
VTSA summer school 2015

Exploiting SMT for Verification
of Infinite-State Systems

3. SMT-based
Verification with IC3

Alberto Griggio
Fondazione Bruno Kessler – Trento, Italy

Outline

Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

Introduction

 IC3 very successful SAT-based model checking algorithm

 Incremental Construction

 of Inductive Clauses

 for Indubitable Correctness

 Key principles:

 Verification by induction

 Inductive invariant built incrementally

 by discovering (relatively-)inductive clauses

 Exploiting efficient SAT solvers

Introduction

 IC3 has been further generalized to SMT in various ways

 We will look in some detail at one such generalization, called

IC3 with Implicit Predicate Abstraction (IC3-IA)

 Exploits several features of modern SMT solvers that we have
discussed so far

 Incremental solving
 Assumptions and unsatisfiable cores
 Interpolation

 A “hands-down” approach

 We will build a (simple) real implementation on top of MathSAT

Proofs by Induction

 Given transition system and property

 Base case (initiation):

 Inductive step (consectution):

 Typically however, is not inductive

 Find an inductive invariant , stronger than

Outline

Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

A (very) high level view of IC3

 Given a symbolic transition system and invariant property P,
build an inductive invariant F s.t.

 Trace of formulae s.t:

 for i > 0, F
i
 is a set of clauses

overapproximation of states reachable in up to i steps

Fi+1 µ Fi (so Fi j= Fi+1)
Fi ^ T j= F 0i+1
for all i < k; Fi j= P

:P
FkFk¡1I

T TT Fk¡2

F j= P
F0(X) ´ I; : : : ; Fk(X)

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on
 (i.e., check if)

:P
FkFk¡1I

T T T

Fk j= P

Fk¡2

:Ps

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on
 (i.e., check if)

:P
FkFk¡1I

T T T

Fk j= P

Fk¡2

:Ps

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

Check if s is inductive relative to F
k-1

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on
 (i.e., check if)

Fk j= P

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

FkI
TT s

Fk¡2T Fk¡1

:Ps

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on

 SAT: s is reachable from in 1 step
 Get a cube c in the preimage of s and try

(recursively) to prove it unreachable from , …

 c is a counterexample to induction (CTI)

Fk j= P

Fk¡1 ^ :s ^ T ^ s0

FkFk¡1I
TT s

Fk¡2T
c

:Ps

Fk¡1 ^ :s

Fk¡2

If I is reached,
counterexample

found

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on

Fk j= P

FkFk¡1I Fk¡2T
cc

TT
:Ps

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on

 UNSAT: is inductive relative to
 Generalize c to g and block by adding to

Fk j= P

FkFk¡1I Fk¡2T
cc

TT
:Ps

Fk¡2
Fk¡1; Fk¡2; : : : ; F1:g

:c

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on

 UNSAT: is inductive relative to
 Generalize c to g and block by adding to

Fk j= P

Fk¡2
Fk¡1; Fk¡2; : : : ; F1:g

:c

FkFk¡1I
sT T

Fk¡2Fk¡2
T Fk¡1

:Ps

A (very) high level view of IC3

Propagation: extend trace to and push forward clauses

For each i and each clause :

Call SAT solver on

If UNSAT, add c to

FkFk¡1I Fk¡2

:P
FkFk¡2 Fk¡1

T TT

Fk+1

Fi+1

c 2 Fi

A (very) high level view of IC3

Propagation: extend trace to and push forward clauses

For each i and each clause :

Call SAT solver on

If UNSAT, add c to

Fk+1

Fi+1

c 2 Fi

FkFk¡1I Fk¡2

:P
Fk¡2 Fk¡1

T TT Fk Fk+1
T

A (very) high level view of IC3

Propagation: extend trace to and push forward clauses

For each i and each clause :

Call SAT solver on

If UNSAT, add c to

Fk+1

Fi+1

c 2 Fi

FkFk¡1I Fi Fk¡2

:P
Fk¡2 Fk¡1

T TT Fk Fk+1
T

If , P is proved,
otherwise start another round of blocking and propagation
Fi ´ Fi+1

IC3 pseudo-code

bool IC3(I, T, P):
 trace = [I] # first elem of trace is init formula
 trace.push() # add a new frame
 while True:
 # blocking phase
 while is_sat(trace.last() & ~P):
 c = extract_cube() # c |= trace.last() & ~P
 if not rec_block(c, trace.size()-1):
 return False # counterexample found

 # propagation phase
 trace.push()
 for i=1 to trace.size()-1:
 for each cube c in trace[i]:
 if not is_sat(trace[i] & ~c & T & c'):
 trace[i+1].append(c)
 if trace[i] == trace[i+1]:
 return True # property proved

