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Abstract. We present rlive, a new SAT-based model-checking algorithm
for the verification of liveness properties of finite-state symbolic tran-
sition systems. Like other recent approaches, rlive works by reducing
liveness checking to a sequence of safety checks. Similarly to FAIR, it
incrementally strengthens the input system using constraints obtained
by refuting candidate counterexamples to the input liveness property,
assumed (w.l.o.g.) to be of the form FGq. Differently from FAIR (and
crucially), however, instead of directly searching for lasso-shaped coun-
terexamples visiting ¬q infinitely-often, rlive searches for counterexam-
ples incrementally, via a recursive chain of safety checks, each of which
tries to determine whether it is possible to reach a ¬q-state from a given
¬q-state (which was previously determined to be reachable), in a manner
similar to k-Liveness. When the current candidate counterexample is re-
futed, rlive exploits the inductive invariants generated by the (recursive)
safety checks to restrict the search space, until either no more reachable
¬q-states remain, or a real lasso-shaped counterexample is found.
In this paper, we describe rlive in detail, prove its soundness and com-
pleteness, and compare it against the state of the art both theoretically
and empirically. Our experimental results show that our implementation
of rlive outperforms state-of-the-art implementations of FAIR, k-Liveness
and other SAT-based liveness checking algorithms on a wide range of
benchmarks from the literature.

1 Introduction

The design of efficient algorithms for model checking has been a major research
challenge for over three decades. Following the SAT breakthrough in the late
90s [22,25], many novel SAT-based techniques have been proposed, which have
tremendously increased the efficiency and scalability of (symbolic) model check-
ing and its applicability to real-world systems (e.g., [6,24,21,20,8,15,27,17,18]).
Although the vast majority of such approaches have focused on safety proper-
ties, their benefits have extended also to liveness model checking, thanks to the
development of liveness verification algorithms that work by exploiting efficient

? Jianwen Li is the corresponding author.

https://doi.org/10.5281/zenodo.10948703


2 Y. Xia et al.

safety checkers, either via a monolithic reduction from liveness to safety [4],
or via more sophisticated strategies that use safety checkers incrementally [13],
exploiting also the inductive invariants generated when the verification is suc-
cessful [9,16].

In this paper, we present a novel SAT-based liveness checking algorithm,
which we call rlive, that also takes advantage of efficient safety model checkers
and their capability of producing inductive invariants for verified properties. Like
all other SAT-based approaches to liveness checking, rlive works on properties
of the form FGq, stating that q has to eventually stabilize to true in all traces
of the system, relying on standard procedures (e.g., [14,12]) for transforming a
model checking problem for an arbitrary LTL property into this form.

Similar to the FAIR algorithm of [9], rlive then proceeds by refuting candidate
counterexamples to the property, i.e. traces in which ¬q holds infinitely often,
using a sequence of calls to a safety checker, and exploiting the inductive invari-
ants generated by such safety checks to prune the set of reachable ¬q-states, until
either a real (lasso-shaped) counterexample for FGq is found, or no ¬q-states are
reachable, implying that the property holds. However, in contrast to FAIR, which
directly searches for lasso-shaped traces where ¬q holds in at least one state of
the loop, rlive searches for counterexamples incrementally, via a recursive chain
of safety checks, each of which tries to determine whether it is possible to reach a
¬q-state starting from the successors of a previously-reached ¬q-state, in a man-
ner conceptually similar to k-Liveness [13]. If a ¬q-state is found for the second
time during this recursive chain, a (lasso-shaped) counterexample witnessing the
violation of FGq is constructed, and the algorithm terminates. Otherwise, even-
tually one of the recursive safety checks will generate an inductive invariant C
proving that no other ¬q-state can be reached from (the successors of) a given
¬q-state s. rlive then uses C to derive constraints that exclude s from the reach-
able states of the system, forcing it to (recursively) consider a different ¬q-state
to continue the current candidate counterexample trace. Specifically, C is used
to strengthen the target states to reach, by asking the safety checker to ignore
¬q-states whose successors are all contained in C (since all such states in C
cannot visit ¬q infinitely-often); furthermore, C can be used also to strengthen
the transition relation of the input system, since no state in C can be part of a
counterexample. To give this intuition, we refer to states in C as shoals, as they
represent regions of the state space that must be avoided in order to not “get
stuck” in the search for a counterexample. Eventually, the shoals (recursively)
produced will either exclude all ¬q-states, thus proving that the input property
holds, or compel rlive to find a lasso-shaped counterexample for it.

