
Handling Polynomial and Transcendental
Functions in SMT via Unconstrained

Optimisation and Topological Degree Test?

Alessandro Cimatti1, Alberto Griggio1, Enrico Lipparini1,2,
Roberto Sebastiani3

1 Fondazione Bruno Kessler, Trento, Italy
2 DIBRIS, University of Genoa, Italy

3 DISI, University of Trento, Italy

Abstract. We present a method for determining the satisfiability of
quantifier-free first-order formulas modulo the theory of non-linear arith-
metic over the reals augmented with transcendental functions. Our pro-
cedure is based on the fruitful combination of two main ingredients:
unconstrained optimisation, to generate a set of candidate solutions,
and a result from topology called the topological degree test to check
whether a given bounded region contains at least a solution. We have
implemented the procedure in a prototype tool called ugotNL, and in-
tegrated it within the MathSAT SMT solver. Our experimental eval-
uation over a wide range of benchmarks shows that it vastly improves
the performance of the solver for satisfiable non-linear arithmetic formu-
las, significantly outperforming other available tools for problems with
transcendental functions.

1 Introduction

When dealing with real arithmetic in SMT, a fundamental challenge is to go be-
yond the linear case (LRA), by introducing nonlinear polynomials (NRA), pos-
sibly augmented with transcendental functions like exponential and trigonomet-
ric ones (NT A). In fact, the expressive power of NT A is required by many ap-
plication domains (e.g. railways, aerospace, control software, and cyber-physical
systems). Unfortunately, dealing with non-linearity is a very hard challenge. Go-
ing from SMT(LRA) to SMT(NRA) yields a complexity gap that results in a
computational barrier in practice. Adding transcendental functions exacerbates
the problem even further, because reasoning on NT A is undecidable [26]. Ex-
isting SMT solvers therefore have to resort to incomplete techniques in order
to handle NT A constraints [7,17], which are however particularly ineffective
at proving that a formula is satisfiable (i.e. that it has at least one model).
One of the main sources of complexity is the need to provide exact answers:
when an SMT solver says “sat”, the input problem must indeed be satisfiable,

? This work has been partly supported by project “AI@TN” funded by the Au-
tonomous Province of Trento.

and not just “likely satisfiable” or “satisfiable with high probability”. Remov-
ing this requirement makes it possible to use approximate techniques, such as
numerical methods or procedures based on weaker notions of satisfiability such
as δ-satisfiability [18], which are typically significantly more scalable in practice
than exact methods.

In this paper, we present a technique for significantly improving the effec-
tiveness of SMT(NT A) solvers in determining that a formula is satisfiable,
by exploiting a fruitful combination of approximate and exact techniques. Our
procedure uses numerical methods based on unconstrained global optimisation
to quickly identify (small) boxes containing candidate solutions for a given
set/conjunction of NRA and NT A constraints, which are then analysed with a
procedure whose main ingredient is the topological degree test [24,15] – a result
from topology that guarantees the existence of a solution for a set of equalities if
certain conditions are met – to confirm whether a candidate box contains at least
one solution. The procedure is then plugged into an SMT context, which allows
us to handle problems containing arbitrary Boolean combinations of constraints.

The main contribution of this work is an effective combination of numeric and
symbolic methods that allows to significantly enhance the capability of state-of-
the-art SMT solvers to determine the satisfiability of formulas containing NT A
constraints, as demonstrated by our extensive experimental evaluation. To this
extent, although all the ingredients we use are known, our overall procedure is,
to the best of our knowledge, novel. The synergy between numerical optimisa-
tion and the topological degree test is essential for the viability of our approach,
as none of the two techniques in isolation is effective in practice. On one hand,
being based on numerical methods, unconstrained global optimisation alone can-
not detect exact solutions, but only approximate ones. On the other hand, the
topological degree test alone is not immediately applicable to arbitrary sets of
constraints, as it works only for problems in a specific form, in which (i) there are
only equations, (ii) the number of equations is equal to the number of variables,
(iii) all variables are bounded, and (as a more empirical requirement rather than
theoretical limitation) (iv) the bounds on the variables are “sufficiently small”
for the practical effectiveness of the test. The first limitation has been tackled in
[16] by pairing the topological degree test with interval arithmetic to deal with
inequalities. In this paper, we show how a further combination with numerical
optimization can be exploited to obtain a practical and effective method that
can be easily integrated in a modern SMT solver, thus overcoming the other
three points.

In order to substantiate our claims, we have implemented our procedure in a
prototype tool called ugotNL, and we have integrated it within the MathSAT
SMT solver [8]. We have extensively evaluated our prototype on a wide range of
NRA and NT A benchmarks, comparing it to the main state-of-the art tools.
Our experimental evaluation shows that it vastly improves the performance of
the MathSAT solver for satisfiable NRA formulas, significantly outperforming
the other tools on NT A problems.

2

Related work. ForNRA, various techniques have been explored. Complete meth-
ods based on quantifier-elimination procedures such as Cylindric Algebraic De-
composition (CAD) [9] have been successfully implemented in several SMT-
solvers (such as z3[11], Yices[13], SMT-RAT[10]), proving their effectiveness
especially when tightly integrated into the Boolean search through a model-
constructing framework such as MCSAT [20][12]. However, their complexity is
doubly-exponential in the worst case, and they cannot deal with transcendental
functions.

