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Abstract. IC3 is a recently proposed verification technique for the analysis of
sequential circuits. IC3 incrementally overapproximates the state space,refut-
ing potential violations to the property at hand by constructing relative inductive
blocking clauses. The algorithm relies on aggressive use of Boolean satisfiability
(SAT) techniques, and has demonstrated impressive effectiveness.
In this paper, we present the first investigation of IC3 in the setting of software
verification. We first generalize it from SAT to Satisfiability Modulo Theories
(SMT), thus enabling the direct analysis of programs after an encodingin form of
symbolic transition systems. Second, to leverage the Control-Flow Graph (CFG)
of the program being analyzed, we adapt the “linear” search style of IC3 to a tree-
like search. Third, we cast this approach in the framework of lazy abstraction with
interpolants, and optimize it by using interpolants extracted from proofs, when
useful.
The experimental results demonstrate the great potential of IC3, and theeffec-
tiveness of the proposed optimizations.

1 Introduction

Aaron Bradley [6] has recently proposed IC3, a novel technique for the verification of
reachability properties in hardware designs. The technique has been immediately gen-
erating strong interest: it has been generalized to deal with liveness properties [5], and
to incremental reasoning [7]. A rational reconstruction ofIC3, referred to as Property
Driven Reachability (PDR), is presented in [12], together with an efficient implemen-
tation: an experimental evaluation shows that IC3 is superior to any other single solver
used in the hardware model checking competition.See also [23] for an overview.

The technique has several appealing aspects. First, different from bounded model
checking, k-induction or interpolation, it does not require unrolling the transition rela-
tion for more than one step. Second, reasoning is highly localized to restricted sets of
clauses, and driven by the property being analyzed. Finally, the method leverages the
power of modern incremental SAT solvers, able to efficientlysolve huge numbers of
small problems.

In this paper, we investigate the applicability of IC3 to software model checking.
We follow three subsequent steps. We first generalize IC3 from the purely Boolean
case [6], based on SAT, to the case of Satisfiability Modulo Theory (SMT) [1]. The
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characterizing feature of the generalization is the computation of (underapproximations
of) the preimage of potential bug states. This allows us to deal with software modeled
as a (fully) symbolic transition system, expressed by meansof first order formulae.

The second step is motivated by the consideration that the fully symbolic represen-
tation does not exploit the control flow graph (CFG) of the program. Thus, we adapt
IC3, that is “linear” in nature, to the case of a tree, which isthe Abstract Reachability
Tree (ART) resulting from the unwinding of the CFG. This technique, that we refer to
as TREE-IC3, exploits the disjunctive partitioning of the software, implicit in the CFG.

The third step stems from the consideration that TREE-IC3 can be seen as a form
of lazy abstraction with interpolants [18]: the clauses produced by IC3 are in fact in-
terpolants at the various control points of the ART. From this, we obtain another opti-
mization, by integrating interpolation within IC3. With proof-based interpolation, once
the path being analyzed is shown to be unfeasible with one SMTcall, it is possible to
obtain interpolants for each control point, at a low cost. The key problem with interpo-
lation is that the behaviour is quite “unstable”, and interpolants can sometimes diverge.
On the other hand, IC3 often requires a huge number of individual calls to converge,
and may be computationally expensive, especially in the SMTcase, although it rarely
suffers from a memory blow-up. The idea is then to obtain clause sets for IC3 from
proof-based interpolation, in the cases where this is not too costly.

We carried out a thorough set of experiments, evaluating themerits of the three
approaches described above, and comparing with other techniques for software model
checking. The results show that the explicit management of the CFG is often superior to
a symbolic encoding, and that the hybrid computation of clauses can sometimes yield
significant speed-ups. A comparison with other approaches shows that TREE-IC3 can
compete with mature techniques such as predicate abstraction, and lazy abstraction with
interpolants.

This work has two key elements of novelty. The seminal IC3 [6]and all the ex-
tensions we are aware of [12, 7, 5] address the problem for fully symbolic transition
systems at the bit level. This paper is the first one to lift IC3from SAT to SMT, and
also the first one to adapt IC3 to exploit the availability of the CFG.

This paper is structured as follows. In Sec. 2 we present somebackground. In Sec. 3
we describe the SMT generalization of IC3. In Sec. 4 we present TREE-IC3, and in
Sec. 5 TREE-IC3+ITP, the hybrid approach using interpolants extracted from proofs.
In Sec. 6 we experimentally evaluate the approach. In Sec. 7 we discuss related work.
Finally, in Sec. 8 we draw some conclusions and outline linesof future research.

2 Background and Notation

Our setting is standard first order logic. We use the standardnotions of theory, satisfi-
ability, validity, logical consequence. We denote formulas withϕ,ψ, I, T, P , variables
with x, y, and sets of variables withX, Y . Unless otherwise specified, we work on
quantifier-free formulas, and we refer to 0-arity predicates as Boolean variables, and
to 0-arity uninterpreted functions as (theory) variables.A literal is an atom or its nega-
tion. A clauseis a disjunction of literals, whereas acubeis a conjunction of literals.
If s is a cubel1 ∧ . . . ∧ ln, with ¬s we denote the clause¬l1 ∨ . . . ∨ ¬ln, and vice



versa. A formula is in conjunctive normal form (CNF) if it is aconjunction of clauses,
and in disjunctive normal form (DNF) if it is a disjunction ofcubes. With a little abuse
of notation, we might sometimes denote formulas in CNFC1 ∧ . . . ∧ Cn as sets of
clauses{C1, . . . , Cn}, and vice versa. IfX1, . . . , Xn are a sets of variables andϕ is
a formula, we might writeϕ(X1, . . . , Xn) to indicate that all the variables occurring
in ϕ are elements of

⋃
iXi. For each variablex, we assume that there exists a corre-

sponding variablex′ (theprimed versionof x). If X is a set of variables,X ′ is the set
obtained by replacing each elementx with its primed version. Given a formulaϕ, ϕ′

is the formula obtained by adding a prime to each variable occurring inϕ, andϕ〈n〉 is
the formula obtained by addingn primes to each of its variables. Given a theoryT , we
writeϕ |=T ψ (or simplyϕ |= ψ) to denote that the formulaψ is a logical consequence
of ϕ in the theoryT . Given a first-order formulaϕ, we call theBoolean skeletonof
ϕ the propositional formula obtained by replacing each theory atom inϕ with a fresh
Boolean variable.

