
Towards Dynamic Deployment Calculation for
Extensible Systems using SMT-Solvers

Klaus Becker, Sebastian Voss
Software and Systems Engineering

fortiss GmbH
Guerickestr. 25, 80805 Munich, Germany

{becker, voss}@fortiss.org

Abstract—During design of distributed embedded systems,
the determination of the deployment of software components
to execution units is a crucial subtask of the design space
exploration. In static systems, the deployment can be determined
at design time. However, in many cases it is desired to add new
functional features into existing systems after sale. In this case,
new software components have to be integrated into the former
system and hence, into an existing deployment.

We aim in a self-configuring system that ensures the integrity
of the integration of new components autonomously. Our pro-
posed process of integrating new components into a given system
consists of several steps intended to be applied at run-time while
the system is in operation. Beside others, the process includes a
logical admission control, followed by a self-configuration of the
system.

In this paper, we focus on extending an existent deployment
during the self-configuration phase incrementally. We sketch a
mechanism that extends existing deployments with additional
components in an efficient way by using SMT-solvers. We also
present an example that demonstrates how these solutions are
calculated based on given deployment-constraints.

I. INTRODUCTION AND MOTIVATION

Maintainability and extensibility are important properties of
long living systems, especially also in distributed embedded
systems. After a system is taken into operation, there might
arise several reasons to maintain the system in a functional
or non-functional manner. Non-functional maintenance tasks
change the system without changing the systems functional
features experienced by the user. Functional maintenance
affects the user-experience, e.g. by updating or extending the
system functionality. Updates or extensions might be required
in case of changing or new requirements, or due to changes
in the environment. In this paper, we focus on extending
functionality of component based systems without requiring
a temporal shutdown of the system under maintenance.

In this paper, we tackle the problem of extending distributed
component-based embedded systems with new components
that realize new functional features. We focus on the design
space exploration for the new components, more precisely
on the determination of the deployment. During deployment
determination it is defined which software component is ex-
ecuted on which execution unit, while considering different
constraints that must be hold by the deployment in order to
be valid. This is just one sub-step of the integration process

of new components. We developed a deployment calculator
which is based on the usage of a SMT-Solver.

We aim in executing these techniques at runtime by the
system under maintenance itself, in order to let the system have
control about its own integrity. This is for instance useful for
distributedly developed systems, in which no central authority
performs and proofs the integration of new functional features,
but also for systems that cannot be taken out of operation
completely in order to install new functionalities. Examples
of such systems are production lines where each production
stop denotes huge costs, remotely maintained systems which
cannot be accessed by humans, but also future automobiles in
which new functional features are desired to be installed after
sale without having to go to a workshop.

We show a methodology to find deployments in a incremen-
tal manner. Incremental means that an existing deployment is
extended with new components. The requirements are that the
former system components should not be affected by the new
components negatively, as well as that the delta between the
configuration of the old and the new extended system should
be as small as possible. In case of deployment, this means
that the deployment of existing components should not change
when new components are added. This is to avoid on-line
migrations of components. Between the extension phases, the
system operates in a static manner.

The remainder of this paper is as follows. In section II,
we show the big picture on our work, which is the intended
process for integrating new functions into existing systems.
As our integration process is supported by properties of the
underlying platform on which it is performed, we discuss
these properties briefly in section III. In section IV, we show
briefly how the components are designed that are intended
to be added to the system. Section V shows then a sketch
for an incremental deployment calculation during the self-
configuration phase. This is also shown by an example with
some example deployment constraints. Finally, section VI
discusses related work and VII the conclusion and future work.

II. THE PROCESS OF INTEGRATING NEW FUNCTIONALITY

We aim in an integration process including an on-line
admission control for the new functionality followed by a self-
configuration. During integration, it has to be ensured that
the system keeps operating conform to its specification. This

is especially important for safety-critical real-time systems,
because a loss of integrity might cause hazardous damage to
material and life. To provide new system functionality in a
plug-and-play manner, the system has to be able to verify
autonomously if the new functionality can be integrated or
not. However, as mentioned above, in this paper we focus on
the deployment calculation which is applied during the self-
configuration phase of the integration process.

Fig. 1 shows our intended five main steps that are required
to integrate new software components into a given system.

