
Verification of SMT Systems with Quantifiers ⋆

Alessandro Cimatti[0000−0002−1315−6990], Alberto Griggio[0000−0002−3311−0893],
and Gianluca Redondi[0000−0002−2856−5236]

Fondazione Bruno Kessler
{cimatti, griggio, gredondi}@fbk.eu

Abstract. We consider the problem of invariant checking for transi-
tion systems using SMT and quantified variables ranging over finite but
unbounded domains. We propose a general approach, obtained by com-
bining two ingredients: exploration of a finite instance, to obtain can-
didate inductive invariants, and instantiation-based techniques to dis-
charge quantified queries. A thorough experimental evaluation on a wide
range of benchmarks demonstrates the generality and effectiveness of our
approach. Our algorithm is the first capable of approaching in a uniform
way such a large variety of models.

1 Introduction

Model checking algorithms based on efficient quantifier-free SAT and SMT rea-
soning have seen significant progress in the last few years. However, in many
verification areas first-order quantifiers are needed, both in the symbolic descrip-
tion of the system and in the property to prove. This is the case, for example,
of verification of parameterized systems.

Unfortunately, dealing with the combined case of transition systems with
theories and first-order is far from trivial: SMT-based model checking algorithms
can’t be naturally extended. In this paper, we discuss the problem of model
checking invariant properties in systems containing SMT theories and first-order
quantifiers, with quantified variables ranging over finite but unbounded domains.
For example, the (finite) size of the domain may depend on the number of
processes in a protocol, or the number of components of the station in a railway
interlocking system.

We present a simple yet general approach based on the interaction of two
key ingredients. First, given a fixed cardinality for the domain, we compute a
quantifier-free system (a ground instance) that can be model checked with ex-
isting techniques. We either get a counterexample, in which case the system is
unsafe, or a proof for the property. Such a proof is lifted to a candidate invariant
for the quantified system. This step is crucial, and is made effective by com-
bining minimization and generalization techniques [15,17,26]. Second, we check
the validity of the candidate invariant using quantified SMT reasoning. If the

⋆ This work has been partly supported by project “AI@TN” funded by the Au-
tonomous Province of Trento.

2 Alessandro Cimatti, Alberto Griggio, and Gianluca Redondi

candidate invariant is valid, then the system is safe. Otherwise, further reason-
ing is required, e.g. by increasing the cardinality of the domain, and iterating
the first step. Such a check can in principle be carried out by any off-the-shelf
solver supporting SMT and quantifiers (e.g. Z3 [23]). However, a black-box ap-
proach to checking the validity of quantified invariants may cause the procedure
to diverge in practice. Therefore, we adopt a more careful, resource-bounded
approach to instantiation, that can be used to discharge quantified queries in a
more controlled way.

The approach combines in a unique framework different aspects of the recent
literature that have never been integrated. Compared to our approach, previous
works on verification of parameterized systems with SMT [8, 14] impose strong
syntactic restrictions on the formulae used for defining systems, and allow only
a very limited form of quantifier alternation. Other approaches based on modern
SAT-based model checking algorithms such as [15, 18, 25] are more liberal, but
they do not support theories.

The algorithm has been implemented and experimentally evaluated on vari-
ous families of benchmarks, obtained from different sources, and making use of
theories, quantifier alternations, or both. The experimental evaluation demon-
strates that the algorithm is very general, being the only one able deal with all
the benchmarks. As far as we know, our algorithm is the first capable of ap-
proaching in a uniform way such a large variety of systems. Furthermore, the
experimental evaluation shows that, despite the relative simplicity of the im-
plementation, the algorithm is quite efficient, and very effective, solving more
instances than the competitor approaches in all the benchmarks classes.

2 Preliminaries

Our setting is standard first order logic. A theory T in the SMT sense is a pair
T = (Σ, C), where Σ is a first-order signature and C is a class of models over
Σ. A theory T is closed under substructure if its class C of structures is such
that whenever M ∈ C and N is a substructure of M, then N ∈ C. We use the
standard notions of Tarskian interpretation (assignment, model, satisfiability,
validity, logical consequence). We refer to 0-arity predicates as Boolean variables,
and to 0-arity uninterpreted functions as (theory) variables. A literal is an atom
or its negation. A clause is a disjunction of literals. A ground term is a term
which does not contain free variables. A formula is in conjunctive normal form
(CNF) iff it is a conjuction of clauses. If x1, ..., xn are variables and ϕ is a formula,
we might write ϕ(x1, ..., xn) to indicate that all the variables occurring free in ϕ
are in x1, ..., xn.

If ϕ is a formula, t is a term and v is a variable which occurs free in ϕ, we
write ϕ[v/t] for the substitution of every occurrence of v with t. If t and v are
vectors of the same length, we write ϕ[v/t] for the simultaneous substitution of
each vi with the corresponding term ti.

Given a set of variables v, we denote with v′ the set {v′ |v ∈ v}. A symbolic
transition system is a triple (v, I(v), T (v, v′)), where v is a set of variables, and

Model Checking with Quantifiers 3

I(v), T (v, v′) are first-order formulae over some signature. An assignment to the
variables in v is a state. A state s is initial iff it is a model of I(v), i.e. s |= I(v).
The states s, s′ denote a transition iff s ∪ s′ |= T (v, v′), also written T (s, s′). A
path is a sequence of states s0, s1, . . . such that s0 is initial and T (si, s

′
i+1) for

all i. We denote paths with π, and with π[j] the j-th element of π. A state s is
reachable iff there exists a path π such that π[i] = s for some i.

