
VTSA summer school 2015

Exploiting SMT for Verification
of Infinite-State Systems

3. SMT-based
Verification with IC3

Alberto Griggio
Fondazione Bruno Kessler – Trento, Italy

Outline

Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

Introduction

 IC3 very successful SAT-based model checking algorithm

 Incremental Construction

 of Inductive Clauses

 for Indubitable Correctness

 Key principles:

 Verification by induction

 Inductive invariant built incrementally

 by discovering (relatively-)inductive clauses

 Exploiting efficient SAT solvers

Introduction

 IC3 has been further generalized to SMT in various ways

 We will look in some detail at one such generalization, called

IC3 with Implicit Predicate Abstraction (IC3-IA)

 Exploits several features of modern SMT solvers that we have
discussed so far

 Incremental solving
 Assumptions and unsatisfiable cores
 Interpolation

 A “hands-down” approach

 We will build a (simple) real implementation on top of MathSAT

Proofs by Induction

 Given transition system and property

 Base case (initiation):

 Inductive step (consectution):

 Typically however, is not inductive

 Find an inductive invariant , stronger than







Outline

Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

A (very) high level view of IC3

 Given a symbolic transition system and invariant property P,
build an inductive invariant F s.t.

 Trace of formulae s.t:

 for i > 0, F
i
 is a set of clauses

overapproximation of states reachable in up to i steps

Fi+1 µ Fi (so Fi j= Fi+1)
Fi ^ T j= F 0i+1
for all i < k; Fi j= P

:P
FkFk¡1I

T TT Fk¡2

F j= P
F0(X) ´ I; : : : ; Fk(X)

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on
 (i.e., check if)

:P
FkFk¡1I

T T T

Fk j= P

Fk¡2

:Ps

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on
 (i.e., check if)

:P
FkFk¡1I

T T T

Fk j= P

Fk¡2

:Ps

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

Check if s is inductive relative to F
k-1

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on
 (i.e., check if)

Fk j= P

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

FkI
TT s

Fk¡2T Fk¡1

:Ps

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on

 SAT: s is reachable from in 1 step
 Get a cube c in the preimage of s and try

(recursively) to prove it unreachable from , …

 c is a counterexample to induction (CTI)

Fk j= P

Fk¡1 ^ :s ^ T ^ s0

FkFk¡1I
TT s

Fk¡2T
c

:Ps

Fk¡1 ^ :s

Fk¡2

If I is reached,
counterexample

found

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on

Fk j= P

FkFk¡1I Fk¡2T
cc

TT
:Ps

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on

 UNSAT: is inductive relative to
 Generalize c to g and block by adding to

Fk j= P

FkFk¡1I Fk¡2T
cc

TT
:Ps

Fk¡2
Fk¡1; Fk¡2; : : : ; F1:g

:c

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on

 UNSAT: is inductive relative to
 Generalize c to g and block by adding to

Fk j= P

Fk¡2
Fk¡1; Fk¡2; : : : ; F1:g

:c

FkFk¡1I
sT T

Fk¡2Fk¡2
T Fk¡1

:Ps

A (very) high level view of IC3

Propagation: extend trace to and push forward clauses

For each i and each clause :

Call SAT solver on

If UNSAT, add c to

FkFk¡1I Fk¡2

:P
FkFk¡2 Fk¡1

T TT

Fk+1

Fi+1

c 2 Fi

A (very) high level view of IC3

Propagation: extend trace to and push forward clauses

For each i and each clause :

Call SAT solver on

If UNSAT, add c to

Fk+1

Fi+1

c 2 Fi

FkFk¡1I Fk¡2

:P
Fk¡2 Fk¡1

T TT Fk Fk+1
T

A (very) high level view of IC3

Propagation: extend trace to and push forward clauses

For each i and each clause :

Call SAT solver on

If UNSAT, add c to

Fk+1

Fi+1

c 2 Fi

FkFk¡1I Fi Fk¡2

:P
Fk¡2 Fk¡1

T TT Fk Fk+1
T

If , P is proved,
otherwise start another round of blocking and propagation
Fi ´ Fi+1

IC3 pseudo-code

bool IC3(I, T, P):
 trace = [I] # first elem of trace is init formula
 trace.push() # add a new frame
 while True:
 # blocking phase
 while is_sat(trace.last() & ~P):
 c = extract_cube() # c |= trace.last() & ~P
 if not rec_block(c, trace.size()-1):
 return False # counterexample found

