.

Fig. 3 shows the overall picture of the architecture. The processing units are connected
through a CAN BUS, which offers a sufficient bit-rate for the applications at hand while avoids
the power consumption of an Ethernet switch. Other communication technologies are used for
sensors and actuators interface. In the proposed setting, the FLEX board is adopted for the
low level functionalities of the system: motor and steering controllers, and communication with
sensors. Nevertheless, gyros and accelerometers requires the connection with the Pandaboard
due to the high communication rate required, which would be unsustainable by the FLEX.

The two cameras, considered as high level devices, have an USB connection to the two ARM
boards. Usually, ARM processors design integrates in the system some co-processing units, like
GPUs or DSPs, which extend the computational capabilities of this kind of platforms. Using this
extra availability of computing power it is then possible to increase the performance of executed
algorithms, in particular of the randomized algorithms used in this study case. This reinforces
the choice of using microcontrollers to define a level of sensors and actuators interaction, and
exploit more advanced processors for the high level intelligence of the system. A common bus
between the processing units facilitates the data flow for all the tasks running in the system.

Software Architecture and Mapping. Model based approaches recommend to use such
models as the primary design primitives to fine tune the design of the planner and of the
control algorithms. The models composing the functional diagram, which are essential for
unveiling the mathematical and physical aspects related to the stability of the system and to
the correctness of the design, suggest a possible decomposition into subsystems, a definition of
their relations and of the timing constraints for their execution.
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After the system functionalities and time constraints are defined, the computational entities
are generated through automated tools or by a manual coding process. This is a refinement
step that produces a set of concurrent tasks, each one with a period related to the control loop
for which the task is involved. The set of tasks is easy to represent with a directed acyclic graph
(DAG), where the nodes correspond to the tasks and the edges are the involved communications.
An edge is associated with a weight which specifies the amount of data that need to be sent
(bitrate requirements). Fig. 2 shows how a DAG could be derived from the previous diagram
in Fig. 1. In our simple hypotheses, every functional block generates a task which receives
and sends messages to the tasks derived from the other functional blocks involved in the same
control loop. If required, some tasks may be further refined into subtasks. For instance, the
Lateral Camera task could be split in two tasks: one for frame capturing and one for image
processing. The splitting increases the complexity of the scheduling problem, but could give
benefits from the overall computational power utilization. Furthermore, the allocation of the
two tasks in different computing units adds a new message in the system, that is in this example
a whole frame.

Once a refinement of the system into tasks has been produced, the next steps is to map them
into our hardware architecture in order to take advantage of the physical parallelism enabled
by the different computation units and by their interconnection buses. An optimized task
allocation guarantees that all the tasks respect their deadlines and that the traffic generated by
tasks communication is sustainable by the system. For this reason, the allocation of tasks to a
specific computing unit not only should consider the computational power of the CPU, but also
the bandwidth required by output emission of the tasks. Tasks that need to communicate, if
allocated in the same unit, will not increase the traffic in the system because the data exchange
will happen internally at the computational unit. Whatever is the communication link between
the two tasks, a fundamental problem in this case is to ensure that the system obtained has
the same semantics of its abstract counter part.

3 Research Topics

The image processing algorithms, in particular the one that reconstructs the path, have a time
of execution with a high variability. This makes the hard real-time approaches to control design
difficult and discouraging. The case study is well suited for methodologies for soft real-time
control design, that is the design of control schemes that are tolerant to varying delays. In this
kind of systems usually is required to find a trade-off between control performance and resource
utilization.

As described in the previous section, the functional scheme is eventually transformed in a
set of tasks which need to be allocated and scheduled in the computing units. Modeling of task
sets and mapping algorithms could be tested in our benchmark. The mapping result has to
meet the time requirements and be computationally feasible in the hardware architecture.

The planning subsystem is also an interest subject for research. In particular, our appli-
cation needs the identification of an alphabet of manouvres, and relative synthesis algorithm
to generate winning and safe plans, accounting for computation time and vehicle performance.
More in general, the system could be used for testing planning algorithms that express missions
where dynamic events, prioritized goals, and probability of failures are considered.
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4 Conclusion

We have described our case study and listed some interesting research activities which could
use our system as benchmark. The next step is to create a web space in which we provide
information about where to buy the car and the hardware used to create the final system,
together with cabling details and design schemes of PCBs. We will provide software code with
open-source license, and configuration details of drivers and operating system. The idea is to
create a guide that helps other researchers to replicate the system in a reasonable amount of
time.

Finally, we will provide simulators and potential solutions to the different aspects of the
system, while collecting solutions of other researchers that are willing to share and compare
their results.
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Abstract

During design of distributed embedded systems, the determination of the deployment of
software components to execution units is a crucial subtask of the design space exploration.
In static systems, the deployment can be determined at design time. However, in many
cases it is desired to add new functional features into existing systems after sale. In this
case, new software components have to be integrated into the former system and hence,
into an existing deployment.

We aim in a self-configuring system that ensures the integrity of the integration of new
components autonomously. Our proposed process of integrating new components into a
given system consists of several steps intended to be applied at run-time while the system
is in operation. Beside others, the process includes a logical admission control, followed by
a self-configuration of the system.

In this paper, we focus on extending an existent deployment during the self-
configuration phase incrementally. We sketch a mechanism that extends existing deploy-
ments with additional components in an efficient way by using SMT-solvers. We also
present an example that demonstrates how these solutions are calculated based on given
deployment-constraints.
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1 Introduction and Motivation

Maintainability and extensibility are important properties of long living systems, especially also
in distributed embedded systems. After a system is taken into operation, there might arise sev-
eral reasons to maintain the system in a functional or non-functional manner. Non-functional
maintenance tasks change the system without changing the systems functional features expe-
rienced by the user. Functional maintenance affects the user-experience, e.g. by updating or
extending the system functionality. Updates or extensions might be required in case of chang-
ing or new requirements, or due to changes in the environment. In this paper, we focus on
extending functionality of component based systems without requiring a temporal shutdown of
the system under maintenance.

In this paper, we tackle the problem of extending distributed component-based embedded
systems with new components that realize new functional features. We focus on the design space
exploration for the new components, more precisely on the determination of the deployment.
During deployment determination it is defined which software component is executed on which
execution unit, while considering different constraints that must be hold by the deployment in
order to be valid. This is just one sub-step of the integration process of new components. We
developed a deployment calculator which is based on the usage of a SMT-Solver.

We aim in executing these techniques at runtime by the system under maintenance itself,
in order to let the system have control about its own integrity. This is for instance useful
for distributedly developed systems, in which no central authority performs and proofs the
integration of new functional features, but also for systems that cannot be taken out of operation
completely in order to install new functionalities. Examples of such systems are production lines
where each production stop denotes huge costs, remotely maintained systems which cannot be
accessed by humans, but also future automobiles in which new functional features are desired
to be installed after sale without having to go to a workshop.

We show a methodology to find deployments in a incremental manner. Incremental means
that an existing deployment is extended with new components. The requirements are that the
former system components should not be affected by the new components negatively, as well as
that the delta between the configuration of the old and the new extended system should be as
small as possible. In case of deployment, this means that the deployment of existing components
should not change when new components are added. This is to avoid on-line migrations of
components. Between the extension phases, the system operates in a static manner.

The remainder of this paper is as follows. In section 2, we show the big picture on our
work, which is the intended process for integrating new functions into existing systems. As
our integration process is supported by properties of the underlying platform on which it is
performed, we discuss these properties briefly in section 3. In section 4, we show briefly how
the components are designed that are intended to be added to the system. Section 5 shows
then a sketch for an incremental deployment calculation during the self-configuration phase.
This is also shown by an example with some example deployment constraints. Finally, section
6 discusses related work and 7 the conclusion and future work.

2 The process of integrating new functionality

We aim in an integration process including an on-line admission control for the new functionality
followed by a self-configuration. During integration, it has to be ensured that the system keeps
operating conform to its specification. This is especially important for safety-critical real-time
systems, because a loss of integrity might cause hazardous damage to material and life. To



provide new system functionality in a plug-and-play manner, the system has to be able to
verify autonomously if the new functionality can be integrated or not. However, as mentioned
above, in this paper we focus on the deployment calculation which is applied during the self-
configuration phase of the integration process.

Fig. 1 shows our intended five main steps that are required to integrate new software
components into a given system.

(1) Physical delivery of new components into the system

(2) Admission Control

Check whether new components can be integrated into the system or not

(3) Create System-Configuration

Update affected sub-configurations of the system, 
for instance the Deployment of components to execution units

(5) Activation

Activate the new system-configuration

(4) Deployment of new components

Deploy new components within the distributed system according to the 
allocation-plan determined in step (3)

Finish

Abort

Abort

Lo
op

Figure 1: Activities during the extension of the system

In phase (1), the new components are physically made available to the system. Phase (2)
performs a logical admission control. Here, different formal analysis methods can be applied,
which are normally applied at design time of static systems, e.g. to check interaction between
components. Also compatibility and dependencies on feature level can be checked here, as well
as guaranteeing security by checking certificates. However, this phase is out of scope of this
paper.

