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Abstract. The verification of asynchronous software components is very
challenging due to the non-deterministic interleaving of components and
concurrent access to shared variables. Compositional approaches decou-
ple the problem of verifying local properties specified over the compo-
nent interfaces from the problem of composing them to ensure some
global property. In this paper, we focus on symbolic model checking
techniques for Linear-time Temporal Logic [25] (LTL) properties on asyn-
chronous software components communicating through data ports. Dif-
ferently from event-based composition, the local properties can specify
constraints on the input provided by other components, making their
composition more complex.
We propose a new LTL rewriting that translates a local property into
a global one taking into account interleaving with other processes. We
demonstrate that for every possible global trace, the local LTL prop-
erty is satisfied by its projection on the local symbols if and only if the
rewritten LTL property is satisfied by the global trace. This rewriting
is then optimized, reducing the size of the resulting formula and leav-
ing it unchanged when the temporal property is stutter invariant. We
also consider an alternative approach where the local formulas are first
translated into fair transition systems and then composed. This work has
been implemented inside the contract-based design model checking tool
OCRA as part of the contract refinement verification suite. Finally, the
different composition approaches were compared through an experimen-
tal evaluation that covers various types of specifications.

1 Introduction

Software model checking [1,27] is an algorithmic approach used the verification of
programs. It combines different methods based on deductive reasoning, abstrac-
tion, and state space exploration. Model checking typically specifies the property
to be verified in a temporal logic. One of the most common logic used to express
properties of programs is first-order Linear-time Temporal Logic (LTL) [25].

A general problem of model checking is the state space explosion problem.
The scalability of the method is exacerbated when considering the asynchronous
composition of programs, due to the non-deterministic interleaving of compo-
nents and concurrent access to shared variables. Compositional approaches usu-
ally alleviate the problem by decoupling the problem of verifying local properties
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specified over the component interfaces from the problem of composing them to
ensure some global property. However, the asynchronous composition of local
temporal properties may be tricky when considering software components com-
municating through data ports.

In this paper, we define the asynchronous composition of local LTL properties
based on a rewriting Rc that maps the local constraints on the input/output
data of a component c on the global points in which the component is active.
In this case, the formulas can be rewritten to take into account interleaving
and conjoined with additional constraints ψconstr to encode for example the
persistence of variables that are not written by the active process. In this way, it
is possible to verify whether a global property ϕ is satisfied by the composition
of local properties, by checking the validity of an following LTL formula in the
form:

∧
c∈C Rc(ϕc) ∧ ψconstr → ϕ.

We define the rewriting Rc for quantifier-free first-order LTL with the “next”
operator. In particular, the rewriting of “next”, which is important to express
input/output properties, needs the use of event-freezing functions, introduced
in [29] to relate variables across different time points. We prove that the rewriting
is correct, i.e., that for every possible global trace, the local LTL property is
satisfied by its projection on the local symbols if and only if the rewritten LTL
property is satisfied by the global trace. The main contribution of the paper is an
optimized version of the rewriting that takes into account the frame conditions
on output data and the stutter invariance of other operators to reduce the size of
the resulting formula. We also consider an alternative approach where the local
formulas are first translated into fair transition systems and then composed.

The proposed approach has been implemented inside OCRA, which supports
a rich extension of LTL and uses a state-of-the-art model checking algorithm
implemented in nuXmv [6] as back-ends to check satisfiability. We validated the
approach empirically by evaluating the local property and the rewritten one on
local traces and their extension with stuttering of local variables. We evaluated
the approach on various kind of formulas and components, and compared the
different approaches in terms of scalability.

Summarizing, the main contribution of the paper is a rewriting of LTL for-
mulas with the following features:

– it allows to check compositional rules for asynchronous components commu-
nicating through input/output data ports;

– it supports compositional reasoning for first-order LTL properties with next
and event-freezing functions;

– it is optimized to reduce the size of the resulting formula;
– it has been validated and evaluated on various benchmarks.

The rest of the paper is organized as follows: in Sec. 2, we compare the proposed
solution with related works; in Sec. 3, we give some preliminary definitions; in
Sec. 4, we formalize the problem; in Sec. 5, we define the rewriting, its optimized
version, and the alternative approach based on compilation into transition sys-
tems; in Sec. 6, we report on the experimental validation and evaluation; finally,
in Sec. 7, we draw the conclusions and some directions for future works.



Asynchronous Composition of Local Interface LTL Properties 3

2 Related works

When dealing with temporal logics such as LTL for asynchronous systems, one of
the main references is the work of Leslie Lamport on Temporal Logic of Action
(TLA) [17], later enriched with additional operators [18] and to component-
based models in [28]. In fact, we adopt the (quantifier-free) first-order version
of LTL [20] with the “next” function which is used to specify the succession
of actions of a program. TLA natively supports the notion of stuttering for
composing asynchronously programs so that the composition is simply obtained
by conjoining the specifications. We focus instead on local properties that are
specified independently from how the program is composed so that “next” and
input/output data refer only to the local execution. To the best of our knowl-
edge, this paper first addresses the asynchronous composition of local first-order
LTL properties. In fact, we rewrite “next” terms using the “at next” operator
introduced in [29] to take into account interleaving by referring to the value of
variables at the next point in time where the component is not stuttering.

As for propositional LTL, the composition of specifications is studied in var-
ious papers on assume-guarantee reasoning (see, e.g., [11, 16, 22, 24]) for both
synchronous and asynchronous composition. In the case of asynchronous sys-
tems, most works focus on fragments of LTL without the next operator, where
formulas are always stutter invariant. Other studies investigated how to tackle
down state-space explosion for that scenario usually employing techniques such
as partial order reduction [4]. However, our work covers a more general setting,
where also the presence of input variables makes formulas non stutter invariant.

Similarly to our work, [4] considers a rewriting for LTL with events to map
local properties into global ones with stuttering. In [3], a related rewriting is
used within an asynchronous version of HyperLTL. However, contrary to this
paper, these works do not consider input variables (nor first-order extension)
and assume that every variable does not change during stuttering, resulting in
a simpler rewriting. In [15], a temporal clock operator is introduced to express
properties related to multiple clocks and, in principle, can be used to interpret
formulas over the time points in which a component is not stuttering. Its rewrit-
ing is indeed similar to the basic version defined in this paper, but is limited
to propositional LTL and has not been conceived for asynchronous composition.
The optimization that we introduce to exploit the stutter invariance of subformu-
las results in simpler formulas easy to be analyzed as shown in our experimental
evaluation.

The rewriting of asynchronous LTL is similar to the transformation of asyn-
chronous symbolic transition systems into synchronous ones described in [10].
The work considers connections based on events where data are exchanged only
upon synchronization (allowing optimizations as in shallow synchronization [5]).
Thus, it does not consider components that read from input variables that may
be changed by other components. Moreover, [10] is not able to transform tem-
poral logic local properties in global one as in this paper.
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3 Background

3.1 Linear temporal logic

In this paper we consider LTL [21] extended with past operators [19] as well as
“if-then-else” (ite) and “at next” (@F̃ ), and “at last” (@P̃ ) operators from [29].
For simplicity we refer to it simply as LTL.

We work in the setting of Satisfiability Modulo Theory (SMT) [2] and LTL
Modulo Theory (see, e.g., [9]). First-order formulas are built as usual by propo-
sition logic connectives, a given set of variables V and a first-order signature Σ,
and are interpreted according to a given Σ-theory T . We assume to be given
the definition of M,µ |=T φ where M is a Σ-structure, µ is a value assignment
to the variables in V , and φ is a formula. Whenever T and M are clear from
contexts we omit them and simply write µ |= φ.

LTL syntax

Definition 1. Given a signature Σ and a set of variables V , LTL formulas φ
are defined by the following syntax:

φ := ⊤|⊥|pred(u1, . . . , un)|¬φ1|φ1 ∨ φ2|Xφ1|φ1Uφ2|Y φ1|φ1Sφ2

u := c|x|func(u1, . . . , un)|next(u1)|ite(φ, u1, u2)|u1@F̃φ|u1@P̃φ

where c, func, and pred are respectively a constant, a function, and a predicate
of the signature Σ and x is a variable in V .

Apart from @F̃ and @P̃ , the operators are standard. u@F̃φ represents the
value of u at the next point in time in which φ holds. Similarly, u@P̃φ represents
the value of u at the last point in time in which φ holds.

