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Abstract. The problem of computing Craig interpolants in SMT has re-
cently received a lot of interest, mainly for its applications in formal ver-
ification. Efficient algorithms for interpolant generation have been pre-
sented for some theories of interest –including that of equality and unin-
terpreted functions (EUF), linear arithmetic over the rationals (LA(Q)),
and some fragments of linear arithmetic over the integers (LA(Z))– and
they are successfully used within model checking tools.
In this paper we address the problem of computing interpolants in the
theory of Unit-Two-Variable-Per-Inequality (UT VPI). This theory is a
very useful fragment of LA(Z), since it is expressive enough to encode
many hardware and software verification queries while still admitting a
polynomial time decision procedure.
We present an efficient graph-based algorithm for interpolant generation
in UT VPI, which exploits the power of modern SMT techniques. We
have implemented our new algorithm within the MathSAT SMT solver.
Our experimental evaluation demonstrates both the efficiency and the
usefulness of the new algorithm.

1 Motivations and goals

Given two formulas A and B such that A∧B is inconsistent, a Craig interpolant
(simply “interpolant” hereafter) for (A,B) is a formula I s.t. A entails I, I ∧B
is inconsistent, and all uninterpreted symbols of I occur in both A and B. Since
the seminal work of McMillan [17], interpolation has been recognized to be a
substantial tool for formal verification. For instance, in the context of software
model checking based on counter-example-guided-abstraction-refinement (CE-
GAR), interpolants of quantifier-free formulas in suitable theories are computed
for automatically refining abstractions in order to rule out spurious counterex-
amples (see, e.g. [8, 11, 19]). This technique is used by state-of-the-art software
model checkers like, e.g., Blast [2] and Impact [19]. Consequently, the problem
of computing interpolants in SMT has received a lot of interest in the last years
(e.g., [18, 26, 12, 22, 13, 5, 10, 3, 14]).

In the recent years, efficient algorithms and tools for interpolant generation
for quantifier-free formulas in SMT have been presented for some theories of
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interest, including that of equality and uninterpreted functions (EUF) [18, 14],
linear arithmetic over the rationals (LA(Q)) [18, 22, 5], and for their combination
[26, 25, 5, 3]. In many applications, however, the domain of rational numbers is of-
ten inadequate for representing variables, which could be represented much more
precisely in the integer domain (see, e.g., [7, 15]). Unfortunately, the computation
of interpolants in the theory of linear arithmetic over the integers (LA(Z)) raises
many more problems than LA(Q), and in fact there is no known and efficient
algorithm for computing interpolants in LA(Z). The only known algorithm is
based on quantifier elimination, which is typically prohibitively expensive, and
also requires the introduction of divisibility predicates. Therefore, it is useful to
investigate interpolation for fragments of LA(Z), simple enough to be treated
efficiently, although general enough to allow for encoding a significant amount
of verification problems. To this extent, Jain, Clarke and Grunberg [10] pro-
posed efficient algorithms for computing interpolants for conjunctions of linear
Diophantine equations and disequations and for conjunctions of linear modular
equations, and showed that these algorithms enabled the verification of sim-
ple programs which could not be previously checked by CEGAR-based model
checkers.

In this paper, we move along the same track of Jain et al. [10], and we tackle
the problem of computing interpolants in another important fragment of LA(Z),
the theory of Unit-Two-Variable-Per-Inequality (UT VPI). In UT VPI a formula
is a Boolean combination of atoms in the form (0 ≤ ax1 + bx2 + k), where xi

are variables over Z, k is an integer constant, and a, b ∈ {−1, 0, 1}. UT VPI is a
very interesting theory: it generalizes the well-known Difference Logic (DL(Z))
(where the a and b coefficient are forced to the 1 and −1 values, respectively),
and it is one of the most expressive fragments of LA(Z) with a polynomial de-
cision procedure [9]. (In fact, it is sufficient to extend the fragment to contain
three unit variables, or to add non-unit coefficients, to make the decision prob-
lems NP-complete.) UT VPI is also a very useful fragment of LA(Z), since it
allows to naturally express the queries occurring in many hardware and software
verification problems [1, 24].

The problem of satisfiability modulo UT VPI can be tackled following the
approach proposed in [20, 16], where the consistency check of a conjunction of
UT VPI constraints is based on an encoding into DL. This allows for the use
of very efficient graph-based decision procedures for DL [21, 6]: these algorithms
have a O(n·m) time complexity for problems with n variables and m constraints,
and are extremely fast in practice. In addition, they have all the features required
for a tight integration within a modern SMT solver: incrementalitly and back-
trackability, construction of minimal conflict sets, and deduction of unassigned
literals (see [23] for a survey).

The contribution of this paper is the first interpolation algorithm for UT VPI.
The algorithm follows the decision procedure for UT VPI, working in two phases.
In the first phase, it checks whether the conjunction of UT VPI constraints
is inconsistent in the rational domain (UT VPI(Q)). If so, an interpolant is
obtained with a generalization of the graph-based algorithm for DL [5]. The



second phase is entered if the problem is consistent in the rational domain,
but inconsistent in the integer domain. The second phase is also based on the
analysis of the graph resulting from the encoding into DL. However, unlike with
DL(Q) and DL(Z), the problem of interpolant generation on UT VPI(Z) is by
no means a straightforward variant of that in UT VPI(Q), and several cases
must be covered.