If phase (2) successes, the new components can be added from logical point of view. Hence,
a new system configuration has to be determined in phase (3) including the new components.
During this, the new components are for instance integrated into the execution and communi-
cation schedules as well as into the deployment-configuration of the system. The latter point is
in scope of this paper. We aim in an incremental self-configuration approach in which the old
system configuration parts keep as most unchanged as possible (cf. section 5).

However, it might happen that the self-configuration is not successful. In such situations,
new components can only be integrated when a subset of the existing components is either
removed, degraded or migrated to another execution node in order to free enough resources to
enable a valid configuration together with the new components. This is done by going back to
the logical analyses phase to select a replacement strategy for existing components. However,
such replacement strategies are out of scope of this paper.

After the new deployment-configuration has been determined, the new components are
physically deployed in phase (4) to the target execution units. Finally, phase (5) activates the



new configuration, meaning to switch to the new schedules and hereby to activate the new
components. The question of how to activate the new configuration safely without negatively
affecting system service is not discussed in this paper.

All this should be possible for components that were unknown at the design time of the
former system. The new components should not need to know something in advance about the
system in which they are desired to be integrated. This allows highest flexibility in component
composition.

3 Assumed properties of the underlying system

Our presented approach for extending systems at runtime requires support by the underlying
platform. We assume some fundamental architectural drivers that are common principles.

We assume a distributed embedded system with a middleware driven distributedly accessible
data-pool that allows indirect access to sensors and actuators. The middleware also ensures
portability of the components. The portability together with the data-pool allows freedom on
the allocation of the software components to the execution units, which is essential for the
deployment determination.

The middleware is responsible for the transmission of sensor data into the data-pool, provid-
ing required data to the software components and delivering output data to their destinations,
like physical actuators. This means, sensors and actuators are decoupled from control functions
via the data-pool.

Data-dependencies are not modeled by explicit channels between components, but by speci-
fying the required respectively provided data. The middleware has a mechanism that determines
possible matches of data producers and data consumers and creates channels between the com-
ponents during configuration phase, based on the data-specifications. This follows the laws of
blind communication [7]. Due to this, components are fully exchangeable by other components
that produce and require data with conforming specification. We assume also a flexible network
that allows to add new network packages at runtime.

However, the concrete realization of the mentioned middleware is not further discussed in
this paper as it is out of scope.

4 Application design

The on-line integration process requires some additional pieces of information about functional
and non-functional properties of the components, required for admission control decisions and
self-configuration. In classical static systems, these information are only required at design
time. However, in a dynamically extensible system, these information are also required at
runtime during the integration process. Hence, components need to be enriched with a set
of information about their functional and non-functional properties. This can for example be
addressed using rich components [1].

Each component contributes to realize one or more functional features of the system. We
consider components as black-boxes that might however have nested invisible sub-components.
Black-box components specify their external communication by defining the required or pro-
vided data at their ports. The wiring of the communication channels between black-box com-
ponents is done during the integration process according to the given data specifications at the
ports.



5 On-line design space exploration for self-configuration

We consider an incremental self-configuration approach to integrate new components into a
given configuration. This comprises that the former system configuration should keep as most
unchanged as possible, meaning that existing components keep their locations and new com-
ponents are deployed into free gaps. It is not desired to migrate existing components between
execution units at run-time. The proposed incremental approach targets for reaching the desired
level of extensibility by using on-line design space exploration mechanisms.

5.1 Constraints for the Design Space

System design affects temporal and spacial issues. Therefore, we distinct partitioning, deter-
mining the borders of a black-box component during design time, and allocation (aka mapping
or deployment), which means deciding the assignment of software components to hardware ex-
ecution nodes and pertains to spacial requirements. Based on this, a temporal configuration is
the execution order of these software components (or tasks) on their allocated execution nodes
(aka schedule) as well as the temporal order of communications (or messages) on a shared
communication medium.

In order to solve this kind of problem, different sets of constraints need to be considered.
First of all, constraints with respect to a suitable deployment are considered. The allocation has
to comply to the existing resource constraints of the system. For instance, software components
might have allocation constraints w.r.t. a dedicated location. One further constraint might be
that it is desired to partition communicative component-clusters onto the same execution nodes,
in order to reduce the network load. All these constraints might conclude in a multi-objective
optimization problem with contradicting objectives.

5.2 Self-Configuration Process

We work towards a hierarchically coordinated self-configuration process, enabled by the data-
pool (cf. Sec. 3) that provides all required pieces of information (cf. Sec. 4) and can be used
to deploy the new configuration towards the distributed system nodes. Hierarchical means that
there exists a master control instance for the integration process, which cooperates with the
distributed system nodes in order to determine a valid holistic system configuration.

As this approach should work on-line, we propose to have scalable techniques for calculating
new configurations. An approach may rely on a symbolic encoding scheme for the problem under
consideration. Therefore, we describe it as a satisfiability problem using boolean formulas and
linear arithmetic constraints. A state-of-the-art SAT modulo theory (SMT) solver is used to
compute new configurations for such systems in a scalable manner. Satisfiability Modulo Theory
(SMT) enables checking the satisfiability of logical formulas over one or more theories. The
solver proves a model as a single solution. However, optimized solutions may be of a particular
interest. Finding optimized solutions takes more time and requires potentially some meta-search
techniques (e.g. binary search, generic algorithms) on top of the SMT-based problem [9].

5.3 Deployment Problem

As described in section 5.1, the calculation of a valid deployment comprises the assignment of a
set of software components S to a set of execution nodes E, while fulfilling all given constraints.
Furthermore, we target the reduction of required network traffic introduced by communication
channels C between software components.



Our system model M = 〈S,C,E, α〉 contains a set of software components (SWCs)
S = {s1, s2, ..., sm}, a set of directed communication channels C = S × S between software
components, a set of execution nodes E = {e1, e2, ..., ek}, and an allocation α : S → E that
returns the set of execution nodes e ∈ E to which a software component s ∈ S is deployed.
This can also be written as an allocation matrix α(si, ej) returning 1 if ej ∈ α(si), otherwise 0.

Furthermore, we define the following parameters for the system model artifacts:
wcet : S → N defines the worst-case execution time (WCET) of software components s ∈ S,
weight : C → N defines weights for communication channels c ∈ C, and
tbudget : E → N corresponds to the time-budget of the e ∈ E.

A channel-weight weight(c) is the communication load in bits/s introduced by the channel
c ∈ C. The tbudget(e) indicates how much time in ms is available to execute software compo-
nents (in a given time period) on the given execution node. All these parameters are set by
constraints to fixed constants regarding to a certain system model.

We assume the following further deployment constraints:

1. The sum of execution times wcet(s) of SWCs deployed to the same execution node is not
allowed to exceed the provided time budget tbudget(e) of that execution node.

∀ej ∈ E
(∑

si∈S (α(si, ej) · wcet(si)) ≤ tbudget(ej)
)

2. The sum of channel weights weight(c) between SWCs allocated to different execution
nodes E must not exceed a specified network threshold NTh, defining the upper limit for
the weight of network communication.

∑
ci(sk,sl)∈C | α(sk)6=α(sl)

weight(sk, sl) ≤ NTh

These constraints can be encoded into SMT formulas. The objective is to find a valid
allocation α of all SWCs to the execution nodes, fulfilling all given constraints.

We encoded the parameters and constrains for the Z3 theorem prover [2]. However, the
approach is not dependent on this specific SMT solver, also other solvers can be used.

5.4 Solution Model

The purpose of a SMT solver is to check the satisfiability of logical formulas over one or more
theories. In our case, the provided solution model is a valid allocation α for the given deployment
problem. Thus, the SMT solver returns one solution that fulfills the defined constraints. This
is in general not an optimized solution regarding to some objective function, but just a valid
solution for the specified constraints. The solution model consists of interpretations for the
variables, functions and predicate symbols that makes the formula true. In our case, this gives
a valid allocation matrix.

5.5 Example

Let the software components S and execution nodes E in the example have the following prop-
erties:
S = {s0, s1, s2, s3}
E = {e0, e1}



wcet(S) = {4, 4, 4, 4}
tbudget(E) = {10, 10}
weight(s0, s1) = 1
weight(s0, s2) = 2
weight(s1, s2) = 4

This is encoded as input for the SMT solver, together with a threshold NTh for the maximum
allowed network traffic.