LTL semantic LTL formulas are interpreted over traces, i.e., infinite sequences
of assignments to the variables in V . We denote by Π(V ) the set of all possible
traces over the variable set V . Given a trace π = s0s1 · · · ∈ Π(V ) and a Σ-
structure M , the semantic of a formula φ is defined as follows:

– π,M, i |= pred(u1, . . . , un) iff pred
M (πM (i)(u1), . . . , π

M (i)(un))
– π,M, i |= φ1 ∧ φ2 iff π,M, i |= φ1 and π,M, i |= φ2

– π,M, i |= ¬φ iff π,M, i ̸|= φ
– π,M, i |= φ1Uφ2 iff there exists k ≥ i, π,M, k |= φ2 and for all l, i ≤ l <
k, π,M, l |= φ1

– π,M, i |= φ1Sφ2 iff there exists k ≤ i, π,M, k |= φ2 and for all l, k < l ≤
i, π,M, l |= φ1

– π,M, i |= Xφ iff π,M, i+ 1 |= φ
– π,M, i |= Y φ iff i > 0 and π,M, i− 1 |= φ

where the interpretation of terms πM (i) is defined as follows:
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– πM (i)(c) = cM

– πM (i)(x) = si(x) if x ∈ V
– πM (i)(func(u1, . . . , un)) = funcM (πM (i)(u1), . . . , π

M (i)(un))
– πM (i)(next(u)) = πM (i+ 1)(u)
– πM (i)(u@F̃ (φ)) = πM (k)(u)if there exists k > i such that, for all l, i < l <
k, π,M, l ⊭ φ and π,M, k |= φ;
πM (i)(u@F̃ (φ)) = defu@F̃φ otherwise.

– πM (i)(u@P̃ (φ)) = πM (k)(u)if there exists k < i such that, for all l, i > l >
k, π,M, l ⊭ φ and π,M, k |= φ;
πM (i)(u@F̃ (φ)) = defu@P̃φ otherwise.

– πM (i)(ite(φ, u1, u2)) =

{
πM (i)(u1) if π,M, i |= φ

πM (i)(u2) otherwise

and the predM , funcM , cM are the interpretation M of the symbols in Σ, and
defu@F̃φ and defu@P̃φ are some default values in domain of M .

Finally, we have that π,M |= φ iff π,M, 0 |= φ.
In the following, we assume to have a background theory such that the sym-

bols in Σ are interpreted by an implicit structure M (e.g., theory of reals, inte-
gers, etc.). We therefore omit M to simplify the notation, writing π, i |= φ and
π(i)(u) instead of respectively π,M, i |= φ and πM (i)(u).

Moreover, we use the following standard abbreviations: φ1 ∧ φ2 := ¬(¬φ1 ∨
¬φ2), φ1Rφ2 := ¬(¬φ1U¬φ2) (φ1 releases φ2), Fφ := ⊤Uϕ (sometime in the
future φ), Gφ := ¬F¬φ (always in the future φ), Oφ := ⊤Sφ (once in the
past φ), Hφ := ¬O¬φ (historically in the past φ), Zφ := ¬Y ¬φ (yesterday φ
or at initial state), Xnφ := XXn−1φ with X0φ := φ, Y nφ := Y Y n−1φ with
Y 0φ := φ, Znφ := ZZn−1φ with Z0φ := φ, F≤nφ := φ ∨ Xφ ∨ · · · ∨ Xnφ,
G≤nφ := φ∧Xφ∧ · · · ∧Xnφ, O≤nφ := φ∨ Y φ∨ · · · ∨ Y nϕ, H≤nφ := φ∧Zφ∧
· · · ∧ Znφ.

Since this paper heavily relies on the release operator, we explicitly define its
semantics as follows:

π,M, i |= φ1Rφ2 iff for all l ≥ i, π,M, l |= φ2 or there exists k ≥ i, π,M, k |=
φ1 and for all i ≤ l′ ≤ k, π,M, l′ |= φ2

3.2 Interface transition systems

In this paper, we represents I/O components as Interface Transition Systems, a
symbolic version of interface automata [13] that considers I/O variables instead
of I/O actions.

Definition 2. An Interface Transition System (ITS) M is a tuple
M = ⟨VI , VO, VH , I, T ,F⟩ where:

– VI is the set of input variables, VO is the set of output variables, VH is the
set of internal variables where VI ∩ VO = ∅, VI ∩ VH = ∅ and VO ∩ VH = ∅.

– V := VI ∪ VO ∪ VH denotes the set of the variables of M



6 A. Bombardelli et al.

– I is the initial condition, a formula over VO ∪ VH ,
– T is the transition condition, a formula over V ∪V ′

O ∪V ′
H where V ′

O and V ′
H

are respectively the primed versions of VO and VH
– F is the set of fairness constraints, a set of formulas over V .

A symbolic transition system M = ⟨V, S, I, T ,F⟩ is an interface transition sys-
tem without input/output variables (i.e., ⟨∅, ∅, V, S, I, T ,F⟩).

Definition 3. A trace π of an ITS M is a trace π = s0s1s2 · · · ∈ Π(V ) such
that s0 |= I, for all i, si ∪ s′i+1 |= T , and for all f ∈ F , for all i, there exists
j > i, sj |= f . The language L (M) of an interface transition system M is the
set of all traces of M. Given an LTL formula φ, M |= φ iff, for all traces π of
M, π |= φ.

The asynchronous composition of two ITS is an ITS where the transitions
of the two original ITS occurs concurrently. To compose two interface transition
systems, their variables must be compatible.

Definition 4. Two ITS M1,M2 are compatible iff they share respectively only
input with output (i.e. V 1 ∩ V 2 = (V 1

O ∩ V 2
I ) ∪ (V 1

I ∩ V 2
O))

The asynchronous composition of ITS should allow certain ITS to run their
transitions while the other transition systems freeze. To encode this behaviour
symbolically, the composition adds one stuttering variable for each interface
transition system. A stuttering variable is a Boolean variable that tells whether
a specific component is frozen or if it is executing its transition. We denote stM

as the stuttering variable of the ITS M.
Moreover, we introduce new transition conditions ψM

cond to express the fact
that an ITS M inside a composition do not change their output and inter-
nal variables when their stuttering variables are true. Formally, for all ITS M:
ψM
cond = stM →

∧
v∈VO∪VH

(v = v′)

Definition 5. Let M1 and M2 be two compatible interface transition systems.
M1 ⊗M2 = ⟨VI , VO, VH , I, T ,F⟩ where:

– VI = V 1
I ∪ V 2

I \ ((V 1
I ∩ V 2

O) ∪ (V 1
O ∩ V 2

I ))
– VO = V 1

O ∪ V 2
O \ ((V 1

I ∩ V 2
O) ∪ (V 1

O ∩ V 2
I ))

– VH = V 1
H ∪ V 2

H ∪ {stM1 , stM2} ∪ ((V 1
I ∩ V 2

O) ∪ (V 1
O ∩ V 2

I ))
– I = I1 ∧ I2

– T = (¬stM1 → T 1) ∧ (¬stM2 → T 2) ∧ ψM1

cond ∧ ψ
M2

cond

– F = {¬stM1 ,¬stM2} ∪ {φ1 ∧ ¬stM1 |φ1 ∈ F1} ∪ {φ2 ∧ ¬stM2 |φ2 ∈ F2}

The definition can be easily generalized to n ITSs M1 ⊗ ...⊗Mn

Definition 6. Let M = M1 ⊗ M2 be the asynchronous composition of two
ITS M1 and M2, let π = s0s1 . . . be a trace of M. A pair of consecutive
assignments to states si, si+1 of π is called stuttering transition w.r.t. M1, M2

iff si |= stM1 , stM2 respectively.
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Definition 7. Let π = s0s1 . . . be a trace of an ITS M and V ′ ⊆ V a set of
symbols of M. We denote si(V

′) as the restriction of the assignment si to the
symbols of V ′; moreover, we denote π|V ′ := s0(V

′)s1(V
′) . . . as the restriction

of all the state assignments of π to the symbols of V ′. Furthermore, we denote
L (M)|V ′ = {π|V ′ |π ∈ L (M)} as the restriction of all the traces of the language
of an ITS M to a set of symbols V ′ ⊆ V .

