
A Roadmap Towards Integrated CPS Development Environments

Jad El-khoury, Fredrik Asplund, Matthias Biehl, Frederic Loiret and Martin Törngren
Mechatronics Lab, Department of Machine Design, Royal Institute of Technology, Stockholm, Sweden

{jad, fasplund, biehl, floiret, martint}@kth.se

Keywords: Tool Integration, Cyber-Physical Systems, Development Environment, Tool Chain, Interoperability Standards

Abstract: Cyber Physical System (CPS) development is highly heterogeneous, involving many stakeholders, each of
which interacts with its development artifacts through a variety of tools, and within several engineering pro-
cesses. Successful CPS development requires these tools to be well-integrated into a Development Envi-
ronment (DE) in order to support its many stakeholders and processes. In this paper we identify the main
challenges facing DE development for CPSs, and presents a roadmap to meet these challenges. We here take
the position that focus should be redirected from trying to achieve a single, one-size-fits-all solution to such a
heterogeneous problem. Instead, focus should be placed on supporting the development of highly-customized
DEs, which readily can be applied to industrial development. Such a highly-customized DE should fit the
needs of a particular development organization, while at the same time taking advantage of relevant standard-
ization efforts.

1 INTRODUCTION

Cyber Physical Systems (CPSs) offer opportunities
for new services, improved performance and better
efficiency in almost all application domains in our so-
ciety.

Typically many technical and business-related
stakeholders take part in the development of a CPS.
Each of these stakeholders interacts with the devel-
opment artifacts through various tools, pertaining to
their particular interests. Mechanical engineers for
instance make use of CAD tools to construct artifacts
that describe the mechanical aspects of the CPS under
development. This interaction takes place within sev-
eral technical engineering processes involving struc-
tured sequences of activities such as requirements en-
gineering, design and verification.

Due to the tightly integrated technologies in a
CPS, all of these technical engineering processes be-
come tightly intertwined and decisions made by one
stakeholder become likely to have an impact on other
stakeholders. An effect of this is that the tools sup-
porting each separate technical engineering process
needs to be adequately integrated with tools of other
technical engineering processes. This becomes prob-
lematic, since many of the tools employed throughout
the different processes typically come from separate
sources and are hence likely to be mutually incom-
patible.

This paper focuses on the overall problem aimed
at supporting the integration of these mutually incom-
patible tools. We will use the term Development Envi-
ronment (DE) to refer to a setting of tools that support
multiple stakeholders and processes in CPS develop-
ment. How to design and maintain DEs have been
discussed thoroughly these last three decades, with
the overall focus being on trying to achieve a single,
one-size-fits-all solution towards which all mutually
incompatible tool technologies subsequently can in-
terface (thereby forming a homogeneous unity).

We believe that the current approaches to building
DEs are built on a false hope that CPS development
can be homogenized, so that a single homogeneous
DE integration framework to support the whole CPS
development life-cycle can be provided. As we will
argue in this paper, CPS development is too heteroge-
neous to allow for such a single homogeneous solu-
tion. Instead, we accept the heterogeneous nature of
CPSs and their DEs, and aim to instead provide well-
integrated heterogeneous DEs.

1.1 Position Statement

Given the heterogeneous nature of CPS development,
and the (current) slow pace of convergence of inte-
gration technologies, we believe that focus should be
redirected at supporting the development of highly-
customized and maintainable DEs, which readily can



be applied to industrial development. Such a highly-
customized DE should fit the needs of a particular de-
velopment organization, while at the same time taking
advantage of relevant standardization efforts.

A tailorable organization-specific DE can only be
practically feasible if the threshold of its development
is lowered by providing DE development and automa-
tion support. Moreover, a concerted effort will be re-
quired to provide the required methodology, standards
and business models required for large scale industrial
adoption of efficient tool integration.

1.2 Paper Structure

This paper first describes in section 2 the heteroge-
neous context of CPS development, leading to the
main challenges of developing DEs - which are elab-
orated in section 3. Section 4 finally summarizes the
issues that need to be addressed to move forward and
some of the opportunities that this will lead to.

2 THE HETEROGENEOUS
CONTEXT OF CPS
DEVELOPMENT

The CPS development process is highly heteroge-
neous. In this section we go through some of the more
important aspects in which this has an impact on DEs.

2.1 Tool and Tool Integration
Heterogeneity

As mentioned in section 1, many stakeholders with
different technical and business-related specialities
mean that many heterogeneous tools will be found in
a DE. The tightly intertwined technologies in an CPS
will then mean that many tools will be integrated with
each other, forming complex dependencies between
them.