We represent a program by acontrol-flow graph(CFG). A CFGA = (L,G) con-
sists of a setL of program locations, which model the program counterpc, and a set
G ⊆ L×Ops×L of control-flow edges, which model the operations that are executed
when control flows from one program location to another. The set of variables that oc-
cur in operations fromOps is denoted byX. We use first-order formulas for modeling
operations: each operationo ∈ Ops has an associated first-order formulaTo(X,X ′)
modeling the effect of performing the operationo. A programΠ = (A,pc0,pcE)
consists of a CFGA = (L,G), an initial program locationpc0 ∈ L (the program
entry), and a target program locationpcE ∈ L (the error location). Apathπ is a se-
quence(pc0, op0,pc1), (pc1, op1,pc2), . . . , (pcn−1, opn−1,pcn), representing a syn-

tactical walk through the CFG. The pathπ is feasibleiff the formula
∧

i Topi

〈i〉 is sat-
isfiable. Whenπ is not feasible, we say it isspurious. A program issafewhen all the
paths leading topcE are not feasible.

Given a programΠ, an abstract reachability tree(ART) for Π is a treeA over
(V,E) such that: (i)V is a set of triples(pc, ϕ, h), wherepc ∈ L is a location in the
CFG ofΠ, ϕ is a formula overX, andh ∈ N is a unique identifier; (ii) the root of
A is (pc0,⊤, 1); (iii) for every non-leaf nodev

def
= (pci, ϕ, h) ∈ V , for every control-

flow edge(pci, op,pcj) ∈ G, v has a child node(pcj , ψ, k) such thatϕ ∧ Top |= ψ′

andk > h. In what follows, we might denote withpci  pcj any path in an ART
from a node(pci, ϕ, h) to a descendant node(pcj , ψ, k). Intuitively, an ART represents

an unwinding of the CFG of a program performed in an abstract state space. Ifv
def
=

(pci, ϕ, h) is a node,ϕ is theabstract state formulaof v. A nodev1
def
= (pci, ψ, k) in

an ARTA is coveredif either: (i) there exists another nodev2
def
= (pci, ϕ, h) in A such

thath < k, ψ |= ϕ, andv2 is not itself covered; or (ii)v1 has a proper ancestor for
which (i) holds.A is completeif all its leaves are either covered or their abstract state
formula is equivalent to⊥. A is safe if and only if it is complete and, for all nodes
(pcE , ϕ, h) ∈ V , ϕ |= ⊥. If a programΠ has a safe ART, thenΠ is safe [16, 18].

Given a setX of (state) variables, atransition systemS overX can be described
symbolically with two formulas:IS(X), representing the initial states of the system,
andTS(X,X ′), representing its transition relation. Given a programΠ, a correspond-



ing transition systemSΠ can be obtained by encoding symbolically the CFG(L,G)
of Π. This can be done by: (i) adding one special elementxpc, with domainL, to

the setX of variables; (ii) settingISΠ

def
= (xpc = pc0); and (iii) settingTSΠ

def
=∨

(pci,op,pcj)∈G(xpc = pci) ∧ Top ∧ (x′pc = pcj).
GivenSΠ , the safety of the programΠ can be established by proving that all the

reachable states ofSΠ are a subset of the states symbolically described by the formula
P

def
= ¬(xpc = pcE). In this case, we say thatSΠ satisfies the invariant propertyP .

3 IC3 with SMT

High-level description of IC3. Let X be a set of Boolean variables, and letS be a
given Boolean transition system described symbolically byI(X) andT (X,X ′). Let
P (X) describe a set of good states. The objective is to prove that all the reachable
states ofS are good. (Conversely,¬P (X) represents a set of “bad” states, and the
objective is to show that there exists no sequence of transitions from states inI(X)
to states in¬P (X).) The IC3 algorithm tries to prove thatS satisfiesP by finding a
formulaF (X) such that: (i)I(X) |= F (X); (ii) F (X) ∧ T (X,X ′) |= F (X ′); and
(iii) F (X) |= P (X).

In order to constructF , which is an inductive invariant, IC3 maintains a sequence
of formulas (calledtrace, following [12]) F0(X), . . . , Fk(X) such that:

– F0 = I;
– for all i > 0, Fi is a set of clauses;
– Fi+1 ⊆ Fi (thus,Fi |= Fi+1);
– Fi(X) ∧ T (X,X ′) |= Fi+1(X

′);
– for all i < k, Fi |= P ;

The algorithm proceeds incrementally, by alternating two phases1: a blocking phase,
and a propagation phase. In theblockingphase, the trace is analyzed to prove that no in-
tersection betweenFk and¬P (X) is possible. If such intersection cannot be disproved
on the current trace, the property is violated and a counterexample can be reconstructed.
During the blocking phase, the trace is enriched with additional clauses, that can be
seen as strengthening the approximation of the reachable state space. At the end of the
blocking phase, if no violation is found,Fk |= P .

