VTSA summer school 2015

Exploiting SMT for Verification
of Infinite-State Systems

3. SMT-based
Verification with IC3

Alberto Griggio

Fondazione Bruno Kessler — Trento, Italy

OOOOOOOOOO
RRRRRRRRRRRR

Outline

Introduction
|IC3 for finite-state systems
SMT-based IC3 for infinite-state systems

|C3 for LTL verification

REN

Introduction BN

B |C3 very successful SAT-based model checking algorithm

® Incremental Construction
® of Inductive Clauses
® for Indubitable Correctness

B Key principles:

= Verification by induction

¥ |nductive invariant built incrementally
B py discovering (relatively-)inductive clauses

= Exploiting efficient SAT solvers

Introduction BN

B |C3 has been further generalized to SMT In various ways

® \We will look in some detail at one such generalization, called
|IC3 with Implicit Predicate Abstraction (IC3-1A)

= Exploits several features of modern SMT solvers that we have
discussed so far

B |ncremental solving

B Assumptions and unsatisfiable cores
B |nterpolation

B A “hands-down” approach

= We will build a (simple) real implementation on top of MathSAT

Proofs by Induction e
® Given transition system (I(X),T(X, X")) and property P(X)
® Base case (initiation):
I(X) | P(X)
¥ [nductive step (consectution):
PX)NT(X, X" E P(X')

® Typically however, P is not inductive

® Find an inductive invariant Inv(X), stronger than P
n [(X) = Inv(X)
B Inu(X)AT(X,X') = Inv(X’)
m [nu(X) = P(X)

Outline

Introduction
|IC3 for finite-state systems
SMT-based IC3 for infinite-state systems

|C3 for LTL verification

=<

A (very) high level view of IC3

FONDAZ
BRUNO KESSLER

GHI]]

B Gilven a symbolic transition system and invariant property P,

build an inductive invariant F s.t. F

— P

B Trace of formulae Fy(X) =1,..., Fr(X) s.t:

m fori> 0, F,Is a set of clauses

overapproximation of states reachable in up to i steps

Fiir1 CF; (so F; = Fiy1)
forall s < k, F; = P

1
11

U

/\

A (very) hlgh level view of IC3 = R e

a

B Blocking phase: incrementally strengthen trace until f, = P

® Get bad cube s

® Call SAT solveron F,_{ A—=sAT A s
(i.e., checkif Fi _{ A—=s AT = —s")

A (very) hlgh level view of IC3 : R e

a

B Blocking phase: incrementally strengthen trace until f, = P

® Get bad cube s

® Call SAT solveron Fi_1{ A=s AT A s
(i.e., check if Fj_y A—s AT = —s')

}/

E Check If s Is Inductive relative to F_,

: : -3¢
A (very) hlgh level view of IC3

O

B Blocking phase: incrementally strengthen trace until f, = P

® Get bad cube s

® Call SAT solveron F._{ A—=sAT A s
(i.e., checkif F,_1 A—s AT = —s')

A (very) high level view of IC3 =X

O

B Blocking phase: incrementally strengthen trace until f, = P

® Get bad cube s

® Call SAT solveron F._{ A—=sAT A s
If /is reached,

B SAT: s is reachable from Fir_1 A —sin 1 step counterexample
B Get a cube c in the preimage of s and try found

(recursively) to prove it unreachable from Fj._ o, ...
® cis a counterexample to induction (CTI)

A (very) high level view of IC3

.

B Blocking phase: incrementally strengthen trace until £},

¥ Get bad cube s
m Call SAT solveron Fr._o A—=s AT N s’

O

FONDAZIONE
BRUNO KE

A (very) high level view of IC3

|

- D(
FONDAZIONE
BRUNO KESSLER

.

O

B Blocking phase: incrementally strengthen trace until £},

" Get bad cube s
m Call SAT solveron Fr._o A—=s AT N s’
B UNSAT: —c is inductive relative to Fi.—o

Fi._o AN—=cNT

® Generalize ¢ to g and block by adding —g to Fy_1, Fr_2,..., F]

A (very) high level view of IC3

F
BRUNO KESSLER

o = .