For NT A, there exist very few techniques able to prove satisfiability. Incre-
mental linearization (IL) [7] starts from an abstract model and tries to check
whether the formula is satisfiable under all possible interpretations (within a
given bounded region) of the transcendental functions involved. This tactic works
well when the transcendental functions are isolated in the formula, but it is quite
ineffective when the transcendental component is more complex (expecially in
the presence of equations). iSAT3 [17] implements a method based on a tight
integration of Interval Constraint Propagation (ICP)[4] into the CDCL frame-
work, and it is able to prove satisfiability if it finds a box in which every point
is a solution.

Differently from these methods, our approach is not compelled to find more
solutions than needed, and it is able to prove satisfiability even when the only
models of the formula are isolated points. Interestingly, raSAT[27] combines
ICP with the Generalized Intermediate Value Theorem (GIVT)[23], but does
not support transcendental functions.

Other approaches, e.g. dReal [19] and ksmt [5], rely on the notion of δ-
satisfiability[18], which guarantees that there exists a perturbation (up to some
δ > 0 specified by the user) of the original formula that is satisfiable.1 iSAT3
relies on a similar notion and, when not able to prove satisfiability nor to detect
conflicts, returns a candidate solution. In comparison with these approaches,
when we return “sat” we guarantee that the problem is actually satisfiable.
Content. The paper is organized as follows. In §2 we provide the necessary theo-
retical background; in §3 we describe how we use unconstrained optimisation to
find candidate models; in §4 we describe a general procedure, restricted to con-
junctions of NT A constraints, based on the topological degree test and interval
arithmetic; in §5 we extend the previous procedure to general NT A formulas,
following either an eager or a lazy approach; in §6 we present our experimental
evaluation; in §7 we conclude.

2 Background

We work in the setting of SMT, with the quantifier-free theory of real arithmetic,
either limited to polynomial constraints (denoted NRA), or augmented with
trigonometric and exponential transcendental functions (denoted NT A). We

1 Note that, according to this definition, a problem could be unsat and δ-sat at the
same time

3

assume the standard notions of interpretation, model, satisfiability, validity and
logical consequence.

We use the following notation. We write logical variables with x1, x2, . . ., and
values in R with x1, x2, If t is a generic (quantifier-free) term, we write [t]
for its interpretation in the standard model of arithmetic. If φ is a formula, we
denote with Var(φ) the set of its (free) variables. We use f, g to denote logic
symbols representing a polynomial or a transcendental function; when there is
no ambiguity, we will use the same symbol also to denote the real function
corresponding to its standard interpretation. We use boldface to denote vectors

of values x
def
= {x1, . . . , xm} ∈ Rm, and intervals I

def
= {x ∈ R | a ≤ x ≤ b} with

[a,b] (or simply [a] when a ≡ b), where a and b ∈ Q. Given a vector x ∈ Rm, we
denote with ‖x‖2 its Euclidean norm (i.e.

√∑
i xi

2), and with |x| its maximum
norm (i.e. max{|x1|, · · · , |xm|}). If φ is a formula with Var(φ) ≡ {x1, . . . , xm},
we denote with Mφ

def
= {x ∈ Rm | x is a model of φ} the set of its models.

We assume that the reader is familiar with the main theoretical and al-
gorithmic concepts of SMT, as well as with its terminology. We recall that the
lazy-SMT approach consists in building ad-hoc theory-specific procedures (called
theory solvers, usually written just for conjunctions of literals, i.e. atomic formu-
las and their negations) and integrating them into a SAT-solver. The most used
approach for lazy-SMT, called CDCL(T), is to modify the CDCL procedure [29]
commonly used for SAT to work with formulas having a background theory T .
We refer the reader to, e.g., [3] for more details on lazy SMT.

In the rest of this section, we introduce the necessary background techniques
from the fields of unconstrained optimisation, interval arithmetic, and topology.

2.1 Unconstrained Global Optimisation

We say that x∗ is a local minimum for h : Rm → R, if there exists a neighborhood
S := {x ∈ Rm : ‖x∗−x‖2 < δ} for some δ > 0, such that ∀x ∈ S : h(x∗) ≤ h(x).
We say that x∗ is a global minimum for h if ∀x ∈ Rm : h(x∗) ≤ h(x).

Unconstrained global optimisation is the problem of minimizing a function h
on the entire space Rm of the real numbers. A common approach to tackle this
problem is leveraging fast local optimisation techniques.

In this paper, we use a Monte Carlo Markov Chain method called Basin-
hopping[28], based on the Metropolis-Hasting algorithm[21]. The idea of Basin-
hopping is to do a random sampling of h to simulate a target distribution,
and then alternate a local minimization phase with a stepping phase, used to
decide, guided by the target distribution, how to jump from a local minimum to
another. In particular, we use a slight modification of the algorithm that, given
a maximum number of iterations, returns all the local minima found during the
search.

2.2 Interval Arithmetic

Interval Arithmetic is a systematic approach to represent real numbers as inter-
vals and to compute safe bounds that account for rounding errors. We define a box

4

as a subset of Rm that is the Cartesian product of m intervals: B = I1×· · ·×Im ⊂
Rm. The width of an interval I

def
= [aI , bI] is defined as width(I)

def
= bI − aI, and

the width of a box is defined as width(B)
def
= maxi(width(Ii)). We can define

several operations and relations between intervals, such as addition, multiplica-
tion, inclusion, and many more. For a more in-depth coverage of properties of
and operations on intervals, we refer to [22].

