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Abstract. IC3 is a recently proposed verification technique for the analysis of
sequential circuits. IC3 incrementally overapproximates the state spHoe,
ing potential violations to the property at hand by constructing relative thauc
blocking clauses. The algorithm relies on aggressive use of Bool&afiatality
(SAT) techniques, and has demonstrated impressive effectiveness

In this paper, we present the first investigation of IC3 in the setting of soéw
verification. We first generalize it from SAT to Satisfiability Modulo Theories
(SMT), thus enabling the direct analysis of programs after an encadfogn of
symbolic transition systems. Second, to leverage the Control-Flow GEFB)(

of the program being analyzed, we adapt the “linear” search style3fd@ tree-
like search. Third, we cast this approach in the framework of lazyatigin with
interpolants, and optimize it by using interpolants extracted from prodisnw

useful.
The experimental results demonstrate the great potential of IC3, areffée

tiveness of the proposed optimizations.

1 Introduction

Aaron Bradley [6] has recently proposed IC3, a novel tealmifpr the verification of
reachability properties in hardware designs. The tectnitas been immediately gen-
erating strong interest: it has been generalized to dehlliv#ness properties [5], and
to incremental reasoning [7]. A rational reconstructiori@3, referred to as Property
Driven Reachability (PDR), is presented in [12], togeth&hwan efficient implemen-
tation: an experimental evaluation shows that IC3 is sopéwi any other single solver
used in the hardware model checking competition.See aBjdg2an overview.

The technique has several appealing aspects. First,afitférom bounded model
checking, k-induction or interpolation, it does not reguimrolling the transition rela-
tion for more than one step. Second, reasoning is highhlilmthto restricted sets of
clauses, and driven by the property being analyzed. Findléymethod leverages the
power of modern incremental SAT solvers, able to efficiestive huge numbers of
small problems.

In this paper, we investigate the applicability of IC3 tote@fre model checking.
We follow three subsequent steps. We first generalize |IC® filee purely Boolean
case [6], based on SAT, to the case of Satisfiability Moduledrit (SMT) [1]. The
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characterizing feature of the generalization is the comatpurt of (underapproximations
of) the preimage of potential bug states. This allows us & déth software modeled
as a (fully) symbolic transition system, expressed by meéfisst order formulae.

The second step is motivated by the consideration that thesigmbolic represen-
tation does not exploit the control flow graph (CFG) of thegueon. Thus, we adapt
IC3, that is “linear” in nature, to the case of a tree, whickhis Abstract Reachability
Tree (ART) resulting from the unwinding of the CFG. This teitjue, that we refer to
as TREE-IC3, exploits the disjunctive partitioning of the softwamplicit in the CFG.

The third step stems from the consideration thaeE-IC3 can be seen as a form
of lazy abstraction with interpolants [18]: the clausesduaed by IC3 are in fact in-
terpolants at the various control points of the ART. Frons thie obtain another opti-
mization, by integrating interpolation within 1C3. Withgwf-based interpolation, once
the path being analyzed is shown to be unfeasible with one 8MTit is possible to
obtain interpolants for each control point, at a low coste Kay problem with interpo-
lation is that the behaviour is quite “unstable”, and intdgnts can sometimes diverge.
On the other hand, IC3 often requires a huge number of indafidalls to converge,
and may be computationally expensive, especially in the $S&Se, although it rarely
suffers from a memory blow-up. The idea is then to obtain sgasets for IC3 from
proof-based interpolation, in the cases where this is rottstly.

We carried out a thorough set of experiments, evaluatingribgts of the three
approaches described above, and comparing with otheritpemfor software model
checking. The results show that the explicit managemettso€-G is often superior to
a symbolic encoding, and that the hybrid computation ofsggucan sometimes yield
significant speed-ups. A comparison with other approacheasthat REE-IC3 can
compete with mature techniques such as predicate abetraatid lazy abstraction with
interpolants.

This work has two key elements of novelty. The seminal IC346d all the ex-
tensions we are aware of [12, 7, 5] address the problem fiyr $yimbolic transition
systems at the bit level. This paper is the first one to lift i@8n SAT to SMT, and
also the first one to adapt IC3 to exploit the availabilityloé CFG.

This paper is structured as follows. In Sec. 2 we present $@wieground. In Sec. 3
we describe the SMT generalization of IC3. In Sec. 4 we pteserE-1C3, and in
Sec. 5 REE-IC3+ITP, the hybrid approach using interpolants extradtem proofs.
In Sec. 6 we experimentally evaluate the approach. In Se@ @iscuss related work.
Finally, in Sec. 8 we draw some conclusions and outline lofdature research.

2 Background and Notation

Our setting is standard first order logic. We use the standations of theory, satisfi-
ability, validity, logical consequence. We denote fornsuigth ¢, ¢, I, T, P, variables
with z, y, and sets of variables witl(, Y. Unless otherwise specified, we work on
quantifier-free formulas, and we refer to O-arity predisade Boolean variables, and
to O-arity uninterpreted functions as (theory) variabkeéiteral is an atom or its nega-
tion. A clauseis a disjunction of literals, whereascaibeis a conjunction of literals.
If sis acubel; A ... AL, with =s we denote the clausel; Vv ... Vv —l,, and vice



versa. A formula is in conjunctive normal form (CNF) if it iscanjunction of clauses,
and in disjunctive normal form (DNF) if it is a disjunction ofibes. With a little abuse
of notation, we might sometimes denote formulas in GFA ... A C,, as sets of
clauses{C,...,C,}, and vice versa. If{;, ..., X,, are a sets of variables andis

