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Abstract. This paper describes Kratos2, a tool for the veri�cation of
imperative programs. Kratos2 operates on an intermediate veri�cation
language called K2, with a formally-speci�ed semantics based on smt,
allowing the speci�cation of both reachability and liveness properties. It
integrates several state-of-the-art veri�cation engines based on sat and
smt. Moreover, it provides additional functionalities such as a �exible
Python api, a customizable C front-end, generation of counterexamples,
support for simulation and symbolic execution, and translation into mul-
tiple low-level veri�cation formalisms. Our experimental analysis shows
that Kratos2 is competitive with state-of-the-art software veri�ers on a
large range of programs. Thanks to its �exibility, Kratos2 has already
been used in various industrial projects and academic publications, both
as a veri�cation back-end and as a benchmark generator.

1 Introduction

We present Kratos2, a tool for the veri�cation of real-world imperative pro-
grams. Kratos2 is a complete rewrite and redesign of Kratos [17], improving and
extending it in multiple directions. First, Kratos2 introduces a simple yet expres-
sive intermediate language called K2, with a formally-speci�ed semantics based
on Satis�ability Modulo Theories (smt), which is parametric on the underlying
smt theory. K2 is expressive enough to capture most of the features of real-world
C programs, such as pointers, dynamic memory allocation, �oating-point data
types, and bit-precise semantics of bounded integers, which the old version of the
tool could not handle (being limited to C programs without pointers and recur-
sion, and in which C integers were interpreted as mathematical integers). Kratos2

comes with a separate C front-end c2Kratos that can translate C programs to
K2. Second, Kratos2 includes a variety of state-of-the-art veri�cation back-ends
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based on either symbolic model checking or symbolic execution with sat and smt
solvers. Besides reachability properties, Kratos2 also supports various forms of
liveness properties, which can be used to encode termination and more complex
linear-time temporal properties. Third, Kratos2 implements an interactive inter-
preter, which can simulate K2 programs using non-deterministic inputs provided
either by the user or by external oracles. Kratos2 also supports counterexample
reconstruction, another feature not available in the original Kratos.

The new intermediate language K2 enables modular translation of C pro-
grams into various veri�cation languages. Namely, Kratos2 can be used for trans-
lating C programs into nuXmv [14], vmt [20], aiger [9], Btor2 [31], Con-
strained Horn Clauses (chcs) [11], or Boogie [29] formats. Additionally, Kratos2

comes with a Python api for construction and manipulation of K2 programs,
which the users can leverage to implement custom front-ends and generators of
K2 programs and also additional translators from K2 to other formalisms.

Although Kratos2 has not been described in a publication until now, it has
already been successfully used in several research and industrial projects. In
particular, Kratos2 has been used as a back-end for the veri�cation of automotive
software in the context of the autosar platform [15,16]; of C code automatically
generated from aadl speci�cations by the taste development environment [12];
and for veri�cation of C code for railway interlocking systems automatically
generated from the speci�cations in a controlled natural language [1]. Kratos2

has also been used as a benchmark generator to produce symbolic transition
systems from C programs [30].

The rest of the paper is structured as follows. The functionalities o�ered
by Kratos2 from the user perspective are described in �2; �3 introduces K2,
describing its syntax and formal semantics. The internal architecture of Kratos2,
with details about its main components, is presented in �4; implementation notes
and experimental evaluation on C programs from the annual software veri�cation
competition sv-comp are provided in �5. Finally, �6 concludes the paper and
presents directions for future developments.

2 Functional View

In this section we provide a high-level overview of the functionalities available
in Kratos2. More details will then be provided in the following sections.

An intermediate language for imperative programs. The core of Kratos2

is built around an idealized language for imperative programs called K2. Un-
like common high-level real-world programming languages, K2 has a simple and
clean semantics based on �rst-order logic modulo theories that is fully formally
speci�ed. The K2 language, similar in spirit to other intermediate veri�cation
languages proposed in the literature such as Boogie [29] or Why3 [26] (although
less feature rich than the two), is at the same time simple enough to be easily
manipulated and translated into formalisms used by sat-based and smt-based
veri�cation back-ends on one hand, and expressive enough to e�ciently capture
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a signi�cant subset of C on the other, as demonstrated also by our experimental
results on standard sv-comp benchmarks (see �5).

