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What is Practical SAT Solving? 2

simplifying

encoding

inprocessing

reencoding?

search

CDCL



SAT Competition / Race Winners on SC 2009 Application Benchmarks 3
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ZChaff, MiniSAT, My Solvers 4

 0

 200

 400

 600

 800

 1000

 1200

 0  20  40  60  80  100  120  140  160  180  200

CP
U

 T
im

e 
(in

 se
co

nd
s)

Number of problems solved

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Limmat (2002)
Zchaff (2002)
Berkmin (2002)
Forklift (2003)
Siege (2003)
Zchaff (2004)
SatELite (2005)
Minisat 2 (2006)
Picosat (2007)
Rsat (2007)
Minisat 2.1 (2008)
Precosat (2009)
Glucose (2009)
Clasp (2009)
Cryptominisat (2010)
Lingeling (2010)
Minisat 2.2 (2010)
Glucose 2 (2011)
Glueminisat (2011)
Contrasat (2011)
Lingeling 587f (2011)



DP / DPLL search 5

• dates back to the 50’ies:

1st version DP is resolution based ⇒ SatELite preprocessor [EénBiere05]

2st version D(P)LL splits space for time ⇒ CDCL

• ideas:

– 1st version: eliminate the two cases of assigning a variable in space or

– 2nd version: case analysis in time, e.g. try x = 0,1 in turn and recurse

• most successful SAT solvers are based on variant (CDCL) of the second version

works for very large instances

• recent (≤ 15 years) optimizations:

backjumping, learning, UIPs, dynamic splitting heuristics, fast data structures

(we will have a look at each of them)



DP Procedure search
[DavisPutnam’61]
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forever

if F => return satisfiable

if ⊥ ∈ F return unsatisfiable

pick remaining variable x

add all resolvents on x

remove all clauses with x and ¬x

⇒ SatELite preprocessor [EénBiere05]



D(P)LL Procedure search
[DavisLogemannLoveland’62]
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DPLL(F)

F := BCP(F) boolean constraint propagation

if F => return satisfiable

if ⊥ ∈ F return unsatisfiable

pick remaining variable x and literal l ∈ {x,¬x}

if DPLL(F ∧{l}) returns satisfiable return satisfiable

return DPLL(F ∧{¬l})

⇒ CDCL



DPLL Example search
[DavisLogemannLoveland’62]
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Simple Data Structures in DPLL Implementation search
[DavisLogemannLoveland’62]
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BCP Example search
[DavisLogemannLoveland’62]
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Example cont. search
[DavisLogemannLoveland’62]
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Example cont. search
[DavisLogemannLoveland’62]
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Example cont. search
[DavisLogemannLoveland’62]
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Example cont. search
[DavisLogemannLoveland’62]
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Example cont. search
[DavisLogemannLoveland’62]
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Example cont. search
[DavisLogemannLoveland’62]
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Conflict Driven Clause Learning (CDCL) search
Grasp [MarquesSilvaSakallah’96]
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Conflict Driven Clause Learning (CDCL) search
Grasp [MarquesSilvaSakallah’96]
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Conflict Driven Clause Learning (CDCL) search
Grasp [MarquesSilvaSakallah’96]
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Conflict Driven Clause Learning (CDCL) search
Grasp [MarquesSilvaSakallah’96]
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Decision Heuristics search 21

• static heuristics:

– one linear order determined before solver is started

– usually quite fast to compute, since only calculated once

– and thus can also use more expensive algorithms

• dynamic heuristics

– typically calculated from number of occurences of literals
(in unsatisfied clauses)

– could be rather expensive, since it requires traversal of all clauses
(or more expensive updates in BCP)

– effective second order dynamic heuristics (e.g. VSIDS in Chaff)



Other popular Decision Heuristics search 22

• Dynamic Largest Individual Sum (DLIS)

– fastest dynamic first order heuristic (e.g. GRASP solver)

– choose literal (variable + phase) which occurs most often (ignore satisfied clauses)

– requires explicit traversal of CNF (or more expensive BCP)

