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1 Introduction

The technological achievements of the Information and Communication Technology are re-
shaping our life. The constant access to the network offered by the new generation of mobile
devices discloses important and unprecedented opportunities for business users and for “simple”
consumers alike. The next thrust is expected to come from the so-called cyberphysical systems
(CPS) [4].

A CPS is in the common lingo a device or a system where the computation units are deeply
interconnected with the physical system they control. This definition is apparently very close
to that of a “classic” embedded system (ES). However, CPSs differ for a number of reasons,
some of which are: 1) the number, the complexity and the interconnection between the different
control functions integrated, 2) the variety and the level of sophistication of the sensing devices
and of the related perception algorithms, 3) the sophisticated Human Machine Interface (HMI),
4) the degree of openness to changes dictated by unanticipated environment condition or user
requests, 5) the ability to share information and services with other CPS disseminated in the
environment setting the basis for an “internet of things” [1].

We have just outlines some of the requirements posed to the upcoming generation of CPSs,
but they are sufficient to suggest the challenging difficulty of the development. We believe
that this level of complexity requires out-and-out science of CPSs, where some of the tradi-
tional methodologies developed for ESs will be revisited and integrated with new ideas and
paradigms [3]. This science is taking its first steps, and it requires realistic examples and
benchmarks to measure the efficacy of the approaches it produces on a concrete ground.

The objective of this paper is to offer one of these examples, whose level of complexity has
been chosen as a compromise between featuring many of the requirements mentioned above
and being easy to replicate with a moderate effort for all researchers interested to use it as a
benchmark for their methodologies.

2 System Description

The case study considered in this paper is deeply inspired by the automotive industry. We
consider a robotic car, which we have prototyped using a scaled model in our laboratory. In
the following text, we will first describe the main functional components of the car. Then we
will move on to describing the hardware/software architecture used for its implementation.
Functional View. The system can be considered as a particular instance of a much larger
class of similar cyberphysical systems. It is interconnected to a physical environment, which is
comprised of the road where the car moves (along with external objects and agents) and by the
physical component of the system. Sensors collect information (in our case position, attitude
and velocity of the car), while actuators are the means that the system has for environment
manipulation (in our case the engine and the steering wheels).
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Figure 1: Functional organization of the system. Sensing and actuating blocks are involved
in control loops. Contollers are connected in a nested structure, with the planner being the
driving block of the entire system. Each loop is associated with a period.

Sensors and actuators are involved in computational activities that implement the feedback
control loops for system stabilisation, which in our case enable the system to follow a predefined
line. The complexity of the system requires a planner, which decides the system goals and sees
to their fulfilment. In our case, the planner decides the line to follow, in essence a sequence of
manoeuvres such as go straight with speed X, turn with radius Y and speed Z etc. This decision
is determined by different considerations, such as saving time, saving energy, overtaking slower
vehicles, avoiding fixed obstacles etc. The decided path is tracked by the low level controllers.

From a high level perspective, the system is comprised of a set of nested control loops. Each
control loop is activated periodically and has a different frequency, as shown in Fig. 1.

Looking at the model from the bottom up, at the low level the robot is equipped with two
servos: one is the engine used to move the car (which operates on the four wheels), and one is
for controlling the steering angle. The two servos are controlled by a PWM signal. Each wheel
has a relative encoder for speed monitoring, and, on the front of the car, a potentiometer is
mounted in order to get a feedback of the steering position. Such sensors are used by two low
level feedback loops (activated with a period of 2ms and 4ms), which implement PID controllers
used to regulate the speed and the turning angle.

A basic Inertial Platform, composed by gyros and accelerometers, completes the set of low
level sensors and is used to improve the estimate of the car position. This information is used by
a line following algorithm that controls the position of the car with respect to its ideal trajectory.
The algorithm utilises a high frame rate camera, pointing sideways and used to estimate position
and attitude of the car with respect to the road line. The line following algorithm and the
speed controller receive set points from a manoeuvre controller that decides the sequence of
manoeuvres and monitors their execution using encoders and the inertial platform to estimate
the progress along the planned line.

A second camera, mounted on the front of the vehicle, is used for path reconstruction and
obstacles detection. This camera is activated with a relatively low rate (5 frame per seconds).
The Planner receives an image captured through the camera, reconstructs the path and extracts
other meaningful information (e.g., on the presence of obstacles) The Planner, therefore, decides
which manoeuvre the vehicle has to perform and communicates it to the Manoeuvre Controller.

The vision algorithms used for each camera use a combination of Randomised algorithms

2



Robotic car-like vehicles: a case study for cyberphysical systems Moro, Rizano, Fontanelli Palopoli

Figure 2: The task set generated from the functional diagram. Each node represents a task and
is labeled with its average and worst case execution, both in ms. Edges represent communication
between tasks, and bitrate (bit/s) and payload (bytes) are specified. The diagram also shows
the allocation of the tasks in the computing units used in the system.