For NTh = 5, a valid solution for deployment α is shown in Fig. 2. Fig. 3 shows a solution
for NTh = 4, which can be hold only with a different deployment. The deployment for NTh = 3
is the same as in Fig. 3. A deployment for NTh = 2 is not feasible. To minimize the network
traffic, we solved the problem multiple times with decreasing NTh.

software components

execution units

s0

s2

  2 s1

  1

e1

alloc  4

e0

alloc

alloc

s3

alloc

Network Traffic = 5 
 Network Threshold = 5

Figure 2: Solution for the deployment of 4 SWCs with 3 channels to 2 execution units, Network
Traffic Threshold = 5
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alloc

Network Traffic = 3 
 Network Threshold = 4

Figure 3: Solution for the deployment of 4 SWCs with 3 channels to 2 execution units, Network
Traffic Threshold = 4



5.6 Extending the Example

After the deployment of the initial system has been determined, the deployment should now be
extended by an additional software component s4, having a WCET of 2ms and required and
provided data-specifications that force the creation of two additional channels:
weight(s0, s4) = 1
weight(s4, s3) = 1

Fig. 4 shows the deployment after the new component s4 has been integrated. Notice
that the deployment of the existing components keep untouched. This is reached by setting
the former deployment of the existing components as fixed solution constraints during the
deployment calculation of the extended system.

software components

execution units

s0

s4

  1

s2

  2 s1

  1

e1

alloc  4

e0

alloc

alloc

s3

alloc

  1

alloc

Network Traffic = 3 
 Network Threshold = 4

Figure 4: Solution in case an additional component was plugged in causing two new channels,
Network Traffic Threshold = 4

However, it might happen that the network threshold cannot be hold for the extended
system. In this case, NTh has to be relaxed until a valid solution is found.

All the figures were generated by our deployment calculator by using the graphviz framework
(www.graphviz.org).

6 Related work

The problem of finding optimized allocations of functions onto execution platforms (e.g. elec-
tronic control units) has for instance been considered in the following works.

In [3], an approach for centralized self-management with focus on self-configuration and self-
healing in heterogeneous systems is proposed for the automotive domain. The approach uses
publish/subscribe and request/response communication. As use cases, updating, installing and
removing of applications are mentioned, as well as attaching and detaching platforms. Tack-
led self-configuration problems are the deployment of applications (resp. their components) to
heterogeneous platforms. The Self-Configuration is performed by using constraint satisfaction
problems (CSP). The Web ontology language (OWL) is used to describe platforms and compo-
nents with information, required by the self-configuration. Two self-configuration algorithms
are presented and compared by simulation, namely backtracking (worst-fit) and Iterative repair
(min-conflict). The former algorithm is slower but better usable for building configurations



from scratch, while the latter algorithm is faster, independent of the number of components
and better usable if a configuration for the previous system state is given.

In the project DySCAS, an automotive embedded middleware supporting extensibility was
investigated. Mentioned use-cases were attaching new devices like sensors/actuators, integrating
new software functionality and the shutdown of non demanded devices for power saving reasons.
In case of an addition of a new task to the system, also re-allocations of existing tasks may
be performed. During the deployment calculation, the aim is to maximize the total quality-
of-service benefit of the tasks relative to their resource usage [8]. However, the deployment
problem was solved by an algorithm and not by a more generic SMT-solver supporting a broad
set of constraints in an easily usable way.

In [10], a comparison is shown about deployment-calculation by a SAT-Solver and by the
Simulated Annealing Algorithm. The result was that SAT solving scales better and is more
efficient for larger sets of equations. The use-case of the shown work is to find a new valid
software allocation in case of a component failure. This allocation determination has to be
performed as fast as possible to heal the system quickly. However, for our work we do not
see the task of creating a new configuration as time-critical itself, because we apply the self-
configuration only during the integration of new functionality, what we do not consider as time-
critical because the system operates stable during the determination of the new configuration.

Optimisation of the allocation of functions in vehicle networks was also investigated in [5].
Self-adaptive ant colony optimisation applied to function allocation in vehicle networks was
shown in [4].

Beside the deployment calculation problem, also the determination of feasible schedules is
a subtask of design space exploration. An approach for the determination of static schedules of
a time-triggered network-on-chip was described in [6]. The approach performs an optimization
based on an evolutionary algorithm set on top of the Z3 SMT Solver.

7 Conclusion and future work

In this paper, we have shown a methodology towards supporting extensions to existing deploy-
ments in the use case to extend distributed systems with new components. Our approach is
based on the usage of SMT-solvers and is intended to be applied at system-runtime in a self-
configuring manner. We discussed the assumed underlying platform properties supporting our
approach and presented a sketch example.

In order to cover all parts required to obtain a complete self-configuring integration process
for new components, there are still a bunch of open issues to do. Important questions are for
instance how to cut the configuration problems into sub-problems that can be solved indepen-
dently or hierarchically and how to setup the architecture of the self-configuration itself to reach
a scalable configuration? One question is also how to use freedom on open design decisions to
obtain optimal configurations, like the choice of concrete channels between components during
the integration process. Also appropriate replacement strategies are of interest for the case
that the self-configuration was not successful, but the new components should be integrated
nevertheless.

As future work, we are going to evaluate the efficiency and scalablility of our SMT-based
self-configuration approach to different sets of software components and execution units.

Furthermore, we are going to refine the deployment problem for a new platform architec-
ture for future electric vehicles that supports mixed-critical and fail-operational features. This
platform fulfills our assumed properties and is going to support extensions in a self-configuring
plug-and-play manner.
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Abstract

Traditionally embedded systems are developed with a specific control task in mind, and
are able to affect only a limited set of actuators, based on measurements from a limited
set of sensors. With the arrival of cheap and efficient communication technology, this
traditional picture is starting to change. It is our belief that future embedded systems will
interact with each other, forming federations to provide new emergent services to their
users. With this in mind, a pre-study was performed to discern the main concepts of
such federations and the related challenges that need to be addressed. This has led to
two parallel research directions, presented in this paper. One is focusing on the enabling
technology that is needed for dynamic creation of new types of federations, while the other
deals with the methodological concepts for creation of ecosystems in which federations of
embedded systems can be dynamically formed.
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1 Introduction

The invention of Internet revolutionized knowledge sharing between people. The invention of
smartphones revolutionized the mobile phone industry while data sharing took another leap,
both with respect to the used technology and the sheer scale of exchanged data. It is quite safe
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to predict that the next large leap in this direction will come when embedded systems (ES)
start to interact by exchanging data and collaborating towards common goals.

While today most ESs are developed for a particular application and operate on limited
sets of sensor and actuator signals, interacting ESs will have a much wider choice of signals to
use, offering vast opportunities for new emergent services. An example of such a service is a
traffic intersection management system that collects data from the approaching vehicles and
transforms that data into control signals for the vehicle speed, achieving a smooth traffic flow
through the intersection. Numerous other examples of emergent services, either real or ima-
gined, can be found in many different application domains, such as automotive, transportation,
construction, healthcare, manufacturing, energy, etc. [2, 4, 13, 19]. This has spawned several
interesting and somewhat related research directions, such as cyber-physical systems, internet of
things, systems of systems, ubiquitous systems, etc., each focusing on slightly different aspects
of the concept. For a more detailed literature review, see [12].

In our work, we use the term federated embedded systems (FES) to emphasize the focus
on embedded systems and the concepts that are needed in order for ESs to be able to interact
with each other in a meaningful way. The interactions are modeled as federations of systems,
both embedded and traditional, where each system in some way benefits from participation in
the federation. The FESs may either be static or evolve dynamically, both with respect to their
functionality and composition. In many ways, the term FES is related to the field of cyber-
physical systems, but is more focused on the concepts needed for the creation and operation of
federations.

To reach the FES vision, significant advances in several research directions are needed. This
includes mechanisms to dynamically join, operate in, and leave federations, as well as methods
for handling security, software and hardware faults, conflicting requirements, information mode-
ling, software architecture, privacy issues, embedded systems technology, and others. While the
emergent FES functionality should bring some benefits to all participating ESs, the individual
ES functionality, especially the safety critical one, must be maintained. Also, the concepts need
to prepare for the FESs being open, both in the sense of openness towards new FES members
and in terms of open innovation, with third party developers providing software to the ESs that
would enable them to participate in a specific federation. Thus, new business models will be
needed that support new types of software ecosystems.

Obviously, the challenges are numerous. To get a better understanding of the FES concepts
and challenges, we conducted a pre-study on the FES subject, based on a series of workshops
together with several industrial partners [13]. A portfolio of applications from different appli-
cation domains was collected and used as the basis for the discussions. It became evident that
in order to reach the FES vision, both technological and methodological advances are needed.

The main point of this paper is to summarize the concepts of our pre-study, and to present
concrete work towards the FES vision that followed. In Section 2, some high level concepts of
FES are presented. Section 3 describes a software component concept that enables dynamic
software reconfiguration during runtime in vehicle applications. Section 4 presents our work
within software ecosystem methodology, Section 5 reviews some related work, while Section 6
concludes the paper.

2 High level concepts

In this section, main FES-related concepts that were put forward during our prestudy [13]
are summarized. Basically, the concepts were partitioned into four groups, divided by two
conceptual axes, technology vs. methodology and system-level vs federation-level concepts. In



the following subsections, these concepts are shortly presented.

2.1 System-level Technology Concepts

On the level of individual systems, some basic technologies are needed in order for the ESs to
be able to participate in federations with other systems. First of all, in order for the federations
to form and for the ESs to contribute to and benefit from the FESs, the systems must be able
to communicate with each other. Thus, technology for external communication is needed.