Thepropagationphase tries to extend the trace with a new formulaFk+1, moving
forward the clauses from precedingFi. If, during this process, two consecutive elements
of the trace (calledframes) become identical (i.e.Fi = Fi+1), then a fixpoint is reached,
and IC3 can terminate withFi being an inductive invariant proving the property.

Let us now consider the lower level details of IC3. Fori > 0, Fi represents an
over-approximation of the states ofS reachable ini transition steps or less. The dis-
tinguishing feature of IC3 is that such sets of clauses are constructed incrementally,

1 We follow the formulation of IC3 given in [12], which is slightly different from the original
one of Bradley given in [6]. Moreover, for brevity we have to omit several important details,
for which we refer to the two papers cited above.



bool IC3-prove(I, T , P ):
1. trace = [I] # first elem of trace is init formula
2. trace.push()# add a new frame to the trace
3. while True:

# blocking phase
4. while there exists a cubec s.t. trace.last()∧ T ∧ c is satisfiable andc |= ¬P :
5. recursively block the pair(c, trace.size()− 1)
6. if a pair(p, 0) is generated:
7. return False # counterexample found

# propagation phase
8. trace.push()
9. for i = 1 to trace.size()− 1:
10. for eachclausec ∈ trace[i]:
11. if trace[i]∧ c ∧ T ∧ ¬c′ is unsatisfiable:
12. addc to trace[i+1]
13. if trace[i] == trace[i+1]:
14. return True # property proved

Fig. 1.High-level description of IC3 (following [12]).

starting from cubes representing sets of states that can reach a bad state in zero or more
transition steps. More specifically, in the blocking phase,IC3 maintains a set of pairs
(s, i), wheres is a cube representing a set of states that can lead to a bad state, and
i > 0 is a position in the current trace. New clauses to be added to (some of the frames
in) the current trace are derived by (recursively) proving that a sets of a pair(s, i) is
unreachable starting from the formulaFi−1. This is done by checking the satisfiability
of the formula:

Fi−1 ∧ ¬s ∧ T ∧ s′. (1)

If (1) is unsatisfiable, ands does not intersect the initial statesI of the system, then¬s
is inductive relative toFi−1, and IC3 strengthensFi by adding¬s to it2, thusblocking
the bad states at i. If, instead, (1) is satisfiable, then the overapproximationFi−1 is not
strong enough to show thats is unreachable. In this case, letp be a cube representing
a subset of the states inFi−1 ∧ ¬s such that all the states inp lead to a state ins′ in
one transition step. Then, IC3 continues by trying to show thatp is not reachable in one
step fromFi−2 (that is, it tries to block the pair(p, i − 1)). This procedure continues
recursively, possibly generating other pairs to block at earlier points in the trace, until
either IC3 generates a pair(q, 0), meaning that the system does not satisfy the property,
or the trace is eventually strengthened so that the originalpair (s, i) can be blocked.
Figure 1 reports the pseudo-code for the full IC3 algorithm,including more details on
the propagation phase.

Extension to SMT. In its original formulation, IC3 works on finite-state systems,
with Boolean state variables and propositional logic formulas, using a SAT solver as
its reasoning engine. However, for modeling programs it is often more convenient to

2 In fact,¬s is actuallygeneralizedbefore being added toFi. Although this is quite important
for the effectiveness of IC3, here for simplicity we shall not discuss this.



reason at a higher level of abstraction, using (decidable) fragments of first-order logic
and SAT modulo theories (SMT).

Most of the machinery of IC3 can be lifted from SAT to SMT in a straightforward
way, by simply replacing the underlying SAT engine with an SMT solver. From the
point of view of IC3, in fact, it is enough to reason at the level of the Boolean skeleton
of formulas, simply letting the SMT solver cope with the interpretation of the theory
atoms. There is, however, one crucial step in which IC3 must be made theory-aware,
as reasoning at the Boolean-skeleton level does not work. This happens in the blocking
phase, when trying to block a pair(s, i). If the formula (1) is satisfiable, then a new pair
(p, i − 1) has to be generated such thatp is a cube in thepreimage ofs wrt. T . In the
purely-Boolean case,p can be obtained from the modelµ of (1) generated by the SAT
solver, by simply dropping the primed variables occurring inµ.3 This cannot be done in
general in the first-order case, where the relationship between the current state variables
X and their primed versionX ′ is encoded in the theory atoms, which in general cannot
be partitioned into a primed and an unprimed set.

A first (and rather näıve) solution would be to consider the theory model for the state
variablesX generated by the SMT solver. However, for infinite-state systems this would
lead IC3 to exclude only a single point at a time. This will most likely be impractical:
being the state space infinite, there would be a high chance that the blocking phase will
diverge.

For theories admitting quantifier elimination, a better alternative is to compute an
exact preimage ofs. This means to existentially quantify the variablesX ′ in (1), elimi-
nate the quantifiers, and then convert the result in DNF. Thiswill generate a set of cubes
{pj}j which in turn generate a set of pairs{(pj , i − 1)}j to be blocked ati − 1. The
drawback of the second solution is that for many important theories, even when it is
possible, quantifier elimination may be a very expensive operation.

We notice that the two solutions above are just the two extremes of a range of
possibilities: in fact, any procedure that is able to compute an under-approximation of
the exact preimage can be used. Depending on the theory, several trade-offs between
precision and computational cost can be explored, ranging from single points in the
state space to a precise enumeration of all the cubes in the preimage. In what follows, we
shall assume that we have a procedureAPPROX-PREIMAGE for computing such under-
approximations, and present our algorithms in a general context. We shall discuss our
current implementation, which uses the theory of Linear Rational Arithmetic, in§6.