Veri�cation of safety and liveness with multiple back-ends. Kratos2 im-
plements multiple state-of-the-art veri�cation algorithms based on sat and smt,
supporting both bit-precise reasoning over machine integers and �oating-point
numbers as well as higher-level reasoning based on, e.g., mathematical integers,
real numbers, and uninterpreted functions, depending on the combinations of
theories used in the input K2 program under analysis. Moreover, Kratos2 sup-
ports not only the veri�cation of safety properties (via a reduction to reachability
of designated �error� program locations), but it also supports liveness properties
such as proving that a speci�c program location is reached a �nite number of
times in all executions, or that it is always visited in�nitely often in all in�nite
executions.

A Python api for program manipulations. Kratos2 provides a rich and
�exible Python api for parsing, printing, and manipulating K2 programs and
expressions, which can be used to implement converters from high-level languages
to K2 or to directly generate K2 programs from user-speci�c applications.

A customizable C front-end. Kratos2 comes with a front-end for C programs
which supports a wide range of customization options for controlling the trans-
lation from C to K2. These range from the choice of theories to use to encode
C data types (e.g., bit-vectors or unbounded integers), to the use of customized
program transformations or the injection of new built-in functions with special
meaning (such as special assume, malloc, or memset built-ins). Thanks to its
plug-in architecture, the front-end can be easily customized for domain-speci�c
subsets of C, for example to implement special optimization passes that are safe
only in the given context, or to automatically inject properties to the code based
on speci�cation �les (as is, e.g., the case in sv-comp [3]).

Encoding into multiple formalisms. Kratos2 can be used as an encoder
or benchmark generator because it can translate imperative programs written
in C or in K2 into other formalisms, including symbolic transition systems in
nuXmv [14], vmt [20], aiger [9] or Btor2 [31] formats, Constrained Horn
Clauses (chcs) [11], or other intermediate veri�cation languages like Boogie [29].

Simulation and symbolic execution. Finally, Kratos2 can be used as an
interpreter, allowing an (interactive) simulation of K2 programs and their sym-
bolic execution, as an alternative to the veri�cation back-ends based on model
checking.

3 The K2 Language

In this section we introduce K2, the intermediate veri�cation language used by
Kratos2. We present its abstract syntax, formally de�ne its semantics, and discuss
its support for safety and liveness properties.
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〈stmt〉 ::= 〈assign-stmt〉 |
〈assume-stmt〉 |
〈call-stmt〉 |
〈havoc-stmt〉 |
〈jump-stmt〉 |
〈label-stmt〉

〈assign-stmt〉 ::= assign 〈symbol〉 〈expr〉
〈assume-stmt〉 ::= assume 〈expr〉
〈call-stmt〉 ::= call 〈symbol〉

〈expr-list〉
〈symbol-list〉

〈havoc-stmt〉 ::= havoc 〈symbol〉
〈jump-stmt〉 ::= jump 〈symbol〉 〈symbol-list〉
〈label-stmt〉 ::= label 〈symbol〉
〈symbol-list〉 ::= 〈symbol〉∗

〈expr〉 ::= 〈var-expr〉 | 〈op-expr〉
〈var-expr〉 ::= var 〈symbol〉
〈op-expr〉 ::= op 〈symbol〉 〈expr-list〉
〈expr-list〉 ::= 〈expr〉∗

Fig. 1. Abstract syntax of K2 statements and expressions.