A DE is often built in a bottom-up manner, even-
tually displaying an unstructured design and imple-
mentation of tool integration. Such ad-hoc realiza-
tions of DEs may use a variety of integration frame-
works, data formats, communication protocols and
assumptions. Integration conventions provide a com-
mon ground for building DEs and increase the like-
lihood that parts of DEs can be reused in a differ-
ent context than they were originally designed for.
However, several conventions for integration exist,
such as XMI (XML Metadata Interchange) (OMG,
2007), OSLC (Open Services for Lifecycle Collabo-
ration) (OSLC Core Specification Workgroup, 2010)

and STEP (ISO, 1994). Similarly, several specialized
technologies for realizing the different parts of a DE
are currently available, such as model transformation
tools, tracing tools or libraries for exposing services
of tools. Each of these integration technologies de-
scribes only one aspect of the DE, while a complete
DE needs to cover several aspects.

This plethora of tools, integration frameworks, in-
tegration conventions, languages and technologies for
realizing parts of a DE, combined with the common
ad-hoc realization approach, typically lead to a rich
heterogeneity of technologies used for tool integra-
tion.

2.2 Organizational Heterogeneity

Organizations have different development processes
of varying technical maturity. For example, while
a more traditional DE supports simple connections
between a small number of tools; a modern DE
may need to support development processes that are
model-based and iterative (Tratt, 2005) and include a
larger number of tools.

In addition, to get a DE accepted, it is important
that its end-users (such as the different types of engi-
neers, architects, managers, designers, analysts, etc.)
are involved (Christie et al., 1997). DEs therefore
need to be tailored to each specific organization, or
even each specific development project. As a conse-
quence, the requirements and nature of tool integra-
tion vary among organizations.

2.3 Stakeholder Heterogeneity

The DE end-users frequently see the ideal case as be-
ing when they can focus on one tool to support a par-
ticular ”main” activity and then have information au-
tomatically flow to and from this tool (Maalej, 2009).
However, DE users are not the only stakeholders rel-
evant to tool integration.

DE designers, deployers and maintainers have a
different view of each tool and the overall DE. They
instead usually favor tampering as little as possible
with each tool or technology employed for tool inte-
gration.

And while those stakeholders have a common
ground in the focus on technology, other stakehold-
ers have an all together different focus. Management
commonly looks at the cost of procuring technolo-
gies and tools when deciding which solution to favor.
Avoiding a potentially costly ”lock-in” in regard to a
particular technology can lead to the rejection of tools
that are technologically superior.



This focus on economical factors can also be
found in the reasoning of tool vendors, which may be
interested in tool integration as an argument for cus-
tomers to choose their tools (for instance to increase
the odds of avoiding a costly ”lock-in”). However,
tool vendors with market unique or dominating solu-
tions have less of a reason to offer support for much
tool integration technologies. This support comes
with a cost, both during development and mainte-
nance, which a tool vendor might want to avoid since
it is not their main business.

3 THE CHALLENGES OF DE
DEVELOPMENT FOR CPS

Given the heterogeneous nature of CPS development,
we here identify and elaborate on the most important
challenges facing DE development.

3.1 Lack of Support Methodologies and
Tools

A DE consists of many distributed software assets to
be integrated with each other. This is complicated due
to the heterogeneity described in section 2, and the
many intricate dependencies mentioned in section 1.
Several barriers have to be bridged, including tech-
nology (e.g. technical representation of information
and functionalities), semantics (meaning of informa-
tion and functionalities, and their relations), and in-
tended interactions (scenarios involving two or more
tools).

Part of the problem is the lack of an established
methodology for the development of DEs, meaning
that DEs are often implemented in an ad-hoc man-
ner. This leads to “fragile integrations” (Derler et al.,
2012) that are difficult to extend and maintain.

Another level of complexity is introduced when
needs for customization have to be considered, e.g.,
to take into account product-specific lifecycle features
and integration patterns.

Current platforms for tool integration provide par-
tial solutions, but also introduce accidental complex-
ity through the amount of manual coding, low-level
technologies and configurations. The lack of support
methodologies comes along with a corresponding
lack of support tools that would offload the burden on
DE developers and integrators at various stages of the
development process. For instance, high level model-
ing languages for designing and supporting early test-
ing of DEs, coupled with adaptive composition mech-
anisms and automatic synthesis of integration assets,

are typical support tools that are not available to en-
rich the portfolio of DE developers and integrators.

