

#### VTSA summer school 2015

#### Exploiting SMT for Verification of Infinite-State Systems

# 3. SMT-based Verification with IC3

Alberto Griggio Fondazione Bruno Kessler – Trento, Italy



Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

#### Introduction



- IC3 very successful SAT-based model checking algorithm
  - Incremental Construction
  - of Inductive Clauses
  - for Indubitable Correctness
- Key principles:
  - Verification by induction
  - Inductive invariant built incrementally
    - by discovering (relatively-)inductive clauses
  - Exploiting efficient SAT solvers



- IC3 has been further generalized to SMT in various ways
- We will look in some detail at one such generalization, called IC3 with Implicit Predicate Abstraction (IC3-IA)
  - Exploits several features of modern SMT solvers that we have discussed so far
    - Incremental solving
    - Assumptions and unsatisfiable cores
    - Interpolation
- A "hands-down" approach
  - We will build a (simple) real implementation on top of MathSAT



- Given transition system  $\langle I(X), T(X, X') \rangle$  and property P(X)
  - Base case (initiation):

 $I(X) \models P(X)$ 

Inductive step (consectution):

 $P(X) \wedge T(X, X') \models P(X')$ 

- Typically however, P is not inductive
  - Find an inductive invariant Inv(X), stronger than P

$$\blacksquare I(X) \models Inv(X)$$

• 
$$Inv(X) \wedge T(X, X') \models Inv(X')$$

 $\blacksquare Inv(X) \models P(X)$ 



Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification





- Given a symbolic transition system and invariant property P, build an inductive invariant F s.t.  $F \models P$
- Trace of formulae  $F_0(X) \equiv I, \ldots, F_k(X)$  s.t:
  - for  $i > 0, F_i$  is a set of clauses overapproximation of states reachable in up to *i* steps  $F_{i+1} \subseteq F_i$  (so  $F_i \models F_{i+1}$ )  $F_i \land T \models F'_{i+1}$ for all  $i < k, F_i \models P$





- Get bad cube s
- Call SAT solver on  $F_{k-1} \wedge \neg s \wedge T \wedge s'$ (i.e., check if  $F_{k-1} \wedge \neg s \wedge T \models \neg s'$ )





Blocking phase: incrementally strengthen trace until  $F_k \models P$ 

Get bad cube s

Call SAT solver on 
$$F_{k-1} \land \neg s \land T \land s'$$
  
(i.e., check if  $F_{k-1} \land \neg s \land T \models \neg s'$ )

Check if s is inductive relative to  $F_{k-1}$ 





- Get bad cube s
- Call SAT solver on  $F_{k-1} \wedge \neg s \wedge T \wedge s'$ (i.e., check if  $F_{k-1} \wedge \neg s \wedge T \models \neg s'$ )





Blocking phase: incrementally strengthen trace until  $F_k \models P$ 

- Get bad cube s
- Call SAT solver on  $F_{k-1} \wedge \neg s \wedge T \wedge s'$ 
  - **SAT**: *s* is reachable from  $F_{k-1} \land \neg s$  in 1 step
  - Get a cube c in the preimage of s and try (recursively) to prove it unreachable from  $F_{k-2}$ , ...
    - c is a counterexample to induction (CTI)

If *I* is reached, counterexample found





- Get bad cube s
- Call SAT solver on  $F_{k-2} \wedge \neg s \wedge T \wedge s'$





- Get bad cube s
- Call SAT solver on  $F_{k-2} \wedge \neg s \wedge T \wedge s'$ 
  - UNSAT:  $\neg c$  is inductive relative to  $F_{k-2}$   $F_{k-2} \land \neg c \land T \models \neg c'$
  - Generalize c to g and block by adding  $\neg g$  to  $F_{k-1}, F_{k-2}, \ldots, F_1$





- Get bad cube s
- Call SAT solver on  $F_{k-2} \wedge \neg s \wedge T \wedge s'$ 
  - UNSAT:  $\neg c$  is inductive relative to  $F_{k-2}$   $|F_{k-2} \land \neg c \land T \models \neg c'|$
  - Generalize *c* to *g* and block by adding  $\neg g$  to  $F_{k-1}, F_{k-2}, \ldots, F_1$





Propagation: extend trace to  $F_{k+1}$  and push forward clausesFor each i and each clause  $c \in F_i$ :Call SAT solver on  $F_i \wedge T \wedge \neg c'$ If UNSAT, add c to  $F_{i+1}$ 





Propagation: extend trace to  $F_{k+1}$  and push forward clauses For each *i* and each clause  $c \in F_i$ : Call SAT solver on  $F_i \wedge T \wedge \neg c'$ If UNSAT, add *c* to  $F_{i+1}$  $F_i \wedge T \models c'$ 





Propagation: extend trace to  $F_{k+1}$  and push forward clausesFor each i and each clause  $c \in F_i$ :Call SAT solver on  $F_i \wedge T \wedge \neg c'$ If UNSAT, add c to  $F_{i+1}$ 

If  $F_i \equiv F_{i+1}$ , *P* is proved, otherwise start another round of blocking and propagation



```
bool IC3(I, T, P):
    trace = [I] # first elem of trace is init formula
    trace.push() # add a new frame
   while True:
        # blocking phase
        while is sat(trace.last() & ~P):
            c = extract_cube() # c |= trace.last() & ~P
            if not rec_block(c, trace.size()-1):
                return False # counterexample found
        # propagation phase
        trace.push()
        for i=1 to trace.size()-1:
            for each cube c in trace[i]:
                if not is_sat(trace[i] & ~c & T & c'):
                    trace[i+1].append(c)
            if trace[i] == trace[i+1]:
                return True # property proved
```

