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1. ANSWER SET PROGRAMMING (ASP)

◮ A declarative programming paradigm from the late 90s:
[Niemelä, 1999; Marek and Truszczyński, 1999;
Gelfond and Leone, 2002; Baral, 2003; Brewka et al., 2011]

◮ The syntax is based on PROLOG-style rules.
◮ The semantics of a program is determined by its stable

models [Gelfond and Lifschitz, 1988] a.k.a. answer sets.
◮ Answer sets are computed using answer set solvers:

SMODELS www.ts.hut.fi/Software/smodels/
DLV www.dlvsystem.om/index.php/DLV
CMODELS www.s.utexas.edu/~tag/models/
CLASP www.s.uni-potsdam.de/lasp/

◮ Applications of ASP: product configuration, combinatorial
problems, planning, verification, information integration, . . .

www.tcs.hut.fi/Software/smodels/
www.dlvsystem.com/index.php/DLV
www.cs.utexas.edu/~tag/cmodels/
www.cs.uni-potsdam.de/clasp/
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Modeling Principles for ASP

◮ Typical problem encodings aim at a very tight (1-to-1)
correspondence between solutions and answer sets.

◮ A uniform encoding is independent of the input instance.
◮ Rules with variables are treated via Herbrand instantiation.

Problem
Domain

Data

Solutions

→
→
→

←

Encoding
(Program)

Facts

Extraction

→

←

ASP
Grounder

Solver
↓

Answer sets



SAT/SMT School 2012

5/70

Rule-Based Syntax

Typical programs involve normal rules (1), constraints (2), or
choice (3), cardinality (4), weight (6), or disjunctive (7) rules:

a ← b1, . . . , bn, not c1, . . . , not cm. (1)

← b1, . . . , bn, not c1, . . . , not cm. (2)

{a1, . . . ,ah} ← b1, . . . , bn, not c1, . . . , not cm. (3)

a ← l ≤ {b1, . . . , bn, not c1, . . . , not cm}. (4)

a ← w ≤ [b1 = wb1
, . . . ,bn = wbn (5)

not c1 = wc1 , . . . ,not cm = wcm ]. (6)

a1 | . . . | ah ← b1, . . . , bn, not c1, . . . , not cm. (7)

ASP systems support further extensions and syntactic sugar!
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Example: Some Dinner Rules
Main course:
{dinner}. {beef,pork, fish} ← dinner.
← dinner, not beef, not pork, not fish.
toomany← 2 ≤ {beef,pork, fish}.
← toomany.

Drinks:
{bycar} ← dinner.
red← beef, not bycar. red← pork, not bycar.
white← fish, not bycar. wine← red. wine← white.
water← dinner, not wine.

Budget:
bankrupt← 26 ≤

[beef = 20,pork = 15, fish = 25, red = 7,white = 5].
← bankrupt.
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Simple Demo$ gringo dinner.lp | lasp 0lasp version 1.3.5Reading from stdinSolving...Answer: 1Answer: 2dinner pork byar waterAnswer: 3dinner beef byar waterAnswer: 4dinner fish byar waterAnswer: 5dinner pork red wineSATISFIABLEModels : 5Time : 0.000s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
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Example: the Hamiltonian Cycle Problem (HCP)

Definition
Given an input graph G =
〈N,E〉 find a cycle which
visits each node in N ex-
actly once through the
edges in E ⊆ N2.

[www.tsp.gateh.edu]

www.tsp.gatech.edu
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Example: the Hamiltonian Cycle Problem (HCP)
◮ Suppose that the input graph G is given as a set of facts

edge(a,b), edge(b, c), edge(c,a), . . .

◮ The following rules capture the Hamiltonian cycles of G:

X - Y
Z

�����1 Z

�����1
node(X ) ← edge(Y ,X ).

node(Y ) ← edge(Y ,X ).

in(X ,Y ) ← edge(X ,Y ), not out(X ,Y ).

out(X ,Y ) ← edge(X ,Y ), edge(X ,Z ), in(X ,Z ), Y 6= Z .

out(X ,Y ) ← edge(X ,Y ), edge(Z ,Y ), in(Z ,Y ), X 6= Z .

reach(a).

reach(Y ) ← edge(X ,Y ), in(X ,Y ), reach(X ).

← not reach(X ), node(X ).
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Answer-Set Semantics
◮ A normal program P is a finite set of normal rules.
◮ The Herbrand universe and the Herbrand base of P are

denoted by HU(P) and HB(P), respectively.
◮ The formal semantics of a program P is determined by its

answer sets S ⊆ HB(P) satisfying

S = cl(Gnd(P)S)

where
1. the ground program Gnd(P) consists of all instances rσ of

rules r ∈ P obtained by substitutions σ over HU(P);
2. the reduct Gnd(P)

S contains a positive rule a← b1, . . . , bn

for each a← b1, . . . , bn, not c1, . . . , not cm ∈ Gnd(P) such
that c1 6∈ S, . . . , cm 6∈ S; and

3. the closure cl(Gnd(P)S) is the least subset of HB(P) closed
under the rules of Gnd(P)

S.
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Intelligent Grounding
◮ A rule with variables stands for its all ground instances.
◮ For the universe {a,b, c}, there are 9 instances of

in(X ,Y )← edge(X ,Y ), not out(X ,Y ).