B Blocking phase: incrementally strengthen trace until £},

" Get bad cube s
m Call SAT solveron Fr._o A—=s AT N s’
B UNSAT: —c is inductive relative to Fi.—o

Fi._o AN—=cNT

® Generalize ¢ to g and block by adding —g to Fy_1, Fr_2,..., F]

A (very) hlgh level view of IC3 FOIRATONE

o w

Propagation: extend trace to Fj,, ;and push forward clauses

For each i and each clause ¢ € F;:

Call SAT solveron F; AT A —¢
If UNSAT, add c to Fj 4

Fi/\T:C/

A (very) hlgh level view of IC3 | FOIRATONE

o i I3

Propagation: extend trace to Fj,, ;and push forward clauses

For each i and each clause ¢ € F;:

Call SAT solveron F, AT A —¢/
If UNSAT, add ¢ to F. ;

F@/\T:C/

A (very) hlgh level view of IC3 FOIRATONE

o '+ I3

Propagation: extend trace to Fj,, ;and push forward clauses

For each i and each clause ¢ € F;:

If

Call SAT solveron F; AT A —¢
If UNSAT, add c to Fj 4

Fi = Fia

Fi/\T:C/

, P Is proved,

otherwise start another round of blocking and propagation

IC3 pseudo-code

bool IC3(I, T, P):
trace = [I] # first elem of trace 1s init formula
trace.push() # add a new frame
while True:
blocking phase
while is_sat(trace.last() & ~P):
c = extract_cube() # ¢ |= trace.last() & ~P
if not rec_block(c, trace.size()-1):
return False # counterexample found

propagation phase
trace.push()
for i=1 to trace.size()-1:
for each cube c¢ in trace[1]:
if not 1is_sat(trace[i] & ~c & T & c'):
trace[i+1].append(c)
if trace[i] == trace[i+1]:
return True # property proved

IC3 pseudo-code

=

bool rec_block(s, 1):
if 1 ==
return False # reached initial states
while is_sat(trace[i-1] & ~S & T & s'):
c = get_predecessor(i-1, T, s')
if not rec_block(c, 1-1):
return False
g = generalize(~s, 1)
trace[1i].append(qg)
return True

Correctness (sketch) -2

® Consider the formula Fj,_; AT A s’ where s is a bad cube
= |f UNSAT, then Fj_qis strong enough to block s
= Since F; AT = F} ;.
= Since F; &= F; 1, thenwecanaddstoall F;,j <k

then s is unreachable in k steps or less

Correctness (sketch)

=

® Consider the formula Fj,_; AT A s’ where s is a bad cube
= |f UNSAT, then Fj_qis strong enough to block s

= Since F; AT = F!

o

then s is unreachable in k steps or less

= Since F; = F;,q,thenwecanaddstoall F;,j <k

® Consider now the relative induction check F,_{ A —=s AT A s

= We know that I = Fj

£~ s because [

— P (base case)

= Since F; = F;11, then we know that —s holds up to k

Correctness (sketch)

=

® Consider the formula Fj,_; AT A s’ where s is a bad cube
= |f UNSAT, then Fj_qis strong enough to block s
= Since F; AT

= Since F;

/
= F/.

then s is unreachable in k steps or less

1. thenwecanadd stoall F;, 57 <k

® Consider now the relative induction check F,_{ A —=s AT A s
= We know that I = F|y = s because [

® Since F;

— P (base case)

i+1, then we know that —s holds up to k

B Propagation: for each ¢ € F;, check F; AT N —c¢

= we know that ¢ holds up to /, if UNSAT then it holds up to /+1
it1, s NT =F;, , and F; = P,
if F; = F;,1 then the fixpoint is an inductive invariant

® since F; =

Inductive Clause Generalization =2

® Crucial step of IC3
® Given a relatively inductive clause ¢ = {l1,...,1,}

compute a generalization g € ¢ that is still inductive
Fi i ANTANgEY (1)

® Drop literals from ¢ and check that (1) still holds

= Accelerate with unsat cores returned by the SAT solver
B Using SAT under assumptions

B However, make sure the base case still holds
=if I~ c\{l;},then [;cannot be dropped

Simple iterative generalization

=

void indgen(c, 1):
done = False
for iter = 1 to max_iters:
if done:
break
done = True
for each 1 in c:
cand = ¢ \ {1}
if not 1is_sat(I & cand) and
not is_sat(trace[i] & ~cand & T & cand'):
Cc = get_unsat_core(cand)
rest = cand \ ¢
while is_sat(I & c):
11 = rest.pop()
c.add(11)
done = False
break

CTIl computation

=<

®\When F; A —s AT A s’ is satisfiable:

