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Introduction

 IC3 very successful SAT-based model checking algorithm

 Incremental Construction

 of Inductive Clauses

 for Indubitable Correctness

 Key principles:

 Verification by induction

 Inductive invariant built incrementally

 by discovering (relatively-)inductive clauses

 Exploiting efficient SAT solvers



  

Introduction

 IC3 has been further generalized to SMT in various ways

 We will look in some detail at one such generalization, called

IC3 with Implicit Predicate Abstraction (IC3-IA)

 Exploits several features of modern SMT solvers that we have 
discussed so far

 Incremental solving
 Assumptions and unsatisfiable cores
 Interpolation

 A “hands-down” approach

 We will build a (simple) real implementation on top of MathSAT



  

Proofs by Induction

 Given transition system                               and property

 Base case (initiation):

 Inductive step (consectution):

 Typically however,     is not inductive

 Find an inductive invariant               , stronger than






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A (very) high level view of IC3

 Given a symbolic transition system and invariant property P,
build an inductive invariant F s.t.

 Trace of formulae                                       s.t:

 for i > 0, F
i
 is a set of clauses

overapproximation of states reachable in up to i steps

Fi+1 µ Fi (so Fi j= Fi+1)
Fi ^ T j= F 0i+1
for all i < k; Fi j= P

:P
FkFk¡1I

T TT Fk¡2

F j= P
F0(X) ´ I; : : : ; Fk(X)



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           
    (i.e., check if                                     )

:P
FkFk¡1I

T T T

Fk j= P

Fk¡2

:Ps

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0
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 Get bad cube s 
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:P
FkFk¡1I

T T T

Fk j= P

Fk¡2

:Ps

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

Check if s is inductive relative to F
k-1



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           
    (i.e., check if                                     )

Fk j= P

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

FkI
TT s

Fk¡2T Fk¡1

:Ps



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           

 SAT: s is reachable from                     in 1 step
 Get a cube c in the preimage of s and try 

(recursively) to prove it unreachable from           , …

 c is a counterexample to induction (CTI)

Fk j= P

Fk¡1 ^ :s ^ T ^ s0

FkFk¡1I
TT s

Fk¡2T
c

:Ps

Fk¡1 ^ :s

Fk¡2

If I is reached,
counterexample

found



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           

Fk j= P

FkFk¡1I Fk¡2T
cc

TT
:Ps



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           

 UNSAT:       is inductive relative to          
 Generalize c to g and block by adding        to

Fk j= P

FkFk¡1I Fk¡2T
cc

TT
:Ps

Fk¡2
Fk¡1; Fk¡2; : : : ; F1:g

:c



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           

 UNSAT:       is inductive relative to          
 Generalize c to g and block by adding        to

Fk j= P

Fk¡2
Fk¡1; Fk¡2; : : : ; F1:g

:c

FkFk¡1I
sT T

Fk¡2Fk¡2
T Fk¡1

:Ps



  

A (very) high level view of IC3

Propagation: extend trace to         and push forward clauses

For each i and each clause             :

Call SAT solver on

If UNSAT, add c to 

FkFk¡1I Fk¡2

:P
FkFk¡2 Fk¡1

T TT

Fk+1

Fi+1

c 2 Fi



  

A (very) high level view of IC3

Propagation: extend trace to         and push forward clauses

For each i and each clause             :

Call SAT solver on

If UNSAT, add c to 

Fk+1

Fi+1
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A (very) high level view of IC3

Propagation: extend trace to         and push forward clauses

For each i and each clause             :

Call SAT solver on

If UNSAT, add c to 

Fk+1

Fi+1

c 2 Fi

FkFk¡1I Fi Fk¡2

:P
Fk¡2 Fk¡1

T TT Fk Fk+1
T

If                    , P is proved,
otherwise start another round of blocking and propagation
Fi ´ Fi+1



  

IC3 pseudo-code

bool IC3(I, T, P):
    trace = [I]   # first elem of trace is init formula
    trace.push()  # add a new frame
    while True:
        # blocking phase
        while is_sat(trace.last() & ~P):
            c = extract_cube() # c |= trace.last() & ~P
            if not rec_block(c, trace.size()-1):
                return False # counterexample found