Definition 8. Let π = s0s1 . . . be a trace of the asynchronous composition of
n ITS M1, . . . ,Mn. By fairness constraints on stuttering there are infinitely
many points i0, i1, . . . such that for all j : π, ij |= ¬stMh and for all k, ij < k <
ij+1.π, k |= stMh . We define the projection of trace π over a component Mh as
follow:

PrMh
(π) = si0(Vh), si1(Vh) . . .

Definition 9. Let M = M1 ⊗ · · · ⊗Mn, let π be a trace of Mh. We define the
inverse operator of Pr, denoted by Pr−1.

Pr−1
Mh

(π) = {π′|PrMh
(π′) = π}

4 Formal problem

4.1 Asynchronous composition of properties of ITS

Compositional verification proves the properties of a system by proving the local
properties on components and by checking that the composition of the local
properties satisfy the global one (see [26] for a generic overview). This reasoning
is expressed formally by inference 1, which is parametrized by a function γS
that combines the components’ implementations and a related function γP that
combines the local properties.

Inference 1 Let M1,M2, . . . ,Mn be a set of n components, φ1, φ2, . . . , φn be
local properties on each component, γS is a function that defines the composition
of M1,M2, . . . ,Mn, γP combines the properties depending on the composition
of γS and φ a property. The following inference is true:

M1 |= φ1,M2 |= φ2, . . . ,Mn |= φn

γS(M1,M2, . . . ,Mn) |= γP (φ1, φ2, . . . , φn) γP (φ1, φ2, . . . , φn) |= φ

γS(M1,M2, . . . ,Mn) |= φ

In our setting, the components M1, . . . ,Mn are represented by ITSs (see
definition 2) and γS is defined as the generalization of the asynchronous compo-
sition of definition 5 for n ITS: γS(M1, . . .Mn) = M1 ⊗ · · · ⊗Mn.

The problem we address in this paper is to define γP such that the above infer-
ence rule is correct. In order to asynchronously combine the local properties, each
property must be rewritten considering stuttering transitions and, evaluating in-
put variables only in active transitions. Formally, we want that for all trace π of
γS(M1, . . . ,Mn), P rM1

(π) |= φ1 ∧ · · · ∧PrMn
(π) |= φn ⇔ π |= γP (φ1, . . . , φn).
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Thus, we require a rewriting function that maps local properties into their global
counterparts. This requirement is expressed as follows. For each trace π of an
ITS M, for each global trace πST ∈ Pr−1(π): π |= φ iff πST |= R∗(φ) where
φ is a local LTL property in the language of M. As for the event based TS,
we need some conditions Ψcond that we call frame condition to guarantee per-
sistency of output variables and to guarantee fairness on components activity.
Ψcond(M1, . . . ,Mn) := ψM1

cond ∧ · · · ∧ ψMn

cond ∧GF¬stM1 ∧ · · · ∧GF¬stMn where
ψcond is from definition 5. The final result in this case would be

γP := R∗(φ1) ∧ · · · ∧ R∗(φn) ∧ Ψcond(M1, . . . ,Mn)

Example 1. Let M1 be an ITS with c2 as input variable, c1 as output variable
and φ1 : c1 = 0 ∧ G((c1 < c2 ∧ c′1 = c1 + 1) ∨ (c1 ≥ c2 ∧ c′1 = c1)) as its local
property. LetM2 be another ITS with c1 as input variable, c2 as output variable,
p as parameter and φ2 : c2 = p ∧ G((c′2 = c2 − 1)U(c2 = 0 ∧ c′2 = c1)) as its
local property. Suppose that we want to prove that the composition of the two
properties satisfies the global property φ : GF (c1 = c′1). To check if φ holds we
check the validity of R∗

M1
(φ1) ∧R∗

M2
(φ2) ∧ Ψcond(M1,M2) → φ.

In this example, c1 is increased only when c1 is lower than c2. When consid-
ering asynchronous composition, c2 might change while M1 is stuttering. In this
case, the challenge in finding a correct R∗ is that since c2 might change while
M1 is stuttering, then the rewriting must evaluate c2 only when M1 is active.

4.2 Asynchronous composition of properties of event based TS

For completeness, we compare the problem defined above with the case of a
event-based asynchronous composition, where the transition systems run con-
currently with only shared events used for synchronization. If we consider the
asynchronous composition of event based TS to represent the function γS , we
can use the LTL rewriting function T defined in [4] on each φ1, . . . , φn inside γP
to compose the properties. T simply rewrites events and X operators and leaves
the other parts of formulas unchanged. We apply T to each φi, then, we put
these rewritten properties in conjunction with a constraint Ψ that ensures that
variables do not change during stuttering transitions and that events do not oc-
cur during stuttering transition. Ψ =

∧
1≤i≤n(G(st

Mi →
∧

v∈V i v = v′∧
∧

e∈Ei))

where V i and Ei are the sets of respectively variables and events of each Mi.
Finally, γP (M1, . . . ,Mn) = T (φ1) ∧ · · · ∧ T (φn) ∧ Ψ In this case, the compo-
sition is limited to components with synchronous event communications. Thus,
no input variable that is updated by other components can be considered in this
model of composition.
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5 Rewriting 1

This section contains the main contributions of this paper. First, a rewriting
R∗

M that transform local LTL properties into their global counterparts. Second,

an optimised version of R∗
M, Rθ∗

M, which exploits the concept of stutter toler-
ance (see definition 14) to reduce the size of the generates formula. Finally, an
alternative approach that transforms the local LTL formulas into ITS and then
composes the ITS asynchronously.

We introduce the map function; a function that maps the position of a state
in a local trace to its position in a global trace.

To simplify the notation, we assume to be given an ITS M, a trace π of M, a
local property φ and a local term u. For brevity, we refer to mapstπST ,RM, R∗

M,

Rθ
M, Rθ∗

M, Pr−1
M and stM as respectively mapπST , R, R∗, Rθ, Rθ∗,Pr−1 and

st.

Definition 10. For all πST ∈ Pr−1(π), for all k ∈ N : ¬stπST

occ (k) := j s. t. πST , j |=
¬st and for all k ≤ l < j : πST , l |= st. ¬stπST

occ (k) denotes the position of the
first occurrence of ¬st from point k. We also define map as follows: For all i:

mapπST (i) :=

{
¬stπST

occ (0) if i = 0

¬stπST

occ (mapπST (i− 1) + 1) if i > 0

5.1 R rewriting

As we mentioned in section 4.1, we want a rewriting that is able to map each local
property φ into its global counterpart. In this case, each global property must
be satisfied in Pr−1(π) iff φ is satisfied in π. We start by proposing a rewriting
that maps an LTL formula to another formula such that the augmented traces
satisfy the rewritten formula in the active transitions if and only if the original
traces satisfy them in the same transitions.

Definition 11. We define R as the following rewriting function:

1. R(a) := a
2. R(φ ∨ ψ) := R(φ) ∨R(ψ)
3. R(¬φ) := ¬R(φ)
4. R(Xψ) := X(¬stR(st ∨R(ψ)))
5. R(φUψ) := (st ∨R(φ))U(¬st ∧R(ψ))
6. R(Y φ) := Y (stS(¬st ∧R(φ)))
7. R(φSψ) := (st ∨R(φ))S(¬st ∧R(ψ))
8. R(func(ψ1, ..., ψn)) := func(R(ψ1), ...,R(ψn))
9. R(pred(ψ1, ..., ψn)) := pred(R(ψ1), ...,R(ψn))

10. R(ite(ψ,ψ1, ψ2)) := ite(R(ψ),R(ψ1)R(ψ2))

1 The proofs of the theorems and lemmas of this section can be found
in the appendix of the completed version of the paper at: https://es-
static.fbk.eu/people/bombardelli/papers/nfm22/nfm-extended.pdf
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11. R(next(ψ) := ψ@F̃¬st
12. R(ψ@F̃ψ1) := R(ψ)@F̃ (R(ψ1) ∧ ¬st)
13. R(ψ@P̃ψ1) := R(ψ)@P̃ (R(ψ1) ∧ ¬st)

The property of R is defined in the following lemma:

Lemma 1 For all π, for all πST ∈ Pr−1(π), for all i:

πST , i |= φ⇔ πST ,mapπST (i) |= R(φ) π(i)(u) = πST (mapπST (i))(R(u))

Lemma 1 shows that R guarantees that satisfiability is preserved in the active
transitions of the global traces. However, mapπST (0) is not always granted to be
equal to 0 (see definition 9), and thus, we need to find a rewriting that guarantees
that satisfiability is preserved also in the first transition.