We now give the definition of interval-computable functions, which plays
an important role in our method. The intuition is that a function is interval-
computable if it is possible to compute arbitrarily precise images for every in-
terval domain. It has been proved that every function in NT A is interval com-
putable (we refer to section 5.4 of [22] for the proof)

Definition 1 (Function interval-computable). A function f : Ω ⊆ Rm →
Rn is said to be interval-computable iff there exists an algorithm If that, for
every box B′ ⊆ Ω with rational vertices, computes a box If (B′) with rational
vertices, such that: (i) f(B′) ⊆ If (B′); and (ii) ∀ε > 0 : ∃δ > 0 such that for
every B′ having width(B′) < δ, then width(If (B′)) < ε.

Given a formula φ in m real variables and a box B
def
= I1× · · ·× Im ⊂ Rm (where

Ii
def
= [ai,bi]), we define the restriction of φ to the box B (and say φ|B is a bounded

formula) as

φ|B := φ ∧
∧

xi∈Var(φ)

(ai ≤ xi ∧ xi ≤ bi) (1)

2.3 Robustness and quasi-decidability

Intuitively, a formula is robust if its satisfiability status does not change under
“small” perturbations2. Robustness is a desirable property in many real-world
applications, as already observed in the literature (e.g.[25,18]). The related no-
tion of quasi-decidability[16] is then a property that allows to circumvent general
undecidability results for a class of formulas when focusing only on robust inputs.

Definition 2 (Quasi-decidability). A class of problems is quasi-decidable if
there exists an algorithm that always terminates on robust instances, and that
always returns the right answer when terminating.

2.4 Topological degree test

The topological degree of a continuous function f : Rn → Rn bounded over a box
B is an integer deg(f,B) that can be defined in several different equivalent ways.
Those definitions however require a consistent background, so for lack of space
we refer to [24] for a detailed presentation. The property that we are interested
in is the following, that we will call topological degree test :

Property 1. If deg(f,B) 6= 0, then the equation f = 0 has a solution in B.

2 A formal definition of robustness can be found in Section 2 of [16]

5

The topological degree has proven to be computable if 0 6∈ f(∂B)3[1]. A practical
tool for computing it is TopDeg4, implementing the algorithm described in [15].

3 Local search using Unconstrained Global Optimisation

In this section we explain how to exploit unconstrained global optimisation to
help a generic SMT solver to find models for sets of constraints in NRA and
NT A. The general idea is that of mapping a formula φ over real variables
x1, . . . , xm into a real-valued non-negative function h : Rm 7→ R≥0, such that x is
a model of φ only if h(x) = 0, and then use an unconstrained optimisation routine
to determine global minima of h. An ad-hoc encoding for Boolean variables
should be introduced. This technique, which we shall call Logic-to-Optimisation,
has already been applied successfully in other theories, e.g. [?]. In general, there
exist several approaches to perform logic-to-optimisation, that vary depending
on which logical theory is considered, what the purpose of the translation is, and
which properties of the cost function are desired.

We illustrate the specific translation that we use in our procedure. We as-
sume w.l.o.g. that our input formula consists of conjunctions and disjunctions of
Boolean variables b1, . . . , bk, possibly negated, and constraints of the form f ./ 0,
where ./ ∈ {<,≤,=}, and f is a NT A term. We define an operator L2O that
maps a formula to a non-negative real function from Rm+k to R≥0 as follows:

L2O(f ./ 0), ./ ∈{≤,=} def
= (if ([f](x) ./ 0) then 0 else [f]2(x))

L2O(f < 0)
def
= L2O(f ≤ 0)

L2O(¬(f ./ 0)), ./ ∈{<,≤} def
= L2O(−f ./ 0)

L2O(¬(f = 0))
def
= (if ([f](x) = 0) then 1 else 0)

L2O(b)
def
= L2O(−xb ≤ 0)

L2O(¬b) def
= L2O(xb + 1 ≤ 0)

L2O(φ1 ∧ φ2)
def
= L2O(φ1) + L2O(φ2)

L2O(φ1 ∨ φ2)
def
= L2O(φ1) ∗ L2O(φ2),

where xb is a fresh real variable.
Note that with this definition, our logic-to-optimisation transformation will

produce an overapproximation, meaning that not all the points in which L2O(φ)
evaluates to 0 (the zero set of L2O(φ), denoted Zφ) are models of φ: specifically,
this is due to the encoding used for strict inequalities and Boolean variables.
What is important for our purposes, however, is the converse, i.e. the fact that
Zφ contains the set Mφ of all the models of φ. Moreover, since L2O(φ) has non-
negative values, if Zφ 6= ∅, then Zφ contains all and only the global minima of
the function. We can exploit these facts as follows.

Through the unconstrained global optimisation algorithm Basin-hopping men-
tioned in §2.1, we obtain a finite set of local minima Lφ ⊆ {x ∈ Rm|x is a local

3 ∂B is the topological boundary of B, i.e. the set of points in the closure of B that
are not in its interior.

4 Available at https://www.cs.cas.cz/~ratschan/topdeg/topdeg.html.

6

https://www.cs.cas.cz/~ratschan/topdeg/topdeg.html

minimum of L2O(φ)}. Implementation-wise, the output will consist of rational
approximations of local minima. We denote this set by L̃φ. For each element

x̃ ∈ L̃φ, we try to produce a model x for φ. We first propose two simple tac-
tics that work only in the case that φ is in NRA, and we will present a more
elaborate procedure for NT A in the next section. Moreover, in the following we
only consider formulas which are simply conjunctions of constraints, and that
contain no Boolean variables. We shall deal with general formulas in §5.