IC3 pseudo-code

bool rec_block(s, i):
 if i == 0:
 return False # reached initial states
 while is_sat(trace[i-1] & ~s & T & s'):
 c = get_predecessor(i-1, T, s')
 if not rec_block(c, i-1):
 return False
 g = generalize(~s, i)
 trace[i].append(g)
 return True

Correctness (sketch)

 Consider the formula where s is a bad cube

 If UNSAT, then is strong enough to block s

 Since , then s is unreachable in k steps or less

 Since , then we can add s to all

Fi ^ T j= F 0i+1

Correctness (sketch)

 Consider the formula where s is a bad cube

 If UNSAT, then is strong enough to block s

 Since , then s is unreachable in k steps or less

 Since , then we can add s to all

 Consider now the relative induction check

 We know that because (base case)

 Since , then we know that holds up to k

Fi ^ T j= F 0i+1

Correctness (sketch)

 Consider the formula where s is a bad cube

 If UNSAT, then is strong enough to block s

 Since , then s is unreachable in k steps or less

 Since , then we can add s to all

 Consider now the relative induction check

 We know that because (base case)

 Since , then we know that holds up to k

 Propagation: for each , check

 we know that c holds up to i, if UNSAT then it holds up to i+1

 since , and ,

if then the fixpoint is an inductive invariant

Fi ^ T j= F 0i+1

Fi ^ T j= F 0i+1

Inductive Clause Generalization

 Crucial step of IC3

 Given a relatively inductive clause

compute a generalization that is still inductive

 Drop literals from and check that (1) still holds

 Accelerate with unsat cores returned by the SAT solver

 Using SAT under assumptions

 However, make sure the base case still holds

 If , then cannot be dropped

Simple iterative generalization

void indgen(c, i):
 done = False
 for iter = 1 to max_iters:
 if done:
 break
 done = True
 for each l in c:
 cand = c \ {l}
 if not is_sat(I & cand) and
 not is_sat(trace[i] & ~cand & T & cand'):
 c = get_unsat_core(cand)
 rest = cand \ c
 while is_sat(I & c):
 l1 = rest.pop()
 c.add(l1)
 done = False
 break

 When is satisfiable:

 s reaches in k-i steps

 s can be reached from in 1 step

 strengthen by blocking cubes c in the preimage of s

 Extract CTI c from the SAT assignment

 And generalize to represent multiple bad predecessors

 Use unsat cores, exploiting a functional encoding of the transition
relation

 If is functional, then
 check under assumptions

:P cs
s'

T

:P

Fi
Fi

Fi

CTI computation

SAT-based CTI generalization

void generalize_cti(cti, inputs, next):
 for i = 1 to max_iters:
 b = is_sat(cti & inputs & T & ~next')
 assert not b # assume T to be functional
 c = get_unsat_core(cti)
 if should_stop(c, cti):
 break
 cti = c

Example

No counterexamples of length 0

000 10x 01x 11x

001

[borrowed and adapted from F. Somenzi]

Example

Get bad cube in

000 10x 01x 11x

001

Example

000 10x 01x 11x

001

Is inductive relative to ?

Example

000 10x 01x 11x

001

Yes, generalize

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Update

Example

000 10x 01x 11x

001

Blocking done for . Add and propagate forward

Example

000 10x 01x 11x

001

No clause propagates from to

Example

000 10x 01x 11x

001

Get bad cube in

Example

000 10x 01x 11x

001

Is inductive relative to ?

Example

000 10x 01x 11x

001

No, found CTI

Example

000 10x 01x 11x

001

Try blocking at level 0:

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Update

Example

000 10x 01x 11x

001

Return to the original bad cube

Example

000 10x 01x 11x

001

Is inductive relative to ?

Example

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

000 10x 01x 11x

001

Update and add new frame

Example

000 10x 01x 11x

001

Perform forward propagation

From to :

Example

000 10x 01x 11x

001

Perform forward propagation

Found fixpoint!

Example

000 10x 01x 11x

001

Perform forward propagation

Inductive invariant:

Outline

Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

IC3 with SMT

 How to generalize from SAT to SMT?

IC3 with SMT

 How to generalize from SAT to SMT?

 Good news: replacing the SAT solver with an SMT solver is
enough for partial correctness

 but what about:

 termination?

 efficiency?

IC3 with SMT

 How to generalize from SAT to SMT?

 Good news: replacing the SAT solver with an SMT solver is
enough for partial correctness

 but what about:

 termination?