Definition 12. We define R∗ as R∗(φ) := ¬stR(st ∨R(φ))

Lemma 2 For all π, for all πST ∈ Pr−1(π) : πST ,mapπST (0) |= R(φ) ⇔
πST , 0 |= R∗(φ))

Using lemma 1 and lemma 2 together we obtain the following theorem:

Theorem 1. For all π, for all πST ∈ Pr−1(π) : π |= φ⇔ πST |= R∗(φ)

Theorem 1 shows that R∗ is able to translate a local LTL property into a
global property without changing its semantics in term of traces. Using R∗ is
possible to transform local properties with I/O variables.

Definition 13. Let M1, . . . ,Mn be n ITS and φ1, . . . , φn be LTL formulas
on the language of each Mi. We define γP (φ1, . . . , φn) = R∗

M1
(φ1) ∧ · · · ∧

R∗
Mn

(φn) ∧ Ψcond(M1, . . . ,Mn)

Corollary 1 Using γP from definition 13, γS from section 4.1, for all compat-
ible ITS M1, . . . ,Mn, for all local properties φ1, . . . , φn over the language of
respectively M1, . . . ,Mn, for all global properties φ: Inference 1 holds.

Example 2. Consider the specifications of example 1. Through R∗ we can define
the asynchronous parallel composition of φ1 and φ2:

– R∗
M1

(φ1) : ¬stM1R(st ∨ (c1 = 0 ∧ G(stM1 ∨ (c1 < c2 ∧ c1@F̃¬stM1 =

c1 + 1 ∨ c1 ≥ c2 ∧ c1@F̃¬stM1 = c1)))
– R∗

M2
(φ2) : ¬stM2R(stM2 ∨ c2 = p ∧ G(stM2 ∨ ((stM2 ∨ c2@F̃¬stM2 =

c2 − 1)U(¬stM2 ∧ c2 = 0 ∧ c2@F̃¬stM2 = c1))))
– Ψcond(M1,M2) = G(¬stM1 ∨ c1 = c′1) ∧GF¬stM1 ∧G(¬stM2 ∨ c2 = c′2) ∧
GF¬stM2

Each next operator is rewritten as an at next (@F̃ ). The intuition is that we
want to evaluate the variable only in the next transition that does not stutter.
c1 and c2 are evaluated at the first non stuttering transition, the intuition is that
the local initial state is not necessary the global initial state. Finally, using γP we
can compose φ1 and φ2 asynchronously permitting us to check whether or not φ
holds. It should be noted that the correctness of the rewriting is guaranteed also
removing the constraints on output variables, however this constraint is desirable
since it guarantees persistence of data which is a rather realistic property.
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5.2 Optimization

The rewriting R∗ is general and works for all the LTL formulas. However, this
rewriting increases the size of the formula and consequently, the time required to
verify the final specification. There are common cases where it is not necessary
to rewrite part of the specification. For example GFφ is rewritten as G(st ∨
F (¬st ∧ R(φ))) while it could be rewritten as GF (¬st ∧ R(φ)) (as for fairness
constraints). X of a local variable Xφ is rewritten as X(¬stRR(φ)) while by
Ψcond of section 4 it could remain unchanged. This section identifies, formalizes
and demonstrates the cases where such optimization can be applied.

We introduce the concept of stutter-tolerance. A formula is said stutter-
tolerant if it keeps the same value when rewritten through R in all consecutive
stuttering transitions.

Definition 14. An LTL formula φ is said stutter-tolerant w.r.t. R iff:
For all π, for all πST ∈ Pr−1(π), for all i : for all mapπST (i− 1) < j < mapπST (i) :

πST , j |= R(φ) ⇔ πST ,mapπST (i) |= R(φ)

Lemma 3 Until, yesterday and at last formulas are stutter-tolerant w.r.t. R

Definition 15. An LTL formula φ is syntactically stutter-tolerant iff one of the
following condition holds:

– φ is an until formula or a yesterday formula or an at last formula
– φ = ψ1 ∨ ψ2 and ψ1 and ψ2 are syntactically stutter-tolerant
– φ = ¬ψ and ψ is syntactically stutter-tolerant
– φ = s and s ∈ VO ∪ VH

Lemma 4 Syntactically stutter-tolerant formulas are stutter-tolerant w.r.t R

Using the notion of syntactically stutter-tolerant formula, we define a new opti-
mized rewriting. If the sub-formulas of φ are syntactically stutter-tolerant, then
the φ is not rewritten according to R. To demonstrate the correctness of the
rewriting, we provide two lemmas that construct the main theorem.

Definition 16. We define Rθ as follows:

1. Rθ(s) = R(s) if s ∈ V
2. Rθ(φ ∨ ψ) = Rθ(φ) ∨Rθ(ψ)
3. Rθ(¬φ) = ¬Rθ(φ)

4. Rθ(Xψ) =

{
X(Rθ(ψ)) if ψ is synt. st.tol.

X(¬stR(st ∨Rθ(ψ))) otherwise

5. Rθ(φUψ) =

{
Rθ(φ)URθ(ψ) if ψ is synt. st.tol.

(st ∨Rθ(φ))U(¬st ∧Rθ(ψ)) otherwise

6. Rθ(Y ψ) = Y (stS(¬st ∧Rθ(ψ)))

7. Rθ(φSψ) =

{
Rθ(φ)SRθ(ψ) if ψ is synt. st.tol

(st ∨Rθ(φ))S(¬st ∧Rθ(ψ)) otherwise
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8. Rθ(func(ψ1, ..., ψn)) = func(Rθ(ψ1), ...,Rθ(ψn))
9. Rθ(pred(ψ1, ..., ψn)) = pred(Rθ(ψ1), ...,Rθ(ψn))

10. Rθ(ite(ψ,ψ1, ψ2)) = ite(Rθ(ψ),Rθ(ψ1),Rθ(ψ2))

11. Rθ(next(ψ)) =

{
next(Rθ(ψ)) if ψ is synt. st.tol.

Rθ(ψ)@F¬st otherwise

12. Rθ(ψ@Fψ1) =

{
Rθ(ψ)@FRθ(ψ1) if ψ is synt. st. tol.

Rθ(ψ)@F (¬st ∧Rθ(ψ1)) otherwise

13. Rθ(ψ@P̃ψ1) = Rθ(ψ)@P̃ (¬st ∧Rθ(ψ1))

Lemma 5 For all π, for all πST ∈ Pr−1(π), for all i:

π, i |= φ⇔ πST ,mapπST (i) |= Rθ(φ) π(i)(u) = πST (mapπST (i))(Rθ(u))

Definition 17. We define Rθ∗ as follows:

Rθ∗(φ) :=

{
Rθ(φ) if φ is synt. st.tol.

¬stR(st ∨Rθ(φ)) otherwise

Lemma 6 For all π, for all πST ∈ Pr−1(π) : πST ,mapπST (0) |= Rθ(φ) ⇔
πST , 0 |= Rθ∗(φ)

Theorem 2. For all π, for all πST ∈ Pr−1(π) : π |= φ⇔ πST |= Rθ∗(φ)

Example 3. Consider the specifications of example 1. As for example 2 we can
define the asynchronous parallel composition of φ1 and φ2 using Rθ∗:

– Rθ∗
M1

(φ1) : c1 = 0 ∧G(stM1 ∨ (c1 < c2 ∧ c′1 = c1 + 1 ∨ c1 ≥ c2 ∧ c′1 = c1)))

– Rθ∗
M2

(φ2) : c2 = p ∧G((stM2 ∨ c′2 = c2 − 1)U(¬stM2 ∧ c2 = 0 ∧ c′2 = c1))

This example shows how much the optimization can reduce the size of the for-
mula. Since c1 = 0 is an output formula and since G is an until operator, Rθ∗

removes the initial ¬stR(st∨Rθ(φ). Furthermore, thanks to Ψcond, both next ex-
pressions can be optimized. Another applied optimization is that the rewriting of
φ2 does not need to add stuttering disjunction on G since until is a syntactically
stutter formula. However, since φ1 and φ2 are not stutter invariant formulas,
both specifications are partially modified by Rθ∗. In particular, inside φ1 Rθ∗

applies the rewriting of G since next formulas are not stutter tolerant, the same
happens with φ2 where U is rewritten according to R.