Given x̃
def
= {x̃1, · · · , x̃m} ∈ L̃φ, it is trivial to check whether x̃ is a model

for φ by substituting the variables with their values into the formula. 5 If x̃ is
not a model we can try to look in the surroundings of x̃. An idea is to reduce φ
to a linear under-approximation by forcing all the multiplications to be linear,
similarly to what is done in [7] equation (3), in the context of the incremental
linearization approach (we will refer to this techique as check-crosses). A third
more general idea is restricting the problem to a bounded subformula φ|B , ob-
tained by imposing that the variables range over a box B ≡ I1 × · · · × Im ⊂ Rm
(where Ii

def
= [ai,bi] and x̃i ∈ Ii). A naive choice of B is the hyper-cube having x̃

as its center (that is, Ii
def
= [x̃i − c, x̃i + c] for a given small c ∈ Q>0).

The reason to restrict to a box is that bounded problems are, in general, easier
to solve, and, if the cost of x̃ is zero or very close to zero, we can reasonably
hope that a model lies in the box. However, restricting to bounded instances by
itself does not help much in terms of classes of problems we are able to solve.
In fact, if our SMT solver was unable to find irrational models before, it still is.
Nonetheless, as we will see in the next section, the idea of finding a point x̃ very
close to being a model and then restrict the problem to a (possibly very tight)
bounded instance, allows the adoption of a new procedure for NT A.

4 Solving bounded instances with the topological degree
test and interval arithmetic

In this section we explain how, given a local minimum x̃ obtained as in the
previous section, we can prove the satisfiability of a bounded conjunction of
constraints φ|B in NT A through interval arithmetic and the computation of the
topological degree.

First, in §4.1, we provide a practical quasi-decidability procedure for bounded
formulas in m variables that contain n equations and k non-strict inequalities,
and for which either n = m or n = 0. We then generalize this in §4.2, by
providing a method that, given a formula with the only condition that n ≤ m
(and no conditions on the kind of inequalities), can generate subformulas for
which the quasi-decidability procedure is applicable. Finally, in §4.3, we discuss
how we can integrate these results within the Logic-to-Optimisation framework.

7

Algorithm 1 Quasi-dec

Input: A bounded formula φ|B in m variables, n equations f1 = 0, · · · , fn = 0,
and k non-strict inequalities gi ≤ 0, · · · , gk ≤ 0 s.t. n = m or n = 0

Output: <False> or <True, Bsol> . Bsol is a box containing a model

1: grid← {B}
2: conflict indices← {0, · · · ,m}
3: while True do
4: for A ∈ grid do
5: if (0 6∈ If (A)) ∨ (Ig(A) ∩ (−∞, 0]k = ∅) then . If and Ig as in def. 1
6: grid.remove(A)

7: if grid = {} then return <False>

8: if n 6= 0 then
9: grid← Merge all the boxes in grid having a common face C s.t. 0 ∈ If (C)

10: grid∂ ← {A ∈ grid | exists C a face of A s.t. C ⊆ ∂B ∧ 0 ∈ If(C)}
11: else
12: grid∂ ← {}
13: for A ∈ grid \ grid∂ do
14: conflict indices A ← {}
15: demerge(A) := {E | E has been merged into A in line 9}
16: for E ∈ demerge(A) do
17: for i ∈ {0, · · · , k} do
18: if Igi(E) 6⊂ (−∞, 0] then
19: conflict indices A.add({j ∈ {0, · · · ,m} | xj appears in gi})
20: if conflict indices A = {} ∧ (n = 0 ∨ TopDeg(f,A) 6= 0) then
21: return <True , A >

22: conflict indices.add(conflict indices A)

23: refinement index← Choose an index with the help of conflict indices

24: grid← refine(grid, refinement index) . First, we demerge the grid; then,
each sub-box is split in two sub-boxes along the axis refinement index

25: conflict indices← ∅

4.1 Quasi-decidability procedure

The procedure that we introduce in Algorithm 1 is inspired by that proposed in
[16], although some significant changes – discussed at the end of this subsection
– have been made to ensure its applicability in practice. We stress that the con-
dition n = m ∨ n = 0 depends by the fact that the topological degree cannot
be defined for n 6= m. Using symbolic rewriting tricks (e.g. adding redundant
equalities, or rewriting an equality as the conjunction of two non-strict inequal-
ities) to force a robust formula to satisfy the condition would not work, as it
would make the formula non-robust and so the procedure – albeit applicable –
would just not terminate. For the sake of brevity, we introduce the multi-valued
functions f := f1 × · · · × fn, and g := g1 × · · · × gk.

5 We remind that we are assuming to be in NRA only here.

8

The idea of the algorithm is to iteratively divide the starting box into smaller
sub-boxes (the set of which is called a grid), removing at each step from the
grid the sub-boxes for which either an equation or an inequality does not hold
(lines 4–6), and using the topological degree test to prove if the system of equa-
tions admits a solution inside one of the sub-boxes (line 20), provided that the
inequalities hold in that sub-box (lines 16-19). The algorithm terminates either
returning True when a box respecting these last conditions has been found, or
returning False if the grid is emptied (line 7).