 # propagation phase
 trace.push()
 for i=1 to trace.size()-1:
 for each cube c in trace[i]:
 if not is_sat(trace[i] & ~c & T & c'):
 trace[i+1].append(c)
 if trace[i] == trace[i+1]:
 return True # property proved

IC3 pseudo-code

bool rec_block(s, i):
 if i == 0:
 return False # reached initial states
 while is_sat(trace[i-1] & ~s & T & s'):
 c = get_predecessor(i-1, T, s')
 if not rec_block(c, i-1):
 return False
 g = generalize(~s, i)
 trace[i].append(g)
 return True

Correctness (sketch)

 Consider the formula where s is a bad cube

 If UNSAT, then is strong enough to block s

 Since , then s is unreachable in k steps or less

 Since , then we can add s to all

Fi ^ T j= F 0i+1

Correctness (sketch)

 Consider the formula where s is a bad cube

 If UNSAT, then is strong enough to block s

 Since , then s is unreachable in k steps or less

 Since , then we can add s to all

 Consider now the relative induction check

 We know that because (base case)

 Since , then we know that holds up to k

Fi ^ T j= F 0i+1

Correctness (sketch)

 Consider the formula where s is a bad cube

 If UNSAT, then is strong enough to block s

 Since , then s is unreachable in k steps or less

 Since , then we can add s to all

 Consider now the relative induction check

 We know that because (base case)

 Since , then we know that holds up to k

 Propagation: for each , check

 we know that c holds up to i, if UNSAT then it holds up to i+1

 since , and ,

if then the fixpoint is an inductive invariant

Fi ^ T j= F 0i+1

Fi ^ T j= F 0i+1

Inductive Clause Generalization

 Crucial step of IC3

 Given a relatively inductive clause

compute a generalization that is still inductive

 Drop literals from and check that (1) still holds

 Accelerate with unsat cores returned by the SAT solver

 Using SAT under assumptions

 However, make sure the base case still holds

 If , then cannot be dropped

Simple iterative generalization

void indgen(c, i):
 done = False
 for iter = 1 to max_iters:
 if done:
 break
 done = True
 for each l in c:
 cand = c \ {l}
 if not is_sat(I & cand) and
 not is_sat(trace[i] & ~cand & T & cand'):
 c = get_unsat_core(cand)
 rest = cand \ c
 while is_sat(I & c):
 l1 = rest.pop()
 c.add(l1)
 done = False
 break

 When is satisfiable:

 s reaches in k-i steps

 s can be reached from in 1 step

 strengthen by blocking cubes c in the preimage of s

 Extract CTI c from the SAT assignment

 And generalize to represent multiple bad predecessors

 Use unsat cores, exploiting a functional encoding of the transition
relation

 If is functional, then
 check under assumptions

:P cs
s'

T

:P

Fi
Fi

Fi

CTI computation

SAT-based CTI generalization

void generalize_cti(cti, inputs, next):
 for i = 1 to max_iters:
 b = is_sat(cti & inputs & T & ~next')
 assert not b # assume T to be functional
 c = get_unsat_core(cti)
 if should_stop(c, cti):
 break
 cti = c

Example

No counterexamples of length 0

000 10x 01x 11x

001

[borrowed and adapted from F. Somenzi]

Example

Get bad cube in

000 10x 01x 11x

001

Example

000 10x 01x 11x

001

Is inductive relative to ?

Example

000 10x 01x 11x

001

Yes, generalize

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Update

Example

000 10x 01x 11x

001

Blocking done for . Add and propagate forward

Example

000 10x 01x 11x

001

No clause propagates from to

Example

000 10x 01x 11x

001

Get bad cube in

Example

000 10x 01x 11x

001

Is inductive relative to ?

Example

000 10x 01x 11x

001

No, found CTI

Example

000 10x 01x 11x

001

Try blocking at level 0:

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Update

Example

000 10x 01x 11x

001

Return to the original bad cube

Example

000 10x 01x 11x

001

Is inductive relative to ?

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Update and add new frame

Example

000 10x 01x 11x

001

Perform forward propagation

From to :

Example

000 10x 01x 11x

001

Perform forward propagation

Found fixpoint!

Example

000 10x 01x 11x

001

Perform forward propagation

Inductive invariant:

Outline

Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

IC3 with SMT

 How to generalize from SAT to SMT?

IC3 with SMT

 How to generalize from SAT to SMT?

 Good news: replacing the SAT solver with an SMT solver is
enough for partial correctness

 but what about:

 termination?

 efficiency?