        # propagation phase
        trace.push()
        for i=1 to trace.size()-1:
            for each cube c in trace[i]:
                if not is_sat(trace[i] & ~c & T & c'):
                    trace[i+1].append(c)
            if trace[i] == trace[i+1]: 
                return True # property proved



  

IC3 pseudo-code

bool rec_block(s, i):
    if i == 0:
        return False  # reached initial states
    while is_sat(trace[i-1] & ~s & T & s'):
        c = get_predecessor(i-1, T, s')
        if not rec_block(c, i-1):
            return False
    g = generalize(~s, i)
    trace[i].append(g)
    return True



  

Correctness (sketch)

 Consider the formula                          where s is a bad cube

 If UNSAT, then           is strong enough to block s

 Since                           , then s is unreachable in k steps or less 

 Since                    , then we can add s to all 

 

Fi ^ T j= F 0i+1
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Correctness (sketch)

 Consider the formula                          where s is a bad cube

 If UNSAT, then           is strong enough to block s

 Since                           , then s is unreachable in k steps or less 

 Since                    , then we can add s to all 

 Consider now the relative induction check

 We know that                        because              (base case)

 Since                   , then we know that       holds up to k
 

 Propagation: for each            , check  

 we know that c holds up to i, if UNSAT then it holds up to i+1

 since                    ,                             and               , 

if                    then the fixpoint is an inductive invariant 

Fi ^ T j= F 0i+1

Fi ^ T j= F 0i+1



  

Inductive Clause Generalization

 Crucial step of IC3

 Given a relatively inductive clause      

compute a generalization            that is still inductive

 Drop literals from    and check that (1) still holds

 Accelerate with unsat cores returned by the SAT solver

 Using SAT under assumptions

 However, make sure the base case still holds

 If                        , then     cannot be dropped



  

Simple iterative generalization

void indgen(c, i):
    done = False
    for iter = 1 to max_iters:
        if done:
            break
        done = True
        for each l in c:
            cand = c \ {l}
            if not is_sat(I & cand) and 
               not is_sat(trace[i] & ~cand & T & cand'):
                c = get_unsat_core(cand)
                rest = cand \ c
                while is_sat(I & c):
                   l1 = rest.pop()
                   c.add(l1)
                done = False
                break



  

 When                             is satisfiable:

 s reaches        in k-i steps

 s can be reached from      in 1 step

 strengthen      by blocking cubes c in the preimage of s

 Extract CTI c from the SAT assignment

 And generalize to represent multiple bad predecessors

 Use unsat cores, exploiting a functional encoding of the transition 
relation

 If       is functional, then
 check                                 under assumptions

:P cs
s'

T

:P

Fi
Fi

Fi

CTI computation



  

SAT-based CTI generalization

void generalize_cti(cti, inputs, next):
    for i = 1 to max_iters:
        b = is_sat(cti & inputs & T & ~next')
        assert not b # assume T to be functional
        c = get_unsat_core(cti)
        if should_stop(c, cti):
            break
        cti = c



  

Example

No counterexamples of length 0

000 10x 01x 11x

001

[borrowed and adapted from F. Somenzi] 



  

Example 

Get bad cube                      in 

000 10x 01x 11x

001



  

Example 

000 10x 01x 11x

001

Is       inductive relative to      ? 
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Example 

000 10x 01x 11x

001

Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Update



  

Example 

000 10x 01x 11x

001

Blocking done for     . Add       and propagate forward



  

Example 

000 10x 01x 11x

001

No clause propagates from      to



  

Example 

000 10x 01x 11x

001

Get bad cube                         in 



  

Example 

000 10x 01x 11x

001

Is       inductive relative to      ? 



  

Example 

000 10x 01x 11x

001

No, found CTI 



  

Example 

000 10x 01x 11x

001

Try blocking      at level 0: 



  

Example 

000 10x 01x 11x

001

Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x
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Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Update 



  

Example 

000 10x 01x 11x

001

Return to the original bad cube



  

Example 

000 10x 01x 11x

001

Is       inductive relative to      ? 