In order to be computable in a box A, the topological degree requires that
no zero lies in f(∂A). Because of that, we have to take some precautions, such as
merging boxes having a common face in which a zero lies (line 9) and avoiding
boxes having a face contained on the border of B and in which lies a zero (line
10). Regarding the last case we remark that, if the only solution of φ|B lies
in ∂B, then the formula is not robust (and the algorithm is allowed to never
terminate).

Another sensitive point is to make sure that, given a robust formula, the
algorithm always terminates. To this extent, it is essential that the following
property is satisfied: “for every ε > 0, there is a finite number of iterations after
which each sub-box A in the grid has width(A) < ε”. In order to satisfy this
property, a necessary and sufficient condition is that, for each i ∈ {0, · · · ,m},
the refinement index assumes infinitely many times the value i. One naive idea
would be to assign the refinement index to i+ 1 at each iteration. However, this
is not practical. In fact, refining the grid without considering the reasons for
which the algorithm does not terminate leads to an unmanageable growth in the
size of the grid. Thus we use a greedy approach: at each step we take note of
the indexes for which there is a conflict in the inequalities (line 19), and then we
base our choice of the refinement index on that (line 24), preferring indices that
appear in the conflicts (but making sure that eventually each index is chosen,
even though with different frequency). This is a main difference compared to
the algorithm from [16], where the grid is divided along all the indices at each
step. This results in a double exponential growth in the number of sub-boxes
to consider: after i steps, in the worst case the grid will contain (2i)m sub-
boxes. In our algorithm at each step we choose exactly one index along which to
split the sub-boxes, choosing the index that most likely is causing the algorithm
not to terminate. Avoiding splitting along indices that are not responsible for
conflicts is essential to prevent an explosion in dimension which would make the
algorithm impractical. Moreover, to the best of our knowledge, ours is the first
implementation of this kind of procedures. In the next subsection, we will further
modify the procedure to make it able to produce explanations for unsat cases.

4.2 From a formula with n ≤ m to Quasi-dec

Let φ|B be some bounded formula, with the only condition that n ≤ m. We define

φ̂|B as the formula obtained from φ|B by replacing every constraint e
def
= (g > 0)

9

Algorithm 2 Solve a formula φ|B with n ≤ m
Input: A formula φ|B in m variables, n equations, and k inequalities s.t. n ≤ m

A candidate point x̃ ∈ Rm

Output: <True, Bsol> or <Unknown>

1: φ̂|B := the formula obtained from φ|B by replacing every g > 0 with g − ε ≥ 0
2: if n = m ∨ n = 0 then
3: res quasidec ← Quasi-dec (φ̂|B)
4: if res quasidec ≡ <True, Bsol > then return <True, Bsol >

5: else return <Unknown>
6: infeasible var subsets ← {}
7: for vars subset ∈ Combinations(Vars, m− n) do
8: if vars subset ∈ infeasible var subsets then
9: continue

10: µ := {vari 7→ xi | vari ∈ vars subset}
11: <sat, p> ← Quasi-dec (µ(φ̂|B))
12: if <sat, p> = <True, Bsol > then
13: return <True, Bsol >

14: else if <sat, p> = <False, µ(h) > then
15: conflict vars := {vari ∈ vars subset | vari appears in h}
16: infeasible var subsets.add(conflict vars)

17: return <Unknown>

with the constraint ê
def
= (g − ε ≥ 0), given a predefined constant ε > 0. It is

straightforward to prove that every model of φ̂|B is also a model of φ|B .
If n = m we can directly apply Quasi-dec. If n < m, then we can try

to assign m − n variables to real values, and then apply Quasi-dec to the
formula obtained from the substitution. We start from a given point x̃ ∈ Rm,
and enumerate possible assignments to m − n variables. In general, there are(
m
n

)
= m!

n!(m−n)! possible combinations to explore, but we can reduce their number

via conflict-driven learning, as commonly done in SAT and SMT, by modifying
the Quasi-dec procedure (Algorithm 1), to make it return, before the while cycle
in line 3, <False ,fi> if 0 6∈ Ifi(B), and <False , gj> if Igj (A)∩(−∞, 0] = ∅. This
modification helps the procedure by explaining why the problem is unsatisfiable,
even though only for simple cases where no grid refinement is required. Given
an explanation, we can extract the set E of variables involved, and use them
to avoid the enumeration of assignments to supersets of E. In general, we could
extend the idea of returning explanations for unsatisfiable instances to more
complex situations. In this paper, we do not delve into this path, and leave
further investigations for future work.

Overall, our approach to reduce to the Quasi-dec procedure given a formula
with the only restriction that n ≤ m is illustrated in Algorithm 2.

4.3 A general procedure

We can now combine the results of the last two sections. First, we obtain several
local minima x̃1, · · · , x̃k as in Section 3 . The two tactics described in the section

10

Fig. 1. Schema of the overall procedure.

(i.e., the simple check of x̃, and the reduction to a linear underapproximation)
are reasonably inexpensive for NRA. Thus, if the problem is in NRA, we first
apply these two tactics to each local minimum. If these two tactics fail, or the
problem is in NT A, we apply the algorithm described in section 4.2 to each
local minimum (starting from the minimum with the lowest cost). A sketch of
this procedure is shown in Fig. 1.

Remark 1. Our general procedure is not a quasi-decidability procedure. How-
ever, relying on a quasi-decidability subprocedure is a crucial point of our method.
By construction, the formulas that we feed to Quasi-dec have the property that
if they are unsatisfiable then they are also robust (Lemma 3 from [16]).6 This
means that Quasi-dec always terminates on unsatisfiable subformulas, guaran-
teeing that we always progress towards a solution.