◮ In the presence of edge(a,b), edge(b, c), and edge(c,a),
i.e., facts describing the input graph, only 3 are needed:

in(a,b)← edge(a,b), not out(a,b).
in(b, c)← edge(b, c), not out(b, c).
in(c,a)← edge(c,a), not out(c,a).

◮ In general, grounding can be a computationally hard task
but a number of efficient implementations exist:

— LPARSE [Syrjänen, 2001]
— DLV [Perri et al., 2007]
— GRINGO [Gebser et. al, 2007]

◮ Database techniques and minimal models are exploited.
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Example: Complete Ground Program for a HCP
edge(a,b). edge(b, c). edge(c,a). node(a). node(b).
edge(b,a). edge(c,b). edge(a, c). node(c).
in(a,b)← not out(a,b). in(b,a)← not out(b,a).
in(b, c)← not out(b, c). in(c,b)← not out(c,b).
in(c,a)← not out(c,a). in(a, c)← not out(a, c).
out(a,b)← in(a, c). out(a, c)← in(a,b).
out(a,b)← in(c,b). out(a, c)← in(b, c).
out(b,a)← in(b, c). out(b, c)← in(a, c).
out(b,a)← in(c,a). out(b, c)← in(b,a).
out(c,a)← in(b,a). out(c,b)← in(a,b).
out(c,a)← in(c,b). out(c,b)← in(c,a).
reach(b)← in(a,b). reach(b)← in(c,b), reach(c).
reach(c)← in(a, c). reach(c)← in(b, c), reach(b).
reach(a). ← not reach(b). ← not reach(c). ← not reach(d).
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Example: Computing the Reduct
Consider S = {edge(a,b),edge(b, c),edge(c,a),edge(b,a),

edge(c,b),edge(a, c),node(a),node(b),node(c),

in(a,b), in(b, c), in(c,a),

out(b,a),out(c,b),out(a, c),

reach(a), reach(b), reach(c), reach(d)}

1. The rules involving not , i.e.,

in(a,b)← not out(a,b). in(b,a)← not out(b,a).

in(b, c)← not out(b, c). in(c,b)← not out(c,b).

in(c,a)← not out(c,a). in(a, c)← not out(a, c).

reduce into facts: in(a,b). in(b, c). in(c,a).

2. The set S satisfies the constraints:

← not reach(b). ← not reach(c). ← not reach(d).
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Example: Computing the Closure

The rules of the reduct Gnd(P)S are:

edge(a,b). edge(b, c). edge(c,a). node(a). node(b).
edge(b,a). edge(c,b). edge(a, c). node(c).
in(a,b). in(b, c). in(c,a).
out(a,b)← in(a, c). out(a, c)← in(a,b).
out(a,b)← in(c,b). out(a, c)← in(b, c).
out(b,a)← in(b, c). out(b, c)← in(a, c).
out(b,a)← in(c,a). out(b, c)← in(b,a).
out(c,a)← in(b,a). out(c,b)← in(a,b).
out(c,a)← in(c,b). out(c,b)← in(c,a).
reach(b)← in(a,b). reach(b)← in(c,b), reach(c).
reach(c)← in(a, c). reach(c)← in(b, c), reach(b).
reach(a).

=⇒ S = cl(Gnd(P)S) so that S is an answer set.
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Key Features of ASP

◮ Typical ASP encodings follow a three-phase design:
— Generate the solution candidates
— Define the required concepts
— Test if a candidate satisfies its criteria

◮ Default negation favors concise encodings.
◮ Basic database operations are definable in terms of rules:

— Projection: node(X)← edge(Y ,X).
— Union: node(X)← edge(Y ,X). node(Y )← edge(Y ,X).
— Intersection: symm(X ,Y )← edge(X ,Y ), edge(Y ,X).
— Complement: unidir(X ,Y )← edge(X ,Y ), not edge(Y ,X).

◮ Moreover, recursive definitions can be written, e.g., to
capture various kinds of closures of relations:

path(X ,Y )← path(X ,Z ), path(Z ,Y ).

=⇒ ASP = KR + DDB + Search



SAT/SMT School 2012

16/70

Solver Technology Behind the CLASP System

◮ Conflict analysis via the FirstUIP scheme
◮ Nogood recording and deletion
◮ Backjumping
◮ Restarts
◮ Conflict-driven decision heuristics
◮ Progress saving
◮ Unit propagation via watched literals
◮ Dedicated propagation of binary and ternary nogoods
◮ Dedicated propagation of cardinality/weight rules
◮ Equivalence reasoning
◮ Resolution-based preprocessing

[Gebser et al., 2007] [http://www.s.uni-potsdam.de/lasp/]

http://www.cs.uni-potsdam.de/clasp/
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Translation-Based Approach

◮ Counts on translations from ASP to other formalisms like
◮ Propositional satisfiability (SAT)
◮ Satisfiability modulo theories (SMT)
◮ Linear programming (LP)
◮ Mixed integer programming (MIP)

◮ The idea is to combine the expressiveness of rules with the
existing powerful solver technology for SAT, SMT, . . .