a formula, we might writep(X4, ..., X,,) to indicate that all the variables occurring
in ¢ are elements ofJ, X;. For each variable, we assume that there exists a corre-
sponding variable’ (the primed versiorof z). If X is a set of variablesX’ is the set
obtained by replacing each elementvith its primed version. Given a formula, ¢’

is the formula obtained by adding a prime to each variablemwirg in ¢, ande (™ is
the formula obtained by addingprimes to each of its variables. Given a the@rywe
write ¢ =7 v (or simply = 1) to denote that the formulg is a logical consequence
of ¢ in the theoryT. Given a first-order formulg, we call theBoolean skeletoof
 the propositional formula obtained by replacing each thedom iny with a fresh
Boolean variable.

We represent a program bycantrol-flow graph(CFG). A CFGA = (L, G) con-
sists of a sef. of program locations, which model the program coumperand a set
G C L x Ops x L of control-flow edges, which model the operations that aszeted
when control flows from one program location to another. Téteo$ variables that oc-
cur in operations fron®ps is denoted byX. We use first-order formulas for modeling
operations: each operatiene Ops has an associated first-order formdig X, X’)
modeling the effect of performing the operationA program I = (A, pc,, pCg)
consists of a CFGA = (L, G), an initial program locatiopc, € L (the program
entry), and a target program locatipn, € L (the error location). Apath is a se-
quence(pc,, opo, PCy ), (PCy, 0p1, PCy)s - - -, (PC,,_1, OPn—1, PC,,), FEPresenting a syn-
tactical walk through the CFG. The pattis feasibleiff the formula A, T,,, " is sat-
isfiable. Whenr is not feasible, we say it ispurious A program issafewhen all the
paths leading tpc are not feasible.

Given a programyI, an abstract reachability tre¢ART) for II is a tree.A over
(V, E) such that: (i)V is a set of triplegpc, ¢, h), wherepc € L is a location in the
CFG of I1, ¢ is a formula overX, andh € N is a unique identifier; (ii) the root of
Ais (pc,, T, 1); (iii) for every non-leaf node £ (pc;, ¢, h) € V, for every control-
flow edge(pc;, op, pc;) € G, v has a child nodgpc;, ¢, k) such thatp A T, = '
andk > h. In what follows, we might denote withc, ~ pc; any path in an ART

from a nodg(pc;, ¢, h) to a descendant nodpc;, ¢, k). Intuitively, an ART represents

an unwinding of the CFG of a program performed in an abstriate space. | £

(pc,, ¢, h) is a nodey is theabstract state formulaf v. A nodewv; « (pc;, 9, k) in

def

an ART A is coveredif either: (i) there exists another node = (pc,, ¢, h) in A such
thath < k, ¢ = ¢, andvs is not itself covered; or (iiy; has a proper ancestor for
which (i) holds.A is completdf all its leaves are either covered or their abstract state
formula is equivalent tal.. A is safeif and only if it is complete and, for all nodes
(pCg, v, h) € V, ¢ = L. If aprogramll has a safe ART, thefY is safe [16, 18].

Given a setX of (state) variables, #ransition systent over X can be described
symbolically with two formulasis(X), representing the initial states of the system,
andTs (X, X’), representing its transition relation. Given a progreima correspond-



ing transition systent;; can be obtained by encoding symbolically the CHGG)
of II. This can be done by: (i) adding one special elemggt with domain L, to

dei def

the setX of variables; (i) setting/s,, e (xzpc = PCy); and (iii) settingTs, =
\/(pci,op,pcj)eG(xPC = pcv) A TO:D A (%c = pcj)'

Given Sy, the safety of the prografi can be established by proving that all the
reachable states of;; are a subset of the states symbolically described by theuilarm
p= —(xpc = PCg). Inthis case, we say thal; satisfies the invariant properfy.

3 IC3 with SMT

High-level description of IC3. Let X be a set of Boolean variables, and febe a
given Boolean transition system described symbolically/fY) and7'(X, X'). Let
P(X) describe a set of good states. The objective is to prove thtieareachable
states ofS are good. (Conversely, P(X) represents a set of “bad” states, and the
objective is to show that there exists no sequence of tiansifrom states in(X)
to states innP(X).) The IC3 algorithm tries to prove that satisfiesP by finding a
formula F(X) such that: ()I(X) = F(X); (i) F(X) ANT(X,X') = F(X’); and
(i) F(X) E P(X).

In order to construct’, which is an inductive invariant, IC3 maintains a sequence
of formulas (calledrace, following [12]) Fo(X),. .., F%(X) such that:

-y =1,

— forall - > 0, F; is a set of clauses;
— Fiy1 C F; (thus,F; = Fiqa);

- FZ(X) A T(X, X/) ': FiJrl(X/);
—foralli < k, F; = P;

The algorithm proceeds incrementally, by alternating tivases: a blocking phase,
and a propagation phase. In thleckingphase, the trace is analyzed to prove that no in-
tersection betweef;, and—P(X) is possible. If such intersection cannot be disproved
on the current trace, the property is violated and a couxaenple can be reconstructed.
During the blocking phase, the trace is enriched with adddli clauses, that can be
seen as strengthening the approximation of the reachatibesgiace. At the end of the
blocking phase, if no violation is foundy, = P.