Discussion. We conclude this Section by pointing out that the ideas underlying IC3
are nontrivial even in the Boolean case. At a very high level,the correctness is based
on the invariants ensured by the blocking and propagation phases. Termination follows
from the finiteness of the state space being analyzed, and from the fact that at each step
at least one more new state is explored. A more in depth justification is out of the scope
of this paper. The interested reader is referred to [6, 23, 12].

In the case of SMT, we notice that the invariants of the tracesalso hold in the
SMT case, so that the argument for the finite case can be applied. This ensures partial

3 For efficiency, the result has to be generalized by dropping irrelevantvariables, but this is not
important for the discussion here.



correctness. On the other hand, the reachability problem being undecidable for infinite-
state transition systems, it is impossible to guarantee termination. This might be due
to the failure in the blocking phase to eliminate all the counterexamples, for the given
trace length, or to the failure to reach a fixpoint in the propagation phase.

4 Tree-based IC3

We now present an adaptation of IC3 from symbolic transitionsystems to a CFG-
represented program. The search proceeds in an “explicit-symbolic” approach, simi-
larly to the lazy abstraction approach [16]. The CFG is unwound into an ART (Abstract
Reachability Tree), following a DFS strategy. Each node of the tree is associated with a
location, and a set of clauses.

The algorithm starts by finding an abstract path to the error location. Then, it applies
a procedure that mimics the blocking phase of IC3 on the sets of clauses of the path.

There are three important differences. First, the clauses associated to a node are im-
plicitly conditioned to the corresponding control location: the clause¬(xpc = pci) ∨ c
in the fully symbolic setting simply becomesc in a node associated with control loca-
tion pci. This also means that the logical characterization of a nodebeing unreachable,
expressed by the clause¬(xpc = pcE) in the fully symbolic setting, is now the empty
clause. Second, in each formulaTi characterizing a transition, the start and end control
locations are not explicitly represented, but rather implicitly assumed. Finally, the most
important difference is in the inductiveness check performed when constructing the IC3
trace. When checking whether a cubec is blocked by a set of clausesFi−1, we cannot
use the relative inductiveness check of (1). This is becausethat would not be sound in
our setting, since we are using different transition formulasTi at differenti steps (cor-
responding to the edge formulas in the abstract error path).Therefore, we replace (1)
with the weaker check

Fi−1 ∧ Ti−1 |= ¬c′ (2)

which allows us to construct a correct ART (satisfying points (i)–(iii) of the definition
on page 3.) We observe that, because of this difference, the requirement thatFi+1 ⊆ Fi

is not enforced in TREE-IC3.
With this adaptation, the blocking phase tries to produce the clauses necessary to

refute the abstract path. When the blocking phase is successful, it must generate an
empty clause at some point. In case of failure to refute the path, the property is violated
and a counterexample is produced4. If sufficient information can be devised to refute
the abstract path to the error location, the algorithm backtracks to the deepest node that
is not inconsistent (i.e. is not associated with the empty clause). The pseudo-code of
this modified blocking phase, which we call TREE-IC3-BLOCK-PATH, is reported in
Figure 2.

Then, a new node is selected and expanded, with a process thatis similar in nature
to the forward propagation phase of IC3. For each expanded node, the clauses of the
ancestor are tested for forward propagation, in order to ensure the invariant that the

4 The counterexample has exactly the same length as the abstract path. Thisis a key difference
with respect to the case of the fully symbolic IC3.



procedure TREE-IC3-BLOCK-PATH (π
def
= (pc

0
,⊤, 1) . . . (pci, ϕi, ·) . . . (pcE , ϕn, ·)):

# T1 . . . Tn−1 are the edge formulas ofπ
# initialize the trace with the clauses attached to the nodesin π

1. F = [⊤, . . ., ϕi, . . ., ϕn−1]
2. while not existsj in 1 . . . n− 1 s.t.F [j] ∧ Tj |= ⊥:
3. q = []
4. for eachbadin APPROX-PREIMAGE (ϕn−1 ∧ Tn−1):
5. q.push((bad,n− 1)) # bad is a cube in the preimage ofTn−1

6. while q is not empty:
7. c, j = q.top()
8. if j = 0: compute andreturn a counterexample trace# π is a feasible error trace
9. if F [j − 1] ∧ Tj−1 |= ¬c′:
10. q.pop() # c is blocked, discard the proof obligation
11. g = generalization of¬c s.t.F [j − 1] ∧ Tj−1 |= g′

12. F [j] = F [j] ∧ g
13. else:
14. for eachp in APPROX-PREIMAGE (F [j − 1] ∧ Tj−1 ∧ c′):
15. q.push((p, j − 1))
16. return F # π is blocked

Fig. 2. Modified blocking phase of TREE-IC3 for refuting a spurious error path.

clauses of an abstract node overapproximate the image of thepredecessor clauses. More
specifically, for each clausec, we check whetherFi ∧ (xpc = pci) → c ∧ Top entails
(x′pc = pci+1) → c′.

A significant difference with respect to IC3 is in the way the fix point is handled.
In IC3 the fix point is detected globally, by comparing two subsequent formulae in
the trace. Here, as standard in lazy abstraction, we close each path of the ART being
generated.

Whenever a new nodev′ is expanded, it is checked against previously generated
nodesv having the same location. If the set of states ofv′ is contained in the states of
some previously generated nodev, thenv′ is covered, and it can be closed5.

In order to maximize the probability of coverage, the IC3-like forward propagation
phase is complemented by another form of forward propagation: whenever a loop is en-
countered (i.e. the nodev′ being expanded has the same location of one of its ancestors
v), then each of the clauses ofv is tested to see if it also holds inv′. Letv, v1, . . . , vk, v′

be the path fromv to v′. For each clausec in v, we check if the symbolic encoding of
the pathv  v′, strengthened with the clauses in eachvi, entailsc in v′.