(1) Physical delivery of new components into the system

(2) Admission Control

Check whether new components can be integrated into the system or not

(3) Create System-Configuration

Update affected sub-configurations of the system,
for instance the Deployment of components to execution units

(5) Activation

Activate the new system-configuration

(4) Deployment of new components

Deploy new components within the distributed system according to the
allocation-plan determined in step (3)

Finish

Abort

Abort
Lo

op

Fig. 1: Activities during the extension of the system

In phase (1), the new components are physically made
available to the system. Phase (2) performs a logical ad-
mission control. Here, different formal analysis methods can
be applied, which are normally applied at design time of
static systems, e.g. to check interaction between components.
Also compatibility and dependencies on feature level can be
checked here, as well as guaranteeing security by checking
certificates. However, this phase is out of scope of this paper.

If phase (2) successes, the new components can be added
from logical point of view. Hence, a new system configuration
has to be determined in phase (3) including the new compo-
nents. During this, the new components are for instance inte-
grated into the execution and communication schedules as well
as into the deployment-configuration of the system. The latter
point is in scope of this paper. We aim in an incremental self-
configuration approach in which the old system configuration
parts keep as most unchanged as possible (cf. section V).

However, it might happen that the self-configuration is not
successful. In such situations, new components can only be
integrated when a subset of the existing components is either
removed, degraded or migrated to another execution node in
order to free enough resources to enable a valid configuration
together with the new components. This is done by going back
to the logical analyses phase to select a replacement strategy

for existing components. However, such replacement strategies
are out of scope of this paper.

After the new deployment-configuration has been deter-
mined, the new components are physically deployed in phase
(4) to the target execution units. Finally, phase (5) activates
the new configuration, meaning to switch to the new schedules
and hereby to activate the new components. The question of
how to activate the new configuration safely without negatively
affecting system service is not discussed in this paper.

All this should be possible for components that were
unknown at the design time of the former system. The new
components should not need to know something in advance
about the system in which they are desired to be integrated.
This allows highest flexibility in component composition.

III. ASSUMED PROPERTIES OF THE UNDERLYING SYSTEM

Our presented approach for extending systems at runtime
requires support by the underlying platform. We assume some
fundamental architectural drivers that are common principles.

We assume a distributed embedded system with a middle-
ware driven distributedly accessible data-pool that allows
indirect access to sensors and actuators. The middleware also
ensures portability of the components. The portability together
with the data-pool allows freedom on the allocation of the
software components to the execution units, which is essential
for the deployment determination.

The middleware is responsible for the transmission of sensor
data into the data-pool, providing required data to the software
components and delivering output data to their destinations,
like physical actuators. This means, sensors and actuators are
decoupled from control functions via the data-pool.

Data-dependencies are not modeled by explicit channels
between components, but by specifying the required respec-
tively provided data. The middleware has a mechanism that
determines possible matches of data producers and data con-
sumers and creates channels between the components during
configuration phase, based on the data-specifications. This
follows the laws of blind communication [7]. Due to this,
components are fully exchangeable by other components that
produce and require data with conforming specification. We
assume also a flexible network that allows to add new network
packages at runtime.

However, the concrete realization of the mentioned middle-
ware is not further discussed in this paper as it is out of scope.

IV. APPLICATION DESIGN

The on-line integration process requires some additional
pieces of information about functional and non-functional
properties of the components, required for admission control
decisions and self-configuration. In classical static systems,
these information are only required at design time. However,
in a dynamically extensible system, these information are also
required at runtime during the integration process. Hence,
components need to be enriched with a set of information
about their functional and non-functional properties. This can
for example be addressed using rich components [1].

Each component contributes to realize one or more func-
tional features of the system. We consider components as
black-boxes that might however have nested invisible sub-
components. Black-box components specify their external
communication by defining the required or provided data at
their ports. The wiring of the communication channels between
black-box components is done during the integration process
according to the given data specifications at the ports.

V. ON-LINE DESIGN SPACE EXPLORATION FOR
SELF-CONFIGURATION

We consider an incremental self-configuration approach to
integrate new components into a given configuration. This
comprises that the former system configuration should keep as
most unchanged as possible, meaning that existing components
keep their locations and new components are deployed into
free gaps. It is not desired to migrate existing components
between execution units at run-time. The proposed incremental
approach targets for reaching the desired level of extensibility
by using on-line design space exploration mechanisms.