5 From constraint sets to formulas

So far we have considered only sets of constraints. In this section, we present two
different ways to solve a formula φ with arbitrary Boolean structure and that
includes also Boolean variables. In the first way, we apply L2O eagerly to the
formula, and then try to decide the disjunctions through the insight given by a
local minimum, and then proceed to solve the constraints set as in §4. In the
second way, we use the procedure of §4 as a theory solver inside a DPLL(T)-based
lazy-SMT algorithm.

6 This is not true for formulas containing strict inequalities, but we replaced strict
inequalities in Algorithm 2 at line 1.

11

5.1 An eager approach

Let φ be a formula in CNF form. We can apply L2O to φ and obtain several
local minima. Given a local minimum x̃, if there are no transcendental functions,
we can use the two tactics discussed in section 3 (the simple check, and the call
to an LRA-solver for a linear underapproximation of φ – i.e. check-crosses). We
cannot directly apply the tactic discussed in section 4, since Quasi-dec does
not work with disjunctions.

In order to apply it, we can try to decide the disjunctions using x̃, to obtain
an implicant of φ which we can then feed to Algorithm 2. In line 1, we obtained
a formula µ(φ̂|B) that, except for containing disjunctions, is in the form required

by Quasi-dec. In fact, µ(φ̂|B) has the form
∧
Cj , where Cj ≡

∨
i∈Ij (hi ./ 0).

If we substitute each Cj with one of the atomic formulas that appear in it, then
we reduce to the case discussed in the previous section. Hence, for each Cj , we
choose one constraint hi ./ 0 that most likely is satisfied by x̃. As a last resort, if
for each local minimum this tactic do not work, we rewrite the original formula
into DNF and try to solve each constraints set as in the previous section.

5.2 A lazy approach

In the lazy approach, the method defined in §4 is used as a theory solver inside a
DPLL(T) procedure. Since our method is able to prove only satisfiability, it needs
to be paired with a method able to prove unsatisfiability. In our implementation,
we pair it with incremental linearization [7], which is usually effective in proving
unsatisfiability, and also good in finding linear models, but whose weak spot is
finding irrational models.

Currently, our implementation is quite simple. Inside the DPLL(T) algo-
rithm, we introduce a parameter n calls IncrLin that keeps track of the calls
to incremental linearization, and that is reset whenever the DPLL(T) solver
backtracks. After a given k number of calls to incremental linearization, we call
our method. If it returns sat, we are done. Otherwise it returns unknown, and
we proceed with incremental linearization.

6 Experimental evaluation

Implementation We have implemented our method in a prototype written in
Python, called ugotNL (as in Unconstrained Global Optimisation and Topolog-
ical degree for Non-Linear). We refer to the version based on the eager approach
as ugotNLeager. For the lazy approach, we integrated ugotNL as a theory
solver inside the MathSAT SMT solver [8]. We will refer to this version as
MathSAT+ugotNL.
Setup. We have run our experiments7 on a cluster equipped with 2.4GHz Intel
Xeon E5-2440 machines, using a time limit of 1000 seconds and a memory limit of
9 Gb. We compared our tools with z3 [11] and Yices[13] (CAD-based), raSAT[27]

7 Available at https://drive.google.com/file/d/1f6RmvojKw4om0L08g3hYMBl-wb6nvEpf/

12

https://drive.google.com/file/d/1f6RmvojKw4om0L08g3hYMBl-wb6nvEpf/

T
o
ta

l

S
tu

rm
-M

G
C

e
z
sm

t

S
tu

rm
-M

B
O

z
a
n
k
l

U
lt
im

a
te
A
u
t

E
c
o
n
o
m
ic
s-
M

m
e
ti
-t
a
rs
k
i

H
e
iz
m
a
n
n

h
y
c
o
m
p

k
is
si
n
g

L
a
ss
o
R
a
n
k
e
r

MathSAT 3193 0 32 0 32 31 85 2718 3 11 18 263
ugotNLeager 4388 0 0 1 52 32 68 4042 0 0 36 157
MathSAT+ugotNL 4441 0 32 0 63 27 84 3948 3 13 35 236
raSAT 4285 0 0 0 45 0 0 4225 0 0 15 0
Yices 4946 0 32 0 58 39 91 4369 0 227 10 120
cvc5 5108 0 32 0 63 36 89 4342 2 226 18 300
z3 5153 2 30 0 72 47 93 4391 6 280 35 198
dReal /(5021) /(9) /(0) /(274) /(153) /(55) /(126) /(4079) /(51) /(45) /(19) /(210)

Fig. 2. Summary of results for SMT(NRA) sat cases. The results in parenthesis
indicate ”maybe sat” answers.

T
o
ta

l

d
re
a
l

b
m
c

MathSAT 94 37 57
ugotNLeager 304 255 49
MathSAT+ugotNL 170 70 100
cvc5 94 40 54
iSAT3 / / /
dReal / (578) / (423) / (155)

T
o
ta

l

d
re
a
l

b
m
c

MathSAT 70 21 49
ugotNLeager 253 203 50
MathSAT+ugotNL 140 35 105
cvc5 63 17 46
iSAT3 38 (828) 7 (599) 31 (229)
dReal / (137) / (36) / (101)

Fig. 3. Summary of results for SMT(NTA) sat cases. On the left the original
instances; on the right the bounded instances.The results in parenthesis indicate
”maybe sat” answers.