It is easy to see that this may result in a stronger set of clauses forv′, because the
analysis is carried out on the concrete path fromv to v′, that retains all the available
information. Simple forward propagation would not be able to achieve the same result,
because of the limited strength of the clauses on the intermediate nodesvi. Intuitively,
this means that the clauses invi may be compatible with (too weak to block) the paths
that violate the clauses ofv that also hold inv′. Thus, simply strengtheningv′ would

5 In fact, it is also required that there will be no cycles in the covering-uncovering interplay. This
requirement is a bit technical, and discussed in detail in [18]. In the definition of covered node,
in §2, identifiers to nodes are intended to enforce this requirement.



ART UNWINDING :
if v

def
= (pci, ϕ, h) is an uncovered leaf:

for all edges(pci, op, pcj) in the CFG:

addvj
def
= (pcj ,⊤, k) with k > h as a child

of v in the ART

NODE COVERING :
if v1

def
= (pci, ψ, k) is uncovered, and there exists

v2
def
= (pci, ϕ, h) with k > h andψ |= ϕ, then:

markv1 as covered byv2
uncover all the nodesvj

def
= (pci, ψj , kj) covered byv1

PATH BLOCKING :
if vE

def
= (pcE , ϕ, h) is a leaf withϕ 6|= ⊥:

apply TREE-IC3-BLOCK-PATH (Fig. 2) to

the ART pathπ
def
= (pc

0
,⊤, 1) vE

if IC3 returns a counterexample: returnUNSAFE

otherwise:
letF1, . . . , FE be the sets of clauses
computed by IC3 for the formulas

Top1 , . . . , TopE of π

for each nodevi
def
= (pci, ϕi, hi) ∈ π,

for each clausecj in the correspondingFi:
if ϕi 6|= cj , then:

addcj toϕi

uncover all the nodes covered byvi

STRENGTHENING :
let v1

def
= (pci, ϕ, h1) andv2

def
= (pck, ψ, h2) be two

uncovered nodes s.t. there is a pathπ
def
= v1  v2,

and letφπ
def
=

∧n
j=0

Topj
〈j〉 be the formula forπ

letCv1,v2 = ∅
for eachcj ∈ ϕ:

if ψ 6|= cj andϕ〈0〉 ∧ φπ |= ci
〈n〉:

addcj toCv1,v2

if Cv1,v2 6= ∅:
refute¬Cv1,v2 using TREE-IC3-BLOCK-PATH alongπ

for each nodevj
def
= (pcj , ϕj , hj) ∈ π:

add all the clausesc ∈ Fj computed by IC3 s.t.ϕj 6|= c

if ϕj changes, uncover all the nodes covered byvj
addCv1,v2 toψ, and uncover all the nodes covered byv2

Fig. 3.High-level description of the basic building blocks of TREE-IC3.

break the invariant that, in each node, the abstract state formula overapproximates the
image of the abstract state formula of its parent node (point(iii) in the definition of
ART, §2). In order to restore the situation, thevi nodes must be strengthened. LetCv,v′

be the set of clauses ofv that also hold inv′. Before addingCv,v′ to v′, we strengthen
thevi nodes with the information necessary to block the violationof Cv,v′ in v′. This
is done by “tricking” the blocking phase, using the negationof Cv,v′ as conjecture: the
clauses deduced in the process of refuting¬Cv,v′ can be added to strengthen eachvi.
After this,Cv,v′ is added tov′.

Notice that whenever a nodev is strengthened, then each nodev′ that had been
covered byv must be re-opened. In fact, after the strengthening, the setof states ofv
shrinks, thus the set of states ofv′, that was previously covered, might no longer be
contained.

A high-level view of the basic steps of TREE-IC3 is reported in Figure 3. We shall
describe the actual strategy that we have implemented for applying these steps in§6.
(Notice that the forward propagation that is performed whena node is expanded is just
a special case of the more general strengthening procedure,in which the path between
the two nodes involved consists of a single edge, and as such does not require a call to
IC3 for strengthening the intermediate nodes.)

Comparison with IC3. When the fully symbolic IC3 analyzes a program (in form of
symbolic transition system), some literals represent the location in the control flow that
is “active”. This information, that is implicit in the position in the ART, becomes direct
part of the clauses. There is the possibility for clauses to be present at frames where
the corresponding location can not be reached, and that are thus irrelevant. Another
advantage of the TREE-IC3 approach is that the program is disjunctively partitioned,



transition by transition, and thus the SMT solver is manipulating simpler and smaller
formulae. On the other hand, the symbolic representation gives the ability to implicitly
“replicate” the same clause over many control locations – inparticular, when no con-
trol location is relevant in the clause, it means that it holds for all the control locations.
Moreover, using a symbolic representation of the program asa transition formula allows
to exploit relative inductiveness, which is crucial for theperformance of the original IC3
(on hardware designs). As already mentioned above, relative inductiveness cannot be
directly applied in our setting, because we use a disjunctively-partitioned representa-
tion. In our experiments (§6), we show that the benefits of a CFG-guided exploration
significantly outweigh this drawback in the verification of sequential programs.