" s reaches — P in k-i steps

® s can be reached from F; in 1 step

® strengthen F; by blocking cubes ¢ in the preimage of s

® Extract CTI ¢ from the SAT assignment

® And generalize to represent multiple bad predecessors

® Use unsat cores, exploiting a functional encoding of the transition

relation
® |f T is functional, then ¢ A inputs A1’

:S/

® check inputs A T' A —s’ under assumptions ¢

SAT-based CTI generalization

A

vold generalize_cti(cti, inputs, next):
for 1 = 1 to max_iters:
b = is_sat(cti & inputs & T & ~next"')
assert not b # assume T to be functional
Cc = get_unsat_core(cti)
1f should_stop(c, cti):
break
cti =c

Example e

No counterexamples of length O

A [:_1331/_I332A_I333

@ 9 % P = -2V 29
oL

[borrowed and adapted from F. Somenzi]

Example REN

Getbad cubec=xy ANxs In F1 NP

I = -1 /\ X9 /_ICL’3
P =—-z1V —x9

Fo=1I
=T

Example

Is —¢ inductive relative to Fy ? Fog N1 N —c = —c

=<

I = -1 /\ X9 /_ICL’3
P =—-z1V —x9

Fo=1
=T

Example

Yes, generalize —c = —x1 V 09

-

I = -1 /\ X9 /_ICL’3
P =—-z1V —x9

Fo=1
=T

Example REN

Yes, generalize —c = —x1 V 09

@ - o

Fo=1I
=T

Try dropping —x»

F()/\T/_Iilfl /J:_I.CIZ/l x

Example REN

Yes, generalize —c = —x1 V 09

@ - o

Fo=1I
=T

Try dropping —x1

Fo AT A—zs = 1h, &

Example REN

Yes, generalize —c = —x1 V 09

) | O

Fo=1I
=T

Try dropping —x1

Fo AT A—zs = 1h, &

Example BEN

Update F;

o g

I = -1 /\ X9 /_ICL’3
P =—-z1V —x9

L

b1 = =

Example =X

Blocking done for F3i. Add F5 and propagate forward

+ = —x1 N\ Xy N\ X3
— 1 V)
FO =1

Fz

T

Example

No clause propagates from Fj to Fy

REN

I = -1 /\ X9 /_11‘3
P =—-z1V —x9

Fo=1

Example REN

Getbad cubec=xy Axy In F5 AN =P
I = -1 N\ o N X3

e CONC P
L

Example

Is —¢ inductive relative to F; ? F1 NN\ —c = —c

=<

I = -1 /\ X9 /_ICL’3
P =—-z1V —x9

Fo=1

Example

No, found CTI s = =21 A =22 A\ X3

=<

I = -1 /\ X9 /_ICL’3
P =—-z1V —x9

Fo=1

Example BEN

Try blocking —s at level 0: Fo AT A —s = —s'

e o L
' P:_Iﬂil\/_lfli‘g
Fo=1

Example BEN

Yes, generalize —-s =x1 V 22 V =23

e o L
' P:_Iﬂil\/_lfli‘g
Fo=1

Try dropping F, ; T
FoANT ANxoV —x3 b oh V —ah x

Example BEN

Yes, generalize —-s =x1 V 22 V =23

e o L
' P:_Iﬂil\/_lfli‘g
Fo=1

Try dropping o F, ; T
FoANT Az V -z Eay Vv of

Example REN

Yes, generalize —-s =x1 V 22 V =23
R RECUNCT i
' P=—-21V x5

Try dropping 3 F, ; T

I#ml x

Example

Update F3

=<

I = -1 /\ X9 /_ICL’3
P =—-z1V —x9

Fo=1
F1 — X9 A\
(561 \/_1563)

Fo=T

Example

Return to the original bad cube c

=<

I = -1 /\ X9 /_ICL’3
P =—-z1V —x9

Fo=1
F1 — X9 A\
(561 \/_1563)

Fo=T

Example

Is —¢ inductive relative to F; ? F1 NN\ —c = —c

=<

I = -1 /\ X9 /_ICL’3
P =—-z1V —x9

Fo=1
F1 — X9 A\
(561 \/_1563)

Fo =T

Example REN

Yes, generalize —c = —x1 V —x9

@ e o (@] G
' P:_Iﬂil\/_lfli‘g

Fo=1
_ F1 — X9 N\
Try dropping —x1 (1 V —23)