The propagationphase tries to extend the trace with a new formigla,;, moving
forward the clauses from precedifg If, during this process, two consecutive elements
of the trace (calleflameg become identical (i.&; = F;, 1), then a fixpointis reached,
and IC3 can terminate with; being an inductive invariant proving the property.

Let us now consider the lower level details of IC3. Eor- 0, F; represents an
over-approximation of the states Sfreachable in transition steps or less. The dis-
tinguishing feature of IC3 is that such sets of clauses anstoacted incrementally,

1 we follow the formulation of 1C3 given in [12], which is slightly differentim the original
one of Bradley given in [6]. Moreover, for brevity we have to omitesg important details,
for which we refer to the two papers cited above.



bool IC3-prove(, T', P):
1. trace =[] #first elem of trace is init formula
2. trace.push(}# add a new frame to the trace
3. while True:
# blocking phase
4. while there exists a cubes.t. trace.lastO\ T' A ¢ is satisfiable and |= —P:
5. recursively block the paifc, trace.size()}- 1)
6. if a pair(p, 0) is generated:
7. return False # counterexample found
# propagation phase
8. trace.push()
9. for + = 1 to trace.size()- 1:
10. for each clausec € trace[i]:
11. if trace[i]A ¢ AT A —c’ is unsatisfiable:
12. addc to trace[i+1]
13. if trace[i] == trace[i+1]:
14. return True # property proved

Fig. 1. High-level description of IC3 (following [12]).

starting from cubes representing sets of states that cah eebad state in zero or more
transition steps. More specifically, in the blocking phd€:8 maintains a set of pairs
(s,1), wheres is a cube representing a set of states that can lead to a hadastd

i > 0 is a position in the current trace. New clauses to be addesbtog of the frames
in) the current trace are derived by (recursively) provingtta sets of a pair(s, ) is
unreachable starting from the formufa_,. This is done by checking the satisfiability
of the formula:

F,_ 1 AN-sATAS. (1)

If (1) is unsatisfiable, and does not intersect the initial staté®f the system, thers

is inductive relative taF;_, and IC3 strengthenk; by adding—s to it?, thusblocking
the bad state ati. If, instead, (1) is satisfiable, then the overapproxinmafip_; is not
strong enough to show thatis unreachable. In this case, jebe a cube representing
a subset of the states ii_; A —s such that all the states jmlead to a state iB’ in
one transition step. Then, IC3 continues by trying to shat;itis not reachable in one
step fromF;_, (that is, it tries to block the paifp,i — 1)). This procedure continues
recursively, possibly generating other pairs to block alierapoints in the trace, until
either IC3 generates a péif, 0), meaning that the system does not satisfy the property,
or the trace is eventually strengthened so that the origiagl(s, i) can be blocked.
Figure 1 reports the pseudo-code for the full IC3 algoritimaluding more details on
the propagation phase.

Extension to SMT. In its original formulation, IC3 works on finite-state sysi®,
with Boolean state variables and propositional logic fdamuusing a SAT solver as
its reasoning engine. However, for modeling programs itfisromore convenient to

2 In fact, —s is actuallygeneralizecbefore being added tB;. Although this is quite important
for the effectiveness of IC3, here for simplicity we shall not discuiss th



reason at a higher level of abstraction, using (decidabég)fients of first-order logic
and SAT modulo theories (SMT).

Most of the machinery of IC3 can be lifted from SAT to SMT in eagghtforward
way, by simply replacing the underlying SAT engine with an BEblver. From the
point of view of IC3, in fact, it is enough to reason at the lesfehe Boolean skeleton
of formulas, simply letting the SMT solver cope with the mpestation of the theory
atoms. There is, however, one crucial step in which 1C3 masnhde theory-aware,
as reasoning at the Boolean-skeleton level does not woik.lEppens in the blocking
phase, when trying to block a pdi, 7). If the formula (1) is satisfiable, then a new pair
(p,i — 1) has to be generated such thas a cube in thereimage ofs wrt. 7'. In the
purely-Boolean case, can be obtained from the modelof (1) generated by the SAT
solver, by simply dropping the primed variables occurrimg F This cannot be done in
general in the first-order case, where the relationshipé&etvthe current state variables
X and their primed versioX’ is encoded in the theory atoms, which in general cannot
be partitioned into a primed and an unprimed set.

Afirst (and rather nize) solution would be to consider the theory model for tlagest
variablesX generated by the SMT solver. However, for infinite-statéesys this would
lead IC3 to exclude only a single point at a time. This will inideely be impractical:
being the state space infinite, there would be a high chamt¢¢hté blocking phase will
diverge.

For theories admitting quantifier elimination, a betteeaiative is to compute an
exact preimage of. This means to existentially quantify the variablésin (1), elimi-
nate the quantifiers, and then convert the result in DNF. WHigenerate a set of cubes
{p,},; which in turn generate a set of paifé,,i — 1)}, to be blocked at — 1. The
drawback of the second solution is that for many importaabtles, even when it is
possible, quantifier elimination may be a very expensiveatpm.

We notice that the two solutions above are just the two exteeof a range of
possibilities: in fact, any procedure that is able to corapn under-approximation of
the exact preimage can be used. Depending on the theoryabaaele-offs between
precision and computational cost can be explored, rangimmg &ingle points in the
state space to a precise enumeration of all the cubes inghmaage. In what follows, we
shall assume that we have a procedaP@ROX-PREIMAGE for computing such under-
approximations, and present our algorithms in a genergkgonWe shall discuss our
current implementation, which uses the theory of Lineaiddal Arithmetic, ing6.