A formula ϕ(v) is an invariant of the transition system C = (v, I(v), T (v, v′))
iff it holds in all the reachable states. Following the standard model checking
notation, we denote this with C |= ϕ(v).1A formula ϕ(v) is an inductive invariant
for C iff I(v) |= ϕ(v) and ϕ(v) ∧ T (v, v′) |= ϕ(v′). Given a first-order formula ϕ
over a signature Σ, containing arbitrary quantifiers, it is well known that it is
possible to obtain a universal formula ϕ′, called the Skolemization of ϕ, defined
over a larger signature Σ′, which is equisatisfiable to ϕ.

3 Verification of Quantified SMT Systems

3.1 Symbolic Formalism

The problem discussed in this paper is to prove or disprove that a given quan-
tified formula is an invariant of a symbolic transition system. In this section,
we describe the formalism that we use for defining systems and we present an
overall picture of the algorithm we use to solve the problem.

We introduce a class of symbolic transition systems, which subsumes many
formalisms presented in the literature [14,24]. We start by considering two theo-
ries; a theory TI = (ΣI , CI), called the index theory, which is closed under sub-
structures. In practice, this is often the theory of an uninterpreted sort, whose
class of models includes all possible finite (but unbounded) structures. In addi-
tion, we consider a theory of elements TE = (ΣE , CE), used to model the data
of the system. Relevant examples consider as TE the theory of an enumerated
datatype, or linear arithmetic (integer or real). Then, with AE

I we denote the
theory whose signature is Σ = ΣI ∪ΣE ∪ {[]}, and a model for it is given by a
set of total functions from a model of TI to a model of TE , where [] is interpreted
as the function application. In the following, we might refer to variables of sort
AE

I as arrays.

We restrict ourselves to one index theory and one element theory for the
sake of simplicity, but typically applications include a multi-sorted setting, with
several index theories and several element theories.

Definition 1 In the following, we will consided a subclass of transition systems,
defined by triples S = (x, ι(x), τ(x, x′)) where:

1 Note that we use the symbol |= with three different denotations: if ϕ, ψ are formulae,
ϕ |= ψ denotes that ψ is a logical consequence of ϕ; if µ is an interpretation, and
ψ is a formula, µ |= ψ denotes that µ is a model of ψ; if C is a transition system,
C |= ψ denotes that ψ is an invariant of C.

4 Alessandro Cimatti, Alberto Griggio, and Gianluca Redondi

– x are arrays, i.e. variables of sort AE
I interpreted as functions from a model

of TI to a model of TE. Note that this includes also 0-ary or constant func-
tions, i.e. variables of sort TE.

– ι(x), τ(x, x′) are first-order formulae over Σ possibly containing quantifiers
over variables of sorts TI .

Example 1 (A simple train station). In this example, we describe an abstract
simple train station, with an arbitrary number of tracks and routes; routes can
be activated by locking the corresponding tracks. As index theories, we use two
uninterpeted sorts: track and route. As element theory, we use two enumeratives,
TE1

with model {locked, free}, and TE2
with model {active, inactive}. As state

variables, we use an array state t : track → {locked, free}, and an array state r :
route → {active, inactive}. Moreover, we define a relation symbol UsedBy : track×
route → Bool to model the correspondences between tracks and routes. The
initial formula of our model is:

∀r : route.state r[r] = inactive ∧ ∀t : track.state t[t] = free.

The transition formula of the system is the disjunction of two formulae τ1 ∨ τ2,
corresponding to the activation or the deactivation of a route. The first disjunct
is:

∃r : route.
(
state r[r] = inactive ∧ ∀t : track.(UsedBy(t, r) → state t[t] = free)

∧ state r′[r] = active ∧ ∀r1 : route.(r1 ̸= r → state r′[r1] = state r[r1])

∧ ∀t1 : track.(UsedBy(t1, r) → state t′[t1] = locked)

∧ ∀t1 : track.(¬UsedBy(t1, r) → state t′[t1] = state t[t1])
)
.

The second disjunct is:

∃r : route.
(
state r[r] = active ∧ state r′[r] = inactive

∧ ∀r1 : route.(r1 ̸= r → state r′[r1] = state r[r1])

∧ ∀t1 : track.(UsedBy(t1, r) → state t′[t1] = free)

∧ ∀t1 : track.(¬UsedBy(t1, r) → state t′[t1] = state t[t1])
)
.

The Invariant Problem we consider is the problem of proving (or disproving)
that a given formula ϕ, possibly containing quantified variables of sort TI , is an
invariant for S. The problem is well-known to be undecidable, since it subsumes
undecidable problems such as safety of parameterized systems [2].