5 Hybrid Tree IC3

It can be observed that the sequence of sets of clauses generated by the Tree-based IC3
for refuting a spurious abstract error path can be seen as aninterpolant for the path,
in the sense used by McMillan in his “lazy abstraction with interpolants” algorithm
[18].6 Recalling the definition of [18], given a sequence of formulasΓ

def
= ϕ1, . . . , ϕn,

an interpolant is a sequence of formulasI0, . . . , In such that: (i)I0 ≡ ⊤ andIn ≡ ⊥;
(ii) for all 1 ≤ i ≤ n, Ii−1 ∧ ϕi |= Ii; (iii) for all 1 ≤ i ≤ n, Ii contains only variables
that are shared betweenϕ1∧ . . .∧ϕi andϕi+1∧ . . .∧ϕn. Consider now a program path
pc0  pcn, and its corresponding sequence of edge formulasTop1

, . . . , Topn
(where

Topi
is the formula attached to the edge(pci−1, opi,pci)). Then, it easy to see that the

traceF0, . . . , Fn generated by IC3 in refuting such path immediately satisfiespoints (i)
and (ii) above by definition, and, if we consider the sequenceTop1

〈0〉, . . . , Topn

〈n−1〉,
thenF0

〈0〉, . . . , Fn
〈n〉 satisfies also point (iii).

Under this view, the TREE-IC3 algorithm described in the previous section can be
seen as an instance of the lazy abstraction with interpolants algorithm of [18], in which
however interpolants are constructed in a very different way. In the algorithm of [18],
interpolants are constructed from proofs of unsatisfiability generated by the SMT solver
in refuting spurious error paths; as such, the generated interpolants might have a com-
plex Boolean structure, which depends on the structure of the proof generated by the
SMT solver. Moreover, they are typically large and possiblyvery redundant. In the iter-
ative process of expanding and refining ART nodes, it is oftenthe case that interpolants
become larger and larger, causing the algorithm to diverge.In fact, in our experiments
we have seen several cases in which the interpolant-based algorithm quickly runs out
of memory. On the other hand, when the interpolants are “good”, the algorithm is quite
fast, since interpolants can be quickly generated using a single call to the SMT solver
for each spurious error path.

Consider now the case of TREE-IC3. Here, the interpolants generated, being sets of
clauses, have a very regular Boolean structure, and experiments have shown that they
are often more compact than those generated from proofs, andas such do not cause
blow-ups in memory. Furthermore, another important advantage of having interpolants
(that is, abstract state formulas in the ART) in the form of sets of clauses is that this al-
lows to perform strengthening of nodes (see§4) at the level of granularity of individual

6 In fact, a similar observation has been done already for the fully-symbolic IC3 [12, 23].



clauses. In [18], strengthening (called “forced covering”there) is an “all or nothing”
operation: either the whole abstract state formulaϕP holds at a descendant nodeϕN ,
or no strengthening is performed. As our experimental evaluation in§6 will show, the
capability of performing clause-by-clause strengtheningis very important for perfor-
mance.

A drawback of TREE-IC3 is that the construction of the interpolants is typically
more expensive than with the proof-based approach, since itrequires many (albeit
simpler) calls to the SMT solver for each spurious path, and it also requires many
potentially-expensive calls to theAPPROX-PREIMAGE procedure needed for general-
izing IC3 to SMT (see§3). As a solution, we propose a hybrid approach that combines
TREE-IC3 with proof-based interpolant generation, in order to get the benefits of both.
The main idea of this new algorithm, which we call TREE-IC3+ITP, is that of gener-
ating the sets of clauses in the trace of TREE-IC3 starting from the proof-based inter-
polants, when such interpolants are “good”. More specifically, given an abstract error
pathpc0  pcE , before invoking IC3 on it, we generate an interpolantI0, . . . , In (for
the corresponding edge formulasTop1

, . . . , Topn
) with the efficient proof-based pro-

cedures available in interpolating SMT solvers (see e.g. [9]); then, we try to generate
clauses from eachIi by converting them to CNF, using anequivalence-preserving pro-
cedure(and not, as usual, a satisfiability-preserving one), aborting the computation if
this process generates too many clauses. Only when this procedure fails, we fall back
to generating sets of clauses with the more expensive IC3. This allows us to keep the
performance advantage of the proof-based interpolation method when the generated
interpolants are “good”, while still benefiting from the advantages of a clause-based
representation of abstract states outlined above. Despiteits simplicity, in fact, this hy-
brid algorithm turns out to be quite effective in practice, as our experiments in the next
section show.

6 Implementation and Experiments

We have implemented the algorithms described in the previous sections on top of the
MATHSAT5 SMT solver [14] and the KRATOS software model checker [8]. In this
section, we experimentally evaluate their performance.

6.1 Implementation details

Generalization of IC3 to SMT. Our current implementation uses the theory of Linear
Rational Arithmetic (LRA) for modeling program operations. LRA is well supported by
MATHSAT5, which implements efficient algorithms for both satisfiability checking and
interpolation modulo this theory [11, 9]. Moreover (and more importantly), using LRA
allows us to implement a simple and not-too-expensiveAPPROX-PREIMAGE procedure
for computing under-approximations of preimages, as required for generalizing IC3
to SMT (see§3). Given a bad cubes and a transition formulaT (X,X ′), the exact
preimage ofs wrt. T can be computed by convertings′ ∧ T to a DNF

∨
imi and

then projecting each of the cubesmi over the current-state variablesX:
∨

i ∃X
′.(mi).

Then, an under-approximation can be constructed by simply picking only a subset of



the projections of the cubesmi of the DNF. In our implementation, we use the All-
SMT-based algorithm of [20] to construct the DNF lazily, andin order to keep the cost
of the computation relatively low we under-approximate by simply stopping after the
first cube.