IC3 with SMT

 How to generalize from SAT to SMT?

 Good news: replacing the SAT solver with an SMT solver is
enough for partial correctness

 but what about:

 termination?

 Easy! (answer)
 the problem is in general undecidable, so no hope here

 efficiency?

 When is satisfiable:

 s reaches in k-i steps

 s can be reached from in 1 step

 strengthen by blocking cubes c in the preimage of s

 In the Boolean case, get c from SAT assignment (and generalize)

 For SMT(LRA):

 Would exclude a single point
in an infinite space

:P cs
s'

T

:P

s'

s T
m

Single model m from SMT solver:

x = 3 ^ y = 7

Fi
Fi

Fi

Fi

RelInd(Fk¡1; T; s) with SMT

 When is satisfiable:

 s reaches in k-i steps

 s can be reached from in 1 step

 strengthen by blocking cubes c in the preimage of s

 In the Boolean case, get c from SAT assignment (and generalize)

 For SMT(LRA): underapproximated quantifier elimination

 Encodes a set of predecessors

 Cheaper than full quantifier elimination

 But still potentially expensive

 Not always available

 E.g for UF+LRA

:P cs
s'

T

:P

Fi
Fi

Fi

RelInd(Fk¡1; T; s) with SMT

underapproximated preimage:

s'

s T
c

(x · 3) ^ (y ¸ 7)
Fi

 When is unsatisfiable:

 Compute a generalization g of s to block

 Block more than a single cube at a time

 In the Boolean case, use inductive generalization algorithms

 For SMT, Boolean algorithms plus theory-specific “ad hoc”
techniques

 Based on Farkas' lemma for LRA [HB SAT'12]

 [WK DATE'13] for BV

 [KJN FORMATS'12] for timed automata

RelInd(Fk¡1; T; s) with SMT

 gs
s'

T

:PFi

Implicit Predicate Abstraction [Tonetta FM'09]

 Abstract version of k-induction, avoiding explicit computation
of the abstract transition relation

 By embedding the abstraction in the SMT encoding

 Given a set of predicates and an unrolling depth ,

the abstract path is

P k

^

1·h<k
(T (Y h¡1; Xh) ^

^

p2P
(p(Xh)$ p(Y h)) ^ T (Y k¡1; Xk)

[Pathk;P

T

T

T

E
Q

E
Q

E
Q

E
QEQ

def
=V

p2P(p(Y)$ p(X))

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

T (X;X 0)

P

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

 If UNSAT ⇨inductive strengthening as in the Boolean case

 No theory-specific technique needed

 Theory reasoning confined within the SMT solver

T (X;X 0)

P

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

 If SAT ⇨ abstract predecessor from the SMT model



 No quantifier elimination needed

T (X;X 0)

P

c

c
def
= fp(X) j p 2 P ^ ¹ j= p(X)g [f:p(X) j ¹ 6j= p(X)g

¹

Example







 is SAT

 Compute a predecessor with

Example







 is SAT

 Compute a predecessor with



 Compute predecessor from SMT model

Example







 is SAT

 Compute a predecessor with



 Compute predecessor from SMT model

Abstraction Refinement

 Abstract predecessors are overapproximations

 Spurious counterexamples can be generated

 We can apply standard abstraction refinement techniques

 Use sequence interpolants to discover new predicates

 Sequence of abstract states

 SMT check on

 If unsat, compute sequence of interpolants for

 Add all the predicates in the interpolants to

Incrementality

 Abstraction refinement is fully incremental

 No restart from scratch

 Can keep all the clauses of

 Refinements monotonically strengthen

 All IC3 invariants on are preserved

 Abstract counterexample check can use incremental SMT

Fi+1 µ Fi (so Fi j= Fi+1)
for all i < k; Fi j= P

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Predicates

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check base case:

 Predicates

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube

 SMT check

 SAT with model

 Evaluate predicates wrt.

 Return

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec. block c

 Check

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec. block c

 Check

 Unsat core:

 Update

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Forward propagation

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube at 2



 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec. block c

 . . .

 Update

 . . .

 Update

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Forward propagation

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube at 3



 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec block c

 Check

 SMT model

 (Abstract) predecessor

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec block s (at level 2)

 . . .