A. Constraints for the Design Space

System design affects temporal and spacial issues. There-
fore, we distinct partitioning, determining the borders of
a black-box component during design time, and allocation
(aka mapping or deployment), which means deciding the
assignment of software components to hardware execution
nodes and pertains to spacial requirements. Based on this, a
temporal configuration is the execution order of these software
components (or tasks) on their allocated execution nodes (aka
schedule) as well as the temporal order of communications (or
messages) on a shared communication medium.

In order to solve this kind of problem, different sets of
constraints need to be considered. First of all, constraints
with respect to a suitable deployment are considered. The
allocation has to comply to the existing resource constraints
of the system. For instance, software components might have
allocation constraints w.r.t. a dedicated location. One further
constraint might be that it is desired to partition communicative
component-clusters onto the same execution nodes, in order to
reduce the network load. All these constraints might conclude
in a multi-objective optimization problem with contradicting
objectives.

B. Self-Configuration Process

We work towards a hierarchically coordinated self-
configuration process, enabled by the data-pool (cf. Sec. III)
that provides all required pieces of information (cf. Sec. IV)
and can be used to deploy the new configuration towards
the distributed system nodes. Hierarchical means that there
exists a master control instance for the integration process,
which cooperates with the distributed system nodes in order
to determine a valid holistic system configuration.

As this approach should work on-line, we propose to have
scalable techniques for calculating new configurations. An
approach may rely on a symbolic encoding scheme for the

problem under consideration. Therefore, we describe it as
a satisfiability problem using boolean formulas and linear
arithmetic constraints. A state-of-the-art SAT modulo theory
(SMT) solver is used to compute new configurations for such
systems in a scalable manner. Satisfiability Modulo Theory
(SMT) enables checking the satisfiability of logical formulas
over one or more theories. The solver proves a model as
a single solution. However, optimized solutions may be of
a particular interest. Finding optimized solutions takes more
time and requires potentially some meta-search techniques
(e.g. binary search, generic algorithms) on top of the SMT-
based problem [9].

C. Deployment Problem

As described in section V-A, the calculation of a valid
deployment comprises the assignment of a set of software
components S to a set of execution nodes E, while fulfilling
all given constraints. Furthermore, we target the reduction of
required network traffic introduced by communication chan-
nels C between software components.

Our system model M = 〈S,C,E, α〉 contains a set of
software components (SWCs) S = {s1, s2, ..., sm}, a set of
directed communication channels C = S×S between software
components, a set of execution nodes E = {e1, e2, ..., ek}, and
an allocation α : S → E that returns the set of execution nodes
e ∈ E to which a software component s ∈ S is deployed. This
can also be written as an allocation matrix α(si, ej) returning
1 if ej ∈ α(si), otherwise 0.

Furthermore, we define the following parameters for the
system model artifacts:
wcet : S → N defines the worst-case execution time (WCET)
of software components s ∈ S,
weight : C → N defines weights for communication channels
c ∈ C, and
tbudget : E → N corresponds to the time-budget of the e ∈ E.

A channel-weight weight(c) is the communication load
in bits/s introduced by the channel c ∈ C. The tbudget(e)
indicates how much time in ms is available to execute software
components (in a given time period) on the given execution
node. All these parameters are set by constraints to fixed
constants regarding to a certain system model.

We assume the following further deployment constraints:
1) The sum of execution times wcet(s) of SWCs deployed

to the same execution node is not allowed to exceed the
provided time budget tbudget(e) of that execution node.
∀ej ∈ E

(∑
si∈S (α(si, ej) · wcet(si)) ≤ tbudget(ej)

)
2) The sum of channel weights weight(c) between SWCs

allocated to different execution nodes E must not exceed
a specified network threshold NTh, defining the upper
limit for the weight of network communication.∑

ci(sk,sl)∈C | α(sk) 6=α(sl)

weight(sk, sl) ≤ NTh

These constraints can be encoded into SMT formulas. The
objective is to find a valid allocation α of all SWCs to the
execution nodes, fulfilling all given constraints.

We encoded the parameters and constrains for the Z3
theorem prover [2]. However, the approach is not dependent
on this specific SMT solver, also other solvers can be used.

D. Solution Model

The purpose of a SMT solver is to check the satisfiability
of logical formulas over one or more theories. In our case,
the provided solution model is a valid allocation α for the
given deployment problem. Thus, the SMT solver returns one
solution that fulfills the defined constraints. This is in general
not an optimized solution regarding to some objective function,
but just a valid solution for the specified constraints. The
solution model consists of interpretations for the variables,
functions and predicate symbols that makes the formula true.
In our case, this gives a valid allocation matrix.