◮ Further language extensions can be implemented by
— devising suitable translations for the extensions and
— using solvers as black boxes for computations.

◮ Solver technology is constantly improving and we expect to
gain from this development work using translations.



SAT/SMT School 2012

18/70

2. TRANSLATING ASP INTO SAT

◮ SAT solvers provide a promising computational platform to
implement the rule-based reasoning required in ASP.

◮ A number of ASP systems exploiting SAT solvers exist:
— ASSAT [Lin and Zhao, 2004]
— CMODELS [Giunchiglia et al., 2006]
— LP2SAT [T.J., 2004]
— LP2SAT2 [T.J. and Niemelä, 2011]

◮ However, due to the global nature of answer sets, devising
a translation from ASP to SAT is nontrivial.

Example

{a← not b. b ← not a. } 7−→ {a ∨ b,¬a ∨ ¬b}.
{a← b. b ← a. } 7−→ {a ∨ ¬b,¬a ∨ b} ∪ {¬a ∨ ¬b} !?
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Fundamental Properties: PFM Translations

A translation function Tr is PFM iff it is

polynomial, i.e., for some polynomial f , the translation Tr(P)
can be computed in at most f (‖P‖) steps,

faithful, i.e., for all programs P

P ≡v Tr(P),

and modular, i.e., for all programs P and Q,

Tr(P ∪Q) ≡v Tr(P) ∪ Tr(Q).

In the above, ≡v denotes visible equivalence which is based on
the visible Herbrand base HBv(P) of the program P.
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Visible Equivalence

◮ Visible equivalence P ≡v Q requires HBv(P) = HBv(Q)
and a bijection f : AS(P)→ AS(Q) such that ∀S ∈ AS(P),

S ∩ HBv(P) = f (S) ∩ HBv(Q).

...
��
��

��
��

ad

��
��

��
��

bd

��
��
��
��

a
b

c

...
��
��
��
��
a c

��
��
��
��
b c

��
��
��
��

a
b d

...

-f

-f

-f

◮ A newer variant of ≡v insists on the coherence of f .
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A PFM Translation from SAT to ASP
◮ A clause A ∨ ¬B is translated [Niemelä, 1999] into

TrN(A ∨ ¬B) = {a← not a. a← not a.| a ∈ A ∪ B} ∪

{← not A, not B}.

◮ For a set of clauses S,

TrN(S) =
⋃

{TrN(A ∨ ¬B) | A ∨ ¬B ∈ S}.

Theorem
For any sets of clauses S, S1, and S2,

1. Tr(S) can be computed in linear time,

2. S ≡v TrN(S), and

3. TrN(S1 ∪ S2) ≡v TrN(S1) ∪ TrN(S2).
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Non-Modularity in Natural Language
Finnish idiom: “Tehdä kärpäsestä härkänen. ”

7−→

Translation into English: “To make a bull out of a fly. ”

7−→

Correct translation: “To make a mountain out of a molehill. ”

[www.eluova.fi] [en.wikipedia.org]

www.eluova.fi
en.wikipedia.org
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Intranslatability Results

◮ There is no modular translation from logic programs to
propositional theories [Niemelä, 1999].

Program Answer sets Theory
P1 = {a} {a} 7→ T1 |= a
P2 = {a← not a} - 7→ T2 |= ⊥
P1 ∪ P2 {a} 7→ T1 ∪ T2 |= ⊥

◮ Such a translation is (likely) to be exponential if auxiliary
atoms are not allowed [Lifschitz and Razborov, 2006]

◮ Systematic analysis leads to an expressive power
hierarchy for classes of logic programs [T.J., 2006].
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Expressive Power Hierarchy
◮ The (non)existence of PFM/FM translations induces:

Normal rules: a← b1, . . . , bn, not c1, . . . ,not cm.

⇓PFM ⊆

Binary rules: a← b1, b2, not c1, . . . ,not cm.

6 ⇓FM ⊆

Unary rules: a← b, not c1, . . . ,not cm.

6 ⇓FM ⊆

Atomic rules: a← not c1, . . . ,not cm.

6 ⇓FM ⇑PFM

Clauses: a1 ∨ · · · ∨ an ∨ ¬b1 ∨ · · · ∨ ¬bm

◮ Any faithful translation from ASP to SAT is non-modular.
◮ Strict relationships do not depend on translation length!
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Existing Translations

◮ The translation of [Ben-Eliyahu and Dechter, 1994] is not
faithful in the strict sense of visible equivalence (≡v).

◮ In the worst case, an exponential number of loop formulas
[Lin and Zhao, 2002] is required (incrementally).

◮ The translation of [Lin and Zhao, 2003] is faithful but
quadratic.

◮ Level numberings [T.J., 2004] enable a faithful and
sub-quadratic translation of length of

O(‖P‖ × log2 n)

where n is the size of the largest strongly connected
component in the positive dependency graph of P.
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Positive Dependency Graph
◮ Given a program P, the positive dependency graph G+

P
1. has HB(P) as the set of nodes and
2. there is an edge 〈a, b〉 in G+

P whenever there is a rule r ∈ P
such that a = H(r) and b ∈ B+(r).