The proposed algorithm has the following merits. First, it generates inter-
polants that are within UT VPI. This is important for applications where the
computed interpolants are iteratively combined with the original problem, such
as in interpolation-based bounded model checking [17]. Second, the approach
can be easily implemented on top of a modern SMT procedure for UT VPI, and
runs with very limited overhead.

We have implemented our new algorithm within the MathSAT SMT solver
[4], and performed experiments in order to evaluate both its efficiency and its
usefulness. Our results demonstrate not only that our specialized UT VPI(Q) al-
gorithm is faster and generates smaller interpolants than general LA(Q) interpo-
lation procedures (and thus is interesting in itself), but also that our UT VPI(Z)
algorithm can be useful for the verification of software model checking problems
which require reasoning on the integers, and which could not be proved before
by the Blast software model checker [2], due to the approximation resulting
from its use of LA(Q) interpolation procedures.

Content of the paper. In §2 we provide the necessary background knowledge
on SMT and interpolant generation in SMT. In §3 we present our novel graph-
based interpolant technique for UT VPI(Q), whilst in §4 we show how to extend
it to the case of UT VPI over Z. In §5 we report some empirical results. In §6
we draw some conclusions, and outline directions for future research.

2 Background

Satisfiability Modulo Theory – SMT. Our setting is standard first order
logic. We use the standard notions of theory, satisfiability, validity, logical con-
sequence. We call Satisfiability Modulo (the) Theory T , SMT (T ), the problem
of deciding the satisfiability of quantifier-free formulas wrt. a background theory
T . 3 Given a theory T , we write φ |=T ψ (or simply φ |= ψ) to denote that
the formula ψ is a logical consequence of φ in the theory T . With φ � ψ we
denote that all uninterpreted (in T ) symbols of φ appear in ψ. Without loss of
generality, we also assume that the formulas are in Conjunctive Normal Form
(CNF). If C is a clause, C ↓ B is the clause obtained from C by removing all the
literals whose atoms do not occur in B, and C \B that obtained by removing all
the literals whose atoms do occur in B. With a little abuse of notation, we might
sometimes denote conjunctions of literals l1∧ . . .∧ ln as sets {l1, . . . , ln} and vice
versa. If η is a the set {l1, . . . , ln}, we might write ¬η to mean ¬l1 ∨ . . . ∨ ¬ln.

3 The general definition of SMT deals also with quantified formulas. Nevertheless, in
this paper we restrict our interest to quantifier-free formulas.



We call T -solver a procedure that decides the consistency of a conjunction
of literals in T . If S is a set of literals in T , we call T -conflict set w.r.t. S any
subset η of S which is inconsistent in T . We call ¬η a T -lemma (notice that ¬η

is a T -valid clause). Given a set of clauses S
def

= {C1, . . . , Cn} and a clause C, we
call a resolution proof that

∧

iCi |=T C a DAG P such that:

1. C is the root of P ;
2. the leaves of P are either elements of S or T -lemmas;
3. each non-leaf node C′ has two parents Cp1

and Cp2
such that Cp1

is in the
form p ∨ φ1, Cp2

is in the form ¬p ∨ φ2, and C′ is φ1 ∨ φ2. The atom p is
called the pivot of Cp1

and Cp2
.

If C is the empty clause (denoted with ⊥), then P is a resolution proof of
unsatisfiability (or resolution refutation) for

∧

iCi.
A standard technique for solving the SMT(T ) problem is to integrate a

DPLL-based SAT solver and a T -solver in a lazy manner (see, e.g., [23] for
a detailed description). DPLL is used as an enumerator of truth assignments
for the propositional abstraction of the input formula. At each step, the set of
T -literals in the current assignment is sent to the T -solver to be checked for
consistency in T . If S is inconsistent, the T -solver returns a conflict set η, and
the corresponding T -lemma ¬η is added as a blocking clause in DPLL, and used
to drive the backjump mechanism. With a small modification of the embedded
DPLL engine, a lazy SMT solver can also be used to generate a resolution proof
of unsatisfiability, where the leaf T -lemmas are (some of) those returned by the
T -solver.

Interpolation in SMT. We consider the SMT (T ) problem for some back-
ground theory T . Given an ordered pair (A,B) of formulas such that A∧B |=T

⊥, a Craig interpolant (simply “interpolant” hereafter) is a formula I s.t. (i)
A |=T I, (ii) I ∧B is T -inconsistent, and (iii) I � A and I � B.

Following [18], an interpolant for (A,B) is constructed from a resolution
proof of unsatisfiability of A ∧ B, generated as outlined above. The algorithm
works by computing a formula IC for each clause in the resolution refutation,
such that the formula I⊥ associated to the empty root clause is the computed
interpolant. The algorithm can be described as follows:

Algorithm 1: Interpolant generation for SMT (T )

1. Generate a proof of unsatisfiability P for A ∧B.
2. For every T -lemma ¬η occurring in P , generate an interpolant I¬η for

(η \B, η ↓ B).
3. For every input clause C in P , set IC to C ↓ B if C ∈ A, and to ⊤ if C ∈ B.

4. For every inner node C of P obtained by resolution from C1
def

= p ∨ φ1 and

C2
def

= ¬p∨ φ2, set IC to IC1
∨ IC2

if p does not occur in B, and to IC1
∧ IC2

otherwise.
5. Output I⊥ as an interpolant for (A,B).