E. Example

Let the software components S and execution nodes E in
the example have the following properties:
S = {s0, s1, s2, s3}
E = {e0, e1}
wcet(S) = {4, 4, 4, 4}
tbudget(E) = {10, 10}
weight(s0, s1) = 1
weight(s0, s2) = 2
weight(s1, s2) = 4

This is encoded as input for the SMT solver, together with
a threshold NTh for the maximum allowed network traffic.

For NTh = 5, a valid solution for deployment α is shown
in Fig. 2a. Fig. 2b shows a solution for NTh = 4, which can
be hold only with a different deployment. The deployment
for NTh = 3 is the same as in Fig. 2b. A deployment for
NTh = 2 is not feasible. To minimize the network traffic, we
solved the problem multiple times with decreasing NTh.

F. Extending the Example

After the deployment of the initial system has been
determined, the deployment should now be extended by an
additional software component s4, having a WCET of 2ms
and required and provided data-specifications that force the
creation of two additional channels:
weight(s0, s4) = 1
weight(s4, s3) = 1

Fig. 2c shows the deployment after the new component
s4 has been integrated. Notice that the deployment of the
existing components keep untouched. This is reached by
setting the former deployment of the existing components as
fixed solution constraints during the deployment calculation of
the extended system.

However, it might happen that the network threshold cannot
be hold for the extended system. In this case, NTh has to be
relaxed until a valid solution is found.

software components

execution units

s0

s2

 2 s1

 1

e1

alloc 4

e0

alloc

alloc

s3

alloc

Network Traffic = 5
 Network Threshold = 5

(a) Solution for a deployment of 4 SWCs with 3 channels to 2 execution
units, Network Traffic Threshold = 5

software components

execution units

s0

s2

 2 s1

 1

e1

alloc 4

e0

alloc

alloc

s3

alloc

Network Traffic = 3
 Network Threshold = 4

(b) Solution for a deployment of 4 SWCs with 3 channels to 2
execution units, Network Traffic Threshold = 4

software components

execution units

s0

s4

 1

s2

 2 s1

 1

e1

alloc 4

e0

alloc

alloc

s3

alloc

 1

alloc

Network Traffic = 3
 Network Threshold = 4

(c) Solution in case an additional component was plugged in causing
two new channels, Network Traffic Threshold = 4

Fig. 2: Solutions for example deployment problem

All the figures were generated by our deployment calculator
by using the graphviz framework (www.graphviz.org).

VI. RELATED WORK

The problem of finding optimized allocations of functions
onto execution platforms (e.g. electronic control units) has for
instance been considered in the following works.

In [3], an approach for centralized self-management with
focus on self-configuration and self-healing in heterogeneous
systems is proposed for the automotive domain. The approach
uses publish/subscribe and request/response communication.
As use cases, updating, installing and removing of applications

are mentioned, as well as attaching and detaching platforms.
Tackled self-configuration problems are the deployment of ap-
plications (resp. their components) to heterogeneous platforms.
The Self-Configuration is performed by using constraint satis-
faction problems (CSP). The Web ontology language (OWL)
is used to describe platforms and components with informa-
tion, required by the self-configuration. Two self-configuration
algorithms are presented and compared by simulation, namely
backtracking (worst-fit) and Iterative repair (min-conflict).
The former algorithm is slower but better usable for building
configurations from scratch, while the latter algorithm is faster,
independent of the number of components and better usable
if a configuration for the previous system state is given.

In the project DySCAS, an automotive embedded middle-
ware supporting extensibility was investigated. Mentioned
use-cases were attaching new devices like sensors/actuators,
integrating new software functionality and the shutdown of
non demanded devices for power saving reasons. In case of
an addition of a new task to the system, also re-allocations
of existing tasks may be performed. During the deployment
calculation, the aim is to maximize the total quality-of-service
benefit of the tasks relative to their resource usage [8]. How-
ever, the deployment problem was solved by an algorithm and
not by a more generic SMT-solver supporting a broad set of
constraints in an easily usable way.

In [10], a comparison is shown about deployment-
calculation by a SAT-Solver and by the Simulated Annealing
Algorithm. The result was that SAT solving scales better and
is more efficient for larger sets of equations. The use-case
of the shown work is to find a new valid software allocation
in case of a component failure. This allocation determination
has to be performed as fast as possible to heal the system
quickly. However, for our work we do not see the task of
creating a new configuration as time-critical itself, because
we apply the self-configuration only during the integration of
new functionality, what we do not consider as time-critical
because the system operates stable during the determination
of the new configuration.