〈program〉 ::= 〈globals〉 〈init〉 〈functions-list〉 〈entrypoint〉
〈globals〉 ::= globals 〈var-decl-list〉
〈init〉 ::= init 〈expr〉

〈functions-list〉 ::= 〈function〉+

〈function〉 ::= function 〈symbol〉 〈var-decl-list〉 〈var-decl-list〉 〈var-decl-list〉 〈stmt-list〉
〈entrypoint〉 ::= entry 〈symbol〉
〈stmt-list〉 ::= 〈stmt〉+

〈var-decl-list〉 ::= 〈var-decl〉∗

〈var-decl〉 ::= var 〈symbol〉 〈sort〉

Fig. 2. Abstract syntax of K2 programs.

Abstract syntax. We denote lists of elements with an overbar, i.e., ·. If a is a
list, |a| is its length, and if i is a natural number, ai is the i-th element of a. If
e is an element, a · e is the list obtained by appending e at the end of a.

De�nition 1 (Variables and Functions). A variable is a symbol with an

associated sort, as in the multi-sorted �rst-order logic. A function is a tuple

〈f, a, r, l, σ〉, where:

� f , a symbol, is the name of the function;
� a, a list of variables, are the formal parameters;
� r, a list of variables, are the return variables;
� l, a list of variables, are the local variables;
� σ, a list of statements generated by the grammar of Figure 1, are the body.

Given a list of variables v, we de�ne syms(v) as the corresponding set of
symbols. Given a function 〈f, a, r, l, σ〉, we denote with syms(f) the set syms(a)∪
syms(r)∪syms(l). We extend the de�nition to lists of statements σ in the natural
way. We now describe K2 programs, whose abstract syntax is shown in Figure 2.
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De�nition 2 (Programs). A program P is a tuple 〈g, F, ι, e〉, where:

� g, a list of variables, are the global variables;

� F is a partial mapping from symbols to functions;

� ι, a formula, is the constraint on initial states;

� e, a symbol in dom(F ), is the entry point.

Semantics. We use the standard notions of theory, interpretation, model, and
satisfaction from many-sorted �rst-order logic and smt [2]. In the following, we
assume that we have �xed a theory T with equality that contains at least the sort
Bool. Given an interpretation µ that is a model for T , we de�ne the evaluation of
an expression e (generated by the grammar of Figure 1) under µ, denoted µ[e],
as µ[e] = µ(v) for e = var v and µ[e] = µ(o)(µ[p1], . . . , µ[pn]) for e = op o p and
n = |p|. We denote with µ[v 7→ e] the interpretation that maps v to e, and that
agrees with µ everywhere else, and with µ[\v] any interpretation that agrees
with µ on all the symbols except v. Finally, if e is of sort Bool, we write µ |= e
to denote that e evaluates to true under µ.

De�nition 3 (Program states). Pairs 〈f, i〉 where f is a function name and

i is a natural number are called program locations. A state of a program P is a

pair s = 〈G,C〉 where:

� G is an interpretation for the global variables of P ;

� C is the current call stack, a list of triples 〈f, i, L〉, where 〈f, i〉 is a program

location and L is an interpretation of syms(f), i.e., of parameters, return

variables, and local variables of F (f).

A state s is initial if and only if G |= ι, |C| = 1 and C1 = 〈e, 1, L〉 for some

L. Given a state s with C |C| = 〈f, i, L〉, we de�ne the current interpretation µ

for s as µ(v) = G(v) for v ∈ syms(g) and as µ(v) = L(v) otherwise.

We de�ne the semantics for programs as a set of transition rules of the form
s

σ−→ s′, where s, s′ are states and σ is a statement. We then call a path of a
program P any sequence of transitions (possibly in�nite) s0

σ0−→ . . .
σi−→ si+1 . . .

that complies with the transition rules and where s0 is an initial state.
The rules are shown in Figure 3. In the de�nitions, we �x a program P =

〈g, F, ι, e〉 and use the following convenience functions, where f is a function
name and i a natural number: arg(f, i) returns the variable ai of the function
F (f); ret(f, i) returns the variable ri of the function F (f); stmt(f, i) returns the
statement σi of F (f); stmts(f) returns the list of statements σ of F (f).