• look-ahead heuristics (e.g. SATZ or MARCH solver) failed literals, probing

– trial assignments and BCP for all/some unassigned variables (both phases)

– if BCP leads to conflict, enforce toggled assignment of current trial decision

– optionally learn binary clauses and perform equivalent literal substitution

– decision: most balanced w.r.t. prop. assignments / sat. clauses / reduced clauses

– related to our recent Cube & Conquer paper [HeuleKullmanWieringaBiere-HVC’11]



Exponential VSIDS (EVSIDS) search 23

Chaff [MoskewiczMadiganZhaoZhangMalik’01]

• increment score of involved variables by 1

• decay score of all variables every 256’th conflict by halfing the score

• sort priority queue after decay and not at every conflict

MiniSAT uses EVSIDS [EénSörensson’03/’06]

• update score of involved variables as actually LIS would also do

• dynamically adjust increment: δ′ = δ · 1f typically increment δ by 5%

• use floating point representation of score

• “rescore” to avoid overflow in regular intervals

• EVSIDS linearly related to NVSIDS



Relating EVSIDS and NVSIDS search 24

(consider only one variable)

δk =

{
1 if involved in k-th conflict

0 otherwise

ik = (1− f ) ·δk

sn = (. . .(i1 · f + i2) · f + i3) · f · · ·) · f + in =
n

∑
k=1

ik · f n−k = (1− f ) ·
n

∑
k=1

δk · f n−k (NVSIDS)

Sn =
f−n

(1− f )
· sn =

f−n

(1− f )
· (1− f ) ·

n

∑
k=1

δk · f n−k =
n

∑
k=1

δk · f−k (EVSIDS)



BerkMin’s Dynamic Second Order Heuristics search 25

[GoldbergNovikov-DATE’02]

• observation:

– recently added conflict clauses contain all the good variables of VSIDS

– the order of those clauses is not used in VSIDS

• basic idea:

– simply try to satisfy recently learned clauses first

– use VSIDS to choose the decision variable for one clause

– if all learned clauses are satisfied use other heuristics

– intuitively obtains another order of localization (no proofs yet)

• mixed results as other variants VMTF, CMTF (var/clause move to front)



Reducing Learned Clauses search 26

• keeping all learned clauses slows down BCP kind of quadratically

– so SATO and RelSAT just kept only “short” clauses

• better periodically delete “useless” learned clauses

– keep a certain number of learned clauses “search cache”

– if this number is reached MiniSAT reduces (deletes) half of the clauses

– keep most active, then shortest, then youngest (LILO) clauses

– after reduction maximum number kept learned clauses is increased geometrically

• LBD (Glue) based (apriori!) prediction for usefullness [AudemardLaurent’09]

– LBD (Glue) = number of decision-levels in the learned clause

– allows arithmetic increase of number of kept learned clauses



Restarts search 27

• for satisfiable instances the solver may get stuck in the unsatisfiable part

– even if the search space contains a large satisfiable part

• often it is a good strategy to abandon the current search and restart

– restart after the number of decisions reached a restart limit

• avoid to run into the same dead end

– by randomization (either on the decision variable or its phase)

– and/or just keep all the learned clauses

• for completeness dynamically increase restart limit



Inner/Outer Restart Intervals search 28

378 restarts in 104408 conflicts
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Inner/Outer Restart Scheduling search 29

int inner = 100, outer = 100;

int restarts = 0, conflicts = 0;

for (;;)

{

... // run SAT core loop for ’inner’ conflicts

restarts++;

conflicts += inner;

if (inner >= outer)

{

outer *= 1.1;

inner = 100;

}

else

inner *= 1.1;

}



Luby’s Restart Intervals search 30

70 restarts in 104448 conflicts
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Luby Restart Scheduling search 31

unsigned

luby (unsigned i)

{

unsigned k;

for (k = 1; k < 32; k++)

if (i == (1 << k) - 1)

return 1 << (k - 1);

for (k = 1;; k++)

if ((1 << (k - 1)) <= i && i < (1 << k) - 1)

return luby (i - (1 << (k-1)) + 1);

}

limit = 512 * luby (++restarts);

... // run SAT core loop for ’limit’ conflicts



Phase Saving and Rapid Restarts search 32

• phase assignment:

– assign decision variable to 0 or 1?