#### **IC3 pseudo-code**



```
bool rec_block(s, i):
    if i == 0:
        return False # reached initial states
    while is_sat(trace[i-1] & ~s & T & s'):
        c = get_predecessor(i-1, T, s')
        if not rec_block(c, i-1):
            return False
    g = generalize(~s, i)
    trace[i].append(g)
    return True
```



- Consider the formula  $F_{k-1} \wedge T \wedge s'$  where s is a bad cube
  - If UNSAT, then  $F_{k-1}$  is strong enough to block s
  - Since  $F_i \wedge T \models F'_{i+1}$ , then s is unreachable in k steps or less
  - Since  $F_i \models F_{i+1}$ , then we can add s to all  $F_j, j \le k$



- Consider the formula  $F_{k-1} \wedge T \wedge s'$  where s is a bad cube
  - If UNSAT, then  $F_{k-1}$  is strong enough to block s
  - Since  $F_i \wedge T \models F'_{i+1}$ , then s is unreachable in k steps or less
  - Since  $F_i \models F_{i+1}$ , then we can add s to all  $F_j, j \le k$
- Consider now the relative induction check  $F_{k-1} \wedge \neg s \wedge T \wedge s'$ 
  - We know that  $I \equiv F_0 \not\models s$  because  $I \models P$  (base case)
  - Since  $F_i \models F_{i+1}$ , then we know that  $\neg s$  holds up to k



- Consider the formula  $F_{k-1} \wedge T \wedge s'$  where s is a bad cube
  - If UNSAT, then  $F_{k-1}$  is strong enough to block s
  - Since  $F_i \wedge T \models F'_{i+1}$ , then s is unreachable in k steps or less
  - Since  $F_i \models F_{i+1}$ , then we can add s to all  $F_j, j \leq k$
- Consider now the relative induction check  $F_{k-1} \wedge \neg s \wedge T \wedge s'$ 
  - We know that  $I \equiv F_0 \not\models s$  because  $I \models P$  (base case)
  - Since  $F_i \models F_{i+1}$ , then we know that  $\neg s$  holds up to k
- Propagation: for each  $c \in F_i$ , check  $F_i \wedge T \wedge \neg c'$ 
  - we know that c holds up to i, if UNSAT then it holds up to i+1
    since F<sub>i</sub> \models F<sub>i+1</sub>, F<sub>i</sub> ∧ T ⊨ F'<sub>i+1</sub> and F<sub>i</sub> ⊨ P,
    if F<sub>i</sub> ≡ F<sub>i+1</sub> then the fixpoint is an inductive invariant



#### Crucial step of IC3

Given a relatively inductive clause  $c \stackrel{\text{def}}{=} \{l_1, \dots, l_n\}$ compute a generalization  $g \subseteq c$  that is still inductive

$$F_{i-1} \wedge T \wedge g \models g' \tag{1}$$

- Drop literals from c and check that (1) still holds
  - Accelerate with unsat cores returned by the SAT solver
    - Using SAT under assumptions

However, make sure the base case still holds
 If  $I \not\models c \setminus \{l_j\}$ , then  $l_j$  cannot be dropped



```
void indgen(c, i):
    done = False
    for iter = 1 to max_iters:
        if done:
             break
        done = True
        for each 1 in c:
             cand = c \setminus \{1\}
             if not is_sat(I & cand) and
                not is_sat(trace[i] & ~cand & T & cand'):
                 c = get_unsat_core(cand)
                 rest = cand \setminus c
                 while is_sat(I & c):
                     l1 = rest.pop()
                     c.add(l1)
                 done = False
                 break
```

# • When $F_i \wedge \neg s \wedge T \wedge s'$ is satisfiable:

- *s* reaches  $\neg P$  in *k*-*i* steps
- s can be reached from  $F_i$  in 1 step
  - strengthen  $F_i$  by blocking cubes c in the preimage of s
- Extract CTI c from the SAT assignment
  - And generalize to represent multiple bad predecessors
  - Use unsat cores, exploiting a functional encoding of the transition relation
    - If T is functional, then  $c \wedge \text{inputs} \wedge T \models s'$
    - check  $\operatorname{inputs} \wedge T \wedge \neg s'$  under assumptions c









```
void generalize_cti(cti, inputs, next):
    for i = 1 to max_iters:
        b = is_sat(cti & inputs & T & ~next')
        assert not b # assume T to be functional
        c = get_unsat_core(cti)
        if should_stop(c, cti):
            break
        cti = c
```





#### No counterexamples of length 0



[borrowed and adapted from F. Somenzi]





Get bad cube  $c = x_1 \wedge x_2$  in  $F_1 \wedge \neg P$ 







#### Is $\neg c$ inductive relative to $F_0$ ? $F_0 \wedge T \wedge \neg c \models \neg c'$















Try dropping  $\neg x_2$ 

$$F_0 \wedge T \wedge \neg x_1 \not\models \neg x_1'$$







Try dropping  $\neg x_1$ 

$$F_0 \wedge T \wedge \neg x_2 \models \neg x'_2 \quad \checkmark$$







Try dropping  $\neg x_1$ 

$$F_0 \wedge T \wedge \neg x_2 \models \neg x_2' \quad \checkmark$$





Update  $F_1$ 







#### Blocking done for $F_1$ . Add $F_2$ and propagate forward







#### No clause propagates from $F_1$ to $F_2$






Get bad cube  $c = x_1 \wedge x_2$  in  $F_2 \wedge \neg P$ 







Is  $\neg c$  inductive relative to  $F_1$ ?  $F_1 \wedge T \wedge \neg c \models \neg c'$ 