Secondly, federations and the services that they provide will often be evolvable and un-
foreseen at the design time of individual ESs. For this to happen, it should be possible to
dynamically add and update software to the ESs at runtime. In consequence, if safety-critical
functionality is allowed to be affected in such a way, there should be fault handling mechanisms
that monitor how the new software complies with the system requirements, both functional
and non-functional, and resort to inbuilt fall-back functionality if needed. Also, faults can be
caused by the newly added software containing conflicts with other parts of installed software.
Thus, logical software conflicts should be detected and handled.

In a recent work, a conceptual model for dynamically updatable embedded software was
proposed [5]. It builds upon AUTOSAR [1], an architecture standard being widely used in
the automotive sector. Currently, the concept is being further developed, in parallel with the
development of tools and a demonstrator to show different FES application scenarios. The
model is highlighted in Section 3.

2.2 Federation-level Technology Concepts

At the federation level, the technology needs are more intricate. Standardized protocols are
needed in order for different kinds of ESs to cooperate. Such protocols should describe the com-
munication details and the rules to which participating ESs will have to abide while functioning
within a certain federation. In most federations, different types of ESs will play different roles,
thus following different sets of rules.

New fault handling mechanisms are needed to handle the emergent behavior. On one hand,
faults that would never exist in separated ESs may occur due to interactions. On the other
hand, ESs may assist each other to overcome or to reduce the effects of faults. Again, faults
can be caused by conflicting functionality. However, this time the level of abstraction is higher
and the conflicts are expected to occur between ESs and their differering requirements. Related
topics of importance are trust and uncertainty management in the scope of a federation.

2.3 System-level Methodology Concepts

In order for the FES to become a reality, methodology related concepts must not be neglected.
Today, an ES is generally produced by one original equipment manufacturer (OEM), as part of
a larger product. It often contains parts, both hardware and software, from different suppliers,
while the OEM is responsible for integration.

With the idea of dynamic software, the number of participating software producers will
be even higher, and since third-party developers will be able to add software without the
involvement of the OEM, roles and responsibilities change between the parties. This, in turn,
will change information flows during development and affect tools. A successful ES will no
longer be one that only provides a certain function, but one that serves as a useful platform for
adding new functionality on top of it.



2.4 Federation-level Methodology Concepts

While interactions between different actors that contribute to ES development may be complex,
they become even more entangled at the federation level. To pave the ground for evolving and
persistent federations, well defined business models are crucial. On the one hand, such models
should provide opportunities for different parties to benefit from the emergent functionality,
encouraging them to participate in the operation and development of the federation. On the
other hand, the responsibility for the federation should be clearly defined. In other words, all
aspects of the emergent functionality should be owned and maintained by some stakeholder.

The distribution of responsibilities and benefits between stakeholders is a challenging ques-
tion. Even more challenging is how to do this dynamically in order to keep up with the changing
nature of FES. The solution should include possibilities to allow new parties to take part in
the federation operation, to let existing parties to take on new roles if needed, and to adapt
responsibilities to the evolving FES functionality.

It seems clear that the technological development in itself is not sufficient for the creation
and evolution of lasting FESs. The methodological aspects of federation operation should be
carefully investigated. In Section 4, our initial work on this subject is presented.

3 Dynamic Software Reconfiguration in Embedded Sys-
tems

In this Section, a component model that allows dynamically adding and removing parts of ES
software is presented. This model is a concrete example of a system level enabling technology
that opens up for third party developers to add new services to ESs, ultimately creating oppor-
tunities for FES formation. The model is primarily tailored for automotive applications and
builds on the AUTomotive Open System ARchitecture (AUTOSAR) standard [1]. However,
the standard is not limited to the automotive world. In fact, it is suitable to all ES applications
where the basic software (e.g. task scheduler, device drivers, hardware abstractions, etc.) is
common to several control units and can be standardized.

In the following subsections, the AUTOSAR architecture is briefly introduced, followed by
our extensions to the concept together with a few implementation details. Finally, some safety
and security related remarks are collected.

3.1 The AUTOSAR Concept

AUTOSAR is structured around a layered software architecture that decouples the basic soft-
ware (BSW) from the application software (ASW). This is accomplished by means of a compo-
nent model, and a middleware called the runtime environment (RTE). Using AUTOSAR, ASW
is modeled as a collection of software components (SW-C), which are in many ways similar to
established component models like Koala [22], that communicate with each other and the rest
of the system (e.g. standardized BSW) through so called ports. The internal functionality of
the component only accesses its ports.

The actual communication between the ASW components, as well as their access to the
lower layers, is taken care of by the RTE by interconnecting appropriate ports. This eases reuse
of parts of the ASW, while RTE adds flexibility and scalability to the AUTOSAR architecture,
allowing application SW-Cs to be easily redistributed between different control units simply by
reconfiguring the RTE.



Figure 1: The structure of a dynamic software component model.

However, AUTOSAR has been designed to execute with limited resources and hence confi-
guration of the system, such as allocation of SW-Cs to control units, and connection between
SW-C ports, is done at design time with no structural dynamics during execution. The confi-
guration is described in xml-files separate form the source code. These description files are used
before deployment to generate C code that links ASW to BSW. Any changes in configuration
require the software to be rebuilt and the control unit to be reprogrammed.

3.2 Dynamic Software Components

In [5], initial work on a conceptual model that extends the AUTOSAR architecture to allow
software update at runtime was proposed. The key is to extend the set of ordinary appli-
cation SW-Cs with dedicated SW-Cs for running additional software, hereafter called plug-in
software, which is installed after the vehicle has left the factory. In this work, only plug-in
enabling concepts are presented, while the internal plug-in functionality, which actually defines
the rules for how the ES may act on the federation level, see Section 2.2, is not considered at
this point, but will be addressed in the future.

Figure 1 gives an overview of how the plug-in concept relates to the underlying AUTOSAR
based software. In the figure, dotted lines are used to show the plug-ins and their connections,
whereas solid lines are used for the AUTOSAR SW-Cs and their links. For the concept to
work, the OEM must provide plug-in enabled SW-Cs, which to start with only contain a Java
virtual machine (VM) and an API that will be available to the plug-ins in the form of input
and output ports, connected to the rest of the system through AUTOSAR RTE.

Also, one external communication manager (ECM) SW-C is needed, capable of communi-
cating with a pre-defined external trusted server so that plug-ins can be installed, updated, and
uninstalled at runtime. Furthermore, ECM serves as a gateway for plug-ins to communicate
externally, which allows transferring information to and from off-board services, and partici-
pating in FESs. Finally, the AUTOSAR RTE must be configured so that ECM is connected to



the plug-in SW-Cs.

3.3 Internal communication

Inside the plug-in SW-Cs, AUTOSAR concepts are replicated as far as possible. Plug-in com-
ponents communicate with the rest of the system through ports, while the connection details
are configured in the plug-in runtime environment (PIRTE). Differently from the AUTOSAR
RTE, the PIRTE contains both a static and a dynamic part. The static PIRTE part interfaces
with SW-C ports and maps them into Java API signals. The dynamic part, updated each time
any plug-in SW-C is updated, handles plug-in ports and their connections.

Plug-in ports can either access built-in functionality through the API provided by PIRTE,
or they can be connected to ports on other plug-ins, again mediated by PIRTE. This is done
even if the plug-ins are part of the same application, allowing dynamic reallocation of plug-ins
between control units if needed. For example, if plug-in B in Figure 1 were reallocated, PIRTE
would pass the connection to the AUTOSAR RTE that in its turn would forward it through
the databus to the correct control unit.

Since it is not practically possible for the OEM to provide (and connect) SW-C ports for
all imaginable future plug-in ports, the communication between plug-ins on different control
units is done through dedicated SW-C ports (one pair of ports per control unit), which are fully
connected to each other in AUTOSAR RTE. As a result, PIRTE needs to provide the address
of the receiving control unit, the receiving plug-in, and the receiving port in that plug-in with
the message that is passed to the data bus. Note that all these communication details only
affect PIRTE and are transparent to the plug-ins.

3.4 Safety & Security

To provide a basic level of security, plugin software is sandboxed in as far as possible. First of
all, plug-ins can only access the underlying system through the ports of the plug-in SW-C. It is
up to the ECU developers to decide which ports to provide and how data received from these
ports should be handled. If that data is used to control the underlying system, it is important
that (non-reconfigurable) fallback mechanisms, with the authority to override plug-in actions,
are in place. Secondly, Java VM executes in its own thread and with its own memory areas
and network messages. This avoids competition for resources with the built-in functionality.
Plug-ins are thus executed under a best effort scheme, whereas built-in software has predictable
behavior.

A potential security threat is the installation of plug-ins. In this concept, it is only allowed to
install plug-ins from a trusted server at a pre-defined address. In this way, much of the firewall
issues are moved from the resource-constrained embedded system to a server. To change the
trusted server address requires reprogramming of the ECUs built-in software, which has its own
security mechanisms.