Discussion. We conclude this Section by pointing out that the ideas Upiey IC3
are nontrivial even in the Boolean case. At a very high letied, correctness is based
on the invariants ensured by the blocking and propagatias¢s Termination follows
from the finiteness of the state space being analyzed, andtfre fact that at each step
at least one more new state is explored. A more in depth jedifin is out of the scope
of this paper. The interested reader is referred to [6, 23, 12

In the case of SMT, we notice that the invariants of the traee hold in the
SMT case, so that the argument for the finite case can be dpplis ensures partial

3 For efficiency, the result has to be generalized by dropping irrelesaaiatbles, but this is not
important for the discussion here.



correctness. On the other hand, the reachability problénghadecidable for infinite-
state transition systems, it is impossible to guaranteaitation. This might be due
to the failure in the blocking phase to eliminate all the devexamples, for the given
trace length, or to the failure to reach a fixpoint in the pggion phase.

4 Tree-based IC3

We now present an adaptation of IC3 from symbolic transisgatems to a CFG-
represented program. The search proceeds in an “expjitibglic’ approach, simi-
larly to the lazy abstraction approach [16]. The CFG is unmebinto an ART (Abstract
Reachability Tree), following a DFS strategy. Each noddefttee is associated with a
location, and a set of clauses.

The algorithm starts by finding an abstract path to the eoeation. Then, it applies
a procedure that mimics the blocking phase of IC3 on the $etsioses of the path.

There are three important differences. First, the claussscéated to a node are im-
plicitly conditioned to the corresponding control locatidhe clause-(zpc = pc;) V ¢
in the fully symbolic setting simply becomesn a node associated with control loca-
tion pc,. This also means that the logical characterization of a heileg unreachable,
expressed by the claus€z,c = pcy) in the fully symbolic setting, is now the empty
clause. Second, in each formdlacharacterizing a transition, the start and end control
locations are not explicitly represented, but rather igifhyi assumed. Finally, the most
important difference is in the inductiveness check per&miwhen constructing the IC3
trace. When checking whether a cubis blocked by a set of clausé$_;, we cannot
use the relative inductiveness check of (1). This is becthatenvould not be sound in
our setting, since we are using different transition forasdl; at different; steps (cor-
responding to the edge formulas in the abstract error patierefore, we replace (1)
with the weaker check

F, gy ATy |- (2

which allows us to construct a correct ART (satisfying pgifij—(iii) of the definition
on page 3.) We observe that, because of this differenceetherement thaf; ,; C F;
is not enforced in REE-IC3.

With this adaptation, the blocking phase tries to produeedluses necessary to
refute the abstract path. When the blocking phase is suctegsiust generate an
empty clause at some point. In case of failure to refute tlie, piae property is violated
and a counterexample is produéetf sufficient information can be devised to refute
the abstract path to the error location, the algorithm bracks to the deepest node that
is not inconsistent (i.e. is not associated with the empayist). The pseudo-code of
this modified blocking phase, which we calREE-IC3-BLOCK-PATH, is reported in
Figure 2.

Then, a new node is selected and expanded, with a process #i@ilar in nature
to the forward propagation phase of IC3. For each expanddd,rbe clauses of the
ancestor are tested for forward propagation, in order tarenthe invariant that the

4 The counterexample has exactly the same length as the abstract patis. & késy difference
with respect to the case of the fully symbolic IC3.



procedure TREE-IC3-BLOCK-PATH (m o (PCy, T,1) ~ ... (PC;, @i, <) ... ~ (PCx, Pns -)):
#T) ...T,_ are the edge formulas af
# initialize the trace with the clauses attached to the nades

1 Fz[Tv---xQOiv---v Sonfl]

2. whilenotexistsjinl...n —1st.F[j]AT; = L:

3. a=1

4. for each badin APPROX-PREIMAGE (¢n,—1 A Th—1):

5. g.push((badp — 1)) # bad is a cube in the preimage f, —1

6. while q is not empty:

7. ¢, j = 0.top()

8. if 7 = 0: compute andeturn a counterexample trac = is a feasible error trace|

9. if F[j_l]/\Tj—l ):—‘C/:

10. g.pop() # c is blocked, discard the proof obligation

11. g = generalization ofcs.t.F[j — 1] ATj_1 = ¢’

12 F[j] = Fljl A g

13. else

14. for eachp in APPROX-PREIMAGE (F[j — 1] ATj_1 A C):

15. g.push(p, j — 1))

16. return F' #m is blocked

Fig. 2. Modified blocking phase of Ree-1C3 for refuting a spurious error path.

clauses of an abstract node overapproximate the image pfedecessor clauses. More
specifically, for each clause we check whetheF; A (zpc = pc;) — ¢ A T, entails
(he = PCi11) — .

A significant difference with respect to IC3 is in the way thegbint is handled.

In IC3 the fix point is detected globally, by comparing two setpuent formulae in
the trace. Here, as standard in lazy abstraction, we clode gath of the ART being
generated.

Whenever a new node is expanded, it is checked against previously generated
nodesv having the same location. If the set of states’of contained in the states of
some previously generated nodeheny’ is covered, and it can be closed

In order to maximize the probability of coverage, the IG&Iforward propagation
phase is complemented by another form of forward propagatibenever a loop is en-
countered (i.e. the nodé being expanded has the same location of one of its ancestors
v), then each of the clauseswfs tested to see if it also holdsin. Letv, vy, ..., v, v
be the path fromv to v’. For each clausein v, we check if the symbolic encoding of
the pathv ~ ¢/, strengthened with the clauses in eaghentailsc in v’.