No, found CTI  $s = \neg x_1 \land \neg x_2 \land x_3$ 







## Try blocking $\neg s$ at level 0: $F_0 \wedge T \wedge \neg s \models \neg s'$







Yes, generalize  $\neg s = x_1 \lor x_2 \lor \neg x_3$ 







Yes, generalize  $\neg s = x_1 \lor x_2 \lor \neg x_3$ 







Yes, generalize  $\neg s = x_1 \lor x_2 \lor \neg x_3$ 









Update  $F_1$ 







#### Return to the original bad cube c







Is  $\neg c$  inductive relative to  $F_1$ ?  $F_1 \wedge T \wedge \neg c \models \neg c'$ 







Yes, generalize  $\neg c = \neg x_1 \lor \neg x_2$ 







## Update $F_2$ and add new frame $F_3$







## Perform forward propagation







## Perform forward propagation







## Perform forward propagation





Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification





How to generalize from SAT to SMT?



- How to generalize from SAT to SMT?
- Good news: replacing the SAT solver with an SMT solver is enough for partial correctness
- but what about:
  - termination?
  - efficiency?



- How to generalize from SAT to SMT?
- Good news: replacing the SAT solver with an SMT solver is enough for partial correctness
- but what about:
  - termination?
    - Easy! (answer)
      - the problem is in general undecidable, so no hope here
  - efficiency?



- When  $F_i \wedge \neg s \wedge T \wedge s'$  is satisfiable:
  - s reaches  $\neg P$  in k-i steps
  - s can be reached from  $F_i$  in 1 step



- strengthen  $F_i$  by blocking cubes c in the preimage of s
- In the Boolean case, get c from SAT assignment (and generalize)
- For SMT(LRA):
  - Would exclude a single point in an infinite space





- When  $F_i \wedge \neg s \wedge T \wedge s'$  is satisfiable:
  - s reaches  $\neg P$  in k-i steps
  - s can be reached from  $F_i$  in 1 step



- strengthen  $F_i$  by blocking cubes c in the preimage of s
- In the Boolean case, get c from SAT assignment (and generalize)
- For SMT(LRA): underapproximated quantifier elimination
  - Encodes a set of predecessors
  - Cheaper than full quantifier elimination
    - But still potentially expensive
    - Not always available
      - E.g for UF+LRA

underapproximated preimage:  $(x \le 3) \land (y \ge 7)$ 



# $RelInd(F_{k-1},T,s)$ with SMT



- When  $F_i \wedge \neg s \wedge T \wedge s'$  is unsatisfiable:
  - Compute a generalization g of s to block
  - Block more than a single cube at a time



- In the Boolean case, use inductive generalization algorithms
- For SMT, Boolean algorithms plus theory-specific "ad hoc" techniques
  - Based on Farkas' lemma for LRA [HB SAT'12]
  - [WK DATE'13] for BV
  - [KJN FORMATS'12] for timed automata



- Abstract version of k-induction, avoiding explicit computation of the abstract transition relation
  - By embedding the abstraction in the SMT encoding
- Given a set of predicates  $\mathbb{P}$  and an unrolling depth k, the abstract path  $\widehat{\mathrm{Path}}_{k,\mathbb{P}}$  is

$$\bigwedge_{1 \le h < k} (T(\mathbf{Y}^{h-1}, X^h) \land \bigwedge_{p \in \mathbb{P}} (p(X^h) \leftrightarrow p(\mathbf{Y}^h)) \land T(\mathbf{Y}^{k-1}, X^k)$$





- Integrate the idea of Implicit Abstraction within IC3
- Use abstract transition relation T(X, Y') instead of T(X, X')
- Learn clauses only over predicates  $\mathbb{P}$
- Use abstract relative induction check:

 $\begin{aligned} \text{AbsRelInd}(F,T,s,\mathbb{P}) &:= F(X) \land s(X) \land T(X,Y') \land \\ & \bigwedge_{p \in \mathbb{P}} (p(X') \leftrightarrow p(Y')) \land \neg s(X') \end{aligned}$ 



- Integrate the idea of Implicit Abstraction within IC3
- Use abstract transition relation T(X, Y') instead of T(X, X')
- Learn clauses only over predicates  $\mathbb{P}$
- Use abstract relative induction check:

AbsRelInd $(F, T, s, \mathbb{P}) := F(X) \land s(X) \land T(X, Y') \land$  $\bigwedge_{p \in \mathbb{P}} (p(X') \leftrightarrow p(Y')) \land \neg s(X')$ 

- If UNSAT ⇒inductive strengthening as in the Boolean case
  - No theory-specific technique needed
  - Theory reasoning confined within the SMT solver



- Integrate the idea of Implicit Abstraction within IC3
- Use abstract transition relation T(X, Y') instead of T(X, X')
- Learn clauses only over predicates  $\mathbb{P}$
- Use abstract relative induction check:

AbsRelInd $(F, T, s, \mathbb{P}) := F(X) \land s(X) \land T(X, Y') \land$  $\bigwedge_{p \in \mathbb{P}} (p(X') \leftrightarrow p(Y')) \land \neg s(X')$ 

If SAT => abstract predecessor c from the SMT model µ  $c \stackrel{\text{def}}{=} \{p(X) \mid p \in \mathbb{P} \land \mu \models p(X)\} \cup \{\neg p(X) \mid \mu \not\models p(X)\}$ No quantifier elimination needed



$$T \stackrel{\text{def}}{=} (2x_1' - 3x_1 \le 4x_2' + 2x_2 + 3) \land (3x_1 - 2x_2' = 0)$$
$$\mathbb{P} \stackrel{\text{def}}{=} \{(x_1 - x_2 \ge 4), (x_1 < 3)\}$$
$$s \stackrel{\text{def}}{=} \neg (x_1 - x_2 \ge 4) \land (x_1 < 3)$$

