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Introduction

 IC3 very successful SAT-based model checking algorithm

 Incremental Construction

 of Inductive Clauses

 for Indubitable Correctness

 Key principles:

 Verification by induction

 Inductive invariant built incrementally

 by discovering (relatively-)inductive clauses

 Exploiting efficient SAT solvers



  

Introduction

 IC3 has been further generalized to SMT in various ways

 We will look in some detail at one such generalization, called

IC3 with Implicit Predicate Abstraction (IC3-IA)

 Exploits several features of modern SMT solvers that we have 
discussed so far

 Incremental solving
 Assumptions and unsatisfiable cores
 Interpolation

 A “hands-down” approach

 We will build a (simple) real implementation on top of MathSAT



  

Proofs by Induction

 Given transition system                               and property

 Base case (initiation):

 Inductive step (consectution):

 Typically however,     is not inductive

 Find an inductive invariant               , stronger than
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A (very) high level view of IC3

 Given a symbolic transition system and invariant property P,
build an inductive invariant F s.t.

 Trace of formulae                                       s.t:

 for i > 0, F
i
 is a set of clauses

overapproximation of states reachable in up to i steps

Fi+1 µ Fi (so Fi j= Fi+1)
Fi ^ T j= F 0i+1
for all i < k; Fi j= P

:P
FkFk¡1I

T TT Fk¡2

F j= P
F0(X) ´ I; : : : ; Fk(X)



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           
    (i.e., check if                                     )

:P
FkFk¡1I

T T T

Fk j= P

Fk¡2

:Ps

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           
    (i.e., check if                                     )

:P
FkFk¡1I

T T T

Fk j= P

Fk¡2

:Ps

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

Check if s is inductive relative to F
k-1



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           
    (i.e., check if                                     )

Fk j= P

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

FkI
TT s

Fk¡2T Fk¡1

:Ps



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           

 SAT: s is reachable from                     in 1 step
 Get a cube c in the preimage of s and try 

(recursively) to prove it unreachable from           , …

 c is a counterexample to induction (CTI)

Fk j= P

Fk¡1 ^ :s ^ T ^ s0

FkFk¡1I
TT s

Fk¡2T
c

:Ps

Fk¡1 ^ :s

Fk¡2

If I is reached,
counterexample

found



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           

Fk j= P

FkFk¡1I Fk¡2T
cc

TT
:Ps



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           

 UNSAT:       is inductive relative to          
 Generalize c to g and block by adding        to

Fk j= P

FkFk¡1I Fk¡2T
cc

TT
:Ps

Fk¡2
Fk¡1; Fk¡2; : : : ; F1:g

:c



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           

 UNSAT:       is inductive relative to          
 Generalize c to g and block by adding        to

Fk j= P

Fk¡2
Fk¡1; Fk¡2; : : : ; F1:g

:c

FkFk¡1I
sT T

Fk¡2Fk¡2
T Fk¡1

:Ps



  

A (very) high level view of IC3

Propagation: extend trace to         and push forward clauses

For each i and each clause             :

Call SAT solver on

If UNSAT, add c to 

FkFk¡1I Fk¡2

:P
FkFk¡2 Fk¡1

T TT

Fk+1

Fi+1

c 2 Fi



  

A (very) high level view of IC3

Propagation: extend trace to         and push forward clauses

For each i and each clause             :

Call SAT solver on

If UNSAT, add c to 

Fk+1

Fi+1

c 2 Fi

FkFk¡1I Fk¡2

:P
Fk¡2 Fk¡1

T TT Fk Fk+1
T



  

A (very) high level view of IC3

Propagation: extend trace to         and push forward clauses

For each i and each clause             :

Call SAT solver on

If UNSAT, add c to 

Fk+1

Fi+1

c 2 Fi

FkFk¡1I Fi Fk¡2

:P
Fk¡2 Fk¡1

T TT Fk Fk+1
T

If                    , P is proved,
otherwise start another round of blocking and propagation
Fi ´ Fi+1



  

IC3 pseudo-code

bool IC3(I, T, P):
    trace = [I]   # first elem of trace is init formula
    trace.push()  # add a new frame
    while True:
        # blocking phase
        while is_sat(trace.last() & ~P):
            c = extract_cube() # c |= trace.last() & ~P
            if not rec_block(c, trace.size()-1):
                return False # counterexample found