– only thing that matters in satisfiable instances

• “phase saving” as in RSat:

– pick phase of last assignment (if not forced to, do not toggle assignment)

– initially use statically computed phase (typically LIS)

– so can be seen to maintain a global full assignment

• rapid restarts: varying restart interval with bursts of restarts

– not ony theoretically avoids local minima

– works nicely together with phase saving



Backjumping search 33

x

y

xx

y

If y has never been used to derive a conflict, then skip y case.

Immediately jump back to the x case – assuming x was used.



General Implication Graph as Hyper-Graph search
CDCL / Grasp [MarquesSilvaSakallah’96]

34
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Optimized Implication Graph for Unit Resolution in DP search
CDCL / Grasp [MarquesSilvaSakallah’96]
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Conflict Clauses as Cuts in the Implication Graph search
CDCL / Grasp [MarquesSilvaSakallah’96]

36
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a simple cut always exists: set of roots (decisions) contributing to the conflict



Modern CDCL Loop search 37

Status Solver::search (long limit) {

  long conflicts = 0; Clause * conflict; Status res = UNKNOWN;

  while (!res)

    if (empty) res = UNSATISFIABLE;

    else if ((conflict = bcp ())) analyze (conflict), conflicts++;

    else if (conflicts >= limit) break;

    else if (reducing ()) reduce ();

    else if (restarting ()) restart ();

    else if (!decide ()) res = SATISFIABLE;

  return res;

}

Status Solver::solve () {

  long conflicts = 0, steps = 1e6;

  Status res;

  for (;;)

    if ((res = search (conflicts))) break;

    else if ((res = simplify (steps))) break;

    else conflicts += 1e4, steps += 1e6;

  return res;

}



Implication Graph search 38
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Conflict search 39
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Antecedents / Reasons search 40
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Conflicting Clauses search 41
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Resolving Antecedents 1st Time search 42
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Resolving Antecedents 1st Time search 43
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Resolvents = Cuts = Potential Learned Clauses search 44
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Potential Learned Clause After 1 Resolution search 45
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Resolving Antecedents 2nd Time search 46
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Resolving Antecedents 3rd Time search 47
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Resolving Antecedents 4th Time search 48
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1st UIP Clause after 4 Resolutions search 49
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Detection of UIPs search 50

• can be found by graph traversal in the order of made assignments

– trail respects this order

– traverse reasons of variables on trail starting with conflict

• count “open paths”

– initially size of clause with only false literals

– decrease counter if new reason / antecedent clause resolved

– if all paths converged, i.e. counter = 1, then this node is a UIP

– decision of current decision level is a UIP and thus a sentinel



Resolving Antecedents 5th Time search 51
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Decision Learned Clause search 52
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1st UIP Clause after 4 Resolutions search 53
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Locally Minimizing 1st UIP Clause search
Sörensson’06, BiereSörensson’09
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Locally Minimized Learned Clause search
Sörensson’06, BiereSörensson’09
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(d∨g∨ s∨h)



Local Minimization Algorithm search
Sörensson’06, BiereSörensson’09
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Two step algorithm:

1. mark all variables in 1st UIP clause

2. remove literals with all antecedent literals also marked

Correctness:

• removal of literals in step 2 are self subsuming resolution steps.

• implication graph is acyclic.

Confluence: produces a unique result.



Minimizing Locally Minimized Learned Clause Further? search
Sörensson’06, BiereSörensson’09
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(d∨g∨ s∨6 h)



Recursively Minimizing Learned Clause search
Sörensson’06, BiereSörensson’09
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e
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(b)
(d∨b∨ e)

(e∨g∨h) (d∨g∨ s∨h)
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(b∨d∨g∨ s)

(d∨g∨ s)



Recursively Minimized Learned Clause search
Sörensson’06, BiereSörensson’09
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= 1 @ 1c

k = 1 @ 3
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= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4
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= 1 @ 0

h

e

b

(d∨g∨ s)



Recursive Minimization Algorithm search
Sörensson’06, BiereSörensson’09
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[MiniSAT 1.13]

Four step algorithm:

1. mark all variables in 1st UIP clause

2. for each candidate literal: search implication graph

3. start at antecedents of candidate literals

4. if search always terminates at marked literals remove candidate

Correctness and Confluence as in local version!!!