Reachability and liveness.We then say that a state s is reachable in P i� there
exists a �nite path s0

σ0−→ . . .
σn−−→ s that ends in s. Similarly, a program location

〈f, i〉 is reachable i� there exists a path as above in which σn = stmt(f, i)3.
Conversely, if no such path exists, then 〈f, i〉 is unreachable. The location 〈f, i〉
3 Note that here we assume w.l.o.g. that all statements in a program are di�erent,
even when they are structurally equal, so the above de�nition is unambiguous.
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assign-global: 〈G,C · 〈f, i, L〉〉 stmt(f,i)−−−−−−→ 〈G[v 7→ µ[e]], C · 〈f, i + 1, L〉〉 if stmt(f, i) =
assign v e and v ∈ syms(g);

assign-local: 〈G,C · 〈f, i, L〉〉 stmt(f,i)−−−−−−→ 〈G,C · 〈f, i + 1, L[v 7→ µ[e]]〉〉 if stmt(f, i) =

assign v e and v ∈ syms(f);

assume: 〈G,C · 〈f, i, L〉〉 stmt(f,i)−−−−−−→ 〈G,C · 〈f, i + 1, L〉〉 if stmt(f, i) = assume e and

µ |= e;

havoc-global: 〈G,C · 〈f, i, L〉〉 stmt(f,i)−−−−−−→ 〈G[\v], C · 〈f, i+ 1, L〉〉 if stmt(f, i) = havoc v
and v ∈ syms(g);

havoc-local: 〈G,C · 〈f, i, L〉〉 stmt(f,i)−−−−−−→ 〈G,C · 〈f, i + 1, L[\v]〉〉 if stmt(f, i) = havoc v

and v ∈ syms(f);

call: 〈G,C · 〈f, i, L〉〉 stmt(f,i)−−−−−−→ 〈G,C · 〈f, i, L〉 · 〈g, 1, L′〉〉 if stmt(f, i) = call g e r, where

L′(v) = µ[ej ] if v = arg(g, j).

return: 〈G,C · 〈f, i, L〉 · 〈g, k, L′′〉〉 stmt(f,i)−−−−−−→ 〈G′, C · 〈f, i+1, L′〉〉 if stmt(f, i) = call g e r

and k > |stmts(g)|, where:

G′(v) =

{
µ[ret(g, j)] if v = rj
G(v) otherwise

and L′(v) =

{
µ[ret(g, j)] if v = rj
L(v) otherwise

jump: 〈G,C · 〈f, i, L〉〉 stmt(f,i)−−−−−−→ 〈G,C · 〈f, k, L〉〉 if stmt(f, i) = jump t and stmt(f, k) =
label l with l ∈ t;

label: 〈G,C · 〈f, i, L〉〉 stmt(f,i)−−−−−−→ 〈G,C · 〈f, i+ 1, L〉〉 if stmt(f, i) = label l.

Fig. 3. Transition rules. In all the rules, µ denotes the current interpretation for the
left-hand state of the rule.

is in�nitely-often reachable i� there exists an in�nite path s0
σ0−→ . . .

σi−→ si+1 . . .
in which for all indices j there exists an index k > j such that σk = stmt(f, i).
If no such path exists, then 〈f, i〉 is eventually unreachable. Finally, we say that
〈f, i〉 is live i� it is in�nitely-often reachable in all in�nite paths of P .

In K2, queries about reachability or liveness of program locations are ex-
pressed via annotations of label statements. Annotations are metadata that are
attached to statements, in the form of key-value pairs, which do not a�ect the
semantics of the program, but are meant to provide additional information that
can be used by tools that manipulate the K2 program. Speci�cally, Kratos2 uses
the following annotations to de�ne properties:

error <id>: holds i� all labels annotated with the same <id> are unreachable;
notlive <id>: holds i� all labels annotated with the same <id> are eventually

unreachable;
live <id>: holds i� all labels annotated with the same <id> are live.