        # propagation phase
        trace.push()
        for i=1 to trace.size()-1:
            for each cube c in trace[i]:
                if not is_sat(trace[i] & ~c & T & c'):
                    trace[i+1].append(c)
            if trace[i] == trace[i+1]: 
                return True # property proved



  

IC3 pseudo-code

bool rec_block(s, i):
    if i == 0:
        return False  # reached initial states
    while is_sat(trace[i-1] & ~s & T & s'):
        c = get_predecessor(i-1, T, s')
        if not rec_block(c, i-1):
            return False
    g = generalize(~s, i)
    trace[i].append(g)
    return True



  

Correctness (sketch)

 Consider the formula                          where s is a bad cube

 If UNSAT, then           is strong enough to block s

 Since                           , then s is unreachable in k steps or less 

 Since                    , then we can add s to all 

 

Fi ^ T j= F 0i+1
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 Consider now the relative induction check
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Correctness (sketch)

 Consider the formula                          where s is a bad cube

 If UNSAT, then           is strong enough to block s

 Since                           , then s is unreachable in k steps or less 

 Since                    , then we can add s to all 

 Consider now the relative induction check

 We know that                        because              (base case)

 Since                   , then we know that       holds up to k
 

 Propagation: for each            , check  

 we know that c holds up to i, if UNSAT then it holds up to i+1

 since                    ,                             and               , 

if                    then the fixpoint is an inductive invariant 

Fi ^ T j= F 0i+1

Fi ^ T j= F 0i+1



  

Inductive Clause Generalization

 Crucial step of IC3

 Given a relatively inductive clause      

compute a generalization            that is still inductive

 Drop literals from    and check that (1) still holds

 Accelerate with unsat cores returned by the SAT solver

 Using SAT under assumptions

 However, make sure the base case still holds

 If                        , then     cannot be dropped



  

Simple iterative generalization

void indgen(c, i):
    done = False
    for iter = 1 to max_iters:
        if done:
            break
        done = True
        for each l in c:
            cand = c \ {l}
            if not is_sat(I & cand) and 
               not is_sat(trace[i] & ~cand & T & cand'):
                c = get_unsat_core(cand)
                rest = cand \ c
                while is_sat(I & c):
                   l1 = rest.pop()
                   c.add(l1)
                done = False
                break



  

 When                             is satisfiable:

 s reaches        in k-i steps

 s can be reached from      in 1 step

 strengthen      by blocking cubes c in the preimage of s

 Extract CTI c from the SAT assignment

 And generalize to represent multiple bad predecessors

 Use unsat cores, exploiting a functional encoding of the transition 
relation

 If       is functional, then
 check                                 under assumptions

:P cs
s'

T

:P

Fi
Fi

Fi

CTI computation



  

SAT-based CTI generalization

void generalize_cti(cti, inputs, next):
    for i = 1 to max_iters:
        b = is_sat(cti & inputs & T & ~next')
        assert not b # assume T to be functional
        c = get_unsat_core(cti)
        if should_stop(c, cti):
            break
        cti = c



  

Example

No counterexamples of length 0

000 10x 01x 11x

001

[borrowed and adapted from F. Somenzi] 



  

Example 

Get bad cube                      in 

000 10x 01x 11x

001



  

Example 

000 10x 01x 11x

001

Is       inductive relative to      ? 



  

Example 

000 10x 01x 11x

001

Yes, generalize             



  

Example 
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Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Update



  

Example 

000 10x 01x 11x

001

Blocking done for     . Add       and propagate forward



  

Example 

000 10x 01x 11x

001

No clause propagates from      to



  

Example 

000 10x 01x 11x

001

Get bad cube                         in 



  

Example 

000 10x 01x 11x

001

Is       inductive relative to      ? 



  

Example 

000 10x 01x 11x

001

No, found CTI 



  

Example 

000 10x 01x 11x

001

Try blocking      at level 0: 



  

Example 

000 10x 01x 11x

001

Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Update 



  

Example 

000 10x 01x 11x

001

Return to the original bad cube



  

Example 

000 10x 01x 11x

001

Is       inductive relative to      ? 