It is easy to see that this may result in a stronger set of elafm+’, because the
analysis is carried out on the concrete path fremo +/, that retains all the available
information. Simple forward propagation would not be ablathieve the same result,
because of the limited strength of the clauses on the in@iateenodes;. Intuitively,
this means that the clausestinmay be compatible with (too weak to block) the paths
that violate the clauses efthat also hold ins’. Thus, simply strengthening would

5 In fact, it is also required that there will be no cycles in the covering-uedog interplay. This
requirement is a bit technical, and discussed in detail in [18]. In theitlefirof covered node,
in §2, identifiers to nodes are intended to enforce this requirement.



ART UNWINDING :
if v & (pc;, ¢, h) is an uncovered leaf:
for all edges(pc;, op, pc;) in the CFG:

addv; £ (pc;, T, k) with k > h as a child

of v inthe ART

PATH BLOCKING :
ifog & (pcg, ¢, h) is aleaf withy = L:
apply TREE-IC3-BLOCK-PATH (Fig. 2) to
the ART pathr ! (pcy, T,1) ~ v
if IC3 returns a counterexample: retWwNSAFE
otherwise:
let F1, ..., Fg be the sets of clauses
computed by IC3 for the formulas
Topys--sTopy Of T
for each node; def (pc;, wi, hi) €,
for each clause; in the corresponding’;:
if %2} % Cj, then:
adde 1o ¢;
uncover all the nodes covered by

NODE COVERING:
. def . .
if v, = (pc;, ¥, k) is uncovered, and there exists

v2 & (pc;, @, h) with k > h andy = ¢, then:

markwv; as covered by

uncover all the nodes; & (pc;, 5, kj;) covered by

STRENGTHENING:
ef

letv; = (pc;, ¢, h1) andvg & (pCy,, ¥, ho) be two

. f
uncovered nodes s.t. there is a pﬁtgﬁ V]~ V3,
def

and letg = A\'_, Top, (7 be the formula forr
letCyy vy =0
for eachc; € ¢:
if ¥ B~ ¢j andp(® A ¢ b= ¢ (™
addc; to Cyy vy
if Cyqve # 0
refute—C', v, Using TREE-IC3-BLOCK-PATH alongm
for each node; & (pcj, 4, hj) € m
add all the clauses € F; computed by IC3 s.tp; [~ ¢
if p; changes, uncover all the nodes covered by
addC,, v, to1, and uncover all the nodes covereduday

Fig. 3. High-level description of the basic building blocks oR&Ee-1C3.

break the invariant that, in each node, the abstract stateufa overapproximates the
image of the abstract state formula of its parent node (p@ihtin the definition of
ART, §2). In order to restore the situation, thenodes must be strengthened. L&t
be the set of clauses ofthat also hold in’. Before adding”,, ,» to v, we strengthen
the v; nodes with the information necessary to block the violabéd, .- in v'. This
is done by “tricking” the blocking phase, using the negatbi’, ., as conjecture: the
clauses deduced in the process of refutirfg, ,» can be added to strengthen eagh

After this, C, . is added ta'.

Notice that whenever a nodeis strengthened, then each nodethat had been
covered byv must be re-opened. In fact, after the strengthening, thefsgates ofv
shrinks, thus the set of states«f that was previously covered, might no longer be

contained.

A high-level view of the basic steps ofREE-IC3 is reported in Figure 3. We shall
describe the actual strategy that we have implemented fuyiag these steps if6.
(Notice that the forward propagation that is performed whemde is expanded is just
a special case of the more general strengthening procadwajch the path between
the two nodes involved consists of a single edge, and as saehribt require a call to
IC3 for strengthening the intermediate nodes.)

Comparison with IC3. When the fully symbolic IC3 analyzes a program (in form of
symbolic transition system), some literals representdhbation in the control flow that
is “active”. This information, that is implicit in the pog&ih in the ART, becomes direct
part of the clauses. There is the possibility for clausesetpigsent at frames where
the corresponding location can not be reached, and thahaseitrelevant. Another
advantage of the REE-IC3 approach is that the program is disjunctively panti&d,




transition by transition, and thus the SMT solver is maraging simpler and smaller
formulae. On the other hand, the symbolic representatieasghe ability to implicitly
“replicate” the same clause over many control locations padrticular, when no con-
trol location is relevant in the clause, it means that it kdlat all the control locations.
Moreover, using a symbolic representation of the prograateansition formula allows

to exploit relative inductiveness, which is crucial for rerformance of the original IC3
(on hardware designs). As already mentioned above, relatductiveness cannot be
directly applied in our setting, because we use a disjuelstipartitioned representa-
tion. In our experimentssg), we show that the benefits of a CFG-guided exploration
significantly outweigh this drawback in the verification efisiential programs.

5 Hybrid Tree IC3

It can be observed that the sequence of sets of clauses ghbyahe Tree-based IC3
for refuting a spurious abstract error path can be seen astenmpolantfor the path,
in the sense used by McMillan in his “lazy abstraction witkenmpolants” algorithm
[18].% Recalling the definition of [18], given a sequence of fornsulaZ ¢, ..., ¢y,
an interpolant is a sequence of formul@s. . ., I,, such that: (i), = T and/l, = L;
(i)forall 1 <i<n, I,_1 Ap; E I; (i) forall 1 <i <mn, I; contains only variables
that are shared betwegn A...Ap; andy; 11 A. .. Ag,. Consider now a program path
pc, ~ pc,,, and its corresponding sequence of edge formilgs, . .., T,,, (where
Top, is the formula attached to the ed@e,_,, op;, pc;)). Then, it easy to see that the
tracery, ..., F, generated by IC3 in refuting such path |mmed|ately satigfoasts (i)
and (i) above by definition, and, if we consider the sequéﬂ;,;@ vy Top,, {n—1),
thenF, (..., F,™ satisfies also point (iii).