Notice that Step 2. of the algorithm is the only part which depends on the
theory T , so that the problem of interpolant generation in SMT (T ) reduces to
that of finding interpolants for negations of T -lemmas, that is, for conjunctions
of T -literals in the given theory T . Therefore, in the rest of the paper, we shall
present algorithms for conjunctions/sets of literals only, which can be extended
to general formulas by simply “plugging” them into the above algorithm. More-
over, we shall assume that when computing an interpolant for an inconsistent
conjunction A ∧ B, neither A nor B is inconsistent in itself. In such cases, in
fact, the interpolant would simply be ⊥ and ⊤ respectively.

Graph-based Interpolation for Difference Logic. The theory of Difference
Logic (DL) is a fragment of the theory of linear arithmetic in which all atoms
are inequalities of the form (0 ≤ y− x+ c), where x and y are variables and c is
an integer constant. 4 Many SMT solvers use dedicated, graph-based algorithms
for checking the consistency of a set of DL atoms [6, 21]. Intuitively, a set φ of
DL atoms induces a graph G(φ) whose vertices are the variables of the atoms,

and there exists an edge x
c
−→ y for every (0 ≤ y − x + c) ∈ φ. φ is inconsistent

if and only if G(φ) has a cycle of negative weight.
In [5] we extended the graph-based approach to generate interpolants. Con-

sider the interpolation problem (A,B) where A and B are sets of inequalities as
above, and let C be (the set of atoms in) a negative cycle in the graph corre-
sponding to A ∪B. Since we are assuming that neither A nor B is inconsistent,
the edges in the cycle can be partitioned in subsets of A and B. We call a max-

imal A-path of C a path x1
c1−→ . . .

cn−1

−−−→ xn such that (i) xi
ci−→ xi+1 ∈ A, and

(ii) C contains x′
c′

−→ x1 and xn
c′′

−→ x′′ that are in B. The variables x1 and xn

of a maximal A-path x1 ; xn are called end-point variables.

Let the summary constraint of a maximal A-path x1
c1−→ . . .

cn−1

−−−→ xn be the
inequality 0 ≤ xn − x1 +

∑n−1
i=1 ci. The conjunction of summary constraints of

the maximal A-paths of C is an interpolant for (A,B) [5].

3 Graph-based interpolation for UT VPI(Q)

We analyze first the simpler case of UT VPI(Q). Miné [20] showed that it is
possible to encode a set of UT VPI(Q) constraints into a DL(Q) one in a
satisfiability-preserving way. The encoding works as follows. We use xi to de-
note variables in the UT VPI(Q) domain and u, v for variables in the DL(Q)
domain. For every variable xi, we introduce two distinct variables x+

i and x−i .
We introduce a mapping Υ from DL(Q) variables to UT VPI(Q) signed vari-
ables, such that Υ (x+

i ) = xi and Υ (x−i ) = −xi. Υ extends to (sets of) constraints
in the natural way. We say that (x+

i )− = x−i and (x−i )− = x+
i . We say that the

4 Notice that a conjunction of non-strict difference inequalities has a solution in the
integer domain if and only if it has a solution in the rational domain, so that in this
context we make no distinction between DL(Q) and DL(Z).



UT VPI(Q) constraints DL(Q) constraints

(0 ≤ x1 − x2 + k) (0 ≤ x+

1 − x+

2 + k), (0 ≤ x−

2 − x−

1 + k)
(0 ≤ −x1 − x2 + k) (0 ≤ x−

1 − x+

2 + k), (0 ≤ x−

2 − x+

1 + k)
(0 ≤ x1 + x2 + k) (0 ≤ x+

1 − x−

2 + k), (0 ≤ x+

2 − x−

1 + k)
(0 ≤ −x1 + k) (0 ≤ x−

1 − x+

1 + 2 · k)
(0 ≤ x1 + k) (0 ≤ x+

1 − x−

1 + 2 · k)

Fig. 1. The conversion map from UT VPI(Q) to DL(Q) [20, 16].

constraints (0 ≤ u− v) and (0 ≤ (v)− − (u)−) s.t. u, v ∈ {x+
i , x

−
i }i are dual. We

encode each UT VPI constraint into the conjunction of two dual DL(Q) con-
straints, as represented in Figure 1. For each DL(Q) constraint (0 ≤ v− u+ k),
(0 ≤ Υ (v) − Υ (u) + k) is the corresponding UT VPI(Q) constraint. Notice that
the two dual DL(Q) constraints are just different representations of the origi-
nal UT VPI(Q) constraint. (The two dual constraints encoding a single-variable
constraint are identical, so that their conjunction is collapsed into one constraint
only.) The resulting set of constraints is satisfiable in DL(Q) if and only if the
original one is satisfiable in UT VPI(Q) [20, 16].

Consider the pair (A,B) where A and B are sets of UT VPI(Q) constraints.
We apply the map of Figure 1 and we encode (A,B) into a DL(Q) pair (A′, B′),
and build the constraint graph G(A′ ∧B′). If G(A′ ∧B′) has no negative cycle,
we can conclude that A′ ∧ B′ is DL(Q)-consistent, and hence that A ∧ B is
UT VPI(Q)-consistent. Otherwise, A′ ∧ B′ is DL(Q)-inconsistent, and hence
A∧B is UT VPI(Q)-inconsistent. In fact, we observe that for any set of DL(Q)
constraints {C1, . . . , Cn, C} resulting from the encoding of some UT VPI(Q)
constraints, if

∧n
i=1 Ci |=DL(Q) C then

∧n
i=1 Υ (Ci) |=UT VPI(Q) Υ (C).