5.3 Alternative approach for asynchronous composition

In this section, we consider an alternative approach based on the asynchronous
composition of ITS. We exploit the transformation from LTL formula to tran-
sition system of [12] to generate ITS to be asynchronously composed. ITS have
limited expressibility for initial and transition conditions (see definition 2). Ini-
tial conditions cannot refer to input formula while transition conditions cannot
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refer to next input formulas. Since LTL does not suffer from this limitation, it is
necessary to adapt the ITS construction to fully express all possible LTL prop-
erties. Thus, we introduce internal variables that mimic the values of the input
variables at each transition; exploiting the asynchronous composition, during
stuttering transitions these variables will guess the value of the input variables
at the next occurrence of not stutter.

Definition 18. Let M be an ITS and let φ be an LTL formula over its symbols.
We define LTL2IntTS(M, φ) := ⟨VI , VO, VH ′, I, T ,Fφ⟩ where:

– LTL2TS(φ) = ⟨Vφ, Iφ, Tφ,Fφ⟩ is the transition system generated from φ
– VH

′ = VH ∪ V guess ∪ (Vφ \ V )
– I = Iφ⌈VI/V guess⌋
– T = Tφ⌈VI ′/V guess′⌋ ∧

∧
v̄∈V guess(v̄ = v)

– V guess = {v̄|v ∈ VI} where each v̄ is a copy of each v

Lemma 7 Let M be an ITS, let φ be an LTL property over the language of M.
Mφ = LTL2IntTS(M, φ) is a valid ITS and Mφ |= φ

Lemma 7 ensures that LTL2IntTS generates an ITS that satisfy the property φ.
Thus, using LTL2IntTS with the asynchronous composition of ITS of definition
5 we generate the composed ITS.

The remainder of this section demonstrates the equivalence between the
this approach with the rewriting techniques. The following lemma ensures that
a trace π is part of the language of the composition of the ITS defined by
LTL2IntTS if and only if the projections of the traces over the local transition
systems satisfy the local properties

Lemma 8 Let M1, . . . ,Mn be n compatible ITS with function γS defined ac-
cording to section 4.1; φ1, . . . , φn be local properties of respectively M1, . . .Mn

and π ∈ Π(V ) be a trace over the symbols of M = γS(M1, . . . ,Mn):

PrM1
(π) |= φ1 ∧ · · · ∧ PrMn

(π) |= φn ∧ π |= Ψcond(M1, . . . ,Mn) ⇔ π ∈
L (γS(Mφ1 , . . . ,Mφn))|V

where Mφ1
, . . . ,Mφn

are respectively the ITS generated applying LTL2IntTS
to the symbols of M1, . . . ,Mn and the properties φ1, . . . , φn.

From lemma 8 we derive the following theorem which states that this ap-
proach is equivalent with the one based on rewriting.

Theorem 3. Let M1, . . . ,Mn be n compatible ITS, φ1, . . . , φn be local prop-
erties of respectively M1, . . .Mn and π ∈ Π(V ) be a trace over the symbols of
M = γS(M1, . . . ,Mn):

π |= γP (φ1, . . . , φn) ⇔ π ∈ L (γS(Mφ1
, . . . ,Mφn

))|V

where Mφ1
, . . .Mφn

are respectively the ITS generated applying LTL2IntTS to
the symbols of M1, . . . ,Mn and the properties φ1, . . . , φn.
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6 Experimental evaluation 2

The techniques of this paper are implemented inside the contract based design
tool OCRA [7] and have been validated through an empirical verification of
the rewriting theorems. We implemented a technique that applies Pr and Pr−1

to lazo-shaped traces generated from LTL formulas to verify the theorems of
the rewritings. Moreover, we also checked that the alternative approach was
equivalent to the one proposed for LTL. The validation have been conducted
on all LTL specifications of the discrete time example models of OCRA (∼ 300
formulas) and on 100 randomly generated formulas.3 We also confronted the
approaches with an experimental evaluation.

For completeness, the experimental evaluation considers another technique
based on the rewriting of [4] that was already implemented in OCRA and men-
tioned in section 4.2. We call this rewriting output-only rewriting. Output-only
rewriting considers only specifications with local variables and synchronization
events. While, to keep the notation readable we did not mention events inside
our rewriting, we handle events in our implementation similarly to next op-
erators. To force synchronisation between events, we augment Ψcond to enable
shared events only when its components do not stutter. Due to the limitations of
output-only rewriting, the experimental evaluation have been applied only to a
sub-set of models. The experiments were run in parallel on a cluster with nodes
with Intel Xeon CPU running at 2.27GHz with 8CPU, 48GB. The timeout for
each run was four hours and the memory cap was set to 1GB.

The evaluation was applied on different type of models: asynchronous ver-
sions of OCRA models, Dwyer LTL patterns [14] parametrized on the number
of components and on components with parametrized nested X formulas. The
one based on Dwyer LTL patterns [14] considered 3 LTL patterns: response,
precedence chain and universality patterns. The models compose the pattern
formulas in two ways: as a sequence of n components linked in a bus and as
a set of components that tries to write on the output port concurrently. Since
the output-only rewriting does not support input port, in the models used in
the comparison with the output-only rewriting replace input data readings with
synchronizing event exchanging such data.

Each model have been tested with two symbolic model checking algorithms:
ic3ia [8] and one based on bdd [23] (only for finite state models) that we will call
bdd for brevity; however, due to the limited space we show only plots with the
ic3ia algorithm. Figure 1 shows the results of response pattern model with events,
universality sequence pattern model with input port and precedence chain model
where each component concurrently writes to the global output port.

The experimental evaluation based on nested X sequence considered 2 pa-
rameters: the number of nested X of the global property and the number of

2 The tar files of the experimental evaluation results can be found at: https://es-
static.fbk.eu/people/bombardelli/papers/nfm22/expeval.tar.gz

3 The detailed algorithms of the validation can be found in the appendix of the ex-
tended version of this paper at:
https://es-static.fbk.eu/people/bombardelli/papers/nfm22/nfm-extended.pdf
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Fig. 1: Pattern experimental evaluations

(a) Overall incremental results
(b) Results with respectively fixed
X and fixed components

Fig. 2: Nested X experimental evaluation
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components. In this scenario, we confront the approach based on asynchronous
composition of ITS with the optimized temporal rewriting. The global property
is defined as: G(G≤n∗st → F≤n∗sr) where n is the number of nested X, s is
the number of components in the system and t and r are two boolean formulas.
Local properties are defined as G(G≤nt → F≤nr) where n. Figure 2a shows
the overall results of the experimental evaluation, where the y-axis represents
the time required to check x global properties while figure 2b shows the result
restricted to models with n = 2 and with s = 2.

Figure 3 shows the overall results with scatter plots that confronts the op-
timized rewriting with the other approaches. In these plots, the y coordinate
represents the time to verify the validity of each instance with the optimized
rewriting while the x coordinate represents the time to verify the validity of
each instance with the adversarial approach. If a point is above the dashed line,
then the adversarial method performed better; otherwise, the optimized rewrit-
ing was faster in verifying the validity of that instance. The optimized rewriting
(Rθ∗) outperforms the non optimized one (R∗) in almost every model. Intu-
itively, Rθ∗ generates formulas that are smaller than those produced by R∗

(see example 3 for a comparison between the rewritten formulas). When deal-
ing with nested X, the approach based on asynchronous composition performs
better than the optimized rewriting when there are only two components; this
is outlined in figure 2b. However, even if ltl2IntTS sometimes performs better,
in general the optimized rewriting is faster and is able to solve more instances.
The comparison between optimized rewriting and output-only rewriting shows
that in general the optimized rewriting is faster. This happens because Rθ∗ ex-
ploits the absence of input data port to minimize the rewritten formula. Thus,
compared with the output-only, Rθ∗ is both more general and efficient. To sum-
marize: the optimization significantly improves the performance of the rewriting,
the optimization is in general faster than the output-only rewriting, and, apart
from certain cases, the optimized rewriting is faster than the approach based on
the compilation into interface transition systems.

Fig. 3: Scatter plots on all the experiments
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7 Conclusions

In this paper, we considered the problem of compositional reasoning for asyn-
chronous systems with LTL properties over input and output variables. We pro-
posed a new rewriting of LTL formulas that allows for checking compositional
rules with temporal satisfiability solvers. We provided an optimized version and
an alternative solutions based on the compilation of the LTL formulas into transi-
tion systems. We finally compare these rewritings con various benchmarks show-
ing the scalability of the approach.