4 Ecosystems of embedded systems

In order to create a successful concept for FES, it is not sufficient to only look at the technical
implementation, but one must also study how to organize development of the systems and to
achieve sustainable business models, as described in Section 2.4. The key concepts of FES
actually provide several opportunities from a business perspective:



• The plug-in components can be used by an OEM to add new functionality very rapidly,
thereby being more responsive to market trends or to requirements from niche users.

• Third-parties can develop plug-in components to extend the functionality beyond what
the OEMs conceived, similarly to how app developers extend the functionality of mobile
phones.

• Systems can be integrated into systems-of-systems, whose functions are realized by dis-
tributed software. The integration in this case is handled by a separate organization.

This means that many stakeholders have an interest in the development and use of a FES,
and the interrelations between them become crucial. In traditional development of ES, there is
an OEM who is responsible for the end product, and who integrates subsystems from different
suppliers. The suppliers develop their parts based on detailed specifications from the OEM.

In the FES setting, the OEM instead delivers an extensible product, whose success is partly
a result of how well it supports the independent development of add-on solutions, and not only
how well it meets the basic requirements. Based on this platform, a thriving business ecosystem
[7] can be created, where third-party actors can practice open innovation and thereby extend
the value of the base product.

However, this also leads to new challenges that need to be addressed when it comes to
system development. For instance, ways of sharing information between different parties must
be found, so that a plug-in developer can develop and test its software without full access to
the overall product. Quality assurance in general is an issue, and the base product has to be
tested with respect to all possible plug-ins that can be added to it. The distribution of rights
and responsibilities between the parties are also crucial. Who is liable in a situation where an
incident occurs? How should the streams of income be set up and divided among the parties?

Clearly, the business side and the technical side of FES are not separate. They meet in, for
instance, the product architecture, that must support in a good way the development of both
base products and plug-ins, and continue to do so over the time that the system evolves.

To investigate these issues, we are currently conducting an empirical research project, where
we, based on case studies and interviews, try to identify the primary interfaces between stake-
holders in the ecosystem. This will be used to create a reference model that explains what flows
of information, money, etc. exist between them, and can be used to provide guidance on how
to organize the ecosystem efficiently [16].

5 Related work

Several studies on the subject of cooperating systems have been published. In [6], more than
40 different definitions of the term systems of systems were reviewed and classified, while the
notion of federations of systems was coined in [20]. In [4], recent research advances within
the internet of things field, together with a number of application scenarios, are presented. In
the field of cyber-physical systems, a lot of work has been done to present both the research
challenges and possible applications, e.g. [2, 14, 21, 18]. A more extensive litterature review
can be found in [12].

While all the above research directions are interrelated, they focus on somewhat different
questions, even though they seem to be starting to merge. For example, the IoT field has
sprung out of the desire to be able to uniquely identify any physical object, with a large focus
on identification and communication. The SoS research on its hand has traditionally been
focusing on the engineering management studies. The CPS field seems to be the most related



to the FES concept. In fact, one could argue that CPS actually is a larger field containing FES.
The difference lies in the strong emphasis that the term FES places on the use of embedded
systems in federations that are generally allowed to be dynamically reconfigurable, both with
respect to their composition and functionality. The perceived need for a focus on open and
dynamic federations of ESs was one of the reasons for our FES pre-study [13]. Another reason
was to give the opportunity for the Swedish industry to add its voice to the ongoing evolution
of the CPS concept, zooming in on FES related challenges.

When it comes to dynamic reconfiguration of SW-Cs, it has been studied in e.g. [3, 8, 17,
23]. Differently from the above publications, this work provides a Java-based and simple to
implement concept that builds on a standardized architecture, offering good opportunities for
open software development.

The term ”ecosystem” was introduced by Iansiti and Levien who described the notion of
business ecosystems [10]. They explained the benefits of adopting the ”ecosystem-thinking”
from a business perspective and discussed various strategies organizations may utilize, depen-
ding on their role within the ecosystem. However, the article does not explicitly describe how to
carry out product development, or what specific characteristics products should have in order
to make the best out of such an ecosystem.

The term ”software ecosystem” was introduced by Messerschmidt and Szyperski [15] but
was extended by Bosch [7]. In particular, Bosch extended the classical ”product line-thinking”
of software products, The trend towards open platforms was started because it is too expensive
for an manufacturer to develop alone all the functionality that customers would wish for, and
because gathering the requirements for customization could potentially be done more efficiently
through an open platform.

Hanssen and Dyb [9] described in their work a systematic overview of software ecosystems
and explained several related challenges. Jansen, Finkelstein and Brinkkemper [11] presented
a research agenda for software ecosystems, discussed about the main challenges involved in
a technical and business level through three dimensions: a) from a software ecosystem level,
b) software supply network level, and c) from the software vendor level, and also mentioned
issues of formal modeling, transparency, guidelines, standards, and actions, that are of central
importance.

All in all, there is very little research that looks at ecosystems specifically for ES, but the
literature either is looking on pure software, or general product development.

6 Conclusions and future work

This paper consists of three main parts. Firstly, high level concepts related to FES and its con-
stituent ESs are presented. These concepts are further divided into those that are connected to
technology development and those that relate to product and process development methodolo-
gies, e.g. business models. Secondly, our work in the technological direction is presented. This
work extends the AUTOSAR architecture with the concept of dynamic component models,
thus allowing installation of new plug-in software into vehicles at runtime, opening up for im-
plementing FES governing interaction rules long after the vehicles have left factory. Although
the AUTOSAR standard is from the automotive industry, the concepts are quite general and of
value in other embedded system domains. Thirdly, we present our initial work in the methodo-
logy direction, aiming at defining the business models necessary for dynamic FES ecosystems.

While our work on FES methodology is currently just taking off, see Section 4 for a discussion
of future challenges, there is more to say about the continuation in the technological direction.
More realistic tests of the concepts presented in Section 3 are needed to get deeper insights about



the strengths and weaknesses of the proposed solution. Stressing the system in order to test
robustness is also important. For example, this could help to understand what happens if power
goes off during the installation of a plug-in, or how to react to the loss of messages between
plug-ins, etc. To increase the practical usefulness of the proposed architecture, tools that aid
in generating plug-in runtime environment will be developed. Also, in theory the concepts
should be applicable to safety critical applications. However, for this to work, there is a need of
fault handling mechanisms, both locally at the ES level, provided by the ES developers, and at
the FES level. Trust and conflict management mechanisms are other intricate but interesting
research questions. Once the basic concepts and the simulation environment are in place, such
more complex issues are ready to be addressed.
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Abstract

Cyber Physical System (CPS) development is highly heterogeneous, involving many stakeholders,
each of which interacts with its development artifacts through a variety of tools, and within several
engineering processes. Successful CPS development requires these tools to be well-integrated into
a Development Environment (DE) in order to support its many stakeholders and processes. In this
paper we identify the main challenges facing DE development for CPSs, and presents a roadmap
to meet these challenges. We here take the position that focus should be redirected from trying to
achieve a single, one-size-fits-all solution to such a heterogeneous problem. Instead, focus should
be placed on supporting the development of highly-customized DEs, which readily can be applied to
industrial development. Such a highly-customized DE should fit the needs of a particular development
organization, while at the same time taking advantage of relevant standardization efforts.

1 Introduction
Cyber Physical Systems (CPSs) offer opportunities for new services, improved performance and bet-
ter efficiency in almost all application domains in our society.

Typically many technical and business-related stakeholders take part in the development of a CPS.
Each of these stakeholders interacts with the development artifacts through various tools, pertaining
to their particular interests. Mechanical engineers for instance make use of CAD tools to construct
artifacts that describe the mechanical aspects of the CPS under development. This interaction takes
place within several technical engineering processes involving structured sequences of activities such
as requirements engineering, design and verification.

Due to the tightly integrated technologies in a CPS, all of these technical engineering processes
become tightly intertwined and decisions made by one stakeholder become likely to have an impact
on other stakeholders. An effect of this is that the tools supporting each separate technical engineering
process needs to be adequately integrated with tools of other technical engineering processes. This
becomes problematic, since many of the tools employed throughout the different processes typically
come from separate sources and are hence likely to be mutually incompatible.

This paper focuses on the overall problem aimed at supporting the integration of these mutually
incompatible tools. We will use the term Development Environment (DE) to refer to a setting of tools
that support multiple stakeholders and processes in CPS development. How to design and maintain
DEs have been discussed thoroughly these last three decades, with the overall focus being on trying to
achieve a single, one-size-fits-all solution towards which all mutually incompatible tool technologies
subsequently can interface (thereby forming a homogeneous unity).

We believe that the current approaches to building DEs are built on a false hope that CPS devel-
opment can be homogenized, so that a single homogeneous DE integration framework to support the
whole CPS development life-cycle can be provided. As we will argue in this paper, CPS development
is too heterogeneous to allow for such a single homogeneous solution. Instead, we accept the het-
erogeneous nature of CPSs and their DEs, and aim to instead provide well-integrated heterogeneous
DEs.
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1.1 Position Statement
Given the heterogeneous nature of CPS development, and the (current) slow pace of convergence of
integration technologies, we believe that focus should be redirected at supporting the development
of highly-customized and maintainable DEs, which readily can be applied to industrial development.
Such a highly-customized DE should fit the needs of a particular development organization, while at
the same time taking advantage of relevant standardization efforts.