  

Example 

000 10x 01x 11x

001

Yes, generalize             

Try dropping 



  

Example 

000 10x 01x 11x

001

Update       and add new frame



  

Example 

000 10x 01x 11x

001

Perform forward propagation

From      to      :



  

Example 

000 10x 01x 11x

001

Perform forward propagation

Found fixpoint!



  

Example 

000 10x 01x 11x

001

Perform forward propagation

Inductive invariant:
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 efficiency?



  

IC3 with SMT

 How to generalize from SAT to SMT?

 Good news: replacing the SAT solver with an SMT solver is 
enough for partial correctness

 but what about:

 termination?

 Easy! (answer)  
 the problem is in general undecidable, so no hope here

 efficiency?



  

 When                             is satisfiable:

 s reaches        in k-i steps

 s can be reached from      in 1 step

 strengthen      by blocking cubes c in the preimage of s

 In the Boolean case, get c from SAT assignment (and generalize)

 For SMT(LRA):

 Would exclude a single point 
in an infinite space

:P cs
s'

T

:P

s'

s T
m

Single model m from SMT solver:

x = 3 ^ y = 7

Fi
Fi

Fi

Fi

RelInd(Fk¡1; T; s)                                   with SMT



  

 When                             is satisfiable:

 s reaches        in k-i steps

 s can be reached from      in 1 step

 strengthen      by blocking cubes c in the preimage of s

 In the Boolean case, get c from SAT assignment (and generalize)

 For SMT(LRA): underapproximated quantifier elimination

 Encodes a set of predecessors

 Cheaper than full quantifier elimination

 But still potentially expensive

 Not always available

 E.g for UF+LRA

:P cs
s'

T

:P

Fi
Fi

Fi

RelInd(Fk¡1; T; s)                                   with SMT

underapproximated preimage:

s'

s T
c

(x · 3) ^ (y ¸ 7)
Fi



  

 When                             is unsatisfiable:

 Compute a generalization g of s to block

 Block more than a single cube at a time

 In the Boolean case, use inductive generalization algorithms

 For SMT, Boolean algorithms plus theory-specific “ad hoc” 
techniques

 Based on Farkas' lemma for LRA [HB SAT'12]

 [WK DATE'13] for BV

 [KJN FORMATS'12] for timed automata

RelInd(Fk¡1; T; s)                                   with SMT

   gs
s'

T

:PFi



  

Implicit Predicate Abstraction [Tonetta FM'09]

 Abstract version of k-induction, avoiding explicit computation 
of the abstract transition relation

 By embedding the abstraction in the SMT encoding

 Given a set of predicates     and an unrolling depth    ,

the abstract path                is 

P k

^

1·h<k
(T (Y h¡1; Xh) ^

^

p2P
(p(Xh)$ p(Y h)) ^ T (Y k¡1; Xk)

[Pathk;P

T

T

T

E
Q

E
Q

E
Q

E
QEQ

def
=V

p2P(p(Y )$ p(X))



  

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation                 instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

T (X;X 0)

P



  

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation                 instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

 If UNSAT ⇨inductive strengthening as in the Boolean case

 No theory-specific technique needed

 Theory reasoning confined within the SMT solver

T (X;X 0)

P



  

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation                 instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

 If SAT   ⇨ abstract predecessor    from the SMT model



 No quantifier elimination needed

T (X;X 0)

P

c

c
def
= fp(X) j p 2 P ^ ¹ j= p(X)g [ f:p(X) j ¹ 6j= p(X)g

¹
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Example







                            is SAT

 Compute a predecessor with 



 Compute predecessor from SMT model



  

Abstraction Refinement

 Abstract predecessors are overapproximations

 Spurious counterexamples can be generated

 We can apply standard abstraction refinement techniques

 Use sequence interpolants to discover new predicates

 Sequence of abstract states

 SMT check on

 If unsat, compute sequence of interpolants for

 Add all the predicates in the interpolants to 



  

Incrementality

 Abstraction refinement is fully incremental

 No restart from scratch

 Can keep all the clauses of 

 Refinements monotonically strengthen 

 All IC3 invariants on                      are preserved 

 Abstract counterexample check can use incremental SMT

Fi+1 µ Fi (so Fi j= Fi+1)
for all i < k; Fi j= P
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 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Predicates       
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 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check base case:

 Predicates       



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube

 SMT check

 SAT with model

 Evaluate predicates wrt.