Fi NT N\ —~xg = b v Fa=1

Example

Update [, and add new frame [

=<

I = -1 /\ X9 /_ICL’3
P =—-z1V —x9

Fo=1

F1 — X9 N\
(561 \/_1563)

Fy = g

Fs =T

Example

Perform forward propagation

e

From Fyto F5 :
F1 AN A (5131 V _15133)

= (21 V ~r3)

v

=<

I = -1 /\ X9 /_ICL’3
P =—-z1V —x9

Fy=1

F1 = WA
(561 \/_1563)

F2 — TXI9

Fs =T

Example X

Perform forward propagation

R R e
' P:_Iﬂil\/_lfli‘g

Fo=1
Found fixpoint! Fy = —x9 A
(1 V —x3)
F2 — X2 N
(x1 V —z3)

Fs =T

Example e

Perform forward propagation

@ e o (@] L
' P = -z V —xs

Fo=1
_ _ _ F1 — X9 YA\
Inductive invariant: (32‘1 v ﬂﬂi‘s)
FlEFQE _I.CIJQ/\(ZEl\/_wg) F2:_|.CU2 A\
(5131 V _ICE3)

Fs=T

Outline

Introduction
|IC3 for finite-state systems
SMT-based IC3 for infinite-state systems

|C3 for LTL verification

|

D
FONDAZIONE
BRUNO KESSLER

IC3 with SMT

® How to generalize from SAT to SMT?

=<

IC3 with SMT BN

® How to generalize from SAT to SMT?

B Good news: replacing the SAT solver with an SMT solver is
enough for partial correctness

B pbut what about:

® termination?
u efficiency?

IC3 with SMT BN

® How to generalize from SAT to SMT?

B Good news: replacing the SAT solver with an SMT solver is
enough for partial correctness

B pbut what about:

¥ termination?
B Easy! (answer)
® the problem is in general undecidable, so no hope here

u efficiency?

Rellnd(Fy_1,T,s) with SMT

®\When F; A —s AT A s’ is satisfiable:

® s reaches —P in k-i steps
® s can be reached from F; in 1 step

FONDAZ
BRUNO KESSLER

%
T

® strengthen F; by blocking cubes c in the preimage of s

® |n the Boolean case, get ¢ from SAT assignment (and generalize)

® For SMT(LRA):

® \Would exclude a single point
In an infinite space

Single model m from SMT solver:
r=3Ny=7

Rellnd(Fy_1,T,s) with SMT

®\When F; A —s AT A s’ is satisfiable:

® s reaches —P in k-i steps
® s can be reached from F; in 1 step

FONDAZIONE
BRUNO KE

® strengthen F; by blocking cubes c in the preimage of s

B |n the Boolean case, get ¢ from SAT assignment (and generalize)

B For SMT(LRA): underapproximated guantifier elimination

B Encodes a set of predecessors
B Cheaper than full quantifier elimination

® But still potentially expensive
B Not always available
® E g for UF+LRA

underapproximated preimage:

(z<3)A(y=7)

Rellnd(Fy_1,T,s) with SMT

®m\When F; A —s AT A s’ is unsatisfiable:

® Compute a generalization g of s to block

® Block more than a single cube at a time

»

-

B |n the Boolean case, use inductive generalization algorithms

B For SMT, Boolean algorithms plus theory-specific “ad hoc”
techniques

® Based on Farkas' lemma for LRA [HB SAT'12]
= [WK DATE'13] for BV
= [KIJN FORMATS'12] for timed automata

Implicit Predicate Abstraction [Tonetta FM%]ES ?3(

B Abstract version of k-induction, avoiding explicit computation
of the abstract transition relation

® By embedding the abstraction in the SMT encoding

® Given a set of predicates P and an unrolling depth &,
the abstract path Pathy, p is

A @XM A N X < p() AT(F XF)

1<h<k pelP

EQ =
Npep(P(Y) < p(X))

IC3 with Implicit Abstraction BEN

B [ntegrate the idea of Implicit Abstraction within IC3
B Use abstract transition relation T'(X, Y') instead of T'(X, X’)
B | earn clauses only over predicates P

B Use abstract relative induction check:
AbsRellnd(F, T, s,P) :=F(X) A s(X)ANT(X, YA

A (p(X') < p(Y")) A =s(X')

IC3 with Implicit Abstraction _?<

B [ntegrate the idea of Implicit Abstraction within IC3
® Use abstract transition relation T'(X, Y’) instead of T'(X, X’)
B | earn clauses only over predicates P