(that combines ICP and GIVT), CVC5[6] (that combines IL with cylindrical
algebraic coverings[30]), iSAT3[17] (based on ICP), and dReal[19] (that operates
in the δ-sat framework[18]). Only the last three solvers can deal with NT A.

We checked that, when terminating, our tools always return the correct result
when the status of the benchmark is known, and never disagree with the other
solvers; for NRA, we checked with z3 that every box returned by our tools
contains indeed a model.

Benchmarks. For NRA, we consider all the SMT-LIB [2] benchmarks from the
QF-NRA category. This is a class of 11523 benchmarks, among which 5142 are
satisfiable, 5379 are unsatisfiable, and 1002 have unknown status. For NT A, we
considered the benchmarks from the dReal distribution [19], and other bench-
marks deriving from discretization of Bounded Model Checking of hybrid au-
tomata. The problems in these classes come all with an unknown status. Since
iSAT3 is not able to work with unbounded instances, in order to include it in
the comparison, we generated for each benchmark a bounded version by adding
constraints that force all the real variables in the problem to assume values in
the [−300, 300] interval.

Results (sat). First, we analyze the results for satisfiable instances, which are
reported in Figures 2 and 3. The tables show, for each solver, the number of

13

T
o
ta

l

S
tu

rm
-M

G
C

e
z
sm

t

S
tu

rm
-M

B
O

z
a
n
k
l

U
lt
im

a
te
A
u
t

E
c
o
n
o
m
ic
s-
M

m
e
ti
-t
a
rs
k
i

H
e
iz
m
a
n
n

h
y
c
o
m
p

k
is
si
n
g

L
a
ss
o
R
a
n
k
e
r

h
o
n
g

MathSAT 5280 0 2 285 34 7 11 2251 1 2259 0 412 20
MathSAT+ugotNL 5043 0 2 163 32 5 11 2239 0 2253 0 323 20
raSAT 4094 0 0 2 14 0 0 2018 0 1950 0 0 20
Yices 5449 0 2 285 32 12 39 2587 12 2201 0 259 20
cvc5 5645 0 2 285 31 10 35 2581 7 2206 0 468 20
z3 5281 5 2 153 27 12 19 2578 3 2225 0 248 9
dReal 3889 0 0 131 4 0 3 1784 0 1946 1 0 20

Fig. 4. Summary of results for SMT(NRA) unsat cases.
T
o
ta

l

d
re
a
l

b
m
c

MathSAT 533 85 448
MathSAT+ugotNL 522 85 437
cvc5 453 75 378
iSAT3 / / /
dReal 468 184 284

T
o
ta

l

d
re
a
l

b
m
c

MathSAT 524 88 436
MathSAT+ugotNL 521 88 433
cvc5 465 85 380
iSAT3 449 63 386
dReal 446 156 290

Fig. 5. Summary of results for SMT(NTA) unsat cases. On the left the original
instances; on the right the bounded instances.

successfully solved instances, both overall (1st column) and for each benchmark
family (rest of the columns), with the best results highlighted in boldface.

For NRA (Figure 2), we see that z3 is overall superior. Nevertheless, we see
that both our new tools are very competitive, and perform significantly better
than MathSAT. Moreover, since we are comparing new-born ideas implemented
in a prototype with well-optimised CAD-based techniques that have a decade of
progresses on their shoulders, we believe that these results are very encouraging.

Where our methods shine and go beyond the state of the art is when we con-
sider problems with transcendental functions. In the results for NT A (Figure 3)
we see that both our tools outperform the others. For this, the synergy between
numerical optimization and the procedure based on the topological degree test
is essential, as neither of the two methods in isolation is effective: when dis-
abling either of the two components, in fact, the performance is similar to that
of the “stock” version of MathSAT (we omit the details due to lack of space).
Moreover, there is a great complementarity between the two tools. For families
in which the Boolean component is huge (such as bmc) we see that Math-
SAT+ugotNL is by far the best, whereas for benchmarks where the theory
component is predominant (e.g. the dreal ones) the situation is reversed.

Results (unsat). Now we analyze the results for unsatisfiable cases. Our meth-
ods are designed to finding models, so, for unsatisfiable instances, there are no
advancements whatsoever. Nevertheless, we are interested in evaluating possible
losses of the lazy version wrt. MathSAT due to the integration of our method.
(The eager approach can never return unsat, so it does not compete.)

14

We see that forNRA there are some losses (expecially for very time-consuming
benchmark families such as LassoRanker and MBO), that overall count for 4.5%
of the benchmarks that MathSAT is able to solve before the timeout. For
NT A, we observed that the losses are even less: respectively 2.1% and 0.6%
for unbounded and bounded instances. We remark that these results do not
imply that our new tool is unable to prove the unsatisfiability for those cases,
rather that it is unable to prove it within the same timeout. In fact, since our
theory solver always terminates for unsatisfiable instances (see Remark 1), we
know that, if MathSAT returns unsat for a problem, then eventually Math-
SAT+ugotNL will return unsat as well.

We stress the fact that our implementation is currently still a research pro-
totype, implemented in Python and integrated within MathSAT in a quite
inefficient manner, introducing a lot of overhead in the interaction with the
DPLL(T) solver. We are confident that a more optimised and better integrated
implementation can significantly reduce the overhead and improve the situation
for unsatisfaible instances. Therefore, we believe that these results prove that
our tool, albeit aimed specifically at proving satisfiability, works well even for un-
satisfiable instances, and, in particular for NT A (which is our privileged theory
of interest), there are no relevant downsides in pairing our sat-oriented theory
solver with an unsat-oriented theory solver based on incremental linearization.