Optimization: terminate early with failure if new decision level is “pulled in”



Two-Watched Literal Schemes search 61

• original idea from SATO [ZhangStickel’00]

– maintain the invariant: always watch two non-false literals

– if a watched literal becomes false replace it

– if no replacement can be found clause is either unit or empty

– original version used head and tail pointers on Tries

• improved variant from Chaff [MoskewiczMadiganZhaoZhangMalik’01]

– watch pointers can move arbitrarily SATO: head forward, trail backward

– no update needed during backtracking

• one watch is enough to ensure correctness but looses arc consistency

• reduces visiting clauses by 10x, particularly useful for large and many learned clauses



ZChaff Occurrence Stacks search 62
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Average Number Clauses Visited Per Propagation search 63
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Limmat / FunEx Occurrence Stacks search 66
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end
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still seems to be best way for real sharing of clauses in multi-threaded solvers



CompSAT / MiniSAT Occurrence Stacks search 67
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invariant: first two literals are watched



Average Number Literals Traversed Per Visited Clause search 68
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MChaff / PicoSAT Occurrence Lists search 69
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invariant: first two literals are watched



Occurrence Stacks for Binary Clauses search 70

start

top

end
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Additional Binary Clause Watcher Stack



Caching Potential Satisfied Literals (Blocking Literals) search
ChuHarwoodStuckey’09

71

start

top

end

1

−7 2 −7 −1−3

2 3−5

3

watch 2

watch −7

observation: often the other watched literal satisfies the clause

so cache this literals in watch list to avoid pointer dereference

for binary clause no need to store clause at all

can easily be adjusted for ternary clauses (with full occurrence lists)

LINGELING uses more compact pointer-less variant



Failed Literal Probing simplify 72
we are still working on tracking down the origin before [Freeman’95] [LeBerre’01]

• key technique in look-ahead solvers such as Satz, OKSolver, March

– failed literal probing at all search nodes

– used to find the best decision variable and phase

• simple algorithm

1. assume literal l, propagate (BCP), if this results in conflict, add unit clause ¬l

2. continue with all literals l until saturation (nothing changes)

• quadratic to cubic complexity

– BCP linear in the size of the formula 1st linear factor

– each variable needs to be tried 2nd linear factor

– and tried again if some unit has been derived 3rd linear factor



Extensions simplify 73

• lifting

– complete case split: literals implied in all cases become units

– similar to Stålmark’s method and Recursive Learning [PradhamKunz’94]

• asymmetric branching

– assume all but one literal of a clause to be false

– if BCP leads to conflict remove originally remaining unassigned literal

– implemented for a long time in MiniSAT but switched off by default

• generalizations:

– vivification [PietteHamadiSais ECAI’08]

– distillation [JinSomenzi’05][HanSomenzi DAC’07] probably most general (+ tries)



Other Types of Learning simplify 74

• similar to look-ahead heuristics: polynomially bounded search

– may be recursively applied (however, is often too expensive)

• Stålmarck’s Method

– works on triplets (intermediate form of the Tseitin transformation):

x = (a∧b), y = (c∨d), z = (e⊕ f ) etc.

– generalization of BCP to (in)equalities between variables

– test rule splits on the two values of a variable

• Recursive Learning (Kunz & Pradhan)

– (originally) works on circuit structure (derives implications)

– splits on different ways to justify a certain variable value



Bounded Variable Elimination (VE) simplify 75

[DavisPutnam60][Biere SAT’04] [SubbarayanPradhan SAT’04] [EénBiere SAT’05]

• use DP to existentially quantify out variables as in [DavisPutnam60]

• only remove a variable if this does not add (too many) clauses

– do not count tautological resolvents

– detect units on-the-fly

• schedule removal attempts with a priority queue [Biere SAT’04] [EénBiere SAT’05]