Under this view, the REE-IC3 algorithm described in the previous section can be
seen as an instance of the lazy abstraction with interpoklgorithm of [18], in which
however interpolants are constructed in a very different. wathe algorithm of [18],
interpolants are constructed from proofs of unsatisfigtgienerated by the SMT solver
in refuting spurious error paths; as such, the generatedpolants might have a com-
plex Boolean structure, which depends on the structureeptbof generated by the
SMT solver. Moreover, they are typically large and possidyy redundant. In the iter-
ative process of expanding and refining ART nodes, it is aftercase that interpolants
become larger and larger, causing the algorithm to divergiact, in our experiments
we have seen several cases in which the interpolant-bagedthi quickly runs out
of memory. On the other hand, when the interpolants are “gdbd algorithm is quite
fast, since interpolants can be quickly generated usingg@estall to the SMT solver
for each spurious error path.

Consider now the case oREE-IC3. Here, the interpolants generated, being sets of
clauses, have a very regular Boolean structure, and exeetinmave shown that they
are often more compact than those generated from proofsasusdch do not cause
blow-ups in memory. Furthermore, another important achgabf having interpolants
(that is, abstract state formulas in the ART) in the form d¢f ¥ clauses is that this al-
lows to perform strengthening of nodes (§d¢ at the level of granularity of individual

8 In fact, a similar observation has been done already for the fully-siiont@3 [12, 23].



clauses. In [18], strengthening (called “forced coveritiggre) is an “all or nothing”
operation: either the whole abstract state formpjaholds at a descendant nodey,
or no strengthening is performed. As our experimental exadn in §6 will show, the
capability of performing clause-by-clause strengthenigery important for perfor-
mance.

A drawback of TREE-IC3 is that the construction of the interpolants is tyfigal
more expensive than with the proof-based approach, sinmeqitires many (albeit
simpler) calls to the SMT solver for each spurious path, amalso requires many
potentially-expensive calls to thePPROX-PREIMAGE procedure needed for general-
izing IC3 to SMT (seg3). As a solution, we propose a hybrid approach that combines
TREE-IC3 with proof-based interpolant generation, in orderedtge benefits of both.
The main idea of this new algorithm, which we cakRde-1IC3+ITP, is that of gener-
ating the sets of clauses in the trace &f£E-1C3 starting from the proof-based inter-
polants, when such interpolants are “good”. More speclficglven an abstract error
pathpc, ~» pcg, before invoking IC3 on it, we generate an interpolant . ., I,, (for
the corresponding edge formulds,, , ..., 7T,,,) with the efficient proof-based pro-
cedures available in interpolating SMT solvers (see e]y; {8en, we try to generate
clauses from each by converting them to CNF, using @guivalence-preserving pro-
cedure(and not, as usual, a satisfiability-preserving one), apthe computation if
this process generates too many clauses. Only when thisgwoe fails, we fall back
to generating sets of clauses with the more expensive 1Ci3.dllows us to keep the
performance advantage of the proof-based interpolatiothadewhen the generated
interpolants are “good”, while still benefiting from the amNages of a clause-based
representation of abstract states outlined above. Deispisemplicity, in fact, this hy-
brid algorithm turns out to be quite effective in practice cair experiments in the next
section show.

6 Implementation and Experiments

We have implemented the algorithms described in the prevsegtions on top of the
MATHSAT5 SMT solver [14] and the KaTOs software model checker [8]. In this
section, we experimentally evaluate their performance.

6.1 Implementation details

Generalization of IC3 to SMT. Our current implementation uses the theory of Linear
Rational Arithmetic (LRA) for modeling program operatiohfA is well supported by
MATHSATS5, which implements efficient algorithms for both sagibfiity checking and
interpolation modulo this theory [11, 9]. Moreover (and manportantly), using LRA
allows us to implement a simple and not-too-expens®eROX-PREIMAGE procedure
for computing under-approximations of preimages, as requfor generalizing IC3
to SMT (see§3). Given a bad cube and a transition formuld'(X, X’), the exact
preimage ofs wrt. 7" can be computed by converting A 7' to a DNF\/, m; and
then projecting each of the cubes over the current-state variablés \/, 3X’.(m;).
Then, an under-approximation can be constructed by simpkimgy only a subset of



the projections of the cubes; of the DNF. In our implementation, we use the All-
SMT-based algorithm of [20] to construct the DNF lazily, anarder to keep the cost
of the computation relatively low we under-approximate bypy stopping after the
first cube.