 Easy! (answer)
 the problem is in general undecidable, so no hope here

 efficiency?

 When is satisfiable:

 s reaches in k-i steps

 s can be reached from in 1 step

 strengthen by blocking cubes c in the preimage of s

 In the Boolean case, get c from SAT assignment (and generalize)

 For SMT(LRA):

 Would exclude a single point
in an infinite space

:P cs
s'

T

:P

s'

s T
m

Single model m from SMT solver:

x = 3 ^ y = 7

Fi
Fi

Fi

Fi

RelInd(Fk¡1; T; s) with SMT

 When is satisfiable:

 s reaches in k-i steps

 s can be reached from in 1 step

 strengthen by blocking cubes c in the preimage of s

 In the Boolean case, get c from SAT assignment (and generalize)

 For SMT(LRA): underapproximated quantifier elimination

 Encodes a set of predecessors

 Cheaper than full quantifier elimination

 But still potentially expensive

 Not always available

 E.g for UF+LRA

:P cs
s'

T

:P

Fi
Fi

Fi

RelInd(Fk¡1; T; s) with SMT

underapproximated preimage:

s'

s T
c

(x · 3) ^ (y ¸ 7)
Fi

 When is unsatisfiable:

 Compute a generalization g of s to block

 Block more than a single cube at a time

 In the Boolean case, use inductive generalization algorithms

 For SMT, Boolean algorithms plus theory-specific “ad hoc”
techniques

 Based on Farkas' lemma for LRA [HB SAT'12]

 [WK DATE'13] for BV

 [KJN FORMATS'12] for timed automata

RelInd(Fk¡1; T; s) with SMT

 gs
s'

T

:PFi

Implicit Predicate Abstraction [Tonetta FM'09]

 Abstract version of k-induction, avoiding explicit computation
of the abstract transition relation

 By embedding the abstraction in the SMT encoding

 Given a set of predicates and an unrolling depth ,

the abstract path is

P k

^

1·h<k
(T (Y h¡1; Xh) ^

^

p2P
(p(Xh)$ p(Y h)) ^ T (Y k¡1; Xk)

[Pathk;P

T

T

T

E
Q

E
Q

E
Q

E
QEQ

def
=V

p2P(p(Y)$ p(X))

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

T (X;X 0)

P

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

 If UNSAT ⇨inductive strengthening as in the Boolean case

 No theory-specific technique needed

 Theory reasoning confined within the SMT solver

T (X;X 0)

P

IC3 with Implicit Abstraction

 Integrate the idea of Implicit Abstraction within IC3

 Use abstract transition relation instead of

 Learn clauses only over predicates

 Use abstract relative induction check:

 If SAT ⇨ abstract predecessor from the SMT model

 No quantifier elimination needed

T (X;X 0)

P

c

c
def
= fp(X) j p 2 P ^ ¹ j= p(X)g [f:p(X) j ¹ 6j= p(X)g

¹

Example

 is SAT

 Compute a predecessor with

Example

 is SAT

 Compute a predecessor with

 Compute predecessor from SMT model

Example

 is SAT

 Compute a predecessor with

 Compute predecessor from SMT model

Abstraction Refinement

 Abstract predecessors are overapproximations

 Spurious counterexamples can be generated

 We can apply standard abstraction refinement techniques

 Use sequence interpolants to discover new predicates

 Sequence of abstract states

 SMT check on

 If unsat, compute sequence of interpolants for

 Add all the predicates in the interpolants to

Incrementality

 Abstraction refinement is fully incremental

 No restart from scratch

 Can keep all the clauses of

 Refinements monotonically strengthen

 All IC3 invariants on are preserved

 Abstract counterexample check can use incremental SMT

Fi+1 µ Fi (so Fi j= Fi+1)
for all i < k; Fi j= P

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Predicates

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check base case:

 Predicates

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube

 SMT check

 SAT with model

 Evaluate predicates wrt.

 Return

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec. block c

 Check

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec. block c

 Check

 Unsat core:

 Update

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Forward propagation

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube at 2

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec. block c

 . . .

 Update

 . . .

 Update

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Forward propagation

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Get bad cube at 3

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec block c

 Check

 SMT model

 (Abstract) predecessor

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Rec block s (at level 2)

 . . .

 Reached level 0, abstract cex:

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 SMT check

UNSAT

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 Compute sequence interpolant

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 Compute sequence interpolant

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Check abstract counterexample

 Compute sequence interpolant

 Predicates

 Trace:

Update predicates

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Forward propagation

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Forward propagation

 Predicates

 Trace:

Example

 System S with 2 state vars c and d

 Init:

 Trans:

 Property:

 Update abstract trans

 Resume IC3 from level 3

 . . .