These basic properties can be easily used to represent more common higher-level
properties of programs, such as assertions and termination. For example, asser-
tions can be reduced to reachability with a combination of assume and jump
statements, whereas termination can be checked by adding a �nal self loop over a
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label with an attached live annotation. Finally, eventual unreachability can be
used to encode arbitrary ltl properties using the standard automata-theoretic
approach combined with a symbolic encoding of the accepting automaton such
as [22].4

3.1 Example

We conclude this section with a simple example of a C program and its equiv-
alent formulation in K2. Both versions are shown in Figure 4. Most of the code
is translated in a fairly direct way (with conditional statements and structured
loops translated into nondeterministic jumps constrained by assumptions). How-
ever, since in K2, unlike in C, global variables are uninitialized by default, the
K2 program contains an additional setup function (called init_and_main in
the example) that sets glbl to zero before calling the original main. Another
point to highlight is the use of the :error annotation (highlighted in bold) to
model the C assertion.

4 Architectural View

This section describes the main components of Kratos2 and the �ow of infor-
mation among them. From the high-level point of view, Kratos2 is composed
of the front-end c2Kratos, which converts the input C program to the K2 lan-
guage, and of the core Kratos2, which is responsible for parsing, simpli�cations,
transformations, and veri�cation of K2 code. This separation helps to keep the
core Kratos2 simple, as it does not have to handle the complex semantic nuances
of C. Moreover, it makes it easy to add front-ends for new languages by writing
a separate translator from the language in question to K2.

The front-end c2Kratos reads the input C �le, builds its abstract syntax tree
(ast) and then builds the corresponding K2 code in two passes. In the �rst
pass, it converts the ast to an extended K2. Compared to the standard K2,
the extended K2 also has primitives for pointers, records, complex loops, and
compound instructions. These are removed in the second pass, by converting
pointers to operations over maps, records to multiple variables, complex loops
to sequences of assignments, jump instructions, and assumptions, and compound
instructions to sequences of basic assignments to auxiliary variables.

The core Kratos2 consists of several components, whose relationships are
visualized in Figure 5:

4 In the case of ltl properties, the question arises as to what to consider as an atomic
step of the program. This is both crucial and application-dependent: for example, in
embedded software consisting of a �transition function� that is executed periodically,
it might make sense to consider each call to such function as one step, whereas in
other contexts a more �ne-grained notion of step might be needed. K2 (and Kratos2)
makes no commitment about this, providing only the support for eventual unreach-
ability of label statements, which can always be de�ned unambiguously.
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C version K2 version

int glbl;

int f(int x)
{

if (glbl > 0) {
return x - 1;

} else {
glbl = 0;
return x;

}
}

void main(void)
{

int y;
while (y > 0) {

y = f(y);
}
assert(glbl == 0);

}

(type cint (sbv 32))
(entry init_and_main)
(globals (var glbl cint))

(function f ((var x cint))
(return (var ret cint)) (locals)

(seq
(jump (label then) (label else))
(label then)
(assume (op gt glbl (const 0 cint)))
(assign ret (sub x (const 1 cint)))
(jump (label end))
(label else)
(assume (op not (op gt glbl (const 0 cint))))
(assign glbl (const 0 cint))
(assign ret x)
(label end)))

(function main () (return) (locals (var y cint))
(seq

(label while)
(jump (label inwhile) (label endwhile))
(label inwhile)
(assume (op gt y (const 0 cint)))
(call f y y)
(jump (label while))
(label endwhile)
(assume (op not (op gt y (const 0 cint))))
(jump (label then) (label else))
(label then)
(assume (op not (op eq glbl (const 0 cint))))
(! (label err) :error assert-fail)
(label else)))

(function init_and_main () (return) (locals)
(seq

(assign glbl (const 0 cint))
(call main)))

Fig. 4. Example C program and its K2 translation.

cfg builder and simpli�er reads the input K2 �le and builds the correspond-
ing interprocedural control �ow graph (cfg). It then performs several simpli�ca-
tions of the cfg, such as constant propagation and lightweight slicing. The result
can be used either by the interpreter, symbolic executor, or one of the encoders.
The simpli�ed cfg can also be converted back into a K2 representation.