Example 2. In the example before, we want to prove mutual exclusion of routes
which are using a same track. To do this, we define a new relational symbol
Incompatible : route× route → Bool and we introduce the following axiom:

∀r1 : route, r2 : route.
(
Incompatible(r1, r2) ↔

(r1 ̸= r2 ∧ ∃t : track.UsedBy(t, r1) ∧ UsedBy(t, r2))
)

Model Checking with Quantifiers 5

Axioms are not defined in Definition 1, but they are common in the literature
regarding symbolic transition systems. An axiom is a formula which is implicitly
considered in conjunction to both the initial and the transition formula. The
invariant we want to prove is the formula

∀r1 : route, r2 : route.
(
Incompatible(r1, r2) →

¬(state r[r1] = active ∧ state r[r2] = active)
)

i.e. incompatible routes are never active together. ⊓⊔

To solve the invariant problem affirmatively, we search for an inductive
strengthening, i.e. a first-order formula ψ such that ψ ∧ ϕ is an inductive in-
variant for S.

Definition 2 Let S = (x, ι(x), τ(x, x′)) a transition system, and ϕ a candidate
invariant. An invariant strengthening ψ is a first-order fomula such that the
following formulae are AE

I -unsatisfiable:

ι(x) ∧ ¬(ϕ(x) ∧ ψ(x)), τ(x, x′) ∧ ϕ(x) ∧ ψ(x) ∧ ¬(ϕ(x′) ∧ ψ(x′)). (1)

Since a formula is valid iff its negation is unsatisfiable, it follows from the
definition that ψ ∧ ϕ is an inductive invariant for S.

Our method will first automatically synthesize a candidate invariant strength-
ening ψ, and then try to discharge inductive queries with instantiation-based
methods to see if the guess was correct. In fact, after Skolemizing inductive
queries (1) to a universal form, our method will search for a set of ground terms
G such that the ground formula obtained by instantiating universal quantifiers
(in G) is unsatisfiable. We have, however, many open problems, which we can
summarize with the following questions: (i) How to find such candidate invariant
strengthenings? (ii) How to choose the set of ground terms G? (iii) If the query
is SAT, how to detect real counterexamples?

In the method we propose, we will try to address these problems with a
common approach, which is ground instance exploration. A ground instance
of the system is obtained by fixing the cardinality of models of TI to a fixed
integer. In this way we can obtain (after removing quantifiers by instantiation)
a transition system defined by quantifier-free formulae, which can be analyzed
by standard SMT-based techniques.

We will describe our approach more thoroughly in the next sections. Here,
we give a high-level overview of our method, depicted also in Fig. 1.

3.2 Overview

As an input, we have a symbolic transition system S and a candidate invariant
ϕ. We set n, a counter for the size of the ground instance we explore, equal to
1. We perform the following steps:

6 Alessandro Cimatti, Alberto Griggio, and Gianluca Redondi

S, ϕ
Ground in-

stance of size n
Sn |= Φn? Unsafe

Generalization
Skolemization;
compute G

InstantiateSMT SolvingSafe

Explore
Sn+1 Refine G

Invariant Checking

No

yes

Unsat

Sat

Unsat

Sat

Fig. 1. An overview of the algorithm.

– we consider a ground instance of cardinality n, and then use a model checker
to get either a counterexample for the property (thus terminating the algo-
rithm with Unsafe result), or an inductive invariant in size n. More details
about the computation of ground instances are given in §3.3.

– From the invariant of size n, we synthesize a candidate invariant strenght-
ening ψ (Generalization).

– We consider the quantified queries (1), and try to prove their unsatisfiability
(Invariant Checking box). In case of a success, the property is proved and
we have found an inductive invariant. In case of a failure, we need a better
candidate invariant: we restart the loop with a new exploration from size
n+ 1.

Since we are dealing with undecidable problems, there are many possible
causes of non-termination of the algorithm: the main problems are the invariant
cheking box, which involves quantified reasoning, and the existence of a cut-off,
i.e. an integer n such that the generalized formula obtained afted model checking
a ground instance of size n is inductive also for all other instances. Note that
the procedure of invariant checking could be be implemented with the usage of
any prover supporting SMT reasoning and quantifiers. However, especially for
satisfiabile instances, such solvers can diverge easily. Thus, since many queries
can be SAT, a naive usage of such tools will cause the procedure to get stuck in
quantified reasoning with no progress obtained.

Therefore, we proposed a ‘bounded’ sub-procedure of Invariant Checking,
explained in detail in §3.5, in which instead of relying on an off-the-shelf SMT
solver supporting quantifiers, we ‘manually’ apply standard instantiation-based
techniques for quantified SMT reasoning [10], in which however we carefully
manage the set of terms used to instantiate the quantifiers, in order to prevent
divergence.

Model Checking with Quantifiers 7

We now describe each step in more detail.

3.3 Ground instances

We start by describing in detail the computation of a ground instance from
the quantified system S. Traditionally, the exploration of ground instances has
always been recognized as a source of helpful heuristics, especially in the ver-
ification of parameterized systems [9, 26]. The intuition is that in most cases,
if a counterexample to a property exists, it can be detected for small values of
the parameter. Moreover, if a property holds, the reason for that should be the
same for all values of the parameter (at least after a certain threshold value).
We try to use this intuition in a symbolic setting, where we use as a parameter
the cardinality of the models of the theory TI . In the following, we denote with
n an integer, and with c = c1, . . . , cn a set of fresh constants of index sort. These
will be frozen variables of the ground instance, i.e. we will implicitly consider a
constraint c′ = c as a conjunction of the transition formula; moreover, they will
be also considered all implicitly different.