- $\blacksquare RelInd(\emptyset,T,s) \text{ is SAT}$
- Compute a predecessor with  $\exists_{\operatorname{approx}} x'_1, x'_2.(\neg s \wedge T \wedge s')$  $(\frac{5}{2} \leq 3x_1 + x_2) \wedge \neg (x_1 - x_2 \geq 4) \wedge (x_1 < 3) \wedge \neg (-\frac{2}{3} \leq x_1)$



• 
$$T \stackrel{\text{def}}{=} (2x'_1 - 3x_1 \le 4x'_2 + 2x_2 + 3) \land (3x_1 - 2x'_2 = 0)$$
  
•  $\mathbb{P} \stackrel{\text{def}}{=} \{(x_1 - x_2 \ge 4), (x_1 < 3)\}$   
•  $s \stackrel{\text{def}}{=} \neg (x_1 - x_2 \ge 4) \land (x_1 < 3)$   
•  $RelInd(\emptyset, T, s) \text{ is SAT}$   
• Compute a predecessor with  $\exists_{approx} x'_1, x'_2.(\neg s \land T \land s')$   
 $(\frac{5}{2} \le 3x_1 + x_2) \land \neg (x_1 - x_2 \ge 4) \land (x_1 < 3) \land \neg (-\frac{2}{3} \le x_1)$   
• AbsRelInd $(\emptyset, T, s, \mathbb{P}) := T[X' \mapsto Y'] \land$   
 $\neg s \land s' \land$   
 $(x'_1 - x'_2 \ge 4) \leftrightarrow (y'_1 - y'_2 \ge 4) \land (x'_1 < 3) \leftrightarrow (y'_1 < 3)$ 

Compute predecessor from SMT model  $\mu \stackrel{\text{def}}{=} \{x_1 \mapsto 0, x_2 \mapsto 1\}$  $\neg(x_1 - x_2 \ge 4) \land (x_1 < 3)$ 



• 
$$T \stackrel{\text{def}}{=} (2x'_1 - 3x_1 \le 4x'_2 + 2x_2 + 3) \land (3x_1 - 2x'_2 = 0)$$
  
•  $\mathbb{P} \stackrel{\text{def}}{=} \{(x_1 - x_2 \ge 4), (x_1 < 3)\}$   
•  $s \stackrel{\text{def}}{=} \neg (x_1 - x_2 \ge 4) \land (x_1 < 3)$   
•  $RelInd(\emptyset, T, s) \text{ is SAT}$   
• Compute a predecessor with  $\exists_{approx} x'_1, x'_2 \cdot (\neg s \land T \land s')$   
 $(\frac{5}{2} \le 3x_1 + x_2) \land \neg (x_1 - x_2 \ge 4) \land (x_1 < 3) \triangleright \neg (-\frac{2}{3} \le x_1)$   
• AbsRelInd $(\emptyset, T, s, \mathbb{P}) := T[X' \mapsto Y'] \land$   
 $\neg s \land s' \land$   
 $(x'_1 - x'_2 \ge 4) \leftrightarrow (y'_1 - y'_2 \ge 4) \land (x'_1 < 3) \leftrightarrow (y'_1 < 3)$   
• Compute predecessor from SMT model  $\mu \stackrel{\text{def}}{=} \{x_1 \mapsto 0, x_2 \mapsto 1\}$   
 $\neg (x_1 - x_2 \ge 4) \land (x_1 < 3)$ 



- Abstract predecessors are overapproximations
  - Spurious counterexamples can be generated
- We can apply standard abstraction refinement techniques
  - Use sequence interpolants to discover new predicates
  - Sequence of abstract states  $s_0 \rightarrow s_1 \rightarrow \ldots \rightarrow s_n$
  - SMT check on  $s_0^0 \wedge T_{\text{concrete}}^0 \wedge s_1^1 \wedge \ldots \wedge T_{\text{concrete}}^{k-1} \wedge s_k^k$
  - If unsat, compute sequence of interpolants for
    - $[s_0^0 \wedge T_{\text{concrete}}^0 \wedge \ldots \wedge T_{\text{concrete}}^{i-1}], [s_i^i \wedge \ldots \wedge T_{\text{concrete}}^{k-1} \wedge s_k^k]$
  - Add all the predicates in the interpolants to  $\mathbb{P}$



- Abstraction refinement is fully incremental
- No restart from scratch
- Can keep all the clauses of  $F_1, \ldots, F_k$ 
  - Refinements monotonically strengthen T $T_{\text{new}} \stackrel{\text{def}}{=} T_{\text{old}} \land \bigwedge_{p \in \mathbb{P}_{\text{new}}} (p(X) \leftrightarrow p(Y)) \land (p(X') \leftrightarrow p(Y'))$
  - All IC3 invariants on  $F_1, \ldots, F_k$  are preserved  $F_{i+1} \subseteq F_i \text{ (so } F_i \models F_{i+1}) \checkmark$ for all  $i < k, F_i \models P$   $F_i \wedge T_{\text{new}} \models F'_{i+1} \checkmark$