B Use abstract relative induction check:
AbsRellnd(F, T, s,P) :=F(X) A s(X)ANT(X,Y")A

A @(X) < p(Y") A=s(X)

B |f UNSAT =inductive strengthening as in the Boolean case

® No theory-specific technique needed
® Theory reasoning confined within the SMT solver

IC3 with Implicit Abstraction

B [ntegrate the idea of Implicit Abstraction within IC3

|

D
FONDAZIONE
BRUNO KESSLER

B Use abstract transition relation T'(X, Y') instead of T'(X, X')

B | earn clauses only over predicates P

B Use abstract relative induction check:

AbsRellnd(F, T, s, P) :=F(X) A s(X) AT(X, V')A
A (p(X') < p(Y") A =s(X')

pEeP

"c={p(X) | pePApEPX)U{pX) | p
® No quantifier elimination needed

B |[f SAT = abstract predecessor cfrom the SMT model u

~ p(X)}

Example =X

def

" T = (2] — 3z < 4xl 4+ 2x5 4+ 3) A (3x1 — 225 = 0)
B P (3 — 2o >4), (21 <3)}
ms = oz —x9 >4)A (21 < 3)
® Rellnd((,T,s) is SAT
B Compute a predecessor with Japprox], 5. (7S AT A 8')
(3 <3z1+x2) A=(1 — 22 > 4) A (21 < 3) A (=% < 1)

Example A

def

" T = (2] — 3z < 4xl 4+ 2x5 4+ 3) A (3x1 — 225 = 0)
BPE (1 — x> 4), (21 <3)}
ms = oz —x9 >4)A (21 < 3)
® Rellnd((,T,s) is SAT
B Compute a predecessor with Japprox], 5. (7S AT A 8')
(5 <3z +x2) Az — 22 > 4) A (21 <3)A—(—3 < 21)

" AbsRellnd(0, T, s,P) := T[X" — Y'|A
=8 A SN
(7] — 25 > 4) & (y1—ya > 4) A (27 <3) < (y1 < 3)

B Compute predecessor from SMT model u = {x1 — 0,29 — 1}

_1(331 — Ty > 4) A\ (5131 < 3)

Example A

def

" T = (2] — 3z < 4xl 4+ 2x5 4+ 3) A (3x1 — 225 = 0)
BPE (1 — x> 4), (21 <3)}
ms = oz —x9 >4)A (21 < 3)
® Rellnd((,T,s) is SAT
m Compute a predecessor with 3;ppr0x 77, 5. (75 AT A 8)
(5 <3z1 + oA (21 — 2 > 4) A (31 < 3TD(—5 < 31)

" AbsRellnd(0, T, s,P) := Z[X" — Y'|A
—s A\ s'A
(z7 — 2 > 4) A yi—yh > 4) A (2] < 3) + (¥] < 3)

def

B Compute prede(essor from SMT model © = {z1 — 0,29 +— 1}

6(331 — Ty > 4) A\ (5131 < 3))

Abstraction Refinement

B Abstract predecessors are overapproximations

¥ Spurious counterexamples can be generated
B \We can apply standard abstraction refinement techniques

B Use seqguence interpolants to discover new predicates
® Sequence of abstract states so — S1 — ... — Sp
" SMT check on s A T9 AstA L ANTEL A sk

concrete concrete
® |f unsat, compute sequence of interpolants for

0 0
[80 /\ Tconcrete

concrete concrete

B Add all the predicates in the interpolants to [P

A ANTEL T IsEA L ATESL A s

Incrementality e

B Abstraction refinement is fully incremental
B No restart from scratch
® Can keep all the clauses of F1,..., F%

= Refinements monotonically strengthen T’
Toew = Told A N\yep,., (P(X) < p(Y)) A (p(X') < p(Y))

= AllIC3 invariants on F7y, ..., F} are preserved
Fii1CF;(soF; EFip1) &
forall s < k, F; = P ¥ 4
Es N ew F @'/4_1 S 4

B Abstract counterexample check can use incremental SMT

Example

B System S with 2 state vars ¢ and d
mnit: (d=1)A (c>d)
" Trans: (¢ =c+d)AN(d =d+1)
= Property: (d > 2) = (¢ > d)

B Predicates P
(d=1) (c>d)
(d>2) (c>d)

=

Example

B System S with 2 state varscand d ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
= Trans: (C/:C—I—d)/\(d’:d—l—l) (d>2) (C>d)
= Property: (d > 2) = (¢ > d)