In the following, if ϕ = Q1i1, ..., Qmim.ϕ
′(i, x[i]), with Qj ∈ {∀,∃} is a for-

mula with quantifiers of only sort TI , we denote ϕn(c, x[c]) the ground formula
obtained by expanding the quantifiers in c.

Definition 3 Given S = (x, ι(x), τ(x, x′)) a transition system and n an integer,
the ground instance of S of size n, denoted with Sn, is obtained in the following
way:

– for each function symbol a in Σ whose codomain type is TI , consider the
formula

∀i1, . . . , im∃j.a(i1, . . . , im) = j2,

where m is the arity of a, and i1, . . . , im, j are fresh variables of appropriate
sort;

– add the formulae generated in this way in conjuction to the initial formula ι
and the transition formula τ ;

– Instantiate all the quantifiers in the modified formulae with c, thus obtaining
a quantifier-free transition system

Sn =
(
c ∪ x, ιn(c, x[c]), τn(c, x[c], x′[c])

)
.

We observe that a state of Sn is given by: (i) an assignment of c to a finite
model of cardinality n of TI , and (ii) an interpretation of the state variables as
functions from that model to a model of TE . Note that even if the models of TI
have finte cardinality, the set of states of Sn can be infinite, since TE could have
an infinite model, e.g. if integer or real variables are in the system. Nevertheless,
the system can be model checked efficiently by modern symbolic SMT techniques
like [3].

2 These are ‘cardinality axioms’, used to restrict the values of functions in appropriate
models.

8 Alessandro Cimatti, Alberto Griggio, and Gianluca Redondi

Symmetric presentation of ground instances As already observed in pre-
vious works [4, 15, 20], transition systems obtained by instantiating quantified
formulae have a certain degree of symmetry. We report here the notion that will
be useful to our description.

Definition 4 If σ is a permutation of 1, ..., n, and ϕ is a formula in which
c1, . . . , cn occur free, we denote with σϕ the formula obtained by substituting
every ci with cσ(i).

The following follows directly from the fact that ιn and τn are obtained by
instantiating a quantified formula with a set of fresh constants c [20]:

Lemma 1 For every permutaion σ, we have that: (i) σιn ≡ ιn; (ii) στn ≡ τn.

From this lemma and a simple induction proof, the following holds:

Proposition 2 (Invariance for permutation) Let s be a state of Sn, reach-
able in k steps. Then s |= ϕ(c, x[c]), if and only if, for every σ, there exists a
state s′ reachable in k steps such that s′ |= σϕ(c, x[c])

This property will be exploited both for the verification of ground instances,
and in the generalization process. In fact, from the last proposition we can sim-
plify every invariant problem Sn |=

∧
σ σϕ(c) – where σ ranges over all possible

substitutions – to Sn |= ϕ(c). This simplification is of great help when checking
properties which are the result of instantiating a formula with only universal
quantifiers.

3.4 Generalizing invariants from instances

After computing Sn, let ϕn(c, x[c]) be the result of instantiating the quantifiers of
the original candidate invariant ϕ in c. Then, we suppose to have a model checker
capable of proving or disproving that Sn |= ϕn(c, x[c]). If a counterexample is
not found, we also suppose to have an formula In(c, x[c]) which witnesses the
proof, i.e. an inductive invariant. From this witness we generalize a candidate
invariant for the unbounded case.

Definition 5 (Generalization) Let S be a transition system and ϕ a candidate
invariant. Let Sn be the ground instance of size n, and suppose Sn |= ϕn(c, x[c]).
A generalization from size n is a (quantified) formula ψ such that ψn is an
inductive invariant for ϕn.

For generalization, we exploit the same technique that we used in [4], inspired
by [26]. Suppose that In is in CNF. Then, In = C1 ∧ · · · ∧ Cm is a conjunction of
clauses. From every one of such clauses we will obtain a universally quantified
formula. Let AllDiff (i) be the formula which states that all variables in i are
different from each other. For all j ∈ {1, . . . ,m}, let ψj = ∀i.AllDiff (i) → Cj [c/i].
Let Ψ =

∧m
j=1 ψj . It follows from Proposition (2) than such a Ψ is a generalization

from size n.

Model Checking with Quantifiers 9

It should be clear that our technique can infer invariant strenghtnenings
with only universal quantifiers, but more generalizations are possible [11, 15].
For example, if a clause of the inductive invariant is l(c1) ∨ ... ∨ l(cn), a naive
generalization of that clause would be ∃x.l(x).

Example 3. Continuing our example, suppose to model check a ground instance
with exactly two tracks (t1, t2) and two routes (r1, r2). Suppose that after suc-
ceeding in proving the property, a clause of the inductive invariant is the formula

¬UsedBy(t1, r1) ∨ ¬state r[r1] = active ∨ ¬state t[t1] = free

Our generalization is simply:

∀t1 : track, r1 : route.(¬UsedBy(t1, r1)∨¬state r[r1] = active∨¬state t[t1] = free).

This is actually an inductive strengthening for the property we wanted to prove.