– variables ordered by the number of occurrences

• strengthen and remove subsumed clauses (on-the-fly)
(SATeLite [EénBiere SAT’05] and Quantor [Biere SAT’04])



Fast (Self) Subsumption simplify 76

• for each (new or strengthened) clause

– traverse list of clauses of the least occuring literal in the clause

– check whether traversed clauses are subsumed or

– strengthen traversed clauses by self-subsumption [EénBiere SAT’05]

– use Bloom Filters (as in “bit-state hashing”), aka signatures

• check old clauses being subsumed by new clause: backward (self) subsumption

– new clause (self) subsumes existing clause

– new clause smaller or equal in size

• check new clause to be subsumed by existing clauses forward (self) subsumption

– can be made more efficient by one-watcher scheme [Zhang-SAT’05]



Blocked Clause Elimination (BCE) simplify 77

fix a CNF F

one clause C ∈ F with l all clauses in F with l̄

l̄∨ ā∨ c

a∨b∨ l

l̄∨ b̄∨d

all resolvents of C on l are tautological ⇒ C can be removed

Proof assume assignment σ satisfies F\C but not C

can be extended to a satisfying assignment of F by flipping value of l



Blocked Clauses simplify
Kullmann’99

78

Definition A literal l in a clause C of a CNF F blocks C w.r.t. F if for every clause C′ ∈ F
with l̄ ∈ C′, the resolvent (C \ {l})∪ (C′ \ {l̄}) obtained from resolving C and C′ on l is a
tautology.

Definition [Blocked Clause] A clause is blocked if has a literal that blocks it.

Definition [Blocked Literal] A literal is blocked if it blocks a clause.

Example (a∨b)∧ (a∨ b̄∨ c̄)∧ (ā∨ c )

only first clause is not blocked.

second clause contains two blocked literals: a and c̄.

literal c in the last clause is blocked.

after removing either (a∨ b̄∨ c̄) or (ā∨ c), the clause (a∨b) becomes blocked
actually all clauses can be removed



Blocked Clauses and Encoding / Preprocessing Techniques simplify
JärvisaloBiereHeule’10 + JAR Article

79

COI Cone-of-Influence reduction

MIR Monontone-Input-Reduction

NSI Non-Shared Inputs reduction

PG Plaisted-Greenbaum polarity based encoding

TST standard Tseitin encoding

VE Variable-Elimination as in DP / Quantor / SATeLite

BCE Blocked-Clause-Elimination
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Inprocessing: Interleaving Preprocessing and Search simplify 81

PrecoSAT [Biere’09], Lingeling [Biere’10], now also in CryptoMiniSAT (Mate Soos)

• preprocessing can be extremely beneficial

– most SAT competition solvers use variable elimination (VE)
[EénBiere SAT’05]

– equivalence / XOR reasoning

– probing / failed literal preprocessing / hyper binary resolution

– however, even though polynomial, can not be run until completion

• simple idea to benefit from full preprocessing without penalty

– “preempt” preprocessors after some time

– resume preprocessing between restarts

– limit preprocessing time in relation to search time



Other Inprocessing / Preprocessing Techniques simplify 82

equivalent literal substitution find strongly connected components in binary implication
graph, replace equivalent literals by representatives

boolean ring reasoning extract XORs, then Gaussian elimination etc.

hyper-binary resolution focus on producing binary resolvents

hidden/asymmetric tautology elimination discover redundant clauses through probing

covered clause elimination use covered literals in probing for redundant clauses

unhiding randomized algorithm (one phase linear) for clause removal and strengthening



Benefits of Inprocessing simplify 83

• allows to use costly preprocessors

– without increasing run-time “much” in the worst-case

– still useful for benchmarks where these costly techniques help

– good examples: probing and distillation even VE can be costly

• additional benefit:

– makes units / equivalences learned in search available to preprocessing

– particularly interesting if preprocessing simulates encoding optimizations

• danger of hiding “bad” implementation though . . .

• . . . and hard(er) to get right! “Inprocessing Rules” JärvisaloHeuleBiere’12 at IJCAR