When A ∧ B is inconsistent, we can generate an UT VPI(Q)-interpolant by
extending the graph-based approach used for DL(Q). We consider a negative-
weight cycle of G(A′ ∧ B′), and we build an interpolant I ′ in DL(Q) by means
of the graph-based interpolation technique described in §2. We claim that the

UT VPI(Q) formula I
def

= Υ (I ′) is an interpolant for (A,B). The proof is as
follows. (i) I ′ is a conjunction of summary constraints, so it is in the form

∧

i Ci.
Therefore A′ |=DL(Q) Ci for all i, and so by the observation above A |=UT VPI(Q)

Υ (Ci). Hence, A |=UT VPI(Q) I. (ii) From the DL(Q)-inconsistency of I ′ ∧B′ we
immediately derive that I ∧B is UT VPI(Q)-inconsistent. (iii) I � A and I � B
derive from I ′ � A′ and I ′ � B′ by the definitions of Υ and the map of Figure 1.

Example 1. Consider the following sets of UT VPI(Q) constraints:

A = {(0 ≤ −x2 − x1 + 3), (0 ≤ x1 + x3 + 1),

(0 ≤ −x3 − x4 − 6), (0 ≤ x5 + x4 + 1)}

B = {(0 ≤ x2 + x3 + 3), (0 ≤ x6 − x5 − 1), (0 ≤ x4 − x6 + 4)}
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Fig. 2. The constraint graph of Example 1. (We represent only one negative cycle with
its corresponding A-paths, because the other is dual.)

By the map of Figure 1, they are converted into the following sets of DL(Q)
constraints:

A′ = {(0 ≤ x−1 − x+
2 + 3), (0 ≤ x−2 − x+

1 + 3),

(0 ≤ x+
3 − x−1 + 1), (0 ≤ x+

1 − x−3 + 1),

(0 ≤ x−4 − x+
3 − 6), (0 ≤ x−3 − x+

4 − 6),

(0 ≤ x+
4 − x−5 + 1), (0 ≤ x+

5 − x−4 + 1)}

B′ = {(0 ≤ x+
3 − x−2 + 3), (0 ≤ x+

2 − x−3 + 3),

(0 ≤ x+
6 − x+

5 − 1), (0 ≤ x−5 − x−6 − 1),

(0 ≤ x+
4 − x+

6 + 4), (0 ≤ x−6 − x−4 + 4)}

whose conjunction corresponds to the constraint graph of Figure 2. This graph
has a negative cycle

C′ def

= x+
2

3
−→ x−1

1
−→ x+

3
−6
−−→ x−4

4
−→ x−6

−1
−−→ x−5

1
−→ x+

4
−6
−−→ x−3

3
−→ x+

2 .

Thus, A ∧ B is inconsistent in UT VPI(Q). From the negative cycle C′ we can

extract the set of A′-paths {x+
2

−2
−−→ x−4 , x

−
5

−5
−−→ x−3 }, corresponding to the

formula I ′
def

= (0 ≤ x−4 − x+
2 − 2)∧ (0 ≤ x−3 − x−5 − 5), which is an interpolant for

(A′, B′). I ′ is thus mapped back into I
def

= (0 ≤ −x2 −x4−2)∧ (0 ≤ x5 −x3−5),
which is an interpolant for (A,B).

4 Graph-based interpolation for UT VPI(Z)

In order to deal with the more complex case of UT VPI(Z) (hereafter simply
UT VPI), we adopt a layered approach [23]. First, we check the consistency in
UT VPI(Q) using the technique of [20]. If this results in an inconsistency, we
compute an UT VPI(Q)-interpolant as described in §3. Clearly, this is also an
interpolant in UT VPI: condition (iii) is obvious, and conditions (i) and (ii)



follow immediately from the fact that if an UT VPI-formula is inconsistent over
the rationals then it is inconsistent also over the integers.

If the UT VPI(Q)-procedure does not detect an inconsistency, we check the
consistency in UT VPI using the algorithm proposed by Lahiri and Musuvathi
in [16], which extends the ideas of [20] to the integer domain. In particular, it
gives necessary and sufficient conditions to decide unsatisfiability by detecting
particular kinds of zero-weight cycles in the induced DL constraint graph. This
procedure works in O(n·m) time and O(n+m) space,m and n being the number
of constraints and variables respectively, which improves the previous O(n2 ·m)
time and O(n2) space complexity of the previous procedure by Jaffar et al. [9].

We build on top of this algorithm and we extend the graph-based approach of
§3 for producing interpolants also in UT VPI. In particular, we use the following
reformulation of a result of [16].

Theorem 1. Let φ be a conjunction of UT VPI constraints s.t. φ is satisfiable
in UT VPI(Q). Then φ is unsatisfiable in UT VPI iff the constraint graph G(φ)
generated from φ has a cycle C of weight 0 containing two vertices x+

i and x−i
s.t. the weight of the path x−i ; x+

i along C is odd.