◮ A strongly connected component (SCC) S ⊆ HB(P) of G+
P

is a maximal subset of HB(P) such that every pair a,b ∈ S
is mutually reachable in G+

P .

Example
a← b.
a← e.
b ← c.
c ← d .
c ← f .
d ← a. e � a

6

b - c

?

f-

d�

S1 = {e}
S2 = {f}
S3 = {a,b, c,d}
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Program Completion
◮ The idea [Clark, 1978] is to rewrite the defining rules

a← B1, . . . ,a← Bn of an atom as an equivalence

a↔ (
∧

B1) ∨ · · · ∨ (
∧

Bn)

where
∧

Bi denotes the conjunction of literals in Bi .
◮ Program completion is faithful for tight programs under

answer set semantics but not faithful in general:

CM(Comp({a← a. })) = CM({a↔ a}) = {∅, {a}}.

Example
In case of Niemelä’s counter-example, we obtain:

1. CM(Comp({a. })) = CM({a↔ ⊤}) = {{a}}.

2. CM(Comp({a← not a. })) = CM({a↔ ¬a}) = ∅.

3. CM(Comp({a. a← not a. })) = CM({a↔ ⊤∨ ¬a}) = {{a}}.
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Supported Sets (a.k.a. Supported Models)

◮ A supported set S ⊆ HB(P) of P [Apt et al., 1988] is
— closed under the rules of P, i.e., for every r ∈ P, S |= B(r)

implies H(r) ∈ S, and
— for each a ∈ S there is a supporting rule r ∈ P such that

H(r) = a and S |= B(r).

◮ The set of supported sets of P is denoted by SuppS(P).
◮ For a set S ⊆ HB(P), define the set of supporting rules

SuppR(P,S) = {r ∈ P | S |= B(r)}.

Theorem (Marek and Subrahmanian, 1992)
For any normal program P,

1. AS(P) ⊆ SuppS(P) and

2. SuppS(P) = CM(Comp(P)).
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Level Numbers

◮ Let S be a supported set of a normal program P.
◮ A function λ : S → N is a level numbering for S iff

for all atoms a ∈ S,

λ(a) = min{λ(B) | a← B, not C ∈ SuppR(P,M)}

where
λ(B) = max{λ(b) | b ∈ B}+ 1.

◮ A level numbering λ of a supported set S is unique.

Theorem (T.J., 2004)
A supported set S of P is an answer set of P iff it has a level
numbering λ : S → N.
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Example

Consider a positive normal program P

a← b. b ← a.

and its supported sets S1 = ∅ and S2 = {a,b}:

1. There is a trivial level numbering λ1 : S1 → N for S1.

2. The requirements for a level numbering λ2 : S2 → N are:
{

λ2(a) = λ2(b) + 1
λ2(b) = λ2(a) + 1

=⇒ There is no such level numbering λ2.

Therefore, the only answer set of P is S1.
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Translation into Atomic Programs

◮ A faithful and polynomial-time translation TrAT(P) of a
normal program P into an atomic normal program

TrSUPP(P) ∪ TrCTR(P) ∪ TrMIN(P) ∪ TrMAX(P)

where the parts of the translation
1. TrSUPP(P) captures a supported set S and supporting rules,
2. TrCTR(P) chooses level numbers using binary counters,
3. TrMIN(P) ensures the minimality of λ(a) for a ∈ S, and
4. TrMAX(P) ensures the maximality of λ(B+(r)) for

r ∈ SuppR(P,S).

◮ A number of subprograms for counters are needed.
◮ The translation TrAT is inherently non-modular but TrAT(P)

is always tight so that P ≡v TrAT(P) ≡v Comp(TrAT(P)).
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Example
For P = {a← b. b ← a. }, the translation TrAT(P) contains:

a← not bt(r1). bt(r1)← not bt(r1). bt(r1)← not b.
b ← not bt(r2). bt(r2)← not bt(r2). bt(r2)← not a.
a← not a. b ← not b.
← not a,not min(a).
← not b,not min(b).
← not bt(r1),not lt(nxt(b), ctr(a))1.

← not bt(r2),not lt(nxt(a), ctr(b))1.

min(a)← not bt(r1),not eq(nxt(b), ctr(a))
min(b)← not bt(r2),not eq(nxt(a), ctr(b))

in addition to the required subprograms for counters.

The only answer set of TrATP is N = {a,b,bt(r1),bt(r2)}.
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3. FURTHER TRANSLATIONS

In this part, we will consider a number of translations from
normal/SMODELS programs to

◮ difference logic [Niemelä, 2008; T.J. et al., 2009],
◮ fixed-width bit-vector theories [Nguyen et al., 2011],
◮ propositional satisfiability [T.J. and Niemelä, 2011] which

improves the translation of [T.J., 2004] by
1. covering extended rule types such as choice rules,

cardinality rules, and weight rules [Simons, 1999];
2. compacting the translation using ranking constraints; and
3. removing the asymmetry of positive/negative subgoals.
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Difference Logic
◮ The syntax of formulas in difference logic [Nieuwenhuis

and Oliveras, 2005] is based on
— atomic propositions a, b, c, . . . ,
— simple linear constraints of the form xi + k ≥ xj , and
— propositional connectives ¬, ∨, ∧,→, and↔.