(RANSAC) and Kalman Filtering [5, 6]. Such sensing activities generate a widely changing
computing workload, a situation difficult to manage with the standard tools of digital control [2].

Hardware Architecture. The computing system is a mix of microcontrollers and micro-
processors. There are three main components. The first one is the FLEX: a development
board based on a 16 bit dsPIC. The board is provided with a complete software infrastructure
based on Erika which is a RTOS OSEK compliant. The PIC technology allows developers to
interface the microcontroller with external objects by means of common digital interfaces like
low power communication systems (SPI or I2C), or PWM. The FLEX also supports advanced
communication technologies like Ethernet and CAN bus.

The other two components are two ARM evaluation boards: Beagleboard and Pandaboard.
Both are Texas Instruments products and are based respectively on OMAP3 and OMAP4
processors version. The RTOS used for these components is a Linux kernel modified with RT-
preempt patches, which improve its real–time performance. Such export SPI and I2C interfaces
for connection with sensors and other low level peripheral; other connectivity solutions are the
classic USB, Ethernet, Bluetooth and IEEE802.11 which facilitate remote control and teleme-
try. Such boards have a sufficient computing power to support the functional blocks described
above, but have a limited power consumption and a low cost, both desirable features for robots
used in laboratory activities.

Fig. 3 shows the overall picture of the architecture. The processing units are connected
through a CAN BUS, which offers a sufficient bit-rate for our applications without incurring
the cost of an Ethernet switch in terms of power consumption. Other communication technolo-
gies are used for sensors and actuators interface. In general, the FLEX board is adopted for
basic functionalities of the system: motor and steering controllers, and therefore for the commu-
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Figure 3: The hardware architecture of the system. Pandaboard, Beagleboard and FLEX are
connected with a CAN bus, while each board has specific connections for communication with
sensors and actuators.

nication with low level sensors and actuators. An exception is the communication with gyros
and accelerometers that requires the connection with the Pandaboard, otherwise the FLEX
would not be able to sustain all the traffic.

The two cameras, seen as high level devices, have an USB connection to the two ARM
boards. Usually, ARM processors design integrates in the system some co-processing units, like
GPUs or DSPs, which extend the capabilities of this kind of processing units. In particular, it
is possible to increase the performance of algorithms, such as the ones used in our study case.
This reinforces the choice of using microprocessors to define a level of sensors and actuators
interaction, and exploit more advanced processors for the high level intelligence of the system.
A common bus between the processing units facilitates the data flow for all the tasks running
in the system.

Software Architecture and Mapping. Model based approaches recommend to use such
models as the primary design primitives to fine tune the design of the planner and of the control
algorithms. In addition to highlighting essential mathematical and physical aspects related to
the stability of the system and to the correctness of the design, the models composing the
functional diagram also suggest a possible decomposition into subsystems, a definition of their
relations and of the timing constraints for their execution.

After the system functionalities and time constraints are defined, the computational entities
are generated through automated tools or by a manual coding process. This is a refinement
step that produces a set of concurrent tasks: each one with a period related to the control loop
for which the task is involved. The set of tasks is easy to represent with a directed acyclic graph
(DAG), where the nodes correspond to the tasks and the edges are the involved communications.
An edge is associated with a weight which specifies the amount of data that need to be sent
(bitrate requirements). Fig. 2 shows how a DAG could be derived from the previous diagram
in Fig. 1. In our simple hypotheses, every functional block generates a task which receives
and sends messages to the tasks derived from the other functional blocks involved in the same
control loop. If required, some tasks may be further refined into subtasks. For instance, the
Lateral Camera task could be split in two tasks: one for frame capturing and one for image
processing. The splitting increases the complexity of the scheduling problem, but could give
benefits from the overall computational power utilization. Furthermore, the allocation of the
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two tasks in different computing units adds a new message in the system. In the example it
would be a whole frame.

Once a refinement of the system into tasks has been produced, the next steps is to map them
into our hardware architecture in order to take advantage of the physical parallelism enabled
by the different computation units and by their interconnection buses. An optimized task
allocation guarantees that all the tasks respect their deadlines and that the traffic generated by
tasks communication is sustainable by the system. For this reason, the allocation of tasks to a
specific computing unit not only should consider the computational power of the CPU, but also
the bandwidth required by output emission of the tasks. Tasks that need to communicate, if
allocated in the same unit, will not increase the traffic in the system because the data exchange
will happen internally at the computational unit. Whatever the communication link between
the two tasks, a fundamental problem at this point is to ensure that the system obtained has
the same semantics of its abstract counter part.

3 Possible applications of the case study

The case study described above is a very good work bench for testing different design approaches
for CPSs. Possible applications include (but are not limited to):

• Automated mapping procedures for functional models onto a software/hardware archi-
tecture (e.g., as shown by Zheng et al. [7].

• End-to-end design of distributed real–time systems, where the different tasks communicate
through shared memory or CAN Bus;

• Specification languages and planning for autonomous robots;

• Resource aware control.
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