A tailorable organization-specific DE can only be practically feasible if the threshold of its de-
velopment is lowered by providing DE development and automation support. Moreover, a concerted
effort will be required to provide the required methodology, standards and business models required
for large scale industrial adoption of efficient tool integration.

1.2 Paper Structure
This paper first describes in section 2 the heterogeneous context of CPS development, leading to the
main challenges of developing DEs - which are elaborated in section 3. Section 4 finally summarizes
the issues that need to be addressed to move forward and some of the opportunities that this will lead
to.

2 The Heterogeneous Context of CPS Development
The CPS development process is highly heterogeneous. In this section we go through some of the
more important aspects in which this has an impact on DEs.

2.1 Tool and Tool Integration Heterogeneity
As mentioned in section 1, many stakeholders with different technical and business-related speciali-
ties mean that many heterogeneous tools will be found in a DE. The tightly intertwined technologies
in an CPS will then mean that many tools will be integrated with each other, forming complex depen-
dencies between them.

A DE is often built in a bottom-up manner, eventually displaying an unstructured design and im-
plementation of tool integration. Such ad-hoc realizations of DEs may use a variety of integration
frameworks, data formats, communication protocols and assumptions. Integration conventions pro-
vide a common ground for building DEs and increase the likelihood that parts of DEs can be reused
in a different context than they were originally designed for. However, several conventions for inte-
gration exist, such as XMI (XML Metadata Interchange) (OMG, 2007), OSLC (Open Services for
Lifecycle Collaboration) (OSLC Core Specification Workgroup, 2010) and STEP (ISO, 1994). Simi-
larly, several specialized technologies for realizing the different parts of a DE are currently available,
such as model transformation tools, tracing tools or libraries for exposing services of tools. Each of
these integration technologies describes only one aspect of the DE, while a complete DE needs to
cover several aspects.

This plethora of tools, integration frameworks, integration conventions, languages and technolo-
gies for realizing parts of a DE, combined with the common ad-hoc realization approach, typically
lead to a rich heterogeneity of technologies used for tool integration.

2.2 Organizational Heterogeneity
Organizations have different development processes of varying technical maturity. For example, while
a more traditional DE supports simple connections between a small number of tools; a modern DE
may need to support development processes that are model-based and iterative (Tratt, 2005) and
include a larger number of tools.
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In addition, to get a DE accepted, it is important that its end-users (such as the different types of
engineers, architects, managers, designers, analysts, etc.) are involved (Christie et al., 1997). DEs
therefore need to be tailored to each specific organization, or even each specific development project.
As a consequence, the requirements and nature of tool integration vary among organizations.

2.3 Stakeholder Heterogeneity

The DE end-users frequently see the ideal case as being when they can focus on one tool to support a
particular ”main” activity and then have information automatically flow to and from this tool (Maalej,
2009). However, DE users are not the only stakeholders relevant to tool integration.

DE designers, deployers and maintainers have a different view of each tool and the overall DE.
They instead usually favor tampering as little as possible with each tool or technology employed for
tool integration.

And while those stakeholders have a common ground in the focus on technology, other stake-
holders have an all together different focus. Management commonly looks at the cost of procuring
technologies and tools when deciding which solution to favor. Avoiding a potentially costly ”lock-in”
in regard to a particular technology can lead to the rejection of tools that are technologically superior.

This focus on economical factors can also be found in the reasoning of tool vendors, which may
be interested in tool integration as an argument for customers to choose their tools (for instance to
increase the odds of avoiding a costly ”lock-in”). However, tool vendors with market unique or
dominating solutions have less of a reason to offer support for much tool integration technologies.
This support comes with a cost, both during development and maintenance, which a tool vendor
might want to avoid since it is not their main business.

3 The Challenges of DE development for CPS

Given the heterogeneous nature of CPS development, we here identify and elaborate on the most
important challenges facing DE development.

3.1 Lack of Support Methodologies and Tools

A DE consists of many distributed software assets to be integrated with each other. This is compli-
cated due to the heterogeneity described in section 2, and the many intricate dependencies mentioned
in section 1. Several barriers have to be bridged, including technology (e.g. technical representation
of information and functionalities), semantics (meaning of information and functionalities, and their
relations), and intended interactions (scenarios involving two or more tools).

Part of the problem is the lack of an established methodology for the development of DEs, mean-
ing that DEs are often implemented in an ad-hoc manner. This leads to “fragile integrations” (Derler
et al., 2012) that are difficult to extend and maintain.

Another level of complexity is introduced when needs for customization have to be considered,
e.g., to take into account product-specific lifecycle features and integration patterns.

Current platforms for tool integration provide partial solutions, but also introduce accidental com-
plexity through the amount of manual coding, low-level technologies and configurations. The lack of
support methodologies comes along with a corresponding lack of support tools that would offload the
burden on DE developers and integrators at various stages of the development process. For instance,
high level modeling languages for designing and supporting early testing of DEs, coupled with adap-
tive composition mechanisms and automatic synthesis of integration assets, are typical support tools
that are not available to enrich the portfolio of DE developers and integrators.
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Figure 1: key stakeholders integration technologies and their dependencies.

3.2 Convergence towards New Standards for Tool Integration
Supporting methodologies and tools needs to be complemented by suitable standards. The question
is, however, how come there is so few widely adopted standards for tool integration, when there is
clearly no lack of suggestions for how to achieve standardization? There is for instance a multitude of
suggestions for data exchange formats (such as XMI (OMG, 2013b), FMI (FMI Development Group,
2013) and ReqIF (OMG, 2013a)), modeling languages (such as EAST-ADL (EAST-ADL Associa-
tion, 2013)) and even complete frameworks (Such as Jazz (IBM, 2013) and ModelBus (ModelBus
Team, 2013)) to support one or more aspects of tool integration.

It could have been expected that - over time - momentum would have been picked up behind a
selected few of these diverse suggestions, leading to a more concentrated effort towards a settled set
of basic standards. Time and experience is after all needed for this kind of maturity process, given the
many stakeholders (and their complex relationships) involved in any such efforts. While this process
is natural for any emerging technology, the heterogeneous context of CPS development (as presented
in section 2) unfortunately causes a prolongation of the time period until such stable standards are in
place - if at all.

Furthermore, as mentioned in section 2, tool integration is a secondary objective for many of the
key stakeholders. For example, CPS developers and the business units they belong to want to develop
a product, while tool vendors want to develop tools with minimum effort and sometimes believe that
open tools is a threat rather than opportunity, etc. In the best case, business units can cooperate with
such vendors to solve their particular integration needs, but it leads to organization-specific (and in
many cases ad-hoc) integration solutions. This obviously further prolongs the time until standards
pick up enough momentum to become widely accepted.

Figure 1 illustrates the cyclic nature of the challenge in engaging the key stakeholders through
constructive interactions in order to converge on integration technologies. The lack of support method-
ologies and tools contribute to the vicious nature of the cycle.

4 Concluding Discussion
We believe there is a need for a new approach in order to break the vicious circle illustrated in Figure
1. As mentioned in section 3, the key stakeholders lack the incentive to push for a solution to such a

4



A Roadmap Towards Integrated CPS Development Environments El-khoury, Asplund, Biehl, Loiret and Törngren

need, given their own primary objectives.
A very important aspect is to raise the level of maturity and awareness of the developing organi-

zations in order for them to be able to take a more active role in contributing to workable standards.
Another important aspect is to establish integration methodologies and standards that take the

heterogeneity and needs for customization explicitly into account. This will enable tool vendors to
provide customized integration solutions that can be relatively easily and cheaply provided for any
developing organization.

Finally, there is an opportunity for additional business players to provide standardized tool in-
terfaces for existing development tools and use these interfaces to create customized and automated
development environments. We call these business players integration providers. A business model
for such a business player would take advantage of the current vacuum to provide customized, stan-
dardized tool integration, allowing these players to act as product or service providers (See (Murphy
and Duggan, 2012) for example).

Maturing methodologies and standards will strengthen the opportunities of integration providers,
promising to create a successful industrial ecosystem. Getting there will require both research and
collaborative efforts among key stakeholders.
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Abstract

The present work reflects on the drivers and barriers of Cyber-Physical Systems with focus on
the challenges associated with their engineering. Based on a previous survey, the charachteristics are
studied that a reference framework for the engineering of Cyber-Physical Systems should support.
Thereby orthogonal dimensions of the envisioned systems and proposed system development phases,
on the one hand, and diverse solutions in use, on the other, are collated.

1 Introduction

The present work refers insights and thoughts concerning the mastering of Cyber-Physical Systems
(CPS). Nowadays CPS are touted as the next revolution in Computer Science. Forerunners can already
be found in as dissimilar areas as automotive, avionics, energy, health, environmentalism and consumer
electronics. The vision poses extraordinary challenges particularly regarding technology, organisation
and human-system cooperation. It also entails a huge potential both for economy as well as for tackling
problems of modern society.