3.2 Convergence towards New
Standards for Tool Integration

Supporting methodologies and tools needs to be com-
plemented by suitable standards. The question is,
however, how come there is so few widely adopted
standards for tool integration, when there is clearly
no lack of suggestions for how to achieve standard-
ization? There is for instance a multitude of sugges-
tions for data exchange formats (such as XMI (OMG,
2013b), FMI (FMI Development Group, 2013) and
ReqIF (OMG, 2013a)), modeling languages (such
as EAST-ADL (EAST-ADL Association, 2013)) and
even complete frameworks (Such as Jazz (IBM, 2013)
and ModelBus (ModelBus Team, 2013)) to support
one or more aspects of tool integration.

It could have been expected that - over time - mo-
mentum would have been picked up behind a selected
few of these diverse suggestions, leading to a more
concentrated effort towards a settled set of basic stan-
dards. Time and experience is after all needed for this
kind of maturity process, given the many stakeholders
(and their complex relationships) involved in any such
efforts. While this process is natural for any emerg-
ing technology, the heterogeneous context of CPS de-
velopment (as presented in section 2) unfortunately
causes a prolongation of the time period until such
stable standards are in place - if at all.

Furthermore, as mentioned in section 2, tool in-
tegration is a secondary objective for many of the
key stakeholders. For example, CPS developers and
the business units they belong to want to develop a
product, while tool vendors want to develop tools
with minimum effort and sometimes believe that open
tools is a threat rather than opportunity, etc. In the best
case, business units can cooperate with such vendors
to solve their particular integration needs, but it leads
to organization-specific (and in many cases ad-hoc)
integration solutions. This obviously further prolongs
the time until standards pick up enough momentum to
become widely accepted.

Figure 1 illustrates the cyclic nature of the chal-
lenge in engaging the key stakeholders through con-
structive interactions in order to converge on integra-
tion technologies. The lack of support methodologies
and tools contribute to the vicious nature of the cycle.



Figure 1: key stakeholders integration technologies and
their dependencies.

4 CONCLUDING DISCUSSION

We believe there is a need for a new approach in order
to break the vicious circle illustrated in Figure 1. As
mentioned in section 3, the key stakeholders lack the
incentive to push for a solution to such a need, given
their own primary objectives.

A very important aspect is to raise the level of ma-
turity and awareness of the developing organizations
in order for them to be able to take a more active role
in contributing to workable standards.

Another important aspect is to establish integra-
tion methodologies and standards that take the het-
erogeneity and needs for customization explicitly into
account. This will enable tool vendors to provide cus-
tomized integration solutions that can be relatively
easily and cheaply provided for any developing orga-
nization.

Finally, there is an opportunity for additional busi-
ness players to provide standardized tool interfaces
for existing development tools and use these inter-
faces to create customized and automated develop-
ment environments. We call these business players
integration providers. A business model for such a
business player would take advantage of the current
vacuum to provide customized, standardized tool in-
tegration, allowing these players to act as product or
service providers (See (Murphy and Duggan, 2012)
for example).

Maturing methodologies and standards will
strengthen the opportunities of integration providers,
promising to create a successful industrial ecosystem.
Getting there will require both research and collabo-
rative efforts among key stakeholders.

REFERENCES

Christie, A., Levine, L., Morris, E. J., Riddle, B., and
Zubrow, D. (1997). Software Process Automation: In-
terviews, Survey, and Workshop Results. Technical
report, SEI.

Derler, P., Lee, E. A., and Vincentelli, A. S. (2012). Mod-
eling Cyber-Physical Systems. Proceedings of the
IEEE, 100(1):13–28.

EAST-ADL Association (2013). East-adl.
FMI Development Group (2013). Functional mock-up in-

terface.
IBM (2013). Ibm rational jazz.
ISO (1994). Industrial automation systems and integra-

tion – product data representation and exchange (ISO
10303). Technical report, ISO.

Maalej, W. (2009). Task-First or Context-First? Tool
Integration Revisited. In Proceedings of the 2009
IEEE/ACM International Conference on Automated
Software Engineering, ASE ’09, pages 344–355,
Washington, DC, USA. IEEE Computer Society.

ModelBus Team (2013). Modelbus.
Murphy, T. E. and Duggan, J. (2012). Magic quadrant for

application life cycle management. Technical report,
Gartner.

OMG (2007). MOF 2.0 / XMI Mapping Specification,
v2.1.1. Technical report, OMG.

OMG (2013a). Requirements interchange format (reqif).
OMG (2013b). Xml metadata interchange.
OSLC Core Specification Workgroup (2010). OSLC core

specification version 2.0. Technical report, Open Ser-
vices for Lifecycle Collaboration.

Tratt, L. (2005). Model transformations and tool integra-
tion. Software and Systems Modeling, 4(2):112–122.