Implementation of IC3. In general, our implementation of IC3 follows the descopti
given in [12] (called PDR there). In order to be implement#itiently, IC3 requires a
very tight integration with the underlying SAT (or SMT) sely and the details of such
integration are sometimes crucial for performance. Theegthere we precisely outline
the differences wrt. the description given in [12]. In pautar, besides the obvious one
of using an SMT solver instead of a SAT solver, the two maifedénces are:

— For simplicity, we use a single solver rather than a diffesaiver per frame, as
suggested in [12]. Moreover, sinceAvHSATS5 supports both an incremental in-
terface, through which clauses added and removed in a bass#d manner, and
an assumptions-based interface, we use a mixture of bottffiorently querying
the solver: we use assumptions for activating and deaictiydlbe clauses of the
initial states, transition relation, bad states and thdsbeindividual frames, as
described in detail in [12], whereas we use the push/popfate for temporarily
adding a clause to the solver for checking whether such elslaductive (relative
to the previously-generated ones). This allows us to avedeed of periodically
cleaning old activation literals as described in [12].

— For reducing bad cubes that must be blocked during the erecot IC3, we ex-
ploit thedual-rail encodingtypically used in Symbolic Trajectory Evaluation [22].
We do not apply ternary simulation through the transitidatien, as suggested in
[12] for the Boolean case, as we found the former to be mucterafficient than
the latter. This is possibly because the data structureéswhase for representing
formulas are relatively rige and inefficient.

Implementation of Tree-based IC3. We adopt the “Large-Block” encoding [3] of the
control-flow graph of the program under analysis, whichajmdes loop-free subparts
of the original CFG into a single edge, in order to take fuNautage of the power of
the underlying SMT solver of efficiently reasoning with disgtions. Currently, we do
not handle pointers or recursive functions, and we inlim¢ha function calls so as to
obtain a single CFG.

For the construction of the abstract reachability tree, d@paithe “DFS” strategy
described by McMillan in [18]. When constructing the ART, wepdy strengthening
systematically to each uncovered nodehich has a proper ancesiotagged with the
same program location, by addingriall the clauses gb that hold after the execution
of the pathp ~ n, and strengthening the intermediate nodes accordingly.

Finally, in the “hybrid” version, we use a threshold on theesof the CNF con-
version for deciding whether to use interpolants for cormauthe sets of clauses for
refuting a spurious path: we compute the sequence of intersy and we try to convert
them to CNF, aborting the process when the formulas becorgerléhank times the
size of the interpolantsi(being a configurable parameter sebtim the experiments).

" We remark that here we need aquivalent and not just equisatisfiable, CNF representation.
Therefore, such conversion might result in an exponential blow-tipeisize of the formula.



6.2 Benchmarks and Evaluation

For our evaluation, we use a set of 98 benchmark C programstfre literature, origi-
nating from different domains (e.g. device drivers, comivation protocols, SystemC
designs, and textbook algorithms), most of which have besed in several previous
works on software model checking, The set includes the breadks used in the first
software verification competitiom{ t p: / / sv- conp. sosy- | ab. or g) thatcan be
handled by our implementation. About one third of the praggaontain bugs.

All the benchmarks, tools and scripts needed for reproduttie experiments are
availableahtt p: / / es. f bk. eu/ peopl e/ gri ggi o/ papers/cavl2-ic3snt.
tar. bz2. The experiments have been run on a Linux machine with a 2z6GPLJ,
using a time limit of 1200 seconds and a memory limit of 2GB.

For our evaluation, we tested the following algorithmsfeaurations:

IC3 is the fully symbolic version of IC3, in which the CFG is eneddsymboli-
cally in the transition relation using an auxiliary varialbepresenting the program
counter®

TREE-IC3 s the CFG-based version of IC3, as describetin

TREE-IC3+ITP is the hybrid algorithm o$5, in which “good” interpolants are used
for computing sets of inductive clauses;

TREE-IC3+ITP-MONO is a variant of REE-IC3+ITP in which strengthening of
nodes is performed “monolithically” by checking whethat the clauses of an
ancestor nodg hold at a descendant nodeinstead of checking the clauses indi-
vidually. This configuration mimics the forced coverageqadure applied in the
lazy abstraction with interpolants algorithm of [18];

TREE-ITP is an implementation of the lazy abstraction with interptdaalgorithm
of [18];

KRATOS is an implementation of lazy predicate abstraction witlkelipblation-based
refinement, the default algorithm used by theAfos software model checker [8].
(We recall that the difference withREE-ITP is that in standard lazy predicate ab-
straction interpolants are used only as a source of newqatsdi, and abstract states
are computed using Boolean abstraction rather than usiampiviants directly.)

All the implementations use the same front-end for pardiegd program and com-
puting its CFG, and they all use the same SMT solver{MSATS5 [14]) as a back-end
reasoning engine for all satisfiability checks and intemioh queries. Moreover, all the
tree-based algorithms use the same depth-first strategpistructing the ART, and all
the IC3-based ones use the same settings for IC3. This malessible to compare the
merits of the various algorithms (over the benchmark irstahwithout being affected
by potential differences in the implementation of otherntpaf the systems which are
orthogonal to the evaluation.

Moreover, in addition to comparing the different algorithmithin the same imple-
mentation framework, we also compared our best algorithttm thie following software
model checkers:

8 More precisely, we encode the program counter variable uling, n] Boolean variables,
wheren is the number of locations in the CFG.