Abstract counterexample check can use incremental SMT



System S with 2 state vars c and d

Init: 
$$(d = 1) \land (c \ge d)$$

• Trans: 
$$(c' = c + d) \land (d' = d + 1)$$

Property:  $(d > 2) \implies (c > d)$ 

Predicates  $\mathbb{P}$   $(d = 1) \quad (c \ge d)$   $(d > 2) \quad (c > d)$ 



System S with 2 state vars c and d

Init: 
$$(d = 1) \land (c \ge d)$$

• Trans: 
$$(c' = c + d) \land (d' = d + 1)$$

Property:  $(d > 2) \implies (c > d)$ 

Predicates  $\mathbb{P}$   $(d = 1) \quad (c \ge d)$   $(d > 2) \quad (c > d)$ 

**Check base case**: Init  $\models$  Property  $\checkmark$ 

Get bad cube



System S with 2 state vars c and d

Init: 
$$(d=1) \land (c \ge d)$$

- Trans:  $(c' = c + d) \land (d' = d + 1)$
- Property:  $(d > 2) \implies (c > d)$

- Predicates  $\mathbb{P}$   $(d = 1) \quad (c \ge d)$   $(d > 2) \quad (c > d)$
- Trace:  $F_0 := \text{Init}$  $F_1 := \top$

- SMT check  $F_1 \wedge \neg Prop$
- SAT with model  $\mu := \{c = 0, d = 2\}$
- Evaluate predicates wrt.  $\mu$ 
  - $\blacksquare \operatorname{Return} \ c := \{ \neg (d=1), \neg (c \geq d), (d>2), \neg (c>d) \}$



System S with 2 state vars c and d

Init: 
$$(d=1) \land (c \ge d)$$

Trans: 
$$(c' = c + d) \land (d' = d + 1)$$

Property:  $(d > 2) \implies (c > d)$ 

Predicates 
$$\mathbb{P}$$
  
 $(d = 1)$   $(c \ge d)$   
 $(d > 2)$   $(c > d)$ 

Trace: 
$$F_0 := \text{Init}$$
  
 $F_1 := \top$ 

Check

Rec. block c

 $AbsRelInd(F_0, T, c, \mathbb{P}) := Init \wedge$ 

$$(\mathbf{y_c} = c + d) \land (\mathbf{y_d} = d + 1) \land ((d' = 1) \leftrightarrow (\mathbf{y_d} = 1)) \land ((c' \ge d') \leftrightarrow (\mathbf{y_c} \ge \mathbf{y_d})) \land ((d' > 2) \leftrightarrow (\mathbf{y_d} > 2)) \land ((c' > d') \leftrightarrow (\mathbf{y_c} > \mathbf{y_d})) \land \neg c \land c'$$

Rec. block c



System S with 2 state vars c and d

Init: 
$$(d = 1) \land (c \ge d)$$

• Trans: 
$$(c' = c + d) \land (d' = d + 1)$$

Property:  $(d > 2) \implies (c > d)$ 

Predicates 
$$\mathbb{P}$$
 $(d = 1)$   $(c \ge d)$ 
 $(d > 2)$   $(c > d)$ 

Trace: 
$$F_0 := \text{Init}$$
  
 $F_1 := \top$ 

• Check  $AbsRelInd(F_0, T, c, \mathbb{P})$ 

• Unsat core:  $\{(d' > 2)\}$ 

Update 
$$F_1:=F_1\wedge \neg (d>2)$$


System *S* with 2 state vars *c* and *d* 

Init: 
$$(d = 1) \land (c \ge d)$$

Forward propagation

• Trans: 
$$(c' = c + d) \land (d' = d + 1)$$

Property:  $(d > 2) \implies (c > d)$ 

Predicates 
$$\mathbb{P}$$
 $(d = 1)$   $(c \ge d)$ 
 $(d > 2)$   $(c > d)$ 

Trace: 
$$F_0 := \text{Init}$$
  
 $F_1 := \neg (d > 2)$   
 $F_2 := \top$ 

Get bad cube at 2



System S with 2 state vars c and d

Init: 
$$(d = 1) \land (c \ge d)$$

• Trans: 
$$(c' = c + d) \land (d' = d + 1)$$

 $(d > 2), \neg(c > d)\}$ 

Property:  $(d > 2) \implies (c > d)$ 

•  $c := \{\neg (d = 1), \neg (c \ge d),$ 

Predicates 
$$\mathbb{P}$$
 $(d = 1)$   $(c \ge d)$ 
 $(d > 2)$   $(c > d)$ 

Trace: 
$$F_0 := \text{Init}$$
  
 $F_1 := \neg (d > 2)$   
 $F_2 := \top$ 



Trans: 
$$(c' = c + d) \land (d' = d + 1)$$
  
Property:  $(d > 2) \implies (c > d)$ 

Predicates 
$$\mathbb{P}$$

$$(d = 1) \quad (c \ge d)$$

$$(d > 2) \quad (c > d)$$

. . .

Trace: 
$$F_0 := \text{Init}$$
  
 $F_1 := \neg (d > 2)$   
 $F_2 := \top$ 

Update 
$$F_1 := F_1 \land (c \ge d)$$

Update 
$$F_2 := F_2 \land (c > d) \lor \neg (d > 2)$$



- System S with 2 state vars c and d
  Init:  $(d = 1) \land (c \ge d)$ Trans:  $(c' = c + d) \land (d' = d + 1)$ Property:  $(d > 2) \implies (c > d)$ 
  - Predicates  $\mathbb{P}$   $(d = 1) \quad (c \ge d)$   $(d > 2) \quad (c > d)$

Forward propagation

Trace:  $F_0 := \text{Init}$   $F_1 := \neg (d > 2) \land (c \ge d) \land F_2$   $F_2 := (c > d) \lor \neg (d > 2)$  $F_3 := \top$ 