◮ On the semantical side, each interpretation assigns
— a truth value ⊤ or ⊥ to every propositional variable a, and
— an integer value i to each integer variable xj .

◮ Models are defined in the standard way.

Example
For instance, the formula

(x1 + 2 ≥ x2)↔ (p1 → ¬(x2 + 2 ≥ x1))

is satisfied in an interpretation with p1 = ⊥, x1 = 1, and x2 = 1.
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Representing the Completion
◮ A normal rule r = a← b1, . . . ,bn,not c1, . . . ,not cm in the

definition DefP(a) of an atom a ∈ HB(P) is written

bt(r)↔ b1 ∧ · · · ∧ bn ∧ ¬c1 ∧ · · · ∧ ¬cm.

◮ The atom a itself is defined by a↔
∨

r∈DefP(a)
bt(r).

◮ E.g., for DefP(a) = {a← a,b. a← not d . }, we introduce:

bt(r1)↔ a ∧ b, bt(r2)↔ ¬d , a↔ bt(r1) ∨ bt(r2).

◮ Given SCC(a), the definition DefP(a) splits into two
disjoint, external and internal parts:

ExtP(a) = {r ∈ DefP(a) | B+(r) ∩ SCC(a) = ∅} and
IntP(a) = {r ∈ DefP(a) | B+(r) ∩ SCC(a) 6= ∅}.
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Weak Ranking Constraints in Difference Logic
◮ The external and internal support of a ∈ HB(P) having a

non-trivial SCC(a) depend on DefP(a) = ExtP(a) ⊔ IntP(a):

ext(a)↔
∨

r∈ExtP(a)

bt(r),

int(a)↔
∨

r∈IntP(a)

[bt(r) ∧
∧

b∈B+(r)∩SCC(a)

(xa − 1 ≥ xb)],

a→ ext(a) ∨ int(a), ¬ext(a) ∨ ¬int(a), ext(a)→ (xa = z).

Example
In the context of P = {a← not c. a← b. b ← a. }, we obtain:

ext(a)↔ bt(r1), int(a)↔ bt(r2) ∧ (xa − 1 ≥ xb),
ext(b)↔ ⊥, int(b)↔ bt(r3) ∧ (xb − 1 ≥ xa).
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Strong Ranking Constraints in Difference Logic
◮ For an atom a ∈ HB(P) and DefP(a) = ExtP(a) ⊔ IntP(a),

the local and global strong ranking constraints are
∧

r∈IntP(a)

[bt(r)→
∨

b∈B+(r)∩SCC(a)

(xb + 1 ≥ xa)],

int(a)→
∨

r∈IntP(a)

[bt(r) ∧
∨

b∈B+(r)∩SCC(a)

(xb + 1 = xa)].

Example
Consider again the program P = {a← not c. a← b. b ← a. }.

For the atom a ∈ HB(P), the strong ranking constraints are:

bt(r2)→ (xb + 1 ≥ xa),
int(a)→ [bt(r2) ∧ (xb + 1 = xa)].
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(Weak) Correspondence of Models
◮ Ranking constraints (RCs) are compatible—giving rise to

— Trw
DIFF(P) is the completion CompN(P) plus weak RCs,

— Trwl
DIFF(P) extends Trw

DIFF(P) with local strong RCs,
— Trwg

DIFF(P) extends Trw
DIFF(P) with global strong RCs, and

— Trwlg
DIFF(P) extends Trw

DIFF(P) with both local and global
strong RCs.

◮ A 1-to-1 correspondence of AS(P) and MT(Tr∗DIFF(P)) is
impossible due to the properties of difference logic.

Theorem (Niemelä, 2008; T.J. et al., 2009)
Let P be a normal logic program.

1. If S ∈ AS(P), then there is a model 〈M, τ〉 ∈ MT(Tr∗DIFF(P))
such that S = M ∩HB(P).

2. If 〈M, τ〉 ∈ MT(Tr∗DIFF(P)), then S = M ∩HB(P) ∈ AS(P).
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Bit-Vector Logic

◮ Fixed-width bit-vector logic (cf. SMT-LIB format) uses free
functional constants x to denote m-bit vectors x [1 . . .m].

◮ It extends propositional logic with constraints such as

t1 =m t2 and t1 <m t2
where t1 and t2 are well-formed m-bit terms.

◮ For instance, a bit-vector constraint t1 <m t2 is satisfied in
an interpretation 〈I, τ〉, denoted by 〈I, τ〉 |= t1 <m t2, iff

τ(t1) < τ(t2).

◮ Other bit-vector primitives are treated similarly.

Example
Consider the theory T = {a→ (x <2 y), b → (y <2 x)}.
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Weak Ranking Constraints in Bit-Vector Logic
◮ The external and internal support of an atom a ∈ HB(P)

can be formalized in analogy to difference logic:

ext(a)↔
∨

r∈Exta(P)

bt(r),

int(a)↔
∨

r∈Inta(P)

[bt(r) ∧
∧

b∈B+(r)∩SCC(a)

(xb <m xa)],

a→ ext(a) ∨ int(a), ¬ext(a) ∨ ¬int(a), ext(a)→ (xa =m 0).