In the future, we will consider various directions for extending the frame-
work including real-time and hybrid specifications, optimizations based on the
scheduling of components and other communication mechanisms such as buffered
communication, and the application of the proposed rewriting in an extension
of Asynchronous HyperLTL [3].
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A Rewriting proofs

This section reports the proofs of lemmas and theorems and is appended only
as additional information for the reviewers.

A.1 Proof of lemma 1

Proof. The proof of lemma 1 is by induction on the length of the formula φ.

Base case: φ = a, where a ∈ V :

1. Case a is a term or a constant :

– By R definition R(a) = a

– By map and Pr−1 definition πST (j)(a) = π(i)(a)

2. Case a is a 0-arity predicate

– By R definition R(a) = a

– By map and Pr−1 definition πST (j)(a) = π(i)(a) which implies that
πST , j |= a⇔ π, i |= a

The previous steps suffice in demonstrating the base case. The following
paragraphs demonstrates the inductive case. In all the cases, we exploit the fact
that:

– map is defined over N for the traces in Pr−1(π) where π is an infinite trace

– map is monotonic

We will refer to map−1 as the inverse function of map. Since map is not sur-
jective, map−1 might not be defined in some points in N. However, during our
demonstrations we will use map−1(j) only on j ∈ map, and thus, the existence
of map−1(j) in these cases is always granted.

Case φ := ¬ψ

1. By R definition: R(¬ψ) = ¬R(ψ)

2. By ¬ definition πST , j |= ¬R(ψ) ⇔ πST , j,⊭ R(ψ)

3. By induction hypothesis πST , j ⊭ R(ψ) ⇔ π, i ⊭ ψ ⇔ π, i |= ¬ψ

Case φ := ψ ∨ ψ′

1. By R definition: R(ψ ∨ ψ′) = R(ψ) ∨R(ψ′)

2. By ∨ definition πST , j |= R(ψ)∨R(ψ′) ⇔ πST , j |= R(ψ) or πST , j |= R(ψ′)

3. By induction hypothesis πST , j |= R(ψ) or πST , j |= R(ψ′) ⇔ π, i |= ψ or π, i |=
ψ′ ⇔ π, i |= ψ ∨ ψ′
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Case φ := Xψ

1. By R definition: R(Xψ) = X(¬stR(st ∨ ψ))
2. By X definition: πST , j |= X(¬stR(st ∨ R(ψ))) ⇔ πST , j + 1 |= ¬stR(st ∨

R(ψ))

3. By R definition: πST , j + 1 |= ¬stR(st ∨ ψ) ⇔ ∃k ≥ j + 1 : πST , k |=
¬st and ∀j + 1 ≤ j′ ≤ k : πST , j′ |= st or πST , j′ |= R(ψ)

4. By πST definition for all l ∈ N : πST , l |= st ⇔ l /∈ mapπST hence: πST , j |=
R(Xψ) ⇔ ∃k ≥ j + 1.k ∈ mapπST and πST , k |= R(ψ) and ∀j + 1 ≤ j′ <
k.k /∈ mapπST ⇔ πST ,map(i+ 1) |= R(ψ)

Case φ := ψUψ′:

1. By R definition: R(ψUψ′) = (st ∨R(ψ))U(¬st ∧R(ψ′))

2. By U definition πST , j |= (st ∨R(ψ))U(¬st ∧R(ψ′)) ⇔
∃k ≥ j : πST , k |= ¬st ∧R(ψ′) and
∀j ≤ l < k : πST , l |= st ∨R(ψ)

3. Since for all j′πST , j′ |= st⇔ k /∈ mapπST it follows that:
πST , j |= R(ψUψ′) ⇔
∃k ≥ j : k ∈ mapπST and πST , k |= R(ψ′) and
∀j ≤ l < k : l ∈ mapπST implies πST , l |= R(ψ)

4. By induction hyphotesis it follows that: πST , j |= R(ψUψ′) ⇔
∃k ≥ j : k ∈ mapπST and π,map−1

πST (k) |= ψ′ and

∀j ≤ l < k : l ∈ mapπST implies π,map−1
πST (l) |= ψ ⇔

∃k′ ≥ i : π, k′ |= ψ′ and ∀i ≤ l′ < k′ : π, l′ |= ψ ⇔ π, i |= ψUψ′

Case φ := Y ψ:

1. By R definition: R(Y ψ) = Y (stS(¬st ∧R(ψ)))

2. By Y definition:
πST , j |= R(ψ) ⇔ πST , j − 1 |= stS(¬st ∧R(ψ)) and j > 0

3. If j = 0 then i = 0 hence both are not satisfied.

4. Otherwise by S definition: πST , j − 1 |= stS(¬st ∧R(ψ)) ⇔
∃k ≤ j − 1 : πST , k |= ¬st ∧R(ψ) and ∀k < j′ ≤ j − 1 : πST , j′ |= st

5. Since for all k ∈ N : πST , k |= st⇔ k /∈ mapπST it follows that: πST , j− 1 |=
stS(¬st ∧R(ψ)) ⇔
∃k ≤ j − 1 : k ∈ mapπST and πST , k |= R(ψ) and
∀k < j′ ≤ j − 1 : j′ /∈ mapπST

6. Here there are two possibilities:

(a) i = 0: ∃j′ ≤ j − 1 : j′ ∈ mapπST does not hold as expected.

(b) i > 0: Then i has a previous state, so
πST , j − 1 |= stS(¬st ∧R(ψ)) ⇔
πST , k |= R(ψ) where k = mapπST (i− 1)
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Case φ := ψSψ′:

1. By R definition:
R(ψSψ′) = (ψ ∨ st)S(¬st ∧ ψ)

2. By S definition it follows that:
πST , j |= (st ∨R(ψ)S(¬st ∧R(ψ′))) ⇔
∃k ≤ j : πST , k |= (¬st ∧ ψ′) and ∀k < l ≤ j : πST , l |= st ∨ ψ

3. Since for all k ∈ N : πST |= st⇔ k /∈ mapπST it follows that:
πST , j |= R(ψSψ′) ⇔
∃k ≤ j : k ∈ mapπST and πST , k |= R(ψ′) and
∀k < l ≤ j : l /∈ mapπST or πST , l |= R(ψ) ⇔
∃k′ ≤ i : πST ,mapπST (k′) |= R(ψ′) and
∀k′ < l′ ≤ i : πST ,mapπST (l′) |= R(ψ) ⇔
∃k′ ≤ i : π, k′ |= ψ′ and ∀k′ < l′ ≤ i : π, l′ |= ψ

Case φ := ite(ψ,ψ1, ψ2)

1. By R definition R(ite(ψ,ψ1, ψ2)) = ite(R(ψ),R(ψ1),R(ψ2))

2. By ite definition πST (j)(ite(R(ψ),R(ψ1),R(ψ2)))) = πST (j)(R(ψ1)) if π
ST , j |=

R(ψ),R(ψ2) otherwise

3. By induction hypothesis πST , j |= R(ψ) ⇔ π, i |= ψ and πST (j)(R(πST
1 )) =

π(i)(πST
1 ) and πST (j)(R(πST

2 )) = π(j)(πST
2 )

Case φ := next(ψ)

1. By R definition R(next(ψ)) = R(ψ)@F̃¬st
2. By @F̃ definition πST (j)(R(ψ)@F̃¬st) = πST (j′)(R(ψ)) if there exists j′ >
j : ∀j < j′′ < j′ : πST , j′′ ⊭ ¬st and πST , j′ |= ¬st

3. By Pr−1 and map definitions j′′ exists, since map is stricly monotonic it fol-
lows that: j′′ = mapπST (i+1) hence: πST (j)(R(next(ψ))) = πST (mapπST (i+
1))(R(ψ)) = π(i+ 1)(ψ) = π(i)(next(ψ))

Case φ := ψ1@F̃ψ2

1. By R definition R(ψ1@F̃ψ2)) = R(ψ1)@F̃ (ψ2 ∧ ¬st)
2. By @F̃ definition πST (j)(R(ψ1)@F̃ (¬st∧R(ψ2)) = πST (j′)(R(ψ1)) if there exists j′ >
j : ∀j < j′′ < j′ : πST , j′′ ⊭ ¬st ∧R(ψ2) and π

ST , j′ |= ¬st ∧R(ψ2)