Interpreter interprets the cfg using the externally provided inputs to guide
the execution. The inputs contain new values for all havoc commands and also
destination labels for all nondeterministic jump commands. The inputs can be
provided by the user, a random generator, or by one of the veri�cation engines.
The last option is used for counterexample reconstruction and validation.

Transition system encoder encodes the cfg to a symbolic transition system
over a suitable theory. The encoder �rst inlines all function calls in the program.
It then encodes the resulting inlined program using large block encoding [4],
which allows encoding larger acyclic subgraphs of the cfg by a single transition
formula. The resulting transition system can be veri�ed by one of the available
veri�cation back-ends, or converted to a textual representation in one of the
available output formats (vmt [20], nuXmv [14], Btor2 [31], or aiger [9]).5

5 Depending on the features of the input K2 program, some of the veri�cation back-
ends or output formats might not be available. E.g., sat-based engines are not
available if the K2 program contains some in�nite-state variables.
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Core Kratos2

encoding

verification

input.c

c2Kratos

cfg builder and simpli�er

Transition system chcInterpreter

nondeterministic inputs

sat-based smt-basedSymEx

safe/unsafe/unknowntrace
aiger/Btor2
nuXmv/vmt

chc K2

Fig. 5. Architecture of Kratos2.

chc encoder converts the cfg to a set of Constrained Horn Clauses [11]. In
contrast to the transition system encoder, the chc encoder supports interproce-
dural analysis and recursive functions, encoded as a set of non-linear chcs as
described, e.g., in [28].

Symbolic executor implements a classical symbolic execution algorithm with
iterative deepening to avoid getting stuck in long uninteresting branches. It sup-
ports (possibly recursive) K2 programs over arbitrary combinations of integers,
reals, bit-vectors, �oats, and arrays.

smt-based engines encompass several smt-based veri�cation algorithms of
symbolic transition systems. For reachability properties, Kratos2 implements
standard bounded model checking (bmc) [7], k-induction [32], and IC3 with
implicit predicate abstraction [18]. For liveness properties, we use a procedure
combining liveness-to-safety reduction with ranking functions synthesis [23].

sat-based engines encompass several veri�cation algorithms of �nite-state
symbolic transition systems. Namely, for transition systems over the theory of
bit-vectors and �oats, Kratos2 o�ers bmc, k-induction, and di�erent variants
of IC3 [13], working over the bit-blasted Boolean transition system, for both
reachability and liveness properties. Additionally, Kratos2 implements a dedi-
cated engine for reachability properties in transition systems over the theory of
bit-vectors, �oats, and arrays similar to [30,10].

5 Implementation and Experimental Evaluation

Implementation. Core Kratos2 is implemented in C++ on top of the Math-
SAT5 [19] smt solver and the nuXmv [14] symbolic model checker. The sat-based
veri�cation engine additionally makes use of the MiniSat [25] and CaDiCaL [8]
sat solvers. The front-end c2Kratos is implemented in Python and relies on
pycparser for parsing of the input C program. Kratos2 is freely available for
non-commercial purposes from https://kratos.fbk.eu.

https://kratos.fbk.eu
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Table 1. Solved benchmarks by the three compared tools. ColumnU shows the number
of solved unsafe benchmarks, S of safe benchmarks, and W of wrong results.