 Reached level 0, abstract cex:

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 SMT check

UNSAT

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 Compute sequence interpolant

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 Compute sequence interpolant

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 Compute sequence interpolant

 Predicates

 Trace:

Update predicates

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Forward propagation

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Forward propagation

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Forward propagation

SAFE

 Predicates

 Trace:

Implementing IC3-IA

 Get the code at:
http://es-static.fbk.eu/people/griggio/vtsa2015/

 Open source (GPLv3) implementation on top of MathSAT
http://mathsat.fbk.eu/

 Incremental interface
 Assumptions and unsat core
 Interpolation

 Simple (~1700 lines of C++, including parser and statistics,
according to David A. Wheeler's 'SLOCCount') yet competitive

 Input in VMT format (a simple extension of SMT-LIB)

https://nuxmv.fbk.eu/index.php?n=Languages.VMT

 Let's analyse it!

http://es-static.fbk.eu/people/griggio/vtsa2015/
http://mathsat.fbk.eu/
https://nuxmv.fbk.eu/index.php?n=Languages.VMT

Outline

Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

Linear Temporal Logic

 Syntax

 A (quantifier-free) first-order formula

 (neXt)

 (Until)

 Semantics

 Given an infinite path









 A system S satisfies an LTL formula () iff all inifinite
paths of S satisfy

 (Finally)

 (Globally)

LTL verification

 Automata-based approach:

 Given an LTL property , build a transition system
with a fairness condition , such that

 Finite-state case:

 lasso-shaped counterexamples, with at least once in the
loop

 liveness to safety transformation: absence of lasso-shaped
counterexamples as an invariant property

 Duplicate the state variables
 Non-deterministically save the current state
 Remember when in extra state var
 Invariant:

Liveness to Safety for Inifinite States

 Unsound for infinite-state systems

 Not all counterexamples are lasso-shaped

 Liveness to safety with Implicit Abstraction

 Apply the l2s transformation to the abstract system

 Save the values of the predicates instead of the concrete state
 Do it on-the-fly, tightly integrating l2s with IC3

 Sound but incomplete

 When abstract loop found, simulate in the concrete and refine
 Might still diverge during refinement

 Intrinsic limitation of state predicate abstraction

K-liveness

 Simple but effective technique for LTL verification of finite-
state systems

 Key insight: iff exists k such that
is visited at most k times

 Again, a safety property

 K-liveness: increase k incrementally, within IC3

 Liveness checking as a sequence of safety checks

 Exploits the highly incremental nature of IC3

 Sound also for infinite-state systems

 What about completeness?

K-liveness for hybrid automata

 K-liveness is incomplete for infinite-state systems

 Even if , there might be no concrete k
bound for the number of violations of

 K-zeno: extension of K-liveness for hybrid automata

 Key idea: exploit progress of time to make k-liveness converge

 By extending the original model with a “symbolic fairness
monitor” that forces time progress

 Under certain conditions, restores completeness of k-liveness

 If , then exists k such that
 visits at most k times

 (clearly, safety check can still diverge)

Selected bibliography

DISCLAIMER: again, this is definitely incomplete. Apologies to
missing authors/works

 IC3 for finite-state systems

 Bradley, Manna. Checking Safety by Inductive Generalization
of Counterexamples to Induction. FMCAD 2007

 Bradley. SAT-based Model Checking Without Unrolling.
VMCAI 2011

 Een, Mischenko, Brayton. Efficient Implementation of
Property-Directed Reachability. FMCAD 2011

 Hassan, Somenzi, Bradley. Better Generalization in IC3.
FMCAD 2013

 Vizel, Gurfinkel. Interpolating Property-Directed Reachability.
CAV 2014

Selected bibliography

 IC3 for infinite-state systems

 Hoder, Bjørner. Generalized Property-Directed Reachability.
SAT 2012

 Cimatti, Griggio, Mover, Tonetta. IC3 Modulo Theories with
Implicit Predicate Abstraction. TACAS 2013

 Komuravelli, Gurfinkel, Chaki. SMT-Based Model Checking for
Recursive Programs. CAV 2014

 Birgmeier, Bradley, Weissenbacher. Counterexample to
Induction-Guided Abstraction-Refinement (CTIGAR). CAV
2014

 Bjørner, Gurfinkel. Property Directed Polyhedral Abstraction.
VMCAI 2015

Selected bibliography

 IC3 for LTL verification

 Bradley, Somenzi, Hassan, Zhang. An incremental approach to
model checking progress properties. FMCAD 2011

 Claessen, Sörensson. A liveness checking algorithm that
counts. FMCAD 2012

 Cimatti, Griggio, Mover, Tonetta. Verifying LTL Properties of
Hybrid Systems with K-Liveness. CAV 2014

Thank You