7 Conclusions and Future Work

In this paper we proposed a new procedure for proving satisfiability in NT A,
based on a fruitful synergy of numerical and symbolic methods. We implemented
our ideas in a prototype called ugotNL, and proposed two different approaches:
an eager one and a lazy one (integrated inside MathSAT). We tested the two
methods on a wide variety of satisfiable benchmarks, and the results demon-
strated that both our methods significantly outperform the state of the art for
NT A, while being competitive for NRA. In the future, we plan to better
integrate ugotNL inside MathSAT and to experiment with more thoughtful
heuristics. Furthermore, we plan to investigate the potential of our ideas in
several directions, including how to exploit the procedure also for proving unsat-
isfiability and whether similar techniques can be applied also to solve problems
involving differential equations.

References

1. O. Aberth. Computation of topological degree using interval arithmetic, and ap-
plications. Mathematics of Computation, 1994.

2. C. Barrett, P. Fontaine, and C. Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2016.

3. C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability Modulo The-
ories, chapter 26. 2009.

4. F. Benhamou and L. Granvilliers. Chapter 16 - continuous and interval constraints.
In Handbook of Constraint Programming. 2006.

15

5. F. Brauße, K. Korovin, M. V. Korovina, and N. T. Müller. The ksmt calculus is a
δ-complete decision procedure for non-linear constraints. In CADE, 2021.

6. C.Barrett et al. CVC5 at the SMT Competition 2021, 2021.
7. A. Cimatti, A. Griggio, A. Irfan, M. Roveri, and R. Sebastiani. Incremental lin-

earization for satisfiability and verification modulo nonlinear arithmetic and tran-
scendental functions. ACM Trans. Comput. Logic, (3), 2018.

8. A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani. The MathSAT5 SMT
Solver. In Proceedings of TACAS, 2013.

9. G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In Automata Theory and Formal Languages, 1975.

10. F. Corzilius, G. Kremer, S. Junges, S. Schupp, and E. Ábrahám. Smt-rat: An open
source c++ toolbox for strategic and parallel smt solving. In SAT, 2015.

11. L. De Moura and N. Bjørner. Z3: An efficient smt solver. In TACAS, 2008.
12. L. M. de Moura and D. Jovanovic. A model-constructing satisfiability calculus. In

VMCAI, 2013.
13. B. Dutertre. Yices 2.2. In Computer-Aided Verification (CAV’2014), 2014.
14. M. Fischer, M. Balunovic, D. Drachsler-Cohen, T. Gehr, C. Zhang, and M. T.

Vechev. Dl2: Training and querying neural networks with logic. In ICML, 2019.
15. P. Franek and S. Ratschan. Effective topological degree computation based on

interval arithmetic. Mathematics of Computation, (293), 2015.
16. P. Franek, S. Ratschan, and P. Zgliczynski. Quasi-decidability of a fragment of the

first-order theory of real numbers. J. Autom. Reason., (2), 2016.
17. M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. Efficient solving

of large non-linear arithmetic constraint systems with complex boolean structure.
JSAT, 2007.

18. S. Gao, J. Avigad, and E. M. Clarke. δ-complete decision procedures for satisfia-
bility over the reals. In IJCAR, 2012.

19. S. Gao, S. Kong, and E. M. Clarke. dreal: An smt solver for nonlinear theories
over the reals. In Automated Deduction – CADE-24, 2013.

20. D. Jovanović and L. de Moura. Solving non-linear arithmetic. ACM Commun.
Comput. Algebra, (3/4), 2013.

21. D. D. L. Minh and D. L. P. Minh. Understanding the hastings algorithm. Com-
munications in Statistics - Simulation and Computation, (2), 2015.

22. R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to Interval Analysis.
2009.

23. A. Neumaier. Interval Methods for Systems of Equations. Cambridge University
Press, 1991.

24. D. O’Regan, C. Yeol Je, and Y. Chen. Topological Degree Theory and Applications.
Taylor and Francis, 2006.

25. S. Ratschan. Safety verification of non-linear hybrid systems is quasi-decidable.
Form. Methods Syst. Des., (1), 2014.

26. D. Richardson. Some undecidable problems involving elementary functions of a
real variable. J. Symb. Log., (4), 1968.

27. T. Vu Xuan, T. Khanh, and M. Ogawa. rasat: an smt solver for polynomial con-
straints. Formal Methods in System Design, 51, 12 2017.

28. D. J. Wales and J. P. K. Doye. Global optimization by basin-hopping and the
lowest energy structures of lennard-jones clusters containing up to 110 atoms. The
Journal of Physical Chemistry A, (28), 1997.

29. L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict driven
learning in a boolean satisfiability solver. In ICCAD, 2001.

16

30. E. Ábrahám, J. Davenport, M. England, and G. Kremer. Deciding the consistency
of non-linear real arithmetic constraints with a conflict driven search using cylindri-
cal algebraic coverings. Journal of Logical and Algebraic Methods in Programming,
119, 2020.

17

	Handling Polynomial and Transcendental Functions in SMT via Unconstrained Optimisation and Topological Degree Test
	 Alessandro Cimatti, Alberto Griggio, Enrico Lipparini, Roberto Sebastiani