Minimizing modulo symmetries Recall that our next step will be to try to
prove that the generalized invariant from size n is inductive also for all other
ground instances. Therefore, it is intuitive to try to weaken as much as possible
the candidate strenghtening Ψ , to increase the chances that its inductiveness will
be preserved in other instances. So, before generalization, we use the invariant
minimization techniques described in [17] to weaken the inductive invariant In

by removing unnecessary clauses. However, note that, with our generalization
technique, two symmetric clauses produce the same quantified formula: if σ is
a substitution of the c’s, the formulae obtained by generalizing a clause C(c) or
σC(c) are logically equivalent. So, we apply the following strategy: given a clause
C(c) in In, we add to the invariant all the ‘symmetric’ versions σC, where σ ranges
over all possible substitutions of the c’s. By Proposition (2), we can safely add
those clause to In and it will remain inductive. Then, during the minimization
process, a clause is removed from the invariant only if all its ‘symmetric’ versions
are. In our experiments, minimizing invariants with this method has proved to
be crucial for the effectiveness of our approach.

3.5 Invariant Checking

Having described how we synthesize candidate inductive invariants from a ground
instance of size n, we now describe how we try to prove that our generalization
is correct. Given a candidate inductive invariant, we perform Skolemization on
the inductive query (1), obtaining a universal formula. Then, we look for a set
of terms G such that the ground formula obtained by instantiating the univer-
sals with G is unsatisfiable. This is the standard approach used in SMT solvers
for detecting unsatisfiability of quantied formulae [10,13]. The main difference is
that instead of relying on heuristics to perform the instantiation lazily during the
SMT search (e.g [10,13]), we carefully control the quantifier instantiation proce-
dure, and expand the quantifiers eagerly, so that we can use only quantifer-free
SMT reasoning.

10 Alessandro Cimatti, Alberto Griggio, and Gianluca Redondi

Let ϕS = ∀i.ϕ′S(i, x[i]) be the result of the Skolemization process, where ϕ′S
is a quantifier-free formula over a signature Σ′, obtained by expanding Σ with
new Skolem symbols. Initially, we simply let G to be the set of 0-ary symbols of
the index sort in the formula. Note that apart from constants in the original sig-
nature, new (Skolem) constants arise by eliminating existential quantifiers. Since
we use only universal quantification the generalized invariant strengthening, Ψ
is a conjunction of universal formulae, and we can commute the conjunction and
the universal quantification to obtain a formula with only n universal quantified
variables. Notice that, since the candidate inductive strengthening occurs also
negated in the quantified formula, this will produce n new Skolem constants.

Finally, we can add to the inductive query an additional constraint. By in-
duction on the structure of our algorithm, if Ψ is generalized from size n, we
have proven already that the property ϕ holds in S for all the ground instances
of size equal or less than n. Thus, we impose that in our universe G there are at
least n different terms.

To sum up, let ϕS = ∀i.ϕ′S(i, x[i]) be the universal formula obtained after
Skolemization, and let m be the length of i. Let n be the cardinality of the last
visited ground instance. Let G be the set of constants of index sort in ϕ′S (by the
previous discussion, |G| ≥ n). Let c1, . . . , cn be a set of fresh variables of index
sort. We test with an SMT solver the satisfiability of the following formula

∧
g∈Gm

ϕ′S [i/g] ∧ AllDiff (c) ∧
n∧

j=1

(
∨
g∈G

cj = g) (2)

We have that:

Proposition 3 For any set of ΣI-terms G, if (2) is unsatisfiable, then ψ is an
inductive strengthening for ϕ.

Refinement If the former formula is SAT, there are two possibilities. Either
we have a real counterexample to induction, and we need a better candidate, or
our instantiation set G was too small to detect unsatisfiability. In general, if G
covers all possible ΣI -terms, then we can deduce that the counterexample is not
spurious.

Definition 6 Given an index theory TI with signature ΣI , we say that a set of
ΣI-terms G is saturated if, for all terms ΣI-term t, there exists a g ∈ G such
that TI |= t = g.

So, if G is saturated, any model of (2) correspond to a counterexample to in-
duction, and we need a better strenghtening. However, in case (2) is satisfiable,
but G is not saturated, we use the following heuristic to decide whether we need
a better candidate or a larger G. We consider the inductive query in Sn+1,using
as a candidate inductive invariant (ψ ∧ ϕ)n+1. If the candidate invariant is still
good (the query is UNSAT), we try to increase G to get the unsatisfiablity of the
unbounded case. Our choice is to add to G terms of the form f(x) where f is a

Model Checking with Quantifiers 11

function symbol of index type, and x are constants already in G. Note that if no
function symbols are avaible, i.e. if ΣI is a relational signature, then saturation
of G follows already by considering 0-ary terms. Therefore, in case G is initially
not saturated, the existence of at least one function symbol is guaranteed 3.

If the query (2) is now UNSAT, we have succeeded. Otherwise, we continue to
add terms to G, until either all function symbols have been used, or an UNSAT
result is encountered. If the candidate invariant strengthening is not inductive
for size n + 1 (the query is SAT), we search for a better candidate. To do so,
before completely discharging the invariant generalized from size n, we can run
an additional minimization procedure (see §3.4) in size Sn+1, to try to remove
unnecessary clauses. If a new invariant is obtained, we repeat the instantiation
procedure. Otherwise, we repeat the whole loop, starting by model checking the
ground instance Sn+1 and obtaining a new strenghtening from size n+ 1.

3.6 Termination

In general, we do not have theoretical guarantees that our algorithm eventually
terminates. In fact, there can be many causes of non termination: note that
in case of infinite theories, the model checking of ground instances already can
be non terminating. Moreover, in general universal formulae are not enough to
strengthen an arbitrary invariant property [18], and existential quantification in
the invariant strengthening might be needed.