3. By Pr−1 andmap definitions if j′′ exists j′′ ∈ mapπST hence: πST (j)(R(ψ1@F̃ψ2)) =
πST (j′)(R(ψ1)) if there exists j′ > j : πST , j′ |= R(ψ1) and j

′ ∈ mapπST and for all j <
j′′ < j′ : j′ /∈ mapπST or πST , j′′ ⊭ R(ψ2)

4. By induction hypothesis and sincemap is strictly monotonic if j′′ exists: j′′ =
mapπST (i′′) and j′ = mapπST (i′) and i < i′ < i′′, hence: πST (j)(R(ψ1@F̃ψ2)) =
π(i)(ψ1@F̃ψ2)
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Case φ := ψ1@P̃ψ2

1. By R definition R(ψ1@P̃ψ2)) = R(ψ1)@P̃ (ψ2 ∧ ¬st)
2. By @P̃ definition πST (j)(R(ψ1)@P̃ (¬st∧R(ψ2)) = πST (j′)(R(ψ1)) if there exists j′ <
j : ∀j > j′′ > j′ : πST , j′′ ⊭ ¬st ∧R(ψ2) and π

ST , j′ |= ¬st ∧R(ψ2)
3. By Pr−1 andmap definitions if j′′ exists j′′ ∈ mapπST hence: πST (j)(R(ψ1@P̃ψ2)) =
πST (j′)(R(ψ1)) if there exists j′ < j : πST , j′ |= R(ψ2) and j

′ ∈ mapπST and for all j >
j′′ > j′ : j′′ /∈ mapπST or πST , j′′ ⊭ R(ψ2)

4. By induction hypothesis and sincemap is strictly monotonic if j′′ exists: j′′ =
mapπST (i′′) and j′ = mapπST (i′) and i > i′ > i′′, hence: πST (j)(R(ψ1@P̃ψ2)) =
π(i)(ψ1@P̃ψ2)

A.2 Proof of lemma 2

Proof. 1. πST , 0 |= ¬stR(st ∨ R(φ)) ⇔ ∃l ≥ 0,∀0 ≤ k ≤ l : πST , k |= st ∨
R(ψ) and πST , l |= ¬st

2. Since ∀n : πST , n |= st ⇔ mapπST : πST , 0 |= ¬stR(st ∨ R(φ)) ⇔ ∃l ≥
0,∀0 ≤ k ≤ l : l ∈ mapπST and k ∈ mapπST → R(φ)

3. By map definition l = mapπST (0) (map is defined in N and is strictly
monotonic) hence πST , 0 |= ¬stR(st ∨R(φ)) ⇔ πST ,mapπST (0) |= R(φ)

A.3 Proof of theorem 1

Proof. We prove the correctness using lemma 1 and 2:

1. By Lemma 1: π |= φ⇔ π, 0 |= φ⇔ πST ,mapπST (0) |= R(φ)
2. By Lemma 2: πST ,mapπST (0) |= R(φ) ⇔ πST |= R∗(φ)

A.4 Proof of lemmas on stutter tolerant formulas

Proof for until formulas

Proof. This lemma can be proven by induction on the index j.

– Base case: j = mapπST (i)
The base case trivially holds since πST (j) = πST (mapπST (i))

– Inductive case: mi−1 = mapπST (i− 1) < j < mi = mapπST (i)

• By R definition πST , j |= R(φ) ⇔ πST , j |= (st∨R(ψ1))U(¬st∧R(ψ2))
• By U definition πST , j |= R(φ) ⇔ ∃k ≥ j : πST , k |= ¬st∧R(ψ2) and ∀j ≤
l < k : πST , l |= st ∨R(ψ1)

• Since j /∈ mapπST then πST , j |= st, which implies that πST , j |= st ∨
R(ψ1) and π

ST , j ⊭ ¬st ∧ R(ψ2) and hence πST , j |= R(φ) ⇔ πST , j +
1, |= R(φ)

• By induction hypothesis then πST , j |= R(φ) ⇔ πST ,mi |= R(φ)
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Proof for yesterday formulas

Proof. This lemma can be proven by induction on the index j.

– Base case: j = mapπST (i)
The base case trivially holds since πST (j) = πST (mapπST (i))

– Inductive case: mi−1 = mapπST (i− 1) < j < mi = mapπST (i)

• By induction hypothesis πST ,mi |= Y (stS(¬st∧R(ψ))) ⇔ πST , j+1 |=
Y (stS(¬st ∧R(ψ))) ⇔ πST , j |= stS(¬st ∧R(ψ))

• By S definition πST , stS(¬st ∧ R(ψ)) ⇔ ∃k ≤ j : πST , k |= ¬st ∧
R(ψ) and ∀k < l ≤ j : πST , l |= st

• Since j /∈ mapπST then πST , j |= st and πST , j ⊭ ¬st hence πST , j |=
stS(¬st∧R(ψ)) ⇔ j > 0 and πST , j−1 |= stS(¬st∧R(ψ)) ⇔ πST , j |=
Y (stS(¬st ∧R(ψ))) ⇔ πST , j |= R(ψ)

Proof for at last formulas

Proof. This lemma can be proven by induction on the index j.

– Base case: j = mapπST (i)
The base case trivially holds since πST (j) = πST (mapπST (i))

– Inductive case: mi−1 = mapπST (i− 1) < j < mi = mapπST (i)

• By R definition R(φ) = R(ψv)@P̃ (R(ψt) ∧ ¬st)
• By @P̃ definition πST (j)(R(φ)) = πST (j′)(R(ψv)) if there exists j′ <
j : πST , j′ |= R(ψt)∧¬st and for all j > j′′ > j′ : πST , j′′ ⊭ ¬st∧R(ψt)

• Since j /∈ mapπST it follows that πST , j ⊭ ¬st ∧ R(ψt), hence π
ST (j +

1)(R(φ)) = πST (j)(R(φ))
• By induction hypothesis then πST (j)(R(φ)) = πST (mi)(R(φ))

Proof of lemma 4

Proof. We can proof this lemma by induction. Base cases:

– If φ is an until formula, by lemma 3 it is stutter tolerant w.r.t. R
– If φ is an yesterday formula, by lemma 3 it is stutter tolerant w.r.t. R
– If φ is an at last formula,by lemma 3 it is stutter tolerant w.r.t. R
– If φ = s and s ∈ VO∪H then by Pr−1 definition s does not change during

stuttering transitions and hence it is stutter tolerant

Inductive step:

– φ = ψ1 ∨ ψ2:
1. πST , j |= R(ψ1) ∨R(ψ2) ⇔ πST , j |= R(ψ1) or π

ST , j |= R(ψ2).
2. Since by induction hypothesis both R(ψ1) and R(ψ2) are satisfied in j

iff they are satisfied in mi then also their disjunction is satisfied in j iff
it is satisfied in mi.

– φ = ¬ψ: This case is trivial: since R(ψ) is satisfied in j iff it is satisfied in
mi then also its negation will have the same property
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A.5 Proof of lemma 5

Proof. As for lemma 1, this lemma is proved by induction on the length of the
formula.

– Base case: The base case is identical to the one of the proof of lemma 1.
– Inductive case: If the sub-formulas are not stutter-tolerant the proof is

identical to the one of lemma 1.
Otherwise, it is necessary to consider the cases in which φ is a temporal
formula (X,U, S)or temporal term (next,@F ) composed by stutter-tolerant
sub-formulas
1. Case φ = X(ψ):

(a) By Rθ definition Rθ(φ) = XRθ(ψ)
(b) By X definition πST , j |= XRθ(ψ) ⇔ πST , j + 1 |= Rθ(ψ).
(c) By map definition there are two possible cases:

i. j + 1 = mapπST (i+ 1): Skip to the next point
ii. j +1 /∈ mapπST and j +1 < mapπST (i+1): Since ψ is a stutter-

tolerant formula, πST , j + 1 |= Rθ(ψ) ⇔ πST ,mapπST (i + 1) |=
Rθ(ψ)

(d) By induction hypothesis πST ,mapπST (i+ 1) |= Rθ(ψ) ⇔ π, i+ 1 |=
ψ ⇔ π, i |= Xψ

2. Case φ = ψ1Uψ2:
(a) By Rθ definition Rθ(φ) = Rθ(ψ1)URθ(ψ2)
(b) By U definition πST , j |= Rθ(ψ1)URθ(ψ2) ⇔ ∃k ≥ j : πST , k |=