Example
In the context of P = {a← not c. a← b. b ← a. }, we get:

ext(a)↔ bt(r1), int(a)↔ bt(r2) ∧ (xb <2 xa),
ext(b)↔ ⊥, int(b)↔ bt(r1) ∧ (xa <2 xb).
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Difference Logic versus Bit-Vector Logic

Translation time/length :
◮ The translation from ASP to both logics is basically linear.
◮ Bit-vector solvers such as BOOLECTOR [Brummayer and

Biere, 2009] reduce bit vectors into Boolean vectors.
=⇒ The logarithmic factor of TrAT(P) recurs.

Faithfulness :
◮ A 1-to-1 correspondence between answer sets and the

models of the translation is impossible in difference logic.

◮ The translations Trwl
BV(P), Trwg

BV(P), and Trwlg
BV (P) are faithful

in the strict sense, i.e., P ≡v Tro
BV(P) for o ∈ {wl,wg,wlg}.



SAT/SMT School 2012

42/70

Extended Rule Types
◮ The class of weight constraint programs supported by

LPARSE and GRINGO is based on atoms of form:

l ≤ {b1, . . . , bn, not c1, . . . , not cm} ≤ u

l ≤ [b1 = wb1
, . . . , bn = wbn ,

not c1 = wc1 , . . . , not cm = wcm ] ≤ u

◮ Rules involving such constraints are straightforward to
translate into cardinality and weight rules of forms

a← l ≤ {b1, . . . , bn, not c1, . . . , not cm}.

a← l ≤ [b1 = wb1
, . . . ,bn = wbn

not c1 = wc1 , . . . ,not cm = wcm ].

◮ It is also easy to translate ground weight rules into
difference/bit-vector logic as part of Tr∗DIFF/Tr∗BV translations.
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A Native Translation of Weight Constraints

◮ A weight constraint of form

l ≤ [b1 = wb1 , . . . , bn = wbn , not c1 = wc1 , . . . , not cm = wcm ]

can be evaluated with the following case analysis formulas:
b1 → (s1 =k wb1), ¬b1 → (s1 =k 0),
b2 → (s2 =k s1 +k wb2), ¬b2 → (s2 =k s1),
...

...
bn → (sn =k sn−1 +k wbn), ¬bn → (sn =k sn−1),
c1 → (sn+1 =k sn), ¬c1 → (sn+1 =k sn +k wc1),
...

...
cm → (sn+m =k sn+m−1), ¬cm → (sn+m =k sn+m−1 +k wcm).

◮ The formula ¬(sn+m <k l) checks the lower bound l .
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New Translation from ASP to SAT

1. Remove cardinality and weight rules as well as choice
rules under answer-set semantics.

2. Capture answer sets with supported sets.

3. Apply Clark’s completion and clausify in Tseitin’s style.

Input Output Semantics

SMODELS program P Normal(P) AS(Normal(P))
Normal program P LP2LP(P) SuppS(LP2LP(P))
Normal program P CompC(P) CM(CompC(P))

Theorem (T.J. and Niemelä, 2011)
For an SMODELS program, P ≡v CompC(LP2LP(Normal(P))).
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Removing Cardinality Rules
◮ Eén and Sörensson [2006] translate cardinality constraints

into clauses—trying to share structure as far as possible.
◮ However, in the case of an ASP to SAT translation, the

preservation of positive dependencies becomes crucial.

Example
The rule a← 3 ≤ {b1,b2,b3,not c1,not c2} is captured by:

a ←− cnt (3, 1) ←− cnt (3, 2) ←− cnt (3, 3)

↑ b1 ↑ b2 ↑ b3

cnt (2, 2) ←− cnt (2, 3) ←− cnt (2, 4)

↑ b2 ↑ b3 ↑ not c1

cnt (1, 3) ←− cnt (1, 4) ←− cnt (1, 5)

↑ b3 ↑ not c1 ↑ not c2
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Capturing Answer Sets with Supported Ones
◮ The syntax of normal logic programs is preserved.
◮ The shift in semantics is achieved by adding rules which

require the existence of a level ranking [Niemelä, 2008].
◮ The extra rules make Clark’s completion sound.

Example
For P = {a← not c. a← b. b ← a. }, we introduce:

just(a)← not c.

just(a)← b, lt(ctr(b), ctr(a)).

just(b)← a, lt(ctr(a), ctr(b)).

← a, not just(a).