Implementation of IC3. In general, our implementation of IC3 follows the description
given in [12] (called PDR there). In order to be implemented efficiently, IC3 requires a
very tight integration with the underlying SAT (or SMT) solver, and the details of such
integration are sometimes crucial for performance. Therefore, here we precisely outline
the differences wrt. the description given in [12]. In particular, besides the obvious one
of using an SMT solver instead of a SAT solver, the two main differences are:

– For simplicity, we use a single solver rather than a different solver per frame, as
suggested in [12]. Moreover, since MATHSAT5 supports both an incremental in-
terface, through which clauses added and removed in a stack-based manner, and
an assumptions-based interface, we use a mixture of both forefficiently querying
the solver: we use assumptions for activating and deactivating the clauses of the
initial states, transition relation, bad states and those of the individual frames, as
described in detail in [12], whereas we use the push/pop interface for temporarily
adding a clause to the solver for checking whether such clause is inductive (relative
to the previously-generated ones). This allows us to avoid the need of periodically
cleaning old activation literals as described in [12].

– For reducing bad cubes that must be blocked during the execution of IC3, we ex-
ploit thedual-rail encodingtypically used in Symbolic Trajectory Evaluation [22].
We do not apply ternary simulation through the transition relation, as suggested in
[12] for the Boolean case, as we found the former to be much more efficient than
the latter. This is possibly because the data structures that we use for representing
formulas are relatively naı̈ve and inefficient.

Implementation of Tree-based IC3. We adopt the “Large-Block” encoding [3] of the
control-flow graph of the program under analysis, which collapses loop-free subparts
of the original CFG into a single edge, in order to take full advantage of the power of
the underlying SMT solver of efficiently reasoning with disjunctions. Currently, we do
not handle pointers or recursive functions, and we inline all the function calls so as to
obtain a single CFG.

For the construction of the abstract reachability tree, we adopt the “DFS” strategy
described by McMillan in [18]. When constructing the ART, we apply strengthening
systematically to each uncovered noden which has a proper ancestorp tagged with the
same program location, by adding ton all the clauses ofp that hold after the execution
of the pathp n, and strengthening the intermediate nodes accordingly.

Finally, in the “hybrid” version, we use a threshold on the size of the CNF con-
version for deciding whether to use interpolants for computing the sets of clauses for
refuting a spurious path: we compute the sequence of interpolants, and we try to convert
them to CNF, aborting the process when the formulas become larger thank times the
size of the interpolants (k being a configurable parameter set to5 in the experiments).7

7 We remark that here we need anequivalent, and not just equisatisfiable, CNF representation.
Therefore, such conversion might result in an exponential blow-up inthe size of the formula.



6.2 Benchmarks and Evaluation

For our evaluation, we use a set of 98 benchmark C programs from the literature, origi-
nating from different domains (e.g. device drivers, communication protocols, SystemC
designs, and textbook algorithms), most of which have been used in several previous
works on software model checking, The set includes the benchmarks used in the first
software verification competition (http://sv-comp.sosy-lab.org) that can be
handled by our implementation. About one third of the programs contain bugs.

All the benchmarks, tools and scripts needed for reproducing the experiments are
available athttp://es.fbk.eu/people/griggio/papers/cav12-ic3smt.
tar.bz2. The experiments have been run on a Linux machine with a 2.6GHz CPU,
using a time limit of 1200 seconds and a memory limit of 2GB.

For our evaluation, we tested the following algorithms/configurations:

IC3 is the fully symbolic version of IC3, in which the CFG is encoded symboli-
cally in the transition relation using an auxiliary variable representing the program
counter;8

TREE-IC3 is the CFG-based version of IC3, as described in§4;
TREE-IC3+ITP is the hybrid algorithm of§5, in which “good” interpolants are used

for computing sets of inductive clauses;
TREE-IC3+ITP- MONO is a variant of TREE-IC3+ITP in which strengthening of

nodes is performed “monolithically” by checking whetherall the clauses of an
ancestor nodep hold at a descendant noden, instead of checking the clauses indi-
vidually. This configuration mimics the forced coverage procedure applied in the
lazy abstraction with interpolants algorithm of [18];

TREE-ITP is an implementation of the lazy abstraction with interpolants algorithm
of [18];

K RATOS is an implementation of lazy predicate abstraction with interpolation-based
refinement, the default algorithm used by the KRATOSsoftware model checker [8].
(We recall that the difference with TREE-ITP is that in standard lazy predicate ab-
straction interpolants are used only as a source of new predicates, and abstract states
are computed using Boolean abstraction rather than using interpolants directly.)

All the implementations use the same front-end for parsing the C program and com-
puting its CFG, and they all use the same SMT solver (MATHSAT5 [14]) as a back-end
reasoning engine for all satisfiability checks and interpolation queries. Moreover, all the
tree-based algorithms use the same depth-first strategy forconstructing the ART, and all
the IC3-based ones use the same settings for IC3. This makes it possible to compare the
merits of the various algorithms (over the benchmark instances) without being affected
by potential differences in the implementation of other parts of the systems which are
orthogonal to the evaluation.

Moreover, in addition to comparing the different algorithms within the same imple-
mentation framework, we also compared our best algorithm with the following software
model checkers:

8 More precisely, we encode the program counter variable using⌈log
2
n⌉ Boolean variables,

wheren is the number of locations in the CFG.



CPACHECKER [4], which uses an algorithm based on lazy predicate abstraction[16]
(like KRATOS). CPACHECKER was the winner of the first software verification
competition.9

WOLVERINE [17], an implementation of the lazy abstraction with interpolants algo-
rithm [18] (like TREE-ITP). 10

6.3 Results

The results of the evaluation are summarized in Figure 4. Thescatter plots in the top
row show the comparisons of the various configurations of IC3proposed in the previous
Sections: first, we compare the fully-symbolic IC3 with TREE-IC3, in order to evaluate
the benefits of exploiting the CFG of the program; then, we evaluate the effect of us-
ing interpolants for computing sets of inductive clauses (TREE-IC3+ITP) wrt. “plain”
TREE-IC3; third, we evaluate the impact of the fine-grained strengthening that is pos-
sible when using a conjunctively-partitioned representation for abstract states, by com-
paring TREE-IC3+ITP with TREE-IC3+ITP-MONO. The rest of the plots show instead
the comparison of our best configuration, TREE-IC3+ITP, with alternative algorithms
and implementations. A summary of the performance results for all the algorithms/-
configurations is reported in the table, showing the number of instances successfully
checked within the timeout, and the total execution time forthe solved instances.