The “only if” part is a corollary of lemmas 1, 2 and 4 in [16]. The “if” comes
straightforwardly from the analysis done in [16], whose main intuitions we recall
in what follows. Assume the constraint graph G(φ) generated from φ has one
cycle C of weight 0 containing two vertices x+

i and x−i s.t. the weight of the
path x−i ; x+

i along C is 2k + 1 for some integer value k. (Since C has weight
0, the weight of the other path x+

i ; x−i along C is −2k − 1.) Then, the paths
x−i ; x+

i and x+
i ; x−i contain at least two constraints, because otherwise their

weight would be even (see the last two lines of Figure 1). Then, x−i ; x+
i is

in the form x−i ; v
n
−→ x+

i , for some v and n. From x−i ; v, we can derive
the summary constraint (0 ≤ v − x−i + (2k + 1 − n)), which corresponds to the
UT VPI constraint (0 ≤ Υ (v) + xi + (2k + 1 − n)). (This corresponds to l − 2
applications of the Transitive rule of [16], l being the number of constraints
in x−i ; x+

i .) Then, by observing that the UT VPI constraint corresponding to

v
n
−→ x+

i is (0 ≤ xi − Υ (v) + n), we can apply the Tightening rule of [16] to
obtain (0 ≤ xi+⌊(2k+1−n+n)/2⌋), which is equivalent to (0 ≤ xi+k). Similarly,
from x+

i ; x−i we can obtain (0 ≤ −xi −k−1), and thus an inconsistency using
the Contradiction rule of [16].

Consider a pair (A,B) of UT VPI constraints such that A ∧B is consistent
in UT VPI(Q) but inconsistent in UT VPI. By Theorem 1, the constraint graph
G(A′ ∧B′) has a cycle C of weight 0 containing two vertices x+

i and x−i s.t. the
weight of the paths x−i ; x+

i and x+
i ; x−i along C are 2k + 1 and −2k − 1

respectively, for some value k ∈ Z. Our algorithm computes an interpolant for
(A,B) from the cycle C. Let CA and CB be the subsets of the edges in C
corresponding to constraints in A′ and B′ respectively. We have to distinguish
four distinct sub-cases.
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Case 1: xi occurs in B but not in A. Consequently, x+
i and x−i occur in B′ but

not in A′, and hence they occur in CB but not in CA. Let I ′ be the conjunction of
the summary constraints of the maximal CA-paths, and let I be the conjunction
of the corresponding UT VPI constraints. We show that I is an interpolant for
(A,B). (i) By construction, A |=UT VPI I, as in §3. (ii) The constraints in I ′

and CB form a cycle matching the hypotheses of Theorem 1, from which I ∧B
is UT VPI-inconsistent. (iii) We notice that every variable x+

j , x
−
j occurring in

the conjunction of the summary constraints is an end-point variable, so that
I ′ � CA and I ′ � CB, and thus I � A and I � B.

Example 2. Consider the following set of constraints:

S = {(0 ≤ x1 − x2 + 4), (0 ≤ −x2 − x3 − 5), (0 ≤ x2 + x6 − 4), (0 ≤ x5 + x2 + 3),

(0 ≤ −x1 + x3 + 2), (0 ≤ −x6 − x4), (0 ≤ x4 − x5)},

partitioned into A and B as follows:

A







(0 ≤ x3 − x1 + 2)
(0 ≤ −x6 − x4)
(0 ≤ x4 − x5)

B







(0 ≤ x1 − x2 + 4)
(0 ≤ −x2 − x3 − 5)
(0 ≤ x2 + x6 − 4)
(0 ≤ x5 + x2 + 3)

Figure 3 shows a zero-weight cycle C in G(A′ ∧ B′) such that the paths
x−2 ; x+

2 and x+
2 ; x−2 have an odd weight (−1 and 1 resp.) Therefore, by

Theorem 1, A∧B is UT VPI-inconsistent. The two summary constraints of the
maximal CA paths are (0 ≤ x−6 − x+

5 ) and (0 ≤ x+
3 − x+

1 + 2). It is easy to see
that I = (0 ≤ −x6−x5)∧(0 ≤ x3−x1 +2) is an UT VPI-interpolant for (A,B).

Case 2: xi occurs in both A and B. Consequently, x+
i and x−i occur in both

A′ and B′. If neither x+
i nor x−i is such that both the incoming and outgoing

edges belong to CA, then the cycle obtained by replacing each maximal CA-path
with its summary constraint still contains both x+

i and x−i , so we can apply the
same process of Case 1. Otherwise, if both the incoming and outgoing edges of x+

i



belong to CA, then we split the maximal CA-path u1
c1−→ . . .

ck−→ x+
i

ck+1

−−−→ . . .
cn−→

un containing x+
i into the two parts which are separated by x+

i : u1
c1−→ . . .

ck−→ x+
i

and x+
i

ck+1

−−−→ . . .
cn−→ un. We do the same for x−i . Let I ′ be the conjunction of

the resulting summary constraints, and let I be corresponding set of UT VPI
constraints. We show that I is an interpolant for (A,B). (i) As with Case 1, again,
A |=UT VPI I. (ii) Since we split the maximal CA paths as described above, the
constraints in I ′ and CB form a cycle matching the hypotheses of Theorem 1,
from which I ∧ B is UT VPI-inconsistent. (iii) x+

i , x
−
i occur in both A′ and B′

by hypothesis, and every other variable x+
j , x

−
j occurring in the conjunction of

the summary constraints is an end-point variable, so that I ′ � CA and I ′ � CB ,
and thus I � A and I � B.