Here we focus on the engineering challenges posed by CPS, and draft some raw ideas on how to
meet those. We firstly introduce in Sect. 2 our definition of CPS. Secondly in Sect. 3, we perform a kind
of meta-requirements analysis in order to find out the demands a reference framework for CPS must
fulfil. Afterwards, in Sect. 4 we detail candidate methods for the different phases in which we divide
the development process of CPS. Finally in Sect. 5 we draw some conclusions and outline a number of
possible improvements of the currently available loose ends.

2 Cyber-Physical Systems

As defined in [4], a Cyber-Physical System (CPS)1 is a system with embedded software (as part of
devices, buildings, means of transport, transport routes, production systems, medical processes, logistic
processes, coordination processes and management processes), which:
• directly records physical data using sensors and affect physical processes using actuators;
• evaluates and saves recorded data, and actively or reactively interacts both with the physical and

digital world;
• is connected with other CPS and in global networks via digital communication facilities (wireless

and/or wired, local and/or global);
• uses globally available data and services;
• has a series of dedicated, multimodal human-machine interfaces.

∗This work has been partially sponsored by the EIT ICT Labs, project “Innovation Platform Cyber-Physical Systems Engin-
eering”.

1The term CPS is here used both as a singular and a plural noun, the number depending on the context.
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The result of the connection of embedded systems with global networks is a wealth of far-reaching
solutions and applications for all areas of our everyday life. Subsequently, innovative business options
and models are developed on the basis of platforms and company networks. Here, the integration of the
special features of embedded systems –for example, real-time requirements– with the characteristics of
the internet, such as the openness of the systems, represents a particular technical challenge.

The main objective of the project “Innovation Platform Cyber-Physical Systems Engineering” is
the integration, validation, and dissemination of a coherent, ready-to-use reference framework based on
state-of-the-art science and technology as well as on the design and operation life cycle continuum of
CPS Engineering (CPSE). It is also intented to instantiate and validate the CPSE by means of cross-
domain scenarios and case studies. The long-term vision is to establish the EIT ICT Labs as the
cross-domain, multidisciplinary open innovation platform for developing and maintaining a ready-to-
use, open and standardised CPSE reference framework, that facilitates the transitioning of complex and
trustworthy CPS to the marketplace.

Challenges and opportunities

The biggest challenge brought about by the engineering of CPS is the integration of (discrete as well as
continuous) models and methods from different disciplines including not only technical ones like mech-
anical and electric/electronic engineering, computer science2 and control theory but also ergonomics
and human factors, economic ecosystems, social guidelines and legal stipulations. These “soft” aspects
of CPS are crucial for the acceptance of CPS and therefore for their success.

In exchange, there are a number of very significant opportunities allowed for by CPS. Besides value
creation and innovation, the most noticeable ones are the enhancement of accident prevention proced-
ures, improved support of ageing population, and smart use of limited resources. These have been
considerably emphasised in [4, 13].

Regarding only the computational discipline, on the one hand we have traditional Business Inform-
ation Systems (BIS) and, on the other, traditional Embedded Systems (ES). The former are data-centric,
ideally high secure and open, focus on maintenance, their life cycle incorporate legacy systems and
evolves continuously, and their constraints fall in the category of weak real-time. Their engineering
challenges are application integration, enhancement of running systems, re-engineering of legacy sys-
tems, and validation and prediction. The latter, on the contrary, are function-centric and closed, focus
on construction, their life cycle consists of decommission followed by design, building and commission
(i.e., legacy is not an issue), and their constraints fall in the category of hard real-time. Their engineer-
ing challenges are systems engineering (function, architecture, platform, and mechanics), safe function
deployment, and verification; see [5] and also [9]. By CPS these both sorts of systems need be com-
bined; considering their description above, it is redundant to stress that their reconciliation is anything
but straightforward. Moreover, the large-scale dimension of CPS aggravates the situation.

Engineering discipline

Because of the considerations above, it becomes apparent that the Engineering of CPS (CPSE) calls for a
radical new paradigm allowing the integrated construction, operation, adaptation and evolution of large-
scale, long-living, heterogeneous, open, dependable (in particular, safe and secure), high-investment
systems. There is a series of aspects to be considered for devising a new CPSE reference framework;
see [5]. On the one hand, we have the continuous life cycle of CPS that amalgamates Integrated Devel-

2Computer science here encompasses in many cases only unsatisfactorily solved issues as, e.g., interoperability, adaptability
and tailoring, learning, private data protection, fault tolerance, safety and security.
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opment Environments (IDE)3 and Operating Systems (OS)—and thus puts a combined functionality at
disposal for the design, simulation and verification, deployment, operation, maintenance of CPS. In this
context longevity, including self-documentation, self-reflection, self-adaptation and self-optimization,
as well as criticality, i.e. uninterrupted operation modifiable at runtime, need be meaningfully provided
for.

On the other hand, built-in support is necessary for dependability including safety and security
(“BIS meets ES”) as well as large-scale: built-in compositionality for construction and operation of
CPS (thus confronting the larger-scale knot posed by CPS). Moreover, the envisioned CPS engineering
must include online-models of system, environment and situation and of domain-views as well.

3 Demands on the engineering
Existing reference frameworks for, e.g., embedded systems and systems of systems do not address
the new challenges posed by CPS: openness and heterogeneity, portability and interoperability across
domain boundaries as well as situation awareness and self-evolvability, among others. However, some
already existing networked embedded systems let the conjecture raise of the suitability of upgrading and
aggiornamento of established embedded systems engineering frameworks.

Starting point for the development of a proposal is here an analysis of the demands to be observed
by a suitable reference framework for the development of CPS. Such a framework has to reveal cross-
cutting fundamental scientific and engineering principles that underpin the integration of cyber and
physical elements across the addressed sectors. The tentative concepts of the CPSE reference frame-
work include life-cycle processes, terminology, design principles, guidelines together with an adapted
multiview framework.

Depending on the degree of tightness (cf. Fig. 1), cooperating systems can be viewed as different
and cooperating CPS or as together composing a single (however big) CPS. The latter materialise in the
case of diverse, even wide spread, but cooperating development teams; the former when, e.g., systems
initially not meant to cooperate with each other are composed. The engineering issues vary accordingly.
In the first case, we speak of “coarse-grained” aspects, while in the second we speak of “fine-grained”
concerns.

3.1 On the coarse-grained level
Open and dynamic systems can be bundled in order to provide a service that may be realised by not a
single but a chain of systems spontaneously cooperating. The thus arising systems’ cooperation poses
the implicit challenge of the identification of individual systems as well as the description of the service
offered by these. What moreover means that an orthogonal modelling dimension is indispensable for
dynamic and spontaneous cooperation.

As pointed out in [4, 13], the approach must rely, particularly during requirements analysis, on an
interdisciplinary approach. CPS systems stem from most diverse domains and are operated by people
about whose background almost no assumption can be made, thus ease of use of those combined systems
is imperative. An orthogonal dimension of design, therefore, has to consider the presentation aspects of
each of the systems as well as their tie points.4

The conjecture here is that these three design modelling activities, namely individual service(s)
design, cooperation design and presentation design, be separated thus supporting modular and reusable

3IDEs are applications that facilitate efficient software development by providing not only a syntax-oriented source code editor
but also build automation (compilation, linking, deployment, etc.) and debugging tools.

4Cooperation and presentation are akin to the navigational design and the presentational design web and hypermedia applica-
tions described in [16].
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Figure 1: CPS domain structure (Source: [13])

design. Furthermore, the importance has been recognised of involving users in the innovation process,
be they sources of innovative ideas, early testers in simulation environments, or even developers; see [2].
Living labs let researchers and engineers test and modify products in close collaboration with end-users
in a real-life or a real-as-life setting. Living Labs capture users’ insights, prototype and validate solu-
tions, aim to contribute to both problems providing structure and governance to the user involvement and
methodologies and organizations to filter and sense user insights; see [11]. Two prominent living labs
are FutureEverything and the city of Oulu, Finland. FutureEverything is an art and digital innovation
organization based in Manchester, England, around an annual festival of art, music and digital culture,
that each year presents the work of around 300 artists across its art, music and conference strands, and
is conceived as a living lab for participatory experiments on art, society and technology; see [15]. The
world’s first wristwatch rate monitor, GSM telephone call, WCDMA telephone call, etc. came from
Oulu, whose dynamism is due to the Innovation and Marketing group of the city that acts as a Living
Lab, setting up and analysing user experiences and laying out the service model; see [2]. Furthermore,
in [21] the benefits are shown of children’s participation in living labs.