From the plots and the table of Figure 4, we can draw the following conclusions:

– All the techniques proposed in this paper lead to significantimprovements to IC3,
with TREE-IC3 solving 17 more instances than IC3 (and being up to two orders of
magnitude faster), and TREE-IC3+ITP solving 11 more instances than TREE-IC3;

– On relatively-easy problems, the IC3-based algorithms aregenerally more expen-
sive than the alternative techniques; in particular, the tools based on predicate ab-
straction (KRATOS and CPACHECKER) perform very well in terms of execution
time. However, on harder benchmarks TREE-IC3+ITP seems to be more robust
than the competitors. This is particularly evident for TREE-ITP and CPACHECKER,
which run out of memory in 25 and 34 cases respectively,11 whereas this never hap-
pens with KRATOS and TREE-IC3+ITP.

– The ability to perform clause-by-clause strengthening is very important for the per-
formance of TREE-IC3+ITP: when using a “monolithic” approach, TREE-IC3+ITP
(TREE-IC3+ITP-MONO) is not only almost always slower, but it also solves 13
instances less. However, we notice that even without it, TREE-IC3+ITP-MONO

behaves better than TREE-ITP, and in particular it is significantly more robust in
terms of memory consumption.

7 Related Work

Besides all the IC3-related approaches in the hardware domain [6, 5, 7, 12], as already
stated in§5 the work that is most closely-related to ours is the “lazy abstraction with in-

9 Seehttp://sv-comp.sosy-lab.org/results/index.php
10 It would have been interesting to include also the IMPACT tool of [18] in the comparison;

however, the tool is no longer available.
11 Notice that with CPACHECKER this happens even when increasing the memory limit to 4GB.
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Algorithm/Tool # solved Tot time
TREE-IC3+ITP 74 7654
KRATOS 66 1898
CPACHECKER 63 988
TREE-IC3 63 5548
TREE-IC3+ITP-MONO 61 7727
TREE-ITP 55 1934
IC3 46 7166
WOLVERINE 37 6160

TREE-IC3+ITP

Fig. 4.Experimental results.

terpolants” technique of McMillan [18]. Both TREE-IC3 and TREE-IC3+ITP, in fact,
can be seen as instances of the “lazy abstraction with interpolants” algorithm, in which
however interpolants are computed using the IC3 algorithm and approximate preimage
computations, rather than proofs of unsatisfiability produced by the SMT solver. This
in turn leads to interpolants that can be easily partitionedconjunctively, which allows to
significantly improve their usefulness in pruning the number of abstract paths that need
to be explored (see§5 and§6).

Another approach based on interpolation and explicit exploration of CFGs is de-
scribed in [19]. In this approach, the search in the CFG is guided by symbolic execution;
moreover, a learning procedure inspired by DPLL-based SAT solvers is applied in or-



der to generate new annotations that prevent the exploration of already-visited portions
of the search space. Such annotations are obtained from interpolants, generated from
proofs. In principle, it should be possible to apply IC3-based ideas similar to those that
we have presented also in that context.

Some analogies between the present work and the “DASH” approach described in
[2, 13], which analyzes programs with a combination of testing and verification, can
be seen in the use of approximate preimages and of highly-incremental SMT queries.
However, in another senseDASH is somewhat orthogonal to IC3-based techniques, in
that the latter could be used as a verification engine for the former. (In fact, although in
[2] an approach based on weakest preconditions is used, interpolation is suggested as a
potential alternative.)

Finally, the use of a clause-based representation for abstract states bears some sim-
ilarities with the work in [15]. However, the exploration ofthe CFG and the whole ver-
ification approach is very different, and the two approachescan be considered largely
orthogonal. In [15], the CFG is treated as a Boolean formula,whose satisfying assign-
ments, enumerated by a SAT solver, correspond to path programs that are checked with
different verification oracles. The invariants computed bysuch oracles are then used
to construct blocking clauses that prevent re-explorationof already-covered parts of
the program. Both the fully-symbolic and the tree-based versions of IC3 that we have
presented could be used as oracles for checking the path programs and generating in-
variants for the blocking clauses.

8 Conclusions and Future Work

We have presented an investigation on the application of IC3to the case of software.
We propose three variants: the first one, generalizing IC3 tothe case of SMT, provides
for the analysis of fully symbolically represented software; the second one, TREE-IC3,
relies on an explicit treatment of the CFG; the third one is a hybrid appraoch based on
the use of interpolants to improve TREE-IC3.

IC3 is a radically new verification paradigm, and has a great potential for future
developments in various directions. First, we intend to investigate further IC3 in the
setting of SMT, devising effective procedures forAPPROX-PREIMAGE in other relevant
theories, and adding low-level optimization techniques, similarly to the highly tuned
techniques used in the Boolean case. Second, we intend to investigate the extraction
of CFG’s from hardware designs, in the same spirit as the transition-by-transition ap-
proach [21], and to apply IC3 directly to descriptions in high-level languages such as
Verilog or VHDL. Finally, we intend to extend IC3 to richer theories such as bit vectors
and arrays, and to the case of networks of hybrid systems [10].
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