Rθψ2 and ∀j ≤ l < k : πST , l |= Rθψ1

(c) Since ψ1 and ψ2 are stutter-tolerant and since map is monotonic
it follows that: πST , j |= R(φ) ⇔ ∃k̄ ∈ mapπST ≥ j : πST , k̄ |=
Rθ(ψ1) and ∀j ≤ l̄ < k̄ such that l̄ ∈ mapπST : πST , l̄ |= Rθ(ψ2)

(d) By induction hypothesis πST , j |= Rθ(φ) ⇔ ∃k′ ≥ i where k̄ =
mapπST (k′) : π, k |= ψ1 and ∀i ≤ l′ < k′ where l̄ = mapπST (l′) :
π, l′ |= ψ2 ⇔ π, i |= ψ1Uψ2

3. Case φ = ψ1Sψ2:
(a) By Rθ definition Rθ(φ) = Rθ(ψ1)SRθ(ψ2)
(b) By S definition πST , j |= Rθ(ψ1)SRθ(ψ2) ⇔ ∃k ≤ j : πST , k |=

Rθψ2 and ∀j ≥ l > k : πST , l |= Rθψ1

(c) Since ψ1 and ψ2 are stutter-tolerant and since map is monotonic
it follows that: πST , j |= R(φ) ⇔ ∃k̄ ∈ mapπST ≤ j : πST , k̄ |=
Rθ(ψ1) and ∀j ≥ l̄ > k̄ such that l̄ ∈ mapπST : πST , l̄ |= Rθ(ψ2)

(d) By induction hypothesis πST , j |= Rθ(φ) ⇔ ∃k′ ≤ i where k̄ =
mapπST (k′) : π, k |= ψ1 and ∀i ≥ l′ > k′ where l̄ = mapπST (l′) :
π, l′ |= ψ2 ⇔ π, i |= ψ1Sψ2

4. Case φ = next(ψ):
(a) By Rθ definition Rθ(φ) = next(Rθ(ψ))
(b) By next definition πST (j)(next(Rθ(ψ))) = πST (j + 1)(Rθ(ψ)).
(c) By map definition there are two possible cases:

i. j + 1 = mapπST (i+ 1): Skip to the next point
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ii. j +1 /∈ mapπST and j +1 < mapπST (i+1): Since ψ is a stutter-
tolerant term or formula, πST (j+1)(Rθ(ψ)) = πST (mapπST (i+
1))(Rθ(ψ))

(d) By induction hypothesis πST (mapπST (i+1))(Rθ(ψ)) = π(i+1)(ψ) =
π(i)(next(ψ))

5. Case φ = ψ1@Fψ2: In this proof the case in which ψ2 never hold is not
taken into account since it is not relevant.
(a) By Rθ definition Rθ(φ) = Rθ(ψ1)@FRθ(ψ2)
(b) By @F definition πST (j)(Rθ(ψ1)@FRθ(ψ2)) = πST (j′)(Rθ(ψ1))if there exists j′ >

j : πST , j′ |= Rθ(ψ2) and ∀j < j′′ < jπST , j′′ ⊭ Rθ(ψ2)
(c) Since ψ1 and ψ2 are stutter-tolerant and since map is monotonic

it follows that: πST (j)(Rθ(φ)) = πST (j̄′)(Rθ)if there exists j̄′ >
j : j̄′ ∈ mapπST and πST , j̄′ |= Rθ(ψ2)and ∀j < j̄′′ < j̄′ : j̄′′ ∈
mapπST and πST , j′′ ⊭ Rθ(ψ2)

(d) By induction hypothesis πST (j)(Rθ(φ)) = π(i′)(ψ1) if there exists i′ where j̄′ =
mapπST (i′) : π, i′ |= ψ2 and ∀i < i′′ < i′ where j̄′′ = mapπST (i′′) :
π, i′′ ⊭ ψ2 = π(i)(ψ1@Fψ2)

A.6 Proof of lemma 6

Proof. The case in which φ is not syntactically stutter-tolerant is identical to
lemma 2, while the other case is a special case of the stutter-tolerant definition.

A.7 Proof of theorem 2

Proof. The demonstration is the same of theorem 1. The only difference is that
instead of lemma 1 and 2, this lemma uses 5 and 6.

A.8 Proof of lemma 7

Proof. (Mφ is an ITS) To be an ITS,Mφ must have disjointed input, output and
internal variables. Input and output variables are taken from M; thus, they are
already disjointed. Internal variables are given by VH in union with new variables
generated through LTL2TS, and hence, the intersection with input and output
variables is empty. Initial conditions do not contain input variables since these
variables are replaced with new internal variables. Transition formulas do not
contain input next formulas for the same reason.

(Mφ |= φ) Since LTL2TS(φ) |= φ and the guess variables have the same
values of the input variables, then I, T and F are equisatisfiable, and thus, both
transition systems satisfy φ.

A.9 Proof of lemma 8

Proof. By Lemma 7, for each i, Mφi
|= φi. Thus, PrMi

(π) ∈ L (Mφi
)(V i). We

need to prove that PrM1
(π) ∈ L (Mφ1

(V 1))∧· · ·∧PrMn
(π) ∈ L (Mφn

(V n))∧
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π |= Ψ ⇔ π ∈ L (γS(Mφ1
, . . . ,Mφn

)). We prove this for every part of the ITS
tuple (I, T and F). (Case I) In case of I, each Iφi

is composed through the
conjunction of the other initial conditions. By ψcond (⇐) and Ψ (⇒), for all φ,
if π, j |= sti then π(V i)(j) = π(V i)(j +1). Since, F contains each ¬sti (⇐) and
since Ψ |= GF (¬st1) ∧ . . . GF (¬stn) (⇒), then there exists k ≥ 0 s.t. π, k ⊭ sti
and for all 0 ≤ l < k π, l |= sti. Thus, π, 0 |= Ii ⇔ π, k |= Ii where k is the first
non-stuttering transition, and hence, by Pr definition PrMi

(π)(0) |= Ii ⇔ π, 0 |=
Ii. Since I = I1∧· · ·∧In, PrM1(π), 0 |= I0∧· · ·∧PrMn(π), 0 |= In ⇔ π, 0 |= I.
(Case T ) In case of T , since the formulas might contain next variables, we
need to demonstrate that expressions over dotted variables holds in the next
state in which not stutter holds. By T composition, for all j s.t. π, j ⊭ sti :
π, j |= Ti. If Ti is a formula over V i, since we consider only variables in the

state j, then π, j |= Ti ⇔ PrMi(π) |= Ti. If Ti is a formula over V i
O
′ ∪ V i

H
′
,

then it must be evaluated in j + 1. Since, by ψcond, for all φ, if π, j
′ |= sti then

π(V i)(j′) = π(V i)(j′ + 1). Since, F contains each ¬sti, then there exists k ≥ j
s.t. π, k ⊭ sti and for all j ≤ l < k : π, l |= sti. Thus, π(V i)(j) = π(V j)(k)
where k is the next state where ¬sti holds. This, by Pr definition implies that
π, j |= T i ⇔ PrMi(π) |= T i. The case with formulas with both dotted and
non dotted formula can be seen as the inductive case and trivially holds. Since
T is the conjunction of ¬sti → T i and their ψcond, the conjunction trivially
holds. (Case F) In case of F , each fairness condition is included in conjunction
with not stutter. Since fairness constraints are evaluated as infinitely often φ,
then their conjunction with not stutter restricts such constraints to the states
in which each ¬sti holds. Thus, by Pr definition, for all φi ∈ Fi, for all j, exists
k s.t. π, k |= ¬st ∧ φi ⇔ PrMi(π), k′ |= φi.

A.10 Proof of theorem 3

Proof. γP is composed of the rewriting in conjunction with Ψcond:
π |= γP (φ1, . . . , φn) ⇔ π |= R∗

M1
(φ1) ∧ · · · ∧ R∗

Mn
(φn) ∧ Ψcond(M1, . . . ,Mn).

By theorem 1 and since Pr is the inverse of Pr−1, for each i : π |= R∗
Mi

(φi) ⇔
PrMi

(π) |= φi. Thus, π |= γP (φ1, . . . , φn) ⇔ PrM1
(π) |= φ1 ∧ · · · ∧PrMn

(π) |=
φn ∧ π |= Ψcond(M1, . . . ,Mn). By lemma 8 the theorem holds.