System S with 2 state vars c and d
Init: 
$$(d = 1) \land (c \ge d)$$
Trans:  $(c' = c + d) \land (d' = d + 1)$ 
Property:  $(d > 2) \implies (c > d)$ 
Get bad cube at 3
 $c := \{\neg(d = 1), \neg(c \ge d), (d > 2), \neg(c > d)\}$ 
Trace:  $F_0 := Init$ 
 $F_1 := \neg(d > 2) \land (c \ge d) \land F_2$ 
 $F_2 := (c > d) \lor \neg(d > 2)$ 
 $F_3 := \top$ 



| System S with 2 state vars c ar        | d $d$ Predicates $\mathbb{P}$                   |
|----------------------------------------|-------------------------------------------------|
| • Init: $(d=1) \land (c \ge d)$        | $(d = 1)  (c \ge d)$                            |
| • Trans: $(c' = c + d) \land (d' = d)$ | (d > 2)  (c > d)                                |
| Property: $(d > 2) \implies (c > c)$   | l)                                              |
|                                        | Trace: $F_0 := Init$                            |
| Rec block c                            | $F_1 := \neg (d > 2) \land (c \ge d) \land F_2$ |
| Check                                  | $F_2 := (c > d) \lor \neg (d > 2)$              |
| $AbsRelInd(F_2, T, c, \mathbb{P})$     | $F_3 := \top$                                   |

• SMT model  $\mu := \{c = 0, d = 2, c' = 0, d' = 3, y_c = 2, y_d = 3\}$ 

• (Abstract) predecessor  $s := \{\neg (d > 2), \neg (c > d), \neg (d = 1), \neg (c \ge d)\}$ 



System S with 2 state vars c and d
Init: 
$$(d = 1) \land (c \ge d)$$
Trans:  $(c' = c + d) \land (d' = d + 1)$ 
Property:  $(d > 2) \implies (c > d)$ 
Trace:  $F_0 := Init$ 
Rec block s (at level 2)
F<sub>1</sub> :=  $\neg(d > 2) \land (c \ge d) \land F_2$ 
Reached level 0, abstract cex:
 $F_2 := (c > d) \lor \neg(d > 2)$ 
Reached level 0, abstract cex:
 $F_3 := \top$ 
 $q := \neg(d > 2), \neg(c > d), (d = 1), (c \ge d)$ 
 $s := \neg(d > 2), \neg(c > d), \neg(d = 1), (c \ge d)$ 
 $c := \neg(d = 1), \neg(c \ge d), (d > 2), \neg(c > d)$ 



| System S with 2 state vars c and d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Predicates $\mathbb{P}$         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Init: $(d=1) \land (c \ge d)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(d = 1)  (c \ge d)$            |
| Trans: $(c' = c + d) \land (d' = d + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (d > 2)  (c > d)                |
| Property: $(d > 2) \implies (c > d)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Trace: $F_0 := Init$            |
| Check abstract counterexample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $F_1$                           |
| SMT check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $F_2$                           |
| $I_0 \wedge q_0 \wedge T_{0 \mapsto 1} \wedge p_1 \wedge T_{1 \mapsto 2} \wedge s_2 $ | $T_{2\mapsto3}\wedge c_3$ $F_3$ |
| UNSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |



System S with 2 state vars c and d
Init: 
$$(d = 1) \land (c \ge d)$$
Trans:  $(c' = c + d) \land (d' = d + 1)$ 
Property:  $(d > 2) \implies (c > d)$ 
Check abstract counterexample
Compute sequence interpolant
$$I_0 \land q_0 \land T_{0 \mapsto 1} \land p_1 \land T_{1 \mapsto 2} \land s_2 \land T_{2 \mapsto 3} \land c_3$$

$$F_3$$

$$\varphi_1 := (d_1 \ge 2)$$
Predicates  $\mathbb{P}$ 
 $(d = 1) \quad (c \ge d)$ 
 $(d > 2) \quad (c > d)$ 



System S with 2 state vars c and d
Init: 
$$(d = 1) \land (c \ge d)$$
Trans:  $(c' = c + d) \land (d' = d + 1)$ 
Property:  $(d > 2) \implies (c > d)$ 
Check abstract counterexample
Compute sequence interpolant  $F_2$ 
 $I_0 \land q_0 \land T_{0 \mapsto 1} \land p_1 \land T_{1 \mapsto 2} \land s_2 \land T_{2 \mapsto 3} \land c_3$ 
 $\varphi_1 := (d_1 \ge 2)$ 
 $\varphi_2 := (d_2 \ge 3)$ 
Predicates  $\mathbb{P}$ 
(d = 1) (c \ge d)
(d > 2) (c > d)



System S with 2 state vars c and d
Init: 
$$(d = 1) \land (c \ge d)$$
Trans:  $(c' = c + d) \land (d' = d + 1)$ 
Property:  $(d > 2) \implies (c > d)$ 
Check abstract counterexample
Compute sequence interpolant  
 $I_0 \land q_0 \land T_{0 \mapsto 1} \land p_1 \land T_{1 \mapsto 2} \land s_2 \land T_{2 \mapsto 3} \land c_3$   
 $A_3$ 
 $\varphi_1 := (d_1 \ge 2)$   
 $\varphi_2 := (d_2 \ge 3)$   
 $\varphi_3 := \bot$ 
Predicates  $\mathbb{P}$ 
 $(d = 1) \quad (c \ge d)$ 
 $(d \ge 2) \quad (c > d)$ 
 $(d \ge 2) \quad (d \ge 3)$ 
Trace:  $F_0 :=$  Init  
 $F_1$ 
 $F_2$ 
 $F_3$ 
 $F_3$ 
 $F_3$ 

. . .