  

Example 

000 10x 01x 11x

001

Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Update       and add new frame



  

Example 

000 10x 01x 11x

001

Perform forward propagation

From      to      :



  

Example 

000 10x 01x 11x

001

Perform forward propagation

Found fixpoint!



  

Example 

000 10x 01x 11x

001

Perform forward propagation

Inductive invariant:
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IC3 with SMT

 How to generalize from SAT to SMT?



  

IC3 with SMT

 How to generalize from SAT to SMT?

 Good news: replacing the SAT solver with an SMT solver is 
enough for partial correctness

 but what about:

 termination?

 efficiency?



  

IC3 with SMT

 How to generalize from SAT to SMT?

 Good news: replacing the SAT solver with an SMT solver is 
enough for partial correctness

 but what about:

 termination?

 Easy! (answer)  
 the problem is in general undecidable, so no hope here

 efficiency?



  

 When                             is satisfiable:

 s reaches        in k-i steps

 s can be reached from      in 1 step

 strengthen      by blocking cubes c in the preimage of s

 In the Boolean case, get c from SAT assignment (and generalize)

 For SMT(LRA):

 Would exclude a single point 
in an infinite space

:P cs
s'

T

:P

s'

s T
m

Single model m from SMT solver:

x = 3 ^ y = 7

Fi
Fi

Fi

Fi

RelInd(Fk¡1; T; s)                                   with SMT



  

 When                             is satisfiable:

 s reaches        in k-i steps

 s can be reached from      in 1 step

 strengthen      by blocking cubes c in the preimage of s

 In the Boolean case, get c from SAT assignment (and generalize)

 For SMT(LRA): underapproximated quantifier elimination

 Encodes a set of predecessors

 Cheaper than full quantifier elimination

 But still potentially expensive

 Not always available

 E.g for UF+LRA

:P cs
s'

T

:P

Fi
Fi

Fi

RelInd(Fk¡1; T; s)                                   with SMT

underapproximated preimage:

s'

s T
c

(x · 3) ^ (y ¸ 7)
Fi



  

 When                             is unsatisfiable:

 Compute a generalization g of s to block

 Block more than a single cube at a time

 In the Boolean case, use inductive generalization algorithms

 For SMT, Boolean algorithms plus theory-specific “ad hoc” 
techniques

 Based on Farkas' lemma for LRA [HB SAT'12]

 [WK DATE'13] for BV

 [KJN FORMATS'12] for timed automata

RelInd(Fk¡1; T; s)                                   with SMT

   gs
s'

T

:PFi



  

Implicit Predicate Abstraction [Tonetta FM'09]

 Abstract version of k-induction, avoiding explicit computation 
of the abstract transition relation

 By embedding the abstraction in the SMT encoding

 Given a set of predicates     and an unrolling depth    ,

the abstract path                is 

P k

^

1·h<k
(T (Y h¡1; Xh) ^

^

p2P
(p(Xh)$ p(Y h)) ^ T (Y k¡1; Xk)

[Pathk;P

T

T

T

E
Q

E
Q

E
Q

E
QEQ

def
=V

p2P(p(Y )$ p(X))



  

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation                 instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

T (X;X 0)

P



  

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation                 instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

 If UNSAT ⇨inductive strengthening as in the Boolean case

 No theory-specific technique needed

 Theory reasoning confined within the SMT solver

T (X;X 0)

P



  

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation                 instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

 If SAT   ⇨ abstract predecessor    from the SMT model



 No quantifier elimination needed

T (X;X 0)

P

c

c
def
= fp(X) j p 2 P ^ ¹ j= p(X)g [ f:p(X) j ¹ 6j= p(X)g

¹



  

Example







                            is SAT

 Compute a predecessor with 



  

Example







                            is SAT

 Compute a predecessor with 



 Compute predecessor from SMT model



  

Example







                            is SAT

 Compute a predecessor with 



 Compute predecessor from SMT model



  

Abstraction Refinement

 Abstract predecessors are overapproximations

 Spurious counterexamples can be generated

 We can apply standard abstraction refinement techniques

 Use sequence interpolants to discover new predicates

 Sequence of abstract states

 SMT check on

 If unsat, compute sequence of interpolants for

 Add all the predicates in the interpolants to 



  

Incrementality

 Abstraction refinement is fully incremental

 No restart from scratch

 Can keep all the clauses of 

 Refinements monotonically strengthen 

 All IC3 invariants on                      are preserved 

 Abstract counterexample check can use incremental SMT

Fi+1 µ Fi (so Fi j= Fi+1)
for all i < k; Fi j= P



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Predicates       



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check base case:

 Predicates       



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube

 SMT check

 SAT with model

 Evaluate predicates wrt.