B Check base case: Init = Property «

=

Example

B System S with 2 state varscand d ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
= Trans: (C/:C—I—d)/\(d’:d—l—l) (d>2) (C>d)
= Property: (d > 2) = (¢ > d)

B Trace: Fjy := Init
B Get bad cube F, =T

® SMT check Fi A ~Prop
® SAT with model u:= {c=10,d = 2}
® Evaluate predicates wrt. i
" Return ¢ :={—~(d=1),—~(c>d),(d > 2),~(c>d)}

14

Example REN

B System S with 2 state varscand d ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
= Trans: (C/:C—I—d)/\(d’:d—l—l) (d>2) (C>d)
= Property: (d > 2) = (¢ > d)

B Trace: Fjy := Init
B Rec. block ¢ Fy =T

® Check

Example

B System S with 2 state vars ¢ and d
mnit: (d=1)A (c>d)
" Trans: (¢ =c+d)AN(d =d+1)
= Property: (d > 2) = (¢ > d)

® Rec. block ¢

" Check
AbsRelInd(Fy, T, c,P)

= Unsat core: {(d' > 2)}

= Update Fi := F1 A =(d > 2)

B Predicates P
(d=1) (c>d)
(d>2) (c>d)

B Trace: Fjy := Init
F1 = |

=

Example REN

B System S with 2 state varscand d ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
= Trans: (C/:C—I—d)/\(d’:d—l—l) (d>2) (C>d)
= Property: (d > 2) = (¢ > d)

® Trace: F{ := Init
® Forward propagation Fi = —=(d > 2)

F2 = |

Example A

B System S with 2 state varscand d ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
= Trans: (C/:C—I—d)/\(d’:d—l—l) (d>2) (C>d)
= Property: (d > 2) = (¢ > d)

B Trace: Fgy := Init
® Get bad cube at 2 Fi :=—(d > 2)

ci={~(d=1),~(c > d), Fy=T
(d>2),—(c>d)}

Example e

B System S with 2 state varscand d ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
= Trans: (C/:C—I—d)/\(d’:d—l—l) (d>2) (C>d)
= Property: (d > 2) = (¢ > d)

B Trace: Fgy := Init
® Rec. block ¢ Fi :=—(d > 2)

. FQ;:T

® Update Fi = Fy N\ (C > d)

" Update Fo:=Fy A (c>d)V —(d> 2)

Example REN

B System S with 2 state varscand d ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
= Trans: (C/:C—I—d)/\(d’:d—l—l) (d>2) (C>d)
= Property: (d > 2) = (¢ > d)

| ® Trace: Fy := Init
® Forward propagation Fi:==(d>2)AN(c>d) N F

Fy:=(c>d)V—(d>2)
F3I:—|_

Example A

B System S with 2 state varscand d ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: (=c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d)
® Trace: Fj := Init
B Get bad cube at 3 Fri==(d>2)A(c>d)AFs
wCi= {—I(d:1),—l(62d), Fy = (C>d)\/—l(d>2)
(d>2),7(c>d)} Fy=T

Example A

B System S with 2 state varscand d ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: (=c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d)
® Trace: Fj := Init

" Rec block ¢ Fi:==(d>2)AN(c>d) N F
= Check Fr:=(c>d)V—(d>2)
AbsRel[nd(Fg,T, C, IP)) x F3 — T
= SMT model

nw:=4c=0,d=2,/=0,d =3,y. = 2,yq = 3}
® (Abstract) predecessor
s :={7(d>2),2(c>d),~(d=1),~(c=d);

Example REN

B System S with 2 state varscand d ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: (=c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d)
® Trace: Fj := Init

B Rec block s (at level 2) Fi:i=~(d>2)A(c>d)AF
_ I Fy:=(c>d)V—(d>2)
® Reached level O, abstract cex: Fy:=T
q:==(d>2),~(c>d),(d=1),(c > d)
p:==(d>2),~(c>d),~(d=1),(c >d)
s:==(d>2),~(c>d),~(d=1),~(c > d)
c:==(d=1),~(c>d),(d > 2),~(c > d)

Example REN

B System S with 2 state varscand d ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: (=c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d)
® Trace: Fj := Init

B Check abstract counterexample F,
= SMT check F5
Io AN go N1os1 Ap1 ANT1s52 N\ Sa Aday3 Acs F;