CPACHECKER [4], which uses an algorithm based on lazy predicate abstradt&in
(like KrRATOS). CPACHECKER was the winner of the first software verification
competition’

WOLVERINE [17], an implementation of the lazy abstraction with interpcdaaigo-
rithm [18] (like TREE-ITP). 10

6.3 Results

The results of the evaluation are summarized in Figure 4.sBaéter plots in the top
row show the comparisons of the various configurations ofp@®osed in the previous
Sections: first, we compare the fully-symbolic IC3 witRAE-IC3, in order to evaluate
the benefits of exploiting the CFG of the program; then, wduata the effect of us-
ing interpolants for computing sets of inductive clausesgEIC3+ITP) wrt. “plain”
TREE-ICS; third, we evaluate the impact of the fine-grained sitkaning that is pos-
sible when using a conjunctively-partitioned represéntefor abstract states, by com-
paring TREE-IC3+ITP with TREE-IC3+ITP-MONO. The rest of the plots show instead
the comparison of our best configuratiorREE-1C3+ITP, with alternative algorithms
and implementations. A summary of the performance resaftsff the algorithms/-
configurations is reported in the table, showing the numlbénstances successfully
checked within the timeout, and the total execution timeliersolved instances.

From the plots and the table of Figure 4, we can draw the fatigwonclusions:

— All the techniques proposed in this paper lead to significaprovements to IC3,
with TREE-IC3 solving 17 more instances than IC3 (and being up to twier of
magnitude faster), andrREE-IC3+ITP solving 11 more instances tharAE-1C3;

— On relatively-easy problems, the 1C3-based algorithmsgyarerally more expen-
sive than the alternative techniques; in particular, tledstbased on predicate ab-
straction (KRATOS and CPACHECKER) perform very well in terms of execution
time. However, on harder benchmarkgde-IC3+ITP seems to be more robust
than the competitors. This is particularly evident f&ee-ITP and CPAHECKER,
which run out of memory in 25 and 34 cases respectivélyhereas this never hap-
pens with RATOsand TREE-IC3+ITP.

— The ability to perform clause-by-clause strengtheningiyvmportant for the per-
formance of REE-IC3+ITP: when using a “monolithic” approachREE-IC3+ITP
(TREE-IC3+ITP-MONO) is not only almost always slower, but it also solves 13
instances less. However, we notice that even without REEFIC3+ITP-MONO
behaves better thankREE-ITP, and in particular it is significantly more robust in
terms of memory consumption.

7 Related Work

Besides all the IC3-related approaches in the hardware iddé®, 7, 12], as already
stated ing5 the work that is most closely-related to ours is the “lazstedztion with in-

9Seehttp://sv-conp. sosy- | ab. org/ resul t s/ i ndex. php

10|t would have been interesting to include also thwPACT tool of [18] in the comparison;
however, the tool is no longer available.

11 Notice that with CPAHECKERthis happens even when increasing the memory limit to 4GB.
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Fig. 4. Experimental results.

terpolants” technique of McMillan [18]. BothREE-IC3 and TREE-IC3+ITP, in fact,
can be seen as instances of the “lazy abstraction with iol@ngs” algorithm, in which
however interpolants are computed using the IC3 algorithchagoproximate preimage
computations, rather than proofs of unsatisfiability pietlby the SMT solver. This
in turn leads to interpolants that can be easily partitiac@gunctively, which allows to
significantly improve their usefulness in pruning the nunmifeabstract paths that need
to be explored (segb ands6).
Another approach based on interpolation and explicit engilon of CFGs is de-

scribed in [19]. In this approach, the search in the CFG ideniby symbolic execution;
moreover, a learning procedure inspired by DPLL-based SMess is applied in or-



der to generate new annotations that prevent the explarafialready-visited portions
of the search space. Such annotations are obtained fronpatdats, generated from
proofs. In principle, it should be possible to apply IC34xh&leas similar to those that
we have presented also in that context.

Some analogies between the present work and pasH” approach described in
[2,13], which analyzes programs with a combination of testand verification, can
be seen in the use of approximate preimages and of hightgfimental SMT queries.
However, in another senggsH is somewhat orthogonal to IC3-based techniques, in
that the latter could be used as a verification engine forahmér. (In fact, although in
[2] an approach based on weakest preconditions is usethatdtion is suggested as a
potential alternative.)

Finally, the use of a clause-based representation foratisttates bears some sim-
ilarities with the work in [15]. However, the exploration thfe CFG and the whole ver-
ification approach is very different, and the two approaa@sbe considered largely
orthogonal. In [15], the CFG is treated as a Boolean formulase satisfying assign-
ments, enumerated by a SAT solver, correspond to path pregitzat are checked with
different verification oracles. The invariants computedsiigh oracles are then used
to construct blocking clauses that prevent re-exploratibalready-covered parts of
the program. Both the fully-symbolic and the tree-basedives of IC3 that we have
presented could be used as oracles for checking the pathapregnd generating in-
variants for the blocking clauses.

8 Conclusions and Future Work

We have presented an investigation on the application ofttCtBe case of software.
We propose three variants: the first one, generalizing |GBdaase of SMT, provides
for the analysis of fully symbolically represented softejghe second one,REE-IC3,
relies on an explicit treatment of the CFG; the third one iylarid appraoch based on
the use of interpolants to improveREE-IC3.

IC3 is a radically new verification paradigm, and has a greatmial for future
developments in various directions. First, we intend tcegtigate further IC3 in the
setting of SMT, devising effective procedures fsrPROX-PREIMAGE in other relevant
theories, and adding low-level optimization techniquésilarly to the highly tuned
techniques used in the Boolean case. Second, we intenddstigate the extraction
of CFG’s from hardware designs, in the same spirit as thesitian-by-transition ap-
proach [21], and to apply IC3 directly to descriptions intiigvel languages such as
Verilog or VHDL. Finally, we intend to extend IC3 to richergbries such as bit vectors
and arrays, and to the case of networks of hybrid systems [10]
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