← b, not just(b).
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4. IMPLEMENTATION AND EXPERIMENTS

◮ The file format of SMODELS system is assumed.
◮ We have implemented a number of translators:

Translator Output specification
for a program P

LP2NORMAL Normal(P)
LP2ATOMIC TrAT(P)

LP2LP2 LP2LP∗(P)
LP2SAT CompC(P)

LP2DIFF Tr∗DIFF(P)
LP2BV Tr∗BV(P)

◮ Strong local/global ranking constraints can be included by
command line options -l and -g (when appropriate).
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Using The Tools
These tools can be combined in shell pipelines:lparse program.lp \| lp2normal | lp2lp2 | lp2sat -n | minisat -lparse program.lp | lp2diff | z3 -smt -m /dev/stdinlparse program.lp | lp2bv | booletor --smtgringo program.lp \| smodels -internal -nolookahead \| lpat | lp2normal | igen \| smodels -internal -nolookahead \| lpat -s=symbols.sm \| lp2lp2 \| lp2sat -n \| minisat /dev/stdin model.txt
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Experiments

◮ The NP-complete problems from the 2nd ASP Competition:

15-Puzzle, Blocked n-Queens, Channel Routing, Connected
Dominating Set, Disjunctive Scheduling, Edge Matching,

Fastfood, Generalized Slitherlink, Graph Colouring, Graph
Partitioning, Hamiltonian Path, Hanoi, Hierarchical Clustering,

Knight Tour, Labyrinth, Maze Generation, Schur Numbers,
Sokoban, Solitaire, Sudoku, Travelling Salesperson, Weight

Bounded Dominating Set, Wire Routing.

◮ GRINGO (version 2.0.5) was used to ground all program
instances to provide an identical input for all systems.

◮ The parameters and options of solvers were not tuned.
◮ All answers sets found were verified using SMODELS 2.34.
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Systems Subject to Comparison

Native ASP solvers :

1. CLASP [Gebser et al., 2007]

2. CMODELS [Giunchiglia et al., 2006] calling ZCHAFF

Translation-based ASP solving :

1. LP2ATOMIC+LP2SAT and MINISAT [Eén and Sörensson]

2. LP2LP2+LP2SAT and MINISAT [Eén and Sörensson]

3. LP2DIFF and Z3 [de Moura and Bjørner, 2008]

4. LP2BV and BOOLECTOR [Brummayer and Biere, 2009]
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Summary of Results
Number of solved instances (out of 516 possible):

System W L G LG

CLASP 465
CMODELS 387

LP2NORMAL+LP2SAT+MINISAT 387
LP2DIFF+Z3 360 349 324 324
LP2NORMAL+LP2DIFF+Z3 364 357 349 349
LP2BV+Z3 217 216 194 204
LP2BV+BOOLECTOR 276 244 261 256
LP2NORMAL+LP2BV+BOOLECTOR 381 343 379 381
LP2NORMAL+LP2BV+Z3 346 330 325 331

LP2NORMAL+LP2SAT2+MINISAT 404 429 427 424
LP2NORMAL+CLASP 459

Based on [Nguyen et al., 2011; T.J. and Niemelä, 2011].
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5. LANGUAGE INTEGRATION

◮ Non-Boolean variables are important primitives in logical
modeling in a number of disciplines: ASP, CP, LP, MIP, . . .

◮ The SMT framework enriches Boolean satisfiability
checking in terms of a background theory.

◮ Logic programs under answer sets can be translated into
— difference logic [Niemelä, 2008],
— bit-vector logic [Nguyen et al., 2011], and
— mixed integer programming [Liu et al., 2012].

◮ Translations in the other direction are impeded if
infinite-domain variables are involved.

◮ There are approaches combining ASP and CP [Balduccini,
2009; Gebser et al., 2009; Mellarkord et al., 2008].
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Objectives for the Integration

◮ Our goal is to integrate ASP and SMT so that non-Boolean
variables of these formalisms can be used together.

◮ We aim at a rule-based language ASP(SMT) which is
enriched by theory atoms from a particular SMT dialect.

Example
Let us formalize the n-queens problem in ASP(DL):

queen(1..n). int(row(X ))← queen(X ). int(zero).

row(X )− zero > 0← queen(X ).
row(X )− zero ≤ n← queen(X ).
← row(X )− row(Y ) = 0, queen(X ), queen(Y ), X < Y .

← row(X )− row(Y ) = |X − Y |, queen(X ), queen(Y ), X < Y .
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Integrated Language: Syntax

◮ A program P in ASP(SMT) is a finite set of rules of forms

a← b1, . . . , bm, not c1, . . . , not cn, t1, . . . , tl
t ← b1, . . . , bm, not c1, . . . , not cn, t1, . . . , tl

where
— a, b1, . . . , bm, and c1, . . . , cn are propositional atoms, and
— t1, . . . , tl are theory atoms of the SMT fragment.

◮ The latter form is viewed as a shorthand for a constraint

← b1, . . . , bm, not c1, . . . , not cn, t1, . . . , tl , ¬t

where ¬t denotes the negation/complement of t .
◮ For instance, we have ¬(x − y < 6) = (x − y ≥ 6).
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Integrated Language: Semantics
◮ The theory base of an ASP(SMT) program P consists of

theory atoms that appear in the rules of P.
◮ An interpretation of an ASP(SMT) program P is defined as

a pair 〈S,T 〉 where S ⊆ HB(P) and T ⊆ TB(P).