System S with 2 state vars c and d

Init: 
$$(d = 1) \land (c \ge d)$$

• Trans: 
$$(c' = c + d) \land (d' = d + 1)$$

Property:  $(d > 2) \implies (c > d)$ 

Update abstract trans

Resume IC3 from level 3

Predicates 
$$\mathbb{P}$$
 $(d = 1)$  $(c \ge d)$  $(d > 2)$  $(c > d)$  $(d \ge 2)$  $(d \ge 3)$ 

Trace:  $F_0 := \text{Init}$   $F_1 := \neg (d > 2) \land (c \ge d) \land F_2$   $F_2 := (c > d) \lor \neg (d > 2)$  $F_3 := \top$ 

. . .



System S with 2 state vars c and d

Init: 
$$(d = 1) \land (c \ge d)$$

• Trans: 
$$(c' = c + d) \land (d' = d + 1)$$

- Property:  $(d > 2) \implies (c > d)$
- Update abstract trans
- Resume IC3 from level 3

Predicates  $\mathbb{P}$  (d = 1)  $(c \ge d)$  (d > 2) (c > d)  $(d \ge 2)$   $(d \ge 3)$ 

■ Trace:  $F_0 := \text{Init}$   $F_1 := \neg (d > 2) \land (c \ge d) \land F_2$   $F_2 := (c \ge d) \lor \neg (d \ge 2) \land F_3$   $F_3 := (d = 1) \lor (d \ge 2) \land$   $\neg (c \ge d) \land F_4$  $F_4 := (c > d) \lor \neg (d > 2)$ 

. . .



System S with 2 state vars c and d

Init: 
$$(d=1) \land (c \ge d)$$

• Trans: 
$$(c' = c + d) \land (d' = d + 1)$$

Property: 
$$(d > 2) \implies (c > d)$$

Update abstract transResume IC3 from level 3

Forward propagation

Predicates  $\mathbb{P}$  (d = 1)  $(c \ge d)$  (d > 2) (c > d)  $(d \ge 2)$   $(d \ge 3)$ 

Trace:  $F_0 := \text{Init}$   $F_1 := \neg (d > 2) \land (c \ge d) \land F_2$   $F_2 := (c \ge d) \lor \neg (d \ge 2) \land F_3$   $F_3 := (d = 1) \lor (d \ge 2) \land$   $\neg (c \ge d) \land F_4$  $F_4 := (c > d) \lor \neg (d > 2)$ 



System S with 2 state vars c and d

Init: 
$$(d = 1) \land (c \ge d)$$

• Trans: 
$$(c' = c + d) \land (d' = d + 1)$$

- Property:  $(d > 2) \implies (c > d)$
- Update abstract transResume IC3 from level 3

Forward propagation  $F_2 \wedge \widehat{T}_{\mathbb{P}} \models (c' \ge d') \lor \neg (d' \ge 2)$ 

- Predicates  $\mathbb{P}$  (d = 1)  $(c \ge d)$  (d > 2) (c > d)  $(d \ge 2)$   $(d \ge 3)$
- Trace:  $F_0 := \text{Init}$   $F_1 := \neg (d > 2) \land (c \ge d) \land F_2$   $F_2 := (c \ge d) \lor \neg (d \ge 2) \land F_3$   $F_3 := (d = 1) \lor (d \ge 2) \land$   $\neg (c \ge d) \land F_4$  $F_4 := (c > d) \lor \neg (d > 2)$

\_ \_ \_



System S with 2 state vars c and d

Init: 
$$(d = 1) \land (c \ge d)$$

• Trans: 
$$(c' = c + d) \land (d' = d + 1)$$

Property: 
$$(d > 2) \implies (c > d)$$

Update abstract transResume IC3 from level 3

Forward propagation



Predicates  $\mathbb{P}$  (d = 1)  $(c \ge d)$  (d > 2) (c > d)  $(d \ge 2)$   $(d \ge 3)$ 

■ Trace:  $F_0 := \text{Init}$   $F_1 := \neg (d > 2) \land (c \ge d) \land F_2$   $F_2 := F_3$   $F_3 := (c \ge d) \lor \neg (d \ge 2) \land$   $(d = 1) \lor (d \ge 2) \land$   $\neg (c \ge d) \land F_4$  $F_4 := (c > d) \lor \neg (d > 2)$ 



- Get the code at: http://es-static.fbk.eu/people/griggio/vtsa2015/
  - Open source (GPLv3) implementation on top of MathSAT http://mathsat.fbk.eu/
    - Incremental interface
    - Assumptions and unsat core
    - Interpolation
- Simple (~1700 lines of C++, including parser and statistics, according to David A. Wheeler's 'SLOCCount') yet competitive
  - Input in VMT format (a simple extension of SMT-LIB) https://nuxmv.fbk.eu/index.php?n=Languages.VMT

Let's analyse it!