 Return 

 

 Predicates       

 Trace:
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 Init:

 Trans:
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Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec. block c

 Check

 Unsat core:

 Update 

 

 Predicates       

 Trace:
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 System S with 2 state vars c and d

 Init:
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Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube at 2



 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec. block c

 . . .

 Update

 . . .

 Update
 

 

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Forward propagation

 

 

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube at 3



 

 

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec block c

 Check

 

 SMT model

 (Abstract) predecessor

 

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec block s (at level 2)

 . . .

 Reached level 0, abstract cex:

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 SMT check                                                         

UNSAT

 Predicates       

 Trace:



  

Example
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 Trans:

 Property:
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 Compute sequence interpolant
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 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:
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 Compute sequence interpolant
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Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 Compute sequence interpolant

                                                                                   

 Predicates       

 Trace:

Update predicates



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Predicates       

 Trace:
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Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Forward propagation

 Predicates       

 Trace:



  

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .
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Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Forward propagation

SAFE

 Predicates       

 Trace:



  

Implementing IC3-IA

 Get the code at: 
http://es-static.fbk.eu/people/griggio/vtsa2015/

 Open source (GPLv3) implementation on top of MathSAT 
http://mathsat.fbk.eu/

 Incremental interface
 Assumptions and unsat core
 Interpolation

 Simple (~1700 lines of C++, including parser and statistics, 
according to David A. Wheeler's 'SLOCCount') yet competitive

 Input in VMT format (a simple extension of SMT-LIB)

https://nuxmv.fbk.eu/index.php?n=Languages.VMT

 Let's analyse it!

http://es-static.fbk.eu/people/griggio/vtsa2015/
http://mathsat.fbk.eu/
https://nuxmv.fbk.eu/index.php?n=Languages.VMT
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Linear Temporal Logic

 Syntax

 A (quantifier-free) first-order formula

           (neXt     )

             (     Until     )

 Semantics

 Given an infinite path









 A system S satisfies an LTL formula      (             ) iff all inifinite 
paths of S satisfy

           (Finally     )

           (Globally     )



  

LTL verification

 Automata-based approach:

 Given an LTL property     , build a transition system       
with a fairness condition         , such that

 

 Finite-state case: 

 lasso-shaped counterexamples, with        at least once in the 
loop

 liveness to safety transformation: absence of lasso-shaped 
counterexamples as an invariant property

 Duplicate the state variables
 Non-deterministically save the current state
 Remember when         in extra state var  
 Invariant: 



  

Liveness to Safety for Inifinite States

 Unsound for infinite-state systems

 Not all counterexamples are lasso-shaped

 Liveness to safety with Implicit Abstraction

 Apply the l2s transformation to the abstract system

 Save the values of the predicates instead of the concrete state
 Do it on-the-fly, tightly integrating l2s with IC3

 Sound but incomplete

 When abstract loop found, simulate in the concrete and refine
 Might still diverge during refinement

 Intrinsic limitation of state predicate abstraction



  

K-liveness

 Simple but effective technique for LTL verification of finite-
state systems

 Key insight:                                        iff exists k such that   
is visited at most k times

 Again, a safety property

 K-liveness: increase k incrementally, within IC3

 Liveness checking as a sequence of safety checks

 Exploits the highly incremental nature of IC3

 Sound also for infinite-state systems

 What about completeness?



  

K-liveness for hybrid automata

 K-liveness is incomplete for infinite-state systems

 Even if                                         , there might be no concrete k
bound for the number of violations of 

 K-zeno: extension of K-liveness for hybrid automata

 Key idea: exploit progress of time to make k-liveness converge

 By extending the original model with a “symbolic fairness 
monitor”       that forces time progress

 Under certain conditions, restores completeness of k-liveness

 If                                           , then exists k such that 
                                visits        at most k times

 (clearly, safety check can still diverge)
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