 Return 

 

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec. block c

 Check 

 

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec. block c

 Check

 Unsat core:

 Update 

 

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Forward propagation

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube at 2



 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec. block c

 . . .

 Update

 . . .

 Update
 

 

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Forward propagation

 

 

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube at 3



 

 

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec block c

 Check

 

 SMT model

 (Abstract) predecessor

 

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec block s (at level 2)

 . . .

 Reached level 0, abstract cex:

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 SMT check                                                         

UNSAT

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 Compute sequence interpolant

                                                                                   

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 Compute sequence interpolant

                                                                                   

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 Compute sequence interpolant

                                                                                   

 Predicates       

 Trace:

Update predicates



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Forward propagation

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Forward propagation

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Forward propagation

SAFE

 Predicates       

 Trace:



  

Implementing IC3-IA

 Get the code at: 
http://es-static.fbk.eu/people/griggio/vtsa2015/

 Open source (GPLv3) implementation on top of MathSAT 
http://mathsat.fbk.eu/

 Incremental interface
 Assumptions and unsat core
 Interpolation

 Simple (~1700 lines of C++, including parser and statistics, 
according to David A. Wheeler's 'SLOCCount') yet competitive

 Input in VMT format (a simple extension of SMT-LIB)

https://nuxmv.fbk.eu/index.php?n=Languages.VMT

 Let's analyse it!

http://es-static.fbk.eu/people/griggio/vtsa2015/
http://mathsat.fbk.eu/
https://nuxmv.fbk.eu/index.php?n=Languages.VMT
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Linear Temporal Logic

 Syntax

 A (quantifier-free) first-order formula

           (neXt     )

             (     Until     )

 Semantics

 Given an infinite path









 A system S satisfies an LTL formula      (             ) iff all inifinite 
paths of S satisfy

           (Finally     )

           (Globally     )



  

LTL verification

 Automata-based approach:

 Given an LTL property     , build a transition system       
with a fairness condition         , such that

 

 Finite-state case: 

 lasso-shaped counterexamples, with        at least once in the 
loop

 liveness to safety transformation: absence of lasso-shaped 
counterexamples as an invariant property

 Duplicate the state variables
 Non-deterministically save the current state
 Remember when         in extra state var  
 Invariant: 



  

Liveness to Safety for Inifinite States

 Unsound for infinite-state systems

 Not all counterexamples are lasso-shaped

 Liveness to safety with Implicit Abstraction

 Apply the l2s transformation to the abstract system

 Save the values of the predicates instead of the concrete state
 Do it on-the-fly, tightly integrating l2s with IC3

 Sound but incomplete

 When abstract loop found, simulate in the concrete and refine
 Might still diverge during refinement

 Intrinsic limitation of state predicate abstraction



  

K-liveness

 Simple but effective technique for LTL verification of finite-
state systems

 Key insight:                                        iff exists k such that   
is visited at most k times

 Again, a safety property

 K-liveness: increase k incrementally, within IC3

 Liveness checking as a sequence of safety checks

 Exploits the highly incremental nature of IC3

 Sound also for infinite-state systems

 What about completeness?



  

K-liveness for hybrid automata

 K-liveness is incomplete for infinite-state systems

 Even if                                         , there might be no concrete k
bound for the number of violations of 

 K-zeno: extension of K-liveness for hybrid automata

 Key idea: exploit progress of time to make k-liveness converge

 By extending the original model with a “symbolic fairness 
monitor”       that forces time progress

 Under certain conditions, restores completeness of k-liveness

 If                                           , then exists k such that 
                                visits        at most k times

 (clearly, safety check can still diverge)
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