Optimisation of the allocation of functions in vehicle net-
works was also investigated in [5]. Self-adaptive ant colony
optimisation applied to function allocation in vehicle networks
was shown in [4].

Beside the deployment calculation problem, also the de-
termination of feasible schedules is a subtask of design
space exploration. An approach for the determination of static
schedules of a time-triggered network-on-chip was described
in [6]. The approach performs an optimization based on an
evolutionary algorithm set on top of the Z3 SMT Solver.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have shown a methodology towards
supporting extensions to existing deployments in the use case
to extend distributed systems with new components. Our
approach is based on the usage of SMT-solvers and is intended
to be applied at system-runtime in a self-configuring manner.

We discussed the assumed underlying platform properties
supporting our approach and presented a sketch example.

In order to cover all parts required to obtain a complete self-
configuring integration process for new components, there are
still a bunch of open issues to do. Important questions are
for instance how to cut the configuration problems into sub-
problems that can be solved independently or hierarchically
and how to setup the architecture of the self-configuration
itself to reach a scalable configuration? One question is also
how to use freedom on open design decisions to obtain optimal
configurations, like the choice of concrete channels between
components during the integration process. Also appropriate
replacement strategies are of interest for the case that the
self-configuration was not successful, but the new components
should be integrated nevertheless.

As future work, we are going to evaluate the efficiency and
scalablility of our SMT-based self-configuration approach to
different sets of software components and execution units.

Furthermore, we are going to refine the deployment problem
for a new platform architecture for future electric vehicles
that supports mixed-critical and fail-operational features. This
platform fulfills our assumed properties and is going to support
extensions in a self-configuring plug-and-play manner.

VIII. ACKNOWLEDGMENTS

This work has been investigated in the context of the
Project RACE (Robust and Reliant Automotive Computing
Environment for Future eCars), supported by the German
Federal Ministry of Economics and Technology (BMWi).

REFERENCES

[1] W. Damm, A. Votintseva, A. Metzner, B. Josko, T. Peikenkamp, and
E. Böde. Boosting re-use of embedded automotive applications through
rich components. Proc. of Foundations of Interface Technologies, 2005.

[2] L. De Moura and N. Bjørner. Z3: An efficient smt solver. Tools and
Algorithms for the Construction and Analysis of Systems, pages 337–
340, 2008.

[3] M. Dinkel and U. Baumgarten. Self-configuration of vehicle systems-
algorithms and simulation. In WIT’07: Proceedings of the 4th Interna-
tional Workshop on Intelligent Transportation, pages 85–91, 2007.

[4] M. Förster, B. Bickel, B. Hardung, and G. Kókai. Self-adaptive ant
colony optimisation applied to function allocation in vehicle networks. In
Conference on Genetic and evolutionary computation (GECCO), pages
1991–1998. ACM, 2007.

[5] B. Hardung. Optimisation of the allocation of functions in vehicle
networks. PhD thesis, University of Erlangen-Nuremberg, 2006.

[6] J. Huang, J. Blech, A. Raabe, C. Buckl, and A. Knoll. Static scheduling
of a time-triggered network-on-chip based on smt solving. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2012,
pages 509–514. IEEE, 2012.

[7] P. Oreizy, M. Gorlick, R. Taylor, D. Heimhigner, G. Johnson, N. Med-
vidovic, A. Quilici, D. Rosenblum, and A. Wolf. An architecture-
based approach to self-adaptive software. Intelligent Systems and Their
Applications, IEEE, 14(3):54–62, 1999.

[8] T. Qureshi, M. Persson, D. Chen, M. Törngren, and L. Feng. Model-
based development of middleware for self-configurable embedded real-
time systems: Experiences from the dyscas project. 2009.

[9] S. Voss and B. Schaetz. Deployment and scheduling synthesis for mixed-
critical shared-memory applications. In Engineering of Computer-Based
Systems (ECBS), 2013.

[10] M. Zeller, C. Prehofer, G. Weiss, D. Eilers, and R. Knorr. Towards self-
adaptation in real-time, networked systems: Efficient solving of system
constraints for automotive embedded systems. In Self-Adaptive and Self-
Organizing Systems (SASO), pages 79–88. IEEE, 2011.