Example 3. Consider again the set of constraints S of Example 2, partitioned
into A and B as follows:

A







(0 ≤ x3 − x1 + 2)
(0 ≤ −x6 − x4)
(0 ≤ x2 + x6 − 4)
(0 ≤ x1 − x2 + 4)

B







(0 ≤ −x2 − x3 − 5)
(0 ≤ x5 + x2 + 3)
(0 ≤ x4 − x5)

and the zero-weight cycle C of G(A′ ∧B′) shown in Figure 4. As in the previous
example, there is a path x−2 ; x+

2 of weight −1 and a path x+
2 ; x−2 of weight 1.

In this case there is only one maximal CA path, namely x+
4 ; x+

3 . Since the cycle
obtained by replacing it with its summary constraint (0 ≤ x+

3 −x+
4 +2) does not

contain x+
2 , we split x+

4 ; x+
3 into two paths, x+

4 ; x+
2 and x+

2 ; x+
3 , whose

summary constraints are (0 ≤ x+
2 − x+

4 − 4) and (0 ≤ x+
3 − x+

2 + 6) respectively.
By replacing the two paths above with the two summary constraints, we get a
zero-weight cycle which still contains the two odd paths x−2 ; x+

2 and x+
2 ; x−2 .

Therefore, I
def

= (0 ≤ x2 −x4 − 4)∧ (0 ≤ x3 −x2 +6) is an interpolant for (A,B).

Notice that the UT VPI-formula J
def

= (0 ≤ x3 −x4 +2) corresponding to the
summary constraint of the maximal CA path x+

4 ; x+
3 is not an interpolant,

since J ∧ B is not UT VPI-inconsistent. In fact, if we replace the maximal CA

path x+
4 ; x+

3 with the summary constraint x+
4

2
−→ x+

3 , the cycle we obtain has
still weight zero, but it contains no odd path between two variables x+

i and x−i .

Case 3: xi occurs in A but not in B, and one of the paths x+
i ; x−i or x−i ; x+

i

in C contains only constraints of CA. In this case, x+
i and x−i occur in A′ but

not in B′. Suppose that x−i ; x+
i consists only of constraints of CA (the case

x+
i ; x−i is analogous). Let 2k+1 be the weight of the path x−i ; x+

i (which is
odd by hypothesis), and let C be the cycle obtained by replacing such path with

the edge x−i
2k
−→ x+

i in C. In the following, we call such a replacement tightening
summarization. Since C has weight zero, C has negative weight. Let CP be
the set of DL-constraints in the path x−i ; x+

i . Let I ′ be the DL-interpolant
computed from C for (CA \ CP ∪ {(0 ≤ x+

i − x−i + 2k)}, CB), and let I be the
corresponding UT VPI formula. We show that I is an interpolant for (A,B).
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Fig. 5. UT VPI interpolation, Case 3.
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Fig. 6. UT VPI interpolation, Case 4.

(i) Let P be the set of UT VPI constraints in the path x−i ; x+
i . Since the

weight 2k + 1 of such path is odd, we have that P |=UT VPI (0 ≤ xi + k) (cf.
page 8). Since P ⊆ A, therefore, A |=UT VPI (0 ≤ xi + k). By observing that
(0 ≤ x+

i − x−i + 2k) is the DL-constraint corresponding to (0 ≤ xi + k) we
conclude that CA \ CP ∪ (0 ≤ x+

i − x−i + 2k) |=DL I
′ implies that A \ P ∪ (0 ≤

xi + k) |=UT VPI I, and so that A |=UT VPI I.
(ii) Since all the constraints in CB occur in C, we have that B∧I is UT VPI-

inconsistent.
(iii) Since by hypothesis all the constraints in the path x−i ; x+

i occur in
CA, from I ′ � (CA \ CP ∪ {(0 ≤ x+

i − x−i + 2k)}) we have that I � A. Finally,
since all the constraints in CB occur in C, we have that I � B.

Example 4. Consider again the set S of constraints of Example 2, this time
partitioned into A and B as follows:

A







(0 ≤ x1 − x2 + 4)
(0 ≤ x3 − x1 + 2)
(0 ≤ −x2 − x3 − 5)
(0 ≤ x2 + x6 − 4)

B







(0 ≤ x5 + x2 + 3)
(0 ≤ −x6 − x4)
(0 ≤ x4 − x5)

Figure 5 shows a zero-weight cycle C of G(A′ ∧ B′). The only maximal CA

path is x−6 ; x−2 . Since the path x+
2 ; x−2 has weight 1, we can add the

tightening edge x+
2

1−1
−−→ x−2 to G(A′∧B′) (shown in dots and dashes in Figure 5),

corresponding to the constraint (0 ≤ x−2 − x+
2 ). Since all constraints in the path

x+
2 ; x−2 belong to A′, A′ |= (0 ≤ x−2 − x+

2 ). Moreover, the cycle obtained

by replacing the path x+
2 ; x−2 with the tightening edge x+

2
0
−→ x−2 has a

negative weight (−1). Therefore, we can generate a DL-interpolant I ′
def

= (0 ≤
x−2 − x−6 − 4) from such cycle, which corresponds to the UT VPI-interpolant

I
def

= (0 ≤ −x2 + x6 − 4).
Notice that, similarly to Example 3, also in this case we cannot obtain an

interpolant from the summary constraint (0 ≤ x−2 − x−6 − 3) of the maximal CA

path x−6 ; x−2 , as (0 ≤ −x2 + x6 − 3) ∧B is not UT VPI-inconsistent.