Introduction

IC3 for finite-state systems

SMT-based IC3 for infinite-state systems

IC3 for LTL verification

## **Linear Temporal Logic**



#### Syntax

- A (quantifier-free) first-order formula  $\varphi$
- $\mathbf{X}\varphi$  (neXt  $\varphi$ )  $\mathbf{F}\varphi$  (Finally  $\varphi$ )
- $\varphi \mathbf{U} \psi$  (  $\varphi$  Until  $\psi$  ) Globally  $\varphi$  )

#### Semantics

Given an infinite path  $\pi := s_0, s_1, \ldots, s_i, \ldots$ 

• 
$$\pi \models \mathbf{X}\varphi \text{ iff } s_1, \ldots \models \varphi$$
  
•  $\pi \models \varphi \mathbf{U}\psi \text{ iff } \exists j > 0.s_j, \ldots \models \psi \text{ and } \forall 0 \leq k < j.s_k, \ldots \models \varphi$   
•  $\pi \models \mathbf{F}\varphi \text{ iff } \exists j.s_j, \ldots \models \varphi$   
•  $\pi \models \mathbf{G}\varphi \text{ iff } \forall j.s_j, \ldots \models \varphi$ 

A system S satisfies an LTL formula  $\,\varphi$  (  $S\models\varphi$  ) iff all inifinite paths of S satisfy  $\varphi$ 



Automata-based approach:

Given an LTL property  $\varphi$  , build a transition system  $S_{\neg\varphi}$  with a fairness condition  $f_{\neg\varphi}$  , such that

$$S \models \varphi \text{ iff } S \times S_{\neg \varphi} \models \mathbf{FG} \neg f_{\neg \varphi}$$

- Finite-state case:
  - Iasso-shaped counterexamples, with  $f_{\neg \varphi}$  at least once in the loop
  - Iiveness to safety transformation: absence of lasso-shaped counterexamples as an invariant property
    - Duplicate the state variables  $X_{copy} = \{x_c | x \in X\}$
    - Non-deterministically save the current state
    - Remember when  $f_{\neg\varphi}$  in extra state var triggered
    - Invariant:  $\mathbf{G} \neg (X = X_{\text{copy}} \land \text{triggered})$



Unsound for infinite-state systems

Not all counterexamples are lasso-shaped

$$I(S) \stackrel{\text{\tiny def}}{=} (x = 0)$$
  $T(S) \stackrel{\text{\tiny def}}{=} (x' = x + 1)$   $\varphi \stackrel{\text{\tiny def}}{=} \mathbf{FG}(x < 5)$ 

Liveness to safety with Implicit Abstraction

- Apply the I2s transformation to the abstract system
  - Save the values of the predicates instead of the concrete state
- Do it on-the-fly, tightly integrating l2s with IC3
- Sound but incomplete
  - When abstract loop found, simulate in the concrete and refine
  - Might still diverge during refinement
    - Intrinsic limitation of state predicate abstraction

#### **K-liveness**



- Simple but effective technique for LTL verification of finitestate systems
- Key insight:  $M \times M_{\neg \varphi} \models \mathbf{FG} \neg f_{\neg \varphi}$  iff exists *k* such that  $f_{\neg \varphi}$  is visited at most *k* times
  - Again, a safety property
- K-liveness: increase k incrementally, within IC3
  - Liveness checking as a sequence of safety checks
  - Exploits the highly incremental nature of IC3
  - Sound also for infinite-state systems
    - What about completeness?



- K-liveness is incomplete for infinite-state systems
  - Even if  $M \times M_{\neg \varphi} \models \mathbf{FG} \neg f_{\neg \varphi}$ , there might be **no concrete**  $\mathbf{k}$  bound for the number of violations of  $\neg f_{\neg \varphi}$

$$I(S) \stackrel{\text{def}}{=} (x = \mathbf{n}) \quad T(S) \stackrel{\text{def}}{=} (x' = x + 1) \quad \varphi \stackrel{\text{def}}{=} \mathbf{FG}(x > \mathbf{n})$$

- K-zeno: extension of K-liveness for hybrid automata
  - Key idea: exploit progress of time to make k-liveness converge
  - By extending the original model with a "symbolic fairness monitor"  $Z^{\varphi}_{\beta}$  that forces time progress
  - Under certain conditions, restores completeness of k-liveness

• If 
$$M \times M_{\neg \varphi} \models \mathbf{FG} \neg f_{\neg \varphi}$$
, then exists k such that  $M \times M_{\neg \varphi} \times Z_{\beta}^{\varphi}$  visits  $f_Z$  at most k times

(clearly, safety check can still diverge)



DISCLAIMER: again, this is definitely incomplete. Apologies to missing authors/works

- IC3 for finite-state systems
  - Bradley, Manna. Checking Safety by Inductive Generalization of Counterexamples to Induction. FMCAD 2007
  - Bradley. SAT-based Model Checking Without Unrolling. VMCAI 2011
  - Een, Mischenko, Brayton. Efficient Implementation of Property-Directed Reachability. FMCAD 2011
  - Hassan, Somenzi, Bradley. Better Generalization in IC3. FMCAD 2013
  - Vizel, Gurfinkel. Interpolating Property-Directed Reachability. CAV 2014



#### IC3 for infinite-state systems

- Hoder, Bjørner. Generalized Property-Directed Reachability. SAT 2012
- Cimatti, Griggio, Mover, Tonetta. IC3 Modulo Theories with Implicit Predicate Abstraction. TACAS 2013
- Komuravelli, Gurfinkel, Chaki. SMT-Based Model Checking for Recursive Programs. CAV 2014
- Birgmeier, Bradley, Weissenbacher. Counterexample to Induction-Guided Abstraction-Refinement (CTIGAR). CAV 2014
- Bjørner, Gurfinkel. Property Directed Polyhedral Abstraction. VMCAI 2015



#### IC3 for LTL verification

- Bradley, Somenzi, Hassan, Zhang. An incremental approach to model checking progress properties. FMCAD 2011
- Claessen, Sörensson. A liveness checking algorithm that counts. FMCAD 2012
- Cimatti, Griggio, Mover, Tonetta. Verifying LTL Properties of Hybrid Systems with K-Liveness. CAV 2014



## Thank You