However, we want to remark that even with our simple generalization tech-
nique we have obtained termination in many cases. An important remark is
necessary to put more insight on the reasons of why our instantiation procedure
is effective for the benchmarks we considered. In many systems descriptions,
especially the ones arising from parameterized verification, the signature ΣI is
relational and all the formulae describing inductive queries contain only ∃∗∀∗
quantifiers alternation. In this case, no function symbols are introduced during
Skolemization: therefore, the set G of 0-ary terms already is saturated. Even in
case of ∀∃ alternation (but in a multi-sorted setting), saturation can be achieved
after few refinement steps (as long as the Skolem functions introduced in the
signature do not combine in cycles). More details about completeness of instan-
tiation methods, especially for the verification of parameterized systems, can be
found in [12, 14]. Since we limit ourselves to terms of depth one, our method
can fail to prove invariants requiring some more complex instantiations. Note
that in that case it is always possible to change the choice and the refinement
of the set G with more sophisticated methods [13, 27]. Finally, we remark that,
by limiting the possible refinements of G, our method has a notion of progress:
given a transition system S and a candidate invariant ϕ, if there exists an n such
that Sn ̸|= ϕn, and if all the model checking problems Sn′ |= ϕn

′
, with n < n′,

terminate, then our algorithm eventually finds a counterexample.

3 In our implementation, the saturation of G is detected when no new function symbols
are available

12 Alessandro Cimatti, Alberto Griggio, and Gianluca Redondi

4 Related Work

Verification of systems with quantifiers ranging over finite but unbounded do-
mains has always received a lot of attention from the literature. A main area
of application, for which our method is designed, is parameterized verification,
where the parameters represent the cardinality of components of the system.

Many proposed methods for solving the problem are based on cut-off results.
In our terms, a cut-off is an integer n such that the ground system Sn bisimulates
the quantified system S. Cut-off values exist for large varieties of classes of
systems, but such results strongly depend on the assumptions such as topology,
data, etc (see [2] for a survey). Nonetheless, we can see a posteriori that, when
our algorithm terminates with a candidate invariant from size n, such a size is a
candidate cut-off, since the proof of the property for that size holds also for all
integers n′ > n.

The method of invisible invariants [26] was to our knowledge the first which
proposed the usage of finite instance exploration to produce universally quan-
tified invariant strengthening. In that paper the invariant is generalized from
the formula describing the set of reachable states of the finite instance. Systems
considered in that work are, however, a subclass of ours.

Tools designed for the verification of systems with a combination of first-order
quantifiers and SMT theories are MCMT [14] and Cubicle [8]. These tools use
the framework of array-based transition systems, of which our formalism is an
extension. They implement a fully symbolic backward reachability algorithm,
where pre-images of states can be described by symbolic quantified formulae.
Quantified queries are then discharged with an instantiation approach similar
to ours. Nonetheless, many approximations can be introduced during the back-
ward computation, which may cause spurious counterexamples [1]. Cubicle ex-
tends this algorithm by using finite instance exploration to speed up pre-image
computation [9].

Ivy [12,24] is a tool for the verification of inductive invariants of parameter-
ized systems. Again, the formalism for defining systems considered in Ivy can
be seen as a subclass of ours: a translation can be obtained if we put TE to be
the theory of Booleans, and TI is the theory of an uninterpreted sort. In Ivy,
the quantified queries can always be embedded in EPR (Effective Propositional
Logic), a decidable fragment of first-order logic where formulae have a ∃∗∀∗ quan-
tifier prefix, and do not contain function symbols. Therefore, the set of possible
ΣI -terms is always finite, and it is always possible to do complete instantiations.
Inspired by Ivy, MyPyvy [19] is a tool which implements algorithms for the
automatic discovery of inductive invariants. Among those we have updr [18], a
version of the IC3 algorithm capable of inferring universally quantified invari-
ants, fol-ic3 [19], which extends IC3 by using separators to find invariants with
quantifier alternation during the construction of frames, and PdH, a recent al-
gorithm which combines the duality between states and predicates to discover
invariants [25].

Various tools in the literature are designed to use finite instance exploration
to guess invariants to lift to the unbounded case [11, 16, 21, 22, 28]. These tools

Model Checking with Quantifiers 13

either rely on cut-off results, or some external prover to discharge the quanti-
fied queries. Instead, we propose a tighter integration between finite instance
exploration and quantified queries. Moreover, most of this approaches rely on
enumerating possible models for finding inductive invariants; such an apprach
cannot be extended naively to support theories. The tool Ic3po [15] proposes a
generalization technique that can also infer formulae with quantifier alternation
by detecting symmetries in a clausal proof. As a future work, we will try to
combine their generalization technique with our method.

Abstraction methods are another major trend in verification of quantified
systems. In our previous paper [4], we designed an CEGAR approach for the
verification of array-based systems based on the Parameter Abstraction [20,21],
which also used the ground instance exploration technique presented here. How-
ever, that approach imposed some syntactic restrictions on the definition of the
systems, allowing only a single quantifier alternation with outermost existential
quantification in transition formulae, and only universal quantification in the ini-
tial formula and in the candidate invariant. Our new approach, instead, is more
general, and allows for arbitrary quantification in the definition of the transition
system and properties to check.