Definition
An interpretation 〈S,T 〉 is an answer set of P iff

1. 〈S,T 〉 |= P,

2. the propositional part S is the least subset closed under

PM = {H(r)← B+(r) |

r ∈ P, B−(r) ∩ S = ∅, and Bt(r) ⊆ T}, and

3. the theory part T ∪ T where T = {¬t | t ∈ TB(P) \ T} is
satisfiable in the SMT fragment in question.
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Example
Consider an ASP(DL) program P

← not s. s ← x > z. p ← x ≤ y . p ← q. q ← p, y ≤ z.

and the following candidates that superficially satisfy P:

Si Ti Ti SAT?
{s} {x > z} {x > y , y > z} Yes
{s,p,q} {x > z, x ≤ y , y ≤ z} ∅ No
{s,p,q} {x > z, y ≤ z} {x > y} Yes

P〈Si ,Ti〉 cl(P〈Si ,Ti〉) Stable?
{s. p ← q. } {s} Yes
{s. p. p ← q. q ← p. } {s,p,q} Yes
{s. p ← q. q ← p. } {s} No

=⇒ The pair 〈{a}, {x > z}〉 is the only answer set!
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ASP versus ASP(DL)
◮ In pure ASP encodings, variables appearing in a rule are

instantiated over the Herbrand universe of the program.
◮ The number of instances can be reduced by treating some

variables as integer variables in difference logic.
◮ If a rule involves n variables ranging over a set D of

integers, savings up to a factor of |D|n can be possible.

Example
Compare the two constraints below in this respect:

← start(P,T1), end(P,T2), T2 − T1 < D,

process(P,D), time(T1), time(T2).

← e(P)− s(P) < D, process(P,D).

where e(P) and s(P) are integer variables associated with P.
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Example: A Scheduling Problem
◮ A predicate read(P,N,T ) is used to encode the time T

required by a person P to read a newspaper N.
◮ Integer variables s(P,N) and e(P,N) capture the

respective starting and ending times.

s(P,N) ≥ 0 ← read(P,N,T ).

e(P,N)− s(P,N) = T ← read(P,N,T ).

e(P,N) ≤ deadline ← read(P,N,T ).

← s(P,N1) < s(P,N2), s(P,N2)− s(P,N1) < T1,

read(P,N1,T1), read(P,N2,T2), N1 6= N2.

← s(P1,N) < s(P2,N), s(P2,N)− s(P1,N) < T1,

read(P1,N,T1), read(P2,N,T2), P1 6= P2.
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Prototype Implementation
◮ Theory atoms are represented with special predicates like

dl_lt(X ,Y ,D)

for a constraint x − y < d in difference logic.
◮ Special domain predicates such as int(V ) for DL are used

to declare the domains of theory constants.
◮ Our prototype exploits off-the-shelf ASP and SMT

components for grounding (GRINGO) and model search.

Example

int(at(X ))← edge(X ,Y ,W ).

int(at(Y ))← edge(X ,Y ,W ).

← route(X ,Y ), edge(X ,Y ,W ), dl_lt(at(Y ),at(X ),W ).
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Performance in the Newspaper Benchmark

Deadline
DINGO CLINGO

time size ratio time size ratio
100 0.09 1.0 2.10 1.0
200 0.11 1.1 9.00 3.1
300 0.11 1.3 21.32 6.3
400 0.10 1.4 36.68 15
500 0.12 1.5 61.15 23
600 0.12 1.7 93.51 34
700 0.11 1.8 – 44
800 0.11 1.9 – 60
900 0.12 2.1 – 74
1000 0.13 2.2 – 81
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6. CONCLUSIONS

SAT and SMT for Answer Set Programming

◮ SAT/SMT solvers develop rapidly—providing a promising
computational platform to implement ASP systems.

◮ The functionality of SMODELS-compatible solvers can be
implemented using

1. a compact translation of a cardinality/weight constraint
program into an appropriate theory and

2. a suitable SAT/SMT solver for model search.

◮ The performance obtained in this way is surprisingly close
to that of the top state-of-the-art ASP solver CLASP.

◮ Tools LP2LP2, LP2SAT, LP2DIFF, and LP2BV implement the
required translations of SMODELS programs into SAT/SMT.
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Conclusions

Answer Set Programming for SAT and SMT

◮ Our translators provide an easy way to generate
challenging, highly structural or partly randomized,
benchmark instances.

◮ The integrated the languages ASP(SMT) enrich rules with
extra conditions—enabling more concise modeling.

◮ Our approach enables the use of standard ASP grounders
for the creation of SMT theories of interest declaratively.

◮ Our first experiments using these encodings also show
reduced solving times in certain problem domains.

◮ It is also possible to develop ASP(SMT) encodings in a
modular way using LPCAT for linking.
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Ongoing/Future Work

◮ There are further ways to optimize the translation-based
approach from ASP to SAT and its extensions:

— Simplification of the rule-based and clausal representations.
— Trying out the new (versions of) SAT/SMT solvers.
— Proper parametrization of the tools involved.
— Linear transformations are possible for SMT solvers.

◮ We are developing new translations into further formalisms
such as mixed integer programming [Liu et al., 2012].

◮ Also, new ways to extend rules are of interest.
◮ We plan to participate in the 4th ASP Competition in 2013.
◮ Submission of ASP-based benchmark sets to future

SAT/SMT competitions.
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