3.2 On the fine-grained level

As already mentioned, it is unclear how conventional modelling techniques for BIS and for ES can be
sensibly combined. One prominent problem profusely treated in the literature refers to modelling tech-
niques addressing heterogeneity and hybridity (e.g., discrete vs. continuous models); see [10, 18, 24].
Also the integration of successful techniques for one realm into the other, for instance component-based
engineering into ES design, as pointed out in [8] among others, is anything but obvious. In the micro-
scopic level of embedded systems, dependability issues represent a non-trivial challenge that apparently
cannot be enough warned of. This issue is magnified when one considers that, dynamic and spontan-
eously, services communicate and cooperate as an action or a reaction to the situation. Thus, mechan-
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isms for authentication as well as for intention and need recognition ought to be improved/perfected or
even devised where non-existent.

4 CPS Reference Framework

Aligned with the methodologies that were successful so far, we conceive a development methodology
for CPS divided into phases that are to be composed and combined iteratively and successively and
taking into account the different levels of refinement of single units as well as the different degrees of
maturity of interacting systems. The purpose of this section is twofold: On the one hand, the above
mentioned phases are seen from the perspective of CPS and, on the other, some specific (or dedicated)
proposals and solutions nowadays in use are suggested that could cope with the task at hand.

The initial stage of any system is customarily called requirements analysis. Already for this first
approach to a system there is in the realm of CPS (at least) two fundamentally orthogonal approaches.
These are discussed in Sect. 4.1 below.

Reflecting on the further phases that can constitute a sound and all-encompassing reference frame-
work for the development of CPS, we recognise different ways of approaching the challenges depending
on the point of view assumed. The core application of a system (of systems) can be termed service,
whose nature appears to be one from three possibilities: business, computation and control, or platform;
see Sect. 4.2. The interplay between systems (of systems) requires the definition of rules for cooperation
also comprising authentication, service description and communication protocols; see Sect. 4.3. Crucial
for the acceptance of these by far non-obvious systems is the way they communicate with end-users,
their ease (i.e., intuitiveness) of use, and their possible customisation; see Sect. 4.4.

4.1 Requirements Analysis

Similar to web applications, also CPS “facilitate business process integration, new business models, sup-
ply chain mediation disintermediation and reengineering, as well as offer new services to new markets”;
see [19]. And likewise “potential users are so diverse and geographically wide-spread that [require-
ments analysis strategies predicated on consulting the future users of the systems] is impractical.” In the
cited work, thus, an approach to requirements elicitation is proposed that “combines the recognition of
multiple user views of a complex human activity system with techniques to help creatively map existing
and potential business functions to a Web-based environment [. . . ] accessible to developers who are not
IT function experts.” This method, termed SSM/ICDT, combines the Soft Systems Methodology (SSM,
see [22]) with the ICDT matrix (information, communication, distribution and transaction, see [3]). Be-
cause of the similarities mentioned, valuable insights may be gained by considering an activity-oriented
approach to requirements analysis of CPS.

Alternatively, artefact-based approaches “promise to provide guidance in the creation of consistent
artefacts in volatile project environments, because these approaches concentrate on the artefacts and
their dependencies, instead of prescribing processes”; see [20]. The conducted a case study which
showed the increased flexibility of the approach in comparison with the previously used one, as well
as the improved quality of the created artefacts, and also that productiveness was not improved. A
so-called mega-modelling environment termed Global Model Management (GMM, see [27]) permits
typing, composition and execution of artefacts. As a consequence, type errors during execution can be
avoided. This approach, appropriately transferred to the CPS setting, could used for authentication prior
the establishment of a spontaneous cooperation.
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4.2 Service(s) Design
It turns out that at least three kinds of services converge into CPS, that interact with each other. They
are depicted in Fig. 2. An hypothesis worth considering is that the above difficulties of combining BIS
and ES be solved by decoupling systems and let them only communicate via a platform (i.e., removing
the dashed arrows in Fig. 2). This very probably implies a platform with considerably more intelligence
than that of conventional ones.

services relating to

BUSINESS

services relating to

PLATFORM

services relating to

COMPUTATION / CONTROL

Figure 2: The three kinds of services

Much has been said and written about the immense costs of (fine) tuning, maintenance, and re-design
and re-engineering of large scale complex IT systems. As stated in [23], “management structure that
moves a megaproject along with seamless transitions between the project’s phases can affect the final
outcome and success”.

Computation / control services

Because of its two dimensions of abstraction, the SPES Metamodel [14] seems an adequate starting
point for the embedded systems dimension of service(s) modelling. On the one hand, there are the
software development perspectives and, on the other, the levels of granularity; see Fig. 3. The former
permit the examination of a system from different viewpoints and this way gain or specify diverse kinds
of information about the system.

The functional perspective describes the systems from the angle of its usage. The logical perspective
describes the system as a network of communicating and cooperating components possibly hierarchic-
ally structured. The technical perspective provides the technical details of the system especially with
regards to hardware and virtual machine platform, and is conceived in such a way that it can be extended
(or instantiated) for particular application domains.

The SPES Metamodel supports a process-based system development (see also [28]), into which the
operation-design continuum of CPS may not fit smoothly. An alternative to be considered is a system
development based, rather than on processes, on products; see [7].

Business services

Business services have been extensively addressed, at the beginning in manifold ways; see [1]. There
are different approaches in this realm, so for instance Business Process Management (BPM), Service-
Oriented Architecture (SOA), Service-Oriented Computing (SOC), etc.; see, e.g., [29].
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Figure 3: The two abstraction dimensions of the SPES Metamodel (Source [14, 26])

Platform services

A platform is much more than just a vehicle of information. It probably has the job of managing
huge amounts of information, without neglecting their integrity and confidentiality. It moreover has to
mediate between systems of inherently diverse nature. Worth considering for the realisation of these
services is the solution proposed by the middleware Chromosome; see [6] and also [17]. Chromosome
returns the control over the functionality of an application to the developer, by “hiding” the complexity
and ensuring extensibility by plug & play mechanisms also at runtime. Chromosome moreover puts
real-time capabilities at disposal.

4.3 Cooperation Design
Cooperation between single systems and CPS (i.e., cooperation at any level, see Sect. 3) can be or-
ganised considering the concepts of navigation space and navigational structure; see [16]. This means,
navigation nodes and navigability between nodes are notions orthogonal to component and communic-
ation between components. Navigation moreover can (but not necessarily does) carry information. An
intuitive example is given by smartphones, where for instance email reading can be interrupted by an
incoming call: once the call ended, the control automatically returns to the previous screen and the user
can continue reading his/her email. Information navigates when, e.g., within the email an address is se-
lected and the smartphone offers to look up the address using a map service, to search for a connection
with public transportation, etc.
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Service delegation can moreover occur dynamically. This means, the situation can be assessed and
required services be searched for in the surroundings of the system. With regards to the concepts of
navigation nodes and navigability, the structure can spontaneously be redefined and/or rearranged.

Typically, a navigation structure is based on the services structure. The former, however, can omit
some services, i.e., not necessarily all services are reflected –or represented– as a navigation node; an
example hereof might be an antivirus. Navigation can also foresee shortcuts avoiding intermediate steps
when these are, e.g., previously and univocally determined.

4.4 HCI Design
The success of web services lets us presume that, for the interaction of CPS with end users regardless
of their education, age, gender, etc., the strategies used in web design can be reused. For this purpose,
the models for presentation of [16] may be a good starting point; see also [12].

The presentation model is based on the navigational model, but addresses other challenges. Consider
haptic in case of an amputee, or instructions imparted to hearing impaired, etc. These considerations
greatly impact on the acceptability of CPS; see [4, 13].

5 Conclusions and outlook
The design-operation life-cycle continuum of CPSE reminds of a family album, where snapshots are
memorised but in fact the portrayed subjects might exist beyond the ends of the album, i.e., some exist
before the first (in chronological order) photograph was taken, some exist further after the date of the
last photograph, and some others happen to appear as grown-ups when, e.g., a family member marries.
Moreover, between two chronologically subsequent photographs, any family member has undergone a
number of more or less slight changes.

Referring back to the SPES Metamodel, the first to catch one’s eye is the compartmental division
between software development perspectives: although the time unfolds from left to right, it is not to
be understood that all levels of granularity of a CPS evolve simultaneously from one perspective to the
next one. The picture misses moreover the correlation between the components across the different
perspectives. On these realisations and considering the discussion above we plan to work out a process
and a metamodel for CPS and to iteratively validate them by means of case studies.

In the framework of the programme “Research for Tomorrow’s Production”, sponsored by the Ger-
man Federal Ministry of Education and Research, a project will be carried out whose research focus is
the operation of CPS for the maintenance in a real production environment. The project S-CPS aims to
bring together the data sensored at the equipment and installations of a production system that concern
their diagnosis and the pertinent maintenance data, in order to automatically and dynamically generate
out of them an overview of the necessary and free resources and the required skills of the staff to be
involved as well as any further essential information, and present this overview in a so-called resources’
cockpit; see Fig. 4. The resulting CPS will be instantiated in three very different contexts, namely for
an automobile manufacturer, a car parts supplier, and a wind turbine manufacturer. This first case study
will certainly provide valuable insights into the specific challenges associated with the engineering of
complex, adaptive, distributed CPS, and the means to master them.
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