5 Experimental Evaluation

To evalute our approach, we have implemented our algorithm in the tool Lambda,
which was initially developed in a previous work [4] for model checking parame-
terized systems. The tool accepts as input transition systems specified either in
the language of MCMT [14], Ic3po, or in VMT format (a light-weight extension
of SMT-LIB to model transition systems [6]).

For clarity, we use bi-Lambda (for bounded induction) to denote the al-
gorithm described in this paper, while Lambda will denote the previously de-
veloped method. We used the SMT-based IC3 with implicit predicate abstrac-
tion of [3] as underlying verification engine for the finite instances, and MATH-
SAT5 [5] as the solver for ground checks. We also have implemented a version of
the algorithm which uses Z3 [23] to discharge quantified queries, to compare the
effectiveness of our instantiation-based procedure (this version will be referred
to as bi-Lambda-z3).

In case of successful termination, we generate either a counterexample trace
(for violated properties) in a concrete instance of the quantified system, or a
quantified inductive invariant that proves the property. In the latter case, we
can also generate proof obligations that can be independently checked with an
SMT solver supporting quantifiers.

For our evaluation, we have collected a total of 183 benchmarks, divided in
five different groups:
Protocols consists of 42 instances taken from the MCMT or the Cubicle dis-
tributions. Due to the very different format, we could not run Ic3po or the
MyPyvy algorithms on them. This was not only a syntactic problem: many
(but not all) benchmarks contain theory variables (like integers or reals), which

14 Alessandro Cimatti, Alberto Griggio, and Gianluca Redondi

are not supported in MyPyvy and Ic3po.
DynArch consists of 57 instances of verification problems of dynamic architec-
tures, taken from [7]. These benchmarks make use of arithmetic constraints on
index terms, which are not supported by Cubicle, MyPyvy or Ic3po.
PdH consists of 20 benchmarks used in the experimental evaluation of [25],
written in MyPyvy and Ic3po format. We could not run MCMT, Cubicle
or Lambda on them, for the different input language and for not supported
features such as multi-sorted indexes.
Ic3po consists of 37 benchmarks from the experimental evaluation of [15], writ-
ten in Ic3po format and in (old) MyPyvy format. For the same reasons as the
previous set, we could not run MCMT, Cubicle and Lambda on them. For
compatibility issues, we could not run the PdH algorithm on them.
Trains consists of 17 instances derived by (a simplified version of) verifica-
tion problems of railway interlocking. These benchmarks contains theory vari-
ables and synctactic requirements currently supported only by Lambda and
bi-Lambda.
Trains-AE consists of 10 instances derived again by verification problems on
railway interlocking logics; in these systems a forall-exists quantification alter-
nation in a multi-sorted setting occurs, along with theory variables. Therefore,
they are supported only by bi-Lambda.

We have run our experiments on a cluster of machines with a 2.90GHz In-
tel Xeon Gold 6226R CPU running Ubuntu Linux 20.04.1, using a time limit
of 1 hour and a memory limit of 4GB for each instance. For MCMT, we used
standard settings. For Cubicle, we used the --brab 2 option. For fol-ic3 and
updr, we used the implementation in the artifact given in [19]. For Ic3po,
we used the option --finv=2 to discharge unbounded checks with Z3. With-
out this option, Ic3po terminates when the tool finds a proof for size n which
is still valid for size n + 1; this was conjectured to be enough [15] to ensure
that the proof was correct for all the instances, but, without unbounded checks,
we have encountered errors of the tool in the PdH benchmarks. We also re-
mark that in case of termination with Unsafe result, our tool produces always
concrete counterexamples in finite instances; on the other hand, counterexam-
ples of MCMT, Cubicle and updr can be spurious [1, 18] (and in theory
should be checked manually). The results of bi-Lambda-z3 are obtained with
a timeout of 120 seconds on every Z3 query, to avoid the prover being stuck
in quantified reasoning as discussed in §3.2 (without such timeout, we have ob-
tained worse results, both in resource usage and number of instances solved). A
summary of our experimental evaluation is presented in Table 1. An extended
version of the paper, containing more data of the experiments, and a virtual
machine with our implementation and all the benchmarks, can be found at
https://drive.google.com/file/d/1JTASD-qp5ZzJR_ADqM9qjEdSCnlANNxi.

As we can see from the table, bi-Lambda is applicable on a large set of
benchmarks and in every set it is competitive with other approaches. When
comparing bi-Lambda with bi-Lambda-z3, we see that our simple instantiation
procedure is more effective than relying on the built-in support for quantifiers

https://drive.google.com/file/d/1JTASD-qp5ZzJR_ADqM9qjEdSCnlANNxi

Model Checking with Quantifiers 15

Table 1. Summary of experimental results. In every column, we have reported the
number of solved instances or ‘-’ for incompatibility.

Tot bi-Lambda bi-Lambda-z3 Lambda MCMT Cubicle updr fol-ic3 PdH Ic3po
Protocols 42 34 31 34 24 30 – – – –
DynArch 57 50 50 48 49 – – – – –
Trains 17 16 16 17 – – – – – –
Trains-AE 10 10 10 – – – – – – –
PdH 20 11 11 – – – 12 11 5 12
Ic3po 37 18 16 – – – 18 17 – 25
Tot 183 139 134 99 73 30 30 28 5 37

in Z3, allowing to solve 5 more instances (and in general reducing the execution
time, though this is not reported in Table 1 for lack of space).