Case 4: xi occurs in A but not in B, and neither the path x+
i ; x−i nor the path

x−i ; x+
i in C consists only of constraints of CA. As in the previous case, x+

i

and x−i occur in A′ but not in B′, and hence they occur in CA but not in CB. In
this case, however, we can apply a tightening summarization neither to x+

i ; x−i
nor to x−i ; x+

i , since none of the two paths consists only of constraints of CA.
We can, however, perform a conditional tightening summarization as follows. Let
CP

A and CP
B be the sets of constraints of CA and CB respectively occurring in

the path x−i ; x+
i , and let C

P

A and C
P

B be the sets of summary constraints of

maximal paths in CP
A and CP

B . From C
P

A ∪ C
P

B, we can derive x−i
2k
−→ x+

i (cf.

Case 3), where 2k+1 is the weight of the path x−i ; x+
i . Therefore, C

P

A ∪C
P

B |=

(0 ≤ x+
i − x−i + 2k), and thus C

P

A |= C
P

B → (0 ≤ x+
i − x−i + 2k). We say that

(0 ≤ x+
i − x−i + 2k) is the summary constraint for x−i ; x+

i conditioned to C
P

B.
Using conditional tightening summarization, we generate an interpolant as

follows. By replacing the path x−i ; x+
i with x−i

2k
−→ x+

i , we obtain a negative-
weight cycle C, as in Case 3. Let I ′ be the DL-interpolant computed from C
for (CA \CP

A ∪ {(0 ≤ x+
i − x−i + 2k)}, CB \CP

B ), and let I be the corresponding
UT VPI formula. Finally, let PB be the conjunction of UT VPI constraints

corresponding to C
P

B . We show that (PB → I) is an interpolant for (A,B).
(i) We know that CA \ CP

A ∪ {(0 ≤ x+
i − x−i + 2k)} |= I ′, because I ′ is a

DL-interpolant. Moreover, C
P

A ∪C
P

B |= (0 ≤ x+
i − x−i + 2k), and so CP

A ∪C
P

B |=

(0 ≤ x+
i − x−i + 2k). Therefore, CA ∪ C

P

B |= I ′, and thus A ∪ PB |=UT VPI I,
from which A |=UT VPI (PB → I).

(ii) Since I ′ is a DL-interpolant for (CA\CP
A ∪{(0 ≤ x+

i −x−i +2k)}, CB\CP
B ),

I ′ ∧ (CB \CP
B ) is DL-inconsistent, and thus I ∧B is UT VPI-inconsistent. Since

by construction B |=UT VPI PB, (PB → I) ∧B is UT VPI-inconsistent.
(iii) From I ′ � CB \CP

B we have that I � B, and from I ′ � CA \CP
A ∪{(0 ≤

x+
i −x−i +2k)} that I � A. Moreover, all the variables occurring in the constraints

in C
P

B are end-point variables, so that C
P

B � CA and C
P

B � CB , and thus PB � A
and PB � B. Therefore, (PB → I) � A and (PB → I) � B.

Example 5. We partition the set S of constraints of Example 2 into A and B as
follows:

A







(0 ≤ x1 − x2 + 4)
(0 ≤ −x2 − x3 − 5)
(0 ≤ x5 + x2 + 3)
(0 ≤ x2 + x6 − 4)

B







(0 ≤ x3 − x1 + 2)
(0 ≤ −x6 − x4)
(0 ≤ x4 − x5)

Consider the zero-weight cycle C of G(A′ ∧B′) shown in Figure 6. In this case,
neither the path x+

2 ; x−2 nor the path x−2 ; x+
2 consists only of constraints

of A′, and thus we cannot use any of the two tightening edges x+
2

1−1
−−→ x−2 and

x−2
−1−1
−−−−→ x+

2 directly for computing an interpolant. However, we can compute

the summary x−2
−2
−−→ x+

2 for x−2 ; x+
2 conditioned to x+

5
0
−→ x−6 , which is the

summary constraint of the B-path x+
5 ; x−6 , and whose corresponding UT VPI



constraint is (0 ≤ −x6−x5). By replacing the path x−2 ; x+
2 with such summary,

we obtain a negative-weight cycle C, from which we generate the DL-interpolant
(0 ≤ x+

1 −x+
3 −3), corresponding to the UT VPI formula (0 ≤ x1−x3−3). There-

fore, the generated UT VPI-interpolant is (0 ≤ −x6 − x5) → (0 ≤ x1 − x3 − 3).
As in Example 4, notice that we cannot generate an interpolant from the

conjunction of summary constraints of maximal CA paths, since the formula we
obtain (i.e. (0 ≤ x1 + x6) ∧ (0 ≤ x5 − x3 − 2)) is not inconsistent with B.