CPAchecker Kratos2 VeriAbs
Family U S W U S W U S W

arrays 70 5 0 75 7 0 106 261 0
bitvectors 13 31 0 13 33 0 14 31 0
combinations 295 36 0 282 47 0 277 77 0
control�ow 39 36 0 40 37 0 40 47 0
eca 223 481 0 210 365 0 467 600 0
�oats 41 356 0 43 350 0 43 393 0
heap 71 118 1 67 102 0 70 120 0
loops 152 334 2 159 307 0 192 427 0
productlines 265 332 0 262 315 0 260 322 0
recursive 40 36 1 43 28 0 46 41 0
sequentialized 347 108 0 361 68 0 361 123 0
xcsp 50 52 0 51 51 0 52 52 0

Total 1606 1925 4 1606 1710 0 1928 2494 0

Experimental Setup. We performed an experimental evaluation to answer
two research questions: (1) Is the K2 language expressive enough to e�ciently
represent realistic C programs? (2) Do the engines implemented in Kratos2 o�er
reasonable performance on realistic veri�cation tasks? To this end, we considered
all the C programs from the ReachSafety category of the 2022 edition of the
annual software veri�cation competition sv-comp [3].The category consists of
5400 C programs divided into 12 benchmark families. We compared Kratos2 with
VeriAbs 1.4.2 [24] and CPAchecker 2.2 [5], respectively the winner and runner-
up of the ReachSafety category of sv-comp 2022. Similarly to the approach
used by CPAchecker, we executed Kratos2 in sequential portfolio mode, which
successively runs symbolic execution, smt-based IC3, sat-based IC3, and smt-
based bmc with predetermined time-outs for each of the engines.

The experiments were performed on several identical pcs equipped with Intel
Core i7-8700 cpu @ 3.20 GHz and 32 GiB of ram. Each execution was limited
to use a single cpu core, 15 minutes of cpu time, and 8 GiB of ram. For
reliable benchmarking, all experiments were executed using BenchExec [6]. A
replication package describing the details of the setup is available at https:
//doi.org/10.5281/zenodo.7890411.

Results. To answer the �rst research question, we observe that from the total
5400 benchmarks, only 56 were not converted to K2 by c2Kratos due to unsup-
ported �oating point built-ins or features such as variable length arrays.

To answer the second research question, Table 1 shows the numbers of solved
benchmarks by the individual tools and quantile plots in Figure 6 show their
running times. The results show that Kratos2 is competitive with CPAchecker
on all benchmark families except for eca. It is also competitive with VeriAbs on
most benchmark families. There are 23 benchmarks uniquely solved by Kratos2,
48 by CPAchecker, and 1039 by VeriAbs. Moreover, both Kratos2 and VeriAbs
produced no wrong results, unlike most other participants of sv-comp.

We remark that CPAchecker is an established and optimized software veri�er
that regularly scores high in software veri�cation competitions, and that VeriAbs
implements algorithm selection heuristics, using both its own custom engines and

https://doi.org/10.5281/zenodo.7890411
https://doi.org/10.5281/zenodo.7890411
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Fig. 6. Quantile plots of solved benchmarks for all three compared tools in individual
benchmark families. The plot shows the number of benchmarks (y-axis) that were
solved within the given number of seconds (x-axis).

external state-of-the-art veri�ers. As such, it is not surprising that it performs
much better than Kratos2 and CPAchecker on some of the families.

We conclude that the K2 language is expressive enough to e�ciently capture a
signi�cant subset of C used in realistic programs. Furthermore, the veri�cation
engines implemented in Kratos2 mostly o�er a performance comparable with
state-of-the-art software veri�ers.

6 Conclusions and Future Work

We have described Kratos2, a mature software veri�er for imperative programs
written in K2, a new intermediate veri�cation language with a formal semantics
based on smt. Kratos2 is a complete rewrite of the original Kratos tool, o�ering
signi�cant extensions in functionalities and performance. The tool has already
been successfully applied in various contexts, both industrial and academic.

As future work, we will consolidate the (currently alpha-quality) implemen-
tation of the esst algorithm of the original Kratos [21] to handle multithreaded
programs with cooperative scheduling. We will also investigate a tighter integra-
tion with chc solvers to better handle recursive programs, as well as improved
techniques to handle arrays and pointers such as [33,27]. On the language side,
we plan to add support for contracts and pre-/post-conditions via annotations.
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