 Forward propagation

SAFE

 Predicates

 Trace:

Implementing IC3-IA

 Get the code at:
http://es-static.fbk.eu/people/griggio/vtsa2015/

 Open source (GPLv3) implementation on top of MathSAT
http://mathsat.fbk.eu/

 Incremental interface
 Assumptions and unsat core
 Interpolation

 Simple (~1700 lines of C++, including parser and statistics,
according to David A. Wheeler's 'SLOCCount') yet competitive

 Input in VMT format (a simple extension of SMT-LIB)

https://nuxmv.fbk.eu/index.php?n=Languages.VMT

 Let's analyse it!

http://es-static.fbk.eu/people/griggio/vtsa2015/
http://mathsat.fbk.eu/
https://nuxmv.fbk.eu/index.php?n=Languages.VMT

Outline

Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

Linear Temporal Logic

 Syntax

 A (quantifier-free) first-order formula

 (neXt)

 (Until)

 Semantics

 Given an infinite path

 A system S satisfies an LTL formula () iff all inifinite
paths of S satisfy

 (Finally)

 (Globally)

LTL verification

 Automata-based approach:

 Given an LTL property , build a transition system
with a fairness condition , such that

 Finite-state case:

 lasso-shaped counterexamples, with at least once in the
loop

 liveness to safety transformation: absence of lasso-shaped
counterexamples as an invariant property

 Duplicate the state variables
 Non-deterministically save the current state
 Remember when in extra state var
 Invariant:

Liveness to Safety for Inifinite States

 Unsound for infinite-state systems

 Not all counterexamples are lasso-shaped

 Liveness to safety with Implicit Abstraction

 Apply the l2s transformation to the abstract system

 Save the values of the predicates instead of the concrete state
 Do it on-the-fly, tightly integrating l2s with IC3

 Sound but incomplete

 When abstract loop found, simulate in the concrete and refine
 Might still diverge during refinement

 Intrinsic limitation of state predicate abstraction

K-liveness

 Simple but effective technique for LTL verification of finite-
state systems

 Key insight: iff exists k such that
is visited at most k times

 Again, a safety property

 K-liveness: increase k incrementally, within IC3

 Liveness checking as a sequence of safety checks

 Exploits the highly incremental nature of IC3

 Sound also for infinite-state systems

 What about completeness?

K-liveness for hybrid automata

 K-liveness is incomplete for infinite-state systems

 Even if , there might be no concrete k
bound for the number of violations of

 K-zeno: extension of K-liveness for hybrid automata

 Key idea: exploit progress of time to make k-liveness converge

 By extending the original model with a “symbolic fairness
monitor” that forces time progress

 Under certain conditions, restores completeness of k-liveness

 If , then exists k such that
 visits at most k times

 (clearly, safety check can still diverge)

Selected bibliography

DISCLAIMER: again, this is definitely incomplete. Apologies to
missing authors/works

 IC3 for finite-state systems

 Bradley, Manna. Checking Safety by Inductive Generalization
of Counterexamples to Induction. FMCAD 2007

 Bradley. SAT-based Model Checking Without Unrolling.
VMCAI 2011

 Een, Mischenko, Brayton. Efficient Implementation of
Property-Directed Reachability. FMCAD 2011

 Hassan, Somenzi, Bradley. Better Generalization in IC3.
FMCAD 2013

 Vizel, Gurfinkel. Interpolating Property-Directed Reachability.
CAV 2014

Selected bibliography

 IC3 for infinite-state systems

 Hoder, Bjørner. Generalized Property-Directed Reachability.
SAT 2012

 Cimatti, Griggio, Mover, Tonetta. IC3 Modulo Theories with
Implicit Predicate Abstraction. TACAS 2013

 Komuravelli, Gurfinkel, Chaki. SMT-Based Model Checking for
Recursive Programs. CAV 2014

 Birgmeier, Bradley, Weissenbacher. Counterexample to
Induction-Guided Abstraction-Refinement (CTIGAR). CAV
2014

 Bjørner, Gurfinkel. Property Directed Polyhedral Abstraction.
VMCAI 2015

Selected bibliography

 IC3 for LTL verification

 Bradley, Somenzi, Hassan, Zhang. An incremental approach to
model checking progress properties. FMCAD 2011

 Claessen, Sörensson. A liveness checking algorithm that
counts. FMCAD 2012

 Cimatti, Griggio, Mover, Tonetta. Verifying LTL Properties of
Hybrid Systems with K-Liveness. CAV 2014

Thank You