5 Experimental evaluation

We have implemented the algorithm described in the previous sections within
our SMT solver MathSAT [4]. The assessment of the procedure can not be
carried out by means of a direct comparison, since there exists no other system
able to interpolate over UT VPI(Z). In order to assess both the efficiency and
the usefulness of the procedure, we have performed two kinds of experiments, one
on interpolation over UT VPI(Q), and one on the application of interpolation
for UT VPI(Z) to software model checking.

The programs and benchmark instances used are available at http://disi.

unitn.it/~griggio/papers/cade09_itp_utvpi.tar.gz. All the tests have been per-
formed on 2.66 GHz Intel Xeon machines, with 16 GB of RAM and 6 MB of
cache, running Linux. For each instance, we used a time limit of 20 minutes and
a memory limit of 2 GB.

Comparison with LA(Q) interpolation. In the first part of our experi-
ments, we compare our novel UT VPI(Q) interpolation algorithm with our im-
plementation of a state-of-the-art LA(Q) interpolation algorithm [5], in order
to evaluate its efficiency. Both algorithms are implemented within MathSAT,
and thus they share the same environment (same DPLL engine, same search
strategy, same optimizations, etc.). This ensures that the comparison is fair.

We have randomly generated several UT VPI(Q) interpolation problems of
varying size and difficulty, and run both algorithms. The results are collected in
Figure 7. The scatter plots show that the UT VPI(Q) solver clearly outperforms
the LA(Q) solver (sometimes by more than an order of magnitude), thus justify-
ing the interest for the subclass. Furthermore, it can be seen that the computed
interpolants, in addition to being within UT VPI(Q), are generally smaller, both
in terms of nodes in the formula DAG and in number of atoms.

UT VPI interpolation in software model checking. In the second part of
our experiments, we evaluate the usefulness of the UT VPI interpolation pro-
cedure in the context of software model checking based on the counterexample-
guided abstraction refinement (CEGAR) paradigm. This is one of the most suc-
cessful applications of interpolation in formal verification [8]: in this setting,
interpolants are used to automatically refine abstractions when spurious error
traces are generated. A spurious error trace is an execution of the abstract pro-
gram that leads to an error, but does not correspond to any execution of the



concrete program. The interpolation procedure receives as input formulas cor-
responding to such spurious error traces, which are typically conjunctions of
literals, and the interpolants generated are used to prevent the same spurious
error trace from being generated again in the future. This technique is used for
example by the software model checker Blast, whose description in [2] we refer
to for the details.

Due to the limitations of current interpolation procedures, 5 when computing
interpolants program variables are interpreted over the rationals even if in the
program they have an integral type. This makes it impossible to compute inter-
polants for spurious error traces which are inconsistent because of the violation
of the integrality constraints on the variables. When this happens, automatic
abstraction refinement cannot be performed, and the verification of the program
fails.

We have written a collection of small C programs which cannot be verified by
Blast because the interpolation procedures that it uses ([3, 18, 22]) do not han-
dle integrality constraints. When using MathSAT as interpolation procedure
instead, Blast could successfully verify all the programs.

Example 6. Consider the simple C program on the right. 6

In the process of proving that the ERROR label is not
reachable, Blast generates the following spurious coun-
terexample:

y = ∗; x = y; z = 1− y; (x == z); ERROR,

which corresponds to the following formula ξ:

ξ
def

= (x = y) ∧ (z = 1 − y) ∧ (x = z)

In order to refine the abstraction, Blast asks the in-
terpolation procedure to compute an interpolant for the
following partition of ξ into (A,B):

main() {

int x, y, z;

while (*) {

y = *;

x = y;

z = 1 - y;

if (x == z) {

ERROR: ;

}

}

}

(x = y) ∧ (z = 1 − y)
︸ ︷︷ ︸

A

∧ (x = z)
︸ ︷︷ ︸

B

.

ξ is unsatisfiable in Z, but satisfiable in Q. Therefore, interpolation procedures
that work on the rationals are not able to compute the interpolant, causing
Blast to fail. Using the UT VPI interpolation algorithm, instead, MathSAT

computes the following interpolant: 7

I
def

= (0 ≤ x+ z − 1) ∧ (0 ≤ −x− z + 1),

5 With the exception of [10], which however is limited to equations and modular
equations, and cannot handle inequalities.

6 A ’*’ indicates a nondeterministic value.
7 After rewriting equalities (x1 = x2 + c) into (0 ≤ x1 − x2 + c) ∧ (0 ≤ x2 − x1 − c).
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Fig. 7. Comparison between UT VPI(Q) and LA(Q) interpolation within MathSAT.

with which Blast can refine the abstraction and successfully prove that the
ERROR label is not reachable.

6 Conclusions

In this paper we have tackled the problem of generating interpolants in SMT for
the theory of Unit-Two-Variable-Per-Inequality (UT VPI), an important frag-
ment of linear arithmetic. Our approach results in interpolants that are within
the same theory, and it can be easily implemented on top of efficient graph-based
procedures used in many state-of-the-art SMT solvers. Our work covers both the
case of rationals, where we experimentally demonstrate the efficiency over a gen-
eral purpose procedure for LA(Q), as well as the case of integers, up to now an
open problem. In the future, we plan to tackle the full-blown case of interpolation
for LA(Z), where the UT VPI procedure can be used as a component in a lay-
ered approach [23], and to apply SMT-based interpolation procedures in various
verification settings, including counterexample guided abstraction refinement.
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