6 Conclusions and Future Work

In this paper we have presented a general approach for model checking systems
with quantifiers and SMT variables; the novelty in the presented algorithm relies
in the tight integration between finite instance exploration and instantiation-
based techniques. However, our proposed method currently synthesizes only
universal invariants, which in some cases are not enough to prove properties
of quantified systems. In our future works, we will investigate how to combine
our approach with techniques that infer invariants with quantifier alternations.
Moreover, we will study how to combine our approach with more sophisticated
instantiation techniques exploited in state-of-the-art provers.

References

1. Alberti, F., Ghilardi, S., Pagani, E., Ranise, S., Rossi, G.P.: Universal guards,
relativization of quantifiers, and failure models in model checking modulo theories.
Journal on Satisfiability, Boolean Modeling and Computation 8, 29–61 (2012)

2. Bloem, R., Jacobs, S., Khalimov, A.: Decidability of Parameterized Verification.
Morgan & Claypool Publishers (2015)

3. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state invariant checking
with IC3 and predicate abstraction. Formal Methods Syst. Des. (2016)

4. Cimatti, A., Griggio, A., Redondi, G.: Universal invariant checking of parametric
systems with quantifier-free SMT reasoning. In: CADE 28 (2021)

5. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathsat5 smt solver.
TACAS’13, Springer-Verlag, Berlin, Heidelberg (2013)

6. Cimatti, A., Griggio, A., Tonetta, S.: The VMT-LIB language and tools. CoRR
abs/2109.12821 (2021)

7. Cimatti, A., Stojic, I., Tonetta, S.: Formal specification and verification of dynamic
parametrized architectures. In: FM 2018 (2018)

8. Conchon, S., Goel, A., Krstic, S., Mebsout, A., Zäıdi, F.: Cubicle: A Parallel SMT-
based Model Checker for Parameterized Systems. In: CAV 2012

9. Conchon, S., Goel, A., Krstic, S., Mebsout, A., Zäıdi, F.: Invariants for finite in-
stances and beyond. In: Formal Methods in Computer-Aided Design, FMCAD
2013

16 Alessandro Cimatti, Alberto Griggio, and Gianluca Redondi

10. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

11. Dooley, M., Somenzi, F.: Proving parameterized systems safe by generalizing
clausal proofs of small instances. In: CAV 2016 (2016)

12. Feldman, Y.M.Y., Padon, O., Immerman, N., Sagiv, M., Shoham, S.: Bounded
quantifier instantiation for checking inductive invariants. Log. Methods Comput.
Sci. (2019)

13. Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions using
satisfiability modulo theories. Annals of Mathematics and Artificial Intelligence p.
101–122 (feb 2009)

14. Ghilardi, S., Ranise, S.: Backward reachability of array-based systems by SMT
solving: Termination and invariant synthesis. Log. Methods Comput. Sci. 6(4)
(2010)

15. Goel, A., Sakallah, K.A.: On symmetry and quantification: A new approach to
verify distributed protocols. In: NFM 2021 (2021)

16. Hance, T., Heule, M., Martins, R., Parno, B.: Finding invariants of distributed
systems: It’s a small (enough) world after all. In: NSDI 2021. pp. 115–131. USENIX
Association (2021)

17. Ivrii, A., Gurfinkel, A., Belov, A.: Small inductive safe invariants. In: Formal Meth-
ods in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, October
21-24, 2014. pp. 115–122. IEEE (2014)

18. Karbyshev, A., Bjørner, N., Itzhaky, S., Rinetzky, N., Shoham, S.: Property-
directed inference of universal invariants or proving their absence. In: Kroening,
D., Păsăreanu, C.S. (eds.) Computer Aided Verification (2015)

19. Koenig, J.R., Padon, O., Immerman, N., Aiken, A.: First-order quantified separa-
tors. In: PLDI (2020)

20. Krstic, S.: Parametrized system verification with guard strengthening and param-
eter abstraction (2005)

21. Li, Y., Duan, K., Jansen, D.N., Pang, J., Zhang, L., Lv, Y., Cai, S.: An automatic
proving approach to parameterized verification. ACM Trans. Comput. Logic (Nov
2018)

22. Ma, H., Goel, A., Jeannin, J.B., Kapritsos, M., Kasikci, B., Sakallah, K.A.: I4: In-
cremental inference of inductive invariants for verification of distributed protocols.
SOSP ’19 (2019)

23. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS (2008)
24. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: Safety verifi-

cation by interactive generalization. SIGPLAN Not. 51(6), 614–630 (Jun 2016)
25. Padon, O., Wilcox, J.R., Koenig, J.R., McMillan, K.L., Aiken, A.: Induction du-

ality: Primal-dual search for invariants 6(POPL) (2022)
26. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisible

invariants. In: TACAS (2001)
27. Reynolds, A.: Quantifier instantiation beyond e-matching. In: Brain, M., Hadarean,

L. (eds.) (CAV 2017) (2017)
28. Yao, J., Tao, R., Gu, R., Nieh, J., Jana, S., Ryan, G.: DistAI: Data-Driven auto-

mated invariant learning for distributed protocols. In: (OSDI 21) (Jul 2021)

	Verification of SMT Systems with Quantifiers