UNSAT

Example REN

B System S with 2 state varscand d ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: (=c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d)
® Trace: Fj := Init

B Check abstract counterexample F,

B Compute sequence interpolant Fy

fo A qo /N TO|—>L NP1/ IATRCWANCL WA YR WA C3 F;
Al Bl

p1 = (d1 > 2)

Example REN

B System S with 2 state varscand d ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: (=c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d)
® Trace: Fj := Init

® Check abstract counterexample F
B Compute sequence interpolant Fy
io/\go/\To,_)l/\pl/\Tl,_)i/\&SQ/\TQ,_)g/\CgJ Fy
Ay B,
p1 = (d1 > 2)

Example

B System S with 2 state varscand d ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)

=

= Trans: (¢ =c+d)N(d =d+1) (d>2) (c>d)
® Property: (d > 2) — (c > d) (d = 2) (d > 3)

B Trace: Fjy := Init

B Check abstract counterexample F,
B Compute sequence interpolant Fy
]o AqoNLo—s1 Ap1 ANT1s2 N\ Sg Aday3 A cs F;
—~— —
Ag BS
= (d1 = 2)
= (d2 = 3) Update predicates [P
p3 = L

Example A

B System S with 2 state varscand d ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: (=c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d) (d=2) (d=3)
® Trace: Fj := Init
B Update abstract trans Fri==(d>2)A(c>d)AFs
B Resume IC3 from level 3 Fy:=(c>d)V—-(d>2)

u . F3 =T

Example REN

B System S with 2 state varscand d ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: (=c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d) (d=2) (d=3)
® Trace: Fj := Init

® Update abstract trans Fi:==(d>2)A(c>d) A Fy
® Resume IC3 from level 3 Fo:=(c>d)V —(d>2)N F3
I Fs:=(d=1)V (d>2)A
—(c>d) N Fy

Fy:=(c>d)V-(d>2)

Example A

B System S with 2 state varscand d ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: (=c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d) (d=2) (d=3)
® Trace: Fj := Init

® Update abstract trans Fi:==(d>2)A(c>d) A Fy
® Resume IC3 from level 3 Fo:=(c>d)V —(d>2)N F3
I Fs:=(d=1)V (d>2)A
—(c>d) N Fy

® Forward propagation by = (C > d) N ﬁ(d > 2)

Example REN

B System S with 2 state varscand d ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: (=c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d) (d=2) (d=3)
® Trace: Fj := Init

® Update abstract trans Fi:==(d>2)A(c>d) A Fy
® Resume IC3 from level 3 Fy:=(c>d)V —(d>2) A F3
I Fs:=(d=1)V (d>2)A
—(c>d) N\ Fy
" Forward propagation Fy:=(c>d)V~(d>2)

FBATp (> d)V~(d > 2)

Example REN

B System S with 2 state varscand d ® Predicates P
= Init: (d=1)A (c> d) (d=1) (c=d)
" Trans: (=c+d) N (d =d+1) (d>2) (c>d)
= Property: (d > 2) = (¢ > d) (d=2) (d=3)
® Trace: Fj := Init

B Update abstract trans Fii==(d>2)A(c>d) A F,
® Resume IC3 from level 3 F5 := F3
. F3:=(c>d)V(d>2)A\
(d=1)V(d>2)A
® Forward propagation ﬁ(C > d) AW
Fy:=(c>d)V ~(d>2)

SAFE ¢

Implementing IC3-IA A

B Get the code at:
http://es-static.fbk.eu/people/griggio/vtsa2015/

B Open source (GPLv3) implementation on top of MathSAT
http://mathsat.fbk.eu/

B |ncremental interface
B Assumptions and unsat core
B |nterpolation

B Simple (~1700 lines of C++, including parser and statistics,
according to David A. Wheeler's 'SLOCCount') yet competitive

¥ |nput in VMT format (a simple extension of SMT-LIB)
https://nuxmv.fbk.eu/index.php?n=Languages.VMT

B | et's analyse it!

http://es-static.fbk.eu/people/griggio/vtsa2015/
http://mathsat.fbk.eu/
https://nuxmv.fbk.eu/index.php?n=Languages.VMT

Outline

Introduction
|IC3 for finite-state systems
SMT-based IC3 for infinite-state systems

|C3 for LTL verification

-

Linear Temporal Logic

B Syntax

- D(

® A (quantifier-free) first-order formula ¢
" Xy (neXty)

= Uy (@ Until)

= Fo (Finally ¢)
" GGy (Globally)

B Semantics
® Given an infinite path 7™ := Sg, S1,..., S, ...
a7 = Xpift 51,... F
s T =eUy il 47 >0.s;,... m¢pand VO < k< j.sk,... F ¢
a T =Fpiff J5.55,... = ¢
n T =Geift Vis;,...=p

u Asystem S satisfies an LTL formula ¢ (.S =) iff all inifinite
paths of S satisfy ¢

LTL verification =>¢

B Automata-based approach:

® Given an LTL property ¢, build a transition system S
with a fairness condition fﬂsp , such that

S — iff 5 x Sﬁgp :FG—lfﬁgo

B Finite-state case:

® Jasso-shaped counterexamples, with f at least once In the
loop

" |liveness to safety transformation: absence of lasso-shaped
counterexamples as an invariant property

® Duplicate the state variables X, = {z.|z € X}
® Non-deterministically save the current state

= Remember when f_ , in extra state var triggered
® nvariant: G—(X = Xcopy A triggered)

Liveness to Safety for Inifinite States A

® Unsound for infinite-state systems

® Not all counterexamples are lasso-shaped
()= (z=0) TWO)E(e'=z+1) ¢ =FG(z<5b)

B | iveness to safety with Implicit Abstraction

= Apply the I2s transformation to the abstract system

B Save the values of the predicates instead of the concrete state
= Do it on-the-fly, tightly integrating 12s with IC3
® Sound but incomplete

® \When abstract loop found, simulate in the concrete and refine
B Might still diverge during refinement
® |ntrinsic limitation of state predicate abstraction

K-liveness =N

B Simple but effective technique for LTL verification of finite-
state systems

® Key insight: M x M_, = FG—f_,, iff exists k such that /-
IS visited at most k times

® Again, a safety property

B K-liveness: increase k incrementally, within IC3

® Liveness checking as a sequence of safety checks
= Exploits the highly incremental nature of IC3
® Sound also for infinite-state systems

® \What about completeness?

K-liveness for hybrid automata 28

m K-liveness is incomplete for infinite-state systems

= Evenif M x M-, = FG=f-, there might be no concrete k
bound for the number of V|olat|ons of =/,

IS (z=n) TO)E (' =z+1) ¢=FG(z>n)

® K-zeno: extension of K-liveness for hybrid automata

® Key idea: exploit progress of time to make k-liveness converge

= By extending the original model with a “symbolic fairness
monitor” Z‘é’ that forces time progress

® Under certain conditions, restores completeness of k-liveness

mif M x M-, =FG—f.,,then exists k such that
M x M-, y ZSO Visits fZ at most k times

B (clearly, safety check can still diverge)

Selected bibliography =€

DISCLAIMER: again, this is definitely incomplete. Apologies to
missing authors/works

B |C3 for finite-state systems

= Bradley, Manna. Checking Safety by Inductive Generalization
of Counterexamples to Induction. FMCAD 2007

= Bradley. SAT-based Model Checking Without Unrolling.
VMCAI 2011

® Een, Mischenko, Brayton. Efficient Implementation of
Property-Directed Reachability. FMCAD 2011

® Hassan, Somenzi, Bradley. Better Generalization in IC3.
FMCAD 2013

® Vizel, Gurfinkel. Interpolating Property-Directed Reachability.
CAV 2014

Selected bibliography =€

B |C3 for Infinite-state systems

® Hoder, Bjgrner. Generalized Property-Directed Reachability.
SAT 2012

= Cimatti, Griggio, Mover, Tonetta. IC3 Modulo Theories with
Implicit Predicate Abstraction. TACAS 2013

= Komuravelli, Gurfinkel, Chaki. SMT-Based Model Checking for
Recursive Programs. CAV 2014

= Birgmeler, Bradley, Weissenbacher. Counterexample to
Induction-Guided Abstraction-Refinement (CTIGAR). CAV
2014

= Bjarner, Gurfinkel. Property Directed Polyhedral Abstraction.
VMCAI 2015

Selected bibliography =€

m |C3 for LTL verification

® Bradley, Somenzi, Hassan, Zhang. An incremental approach to
model checking progress properties. FMCAD 2011

® Claessen, Sorensson. A liveness checking algorithm that
counts. FMCAD 2012

= Cimatti, Griggio, Mover, Tonetta. Verifying LTL Properties of
Hybrid Systems with K-Liveness. CAV 2014

Thank You

=<