Intuitively, rlive effectively identifies counterexamples by searching, in a depth-
first manner, for traces that contain as many ¬q-states as possible. Performing
the search incrementally, by a sequence of simple reachability checks, turns out to
be computationally cheaper than searching directly for loops in practice. More-
over, whenever the current candidate counterexample trace cannot be completed,
the shoals obtained from the safety checks can be used globally to strengthen



Avoiding the Shoals - A New Approach to Liveness Checking 3

the transition system and reduce the search space that needs to be explored,
thus accelerating the convergence of the algorithm.

We have implemented rlive on top of the nuXmv model checker [10] which has
a mature, state-of-the-art IC3 implementation, and compared it against state-
of-the-art implementations of other SAT-based liveness checking algorithms, in-
cluding FAIR, k-Liveness, and their recent combination called k-FAIR [16]. Our
experimental results, conducted on a wide range of benchmarks taken from re-
cent hardware model checking competitions [1,2], demonstrate the strengths of
our algorithm: rlive solves more benchmarks than any other competitor in the
given resource bounds, and very often with significantly shorter time.

Paper structure. The rest of the paper is structured as follows. After the intro-
duction of the necessary background in Section 2, we describe rlive in Section 3
and prove its soundness and correctness. We compare rlive with related work in
Section 4, and experimentally evaluate its performance in Section 5. Finally, we
conclude in Section 6 outlining also directions for future work.

2 Preliminaries

2.1 Boolean Satisfiability

A literal is a Boolean variable or its negation. If l is a literal, we denote its
corresponding variable with var(l). A cube (resp. clause) is a conjunction (resp.
disjunction) of literals. The negation of a clause is a cube and vice versa. A
formula in Conjunctive Normal Form (CNF) is a conjunction of clauses. For
simplicity, we also treat a CNF formula φ as a set of clauses and make no
difference between the formula and its set representation. Similarly, a cube or a
clause c can be treated as a set of literals or a Boolean formula, depending on
the context.

We say a CNF formula φ is satisfiable if there exists an assignment of its
Boolean variables, called a model, that makes φ true; otherwise, φ is unsatisfiable.
A SAT solver is a tool that can decide the satisfiability of a CNF formula φ. In
addition to providing a yes/no answer, modern SAT solvers can also produce
models for satisfiable formulas, and unsatisfiable cores (UC), i.e. a reason for
unsatisfiability, for unsatisfiable ones. More precisely, in the following we shall
assume to have a SAT solver that supports the following API (which is standard
in state-of-the-art SAT solvers based on the CDCL algorithm [19]):

– is-SAT(φ,A) checks the satisfiability of φ under the given assumptions A,
which is a list of literals. This is logically equivalent to checking the satisfi-
ability of φ ∧

∧
A, but is typically more efficient;

– get-UC() retrieves an UC of the assumption literals of the previous SAT
call when the formula φ ∧

∧
A is unsatisfiable. That is, the result is a set

uc ⊆ A such that φ ∧
∧
uc is unsatisfiable;

– get-model() retrieves the model of the formula φ ∧
∧
A of the previous

SAT call, if the formula is satisfiable.
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2.2 Boolean Transition Systems

A Boolean transition system Sys is a tuple 〈X, I, T 〉, where X is a set of variables,
and I and T are formulae. The state space of Sys is the set of possible assignments
to X. I(X) is a Boolean formula corresponding to the set of initial states, and
T (X,X ′) is a Boolean formula representing the transition relation, where X ′ =
{x′ | x ∈ X} represent the next state variables. In the following, we extend
the prime notation to states and formulae in the natural way. The state s2 is a
successor of a state s1 iff s1 ∧ s′2 |= T, which is also denoted by (s1, s2) ∈ T . A
finite path of length k is a finite state sequence s1, s2, . . . , sk, where (si, si+1) ∈
T holds for (1 ≤ i ≤ k − 1). An infinite path is an infinite state sequence
s1, s2, . . ., where (si, si+1) ∈ T holds for i ≥ 1. The number of states is finite
for any (Boolean) transition system. An infinite path is lasso-shaped if it can
be presented as α · βω, where α is the finite prefix, e.g. s1, s2, . . . , sl−1, and β is
an infinitely-repeating suffix, e.g. sl, sl+2, . . . , sk. A state t is reachable from s
in k steps if there is a path of length k from s to t. Let S be a set of states in
Sys. We overload T and denote the set of successors of states in S as T (S) =
{t | (s, t) ∈ T, s ∈ S}. Conversely, we define the set of predecessors of states in
S as T−1(S) = {s | (s, t) ∈ T, t ∈ S}. Recursively, we define T 0(S) = S and
T i+1(S) = T (T i(S)) where i ≥ 0; the notation T−i(S) is defined analogously. In
short, T i(S) denotes the states that are reachable from S in i steps, and T−i(S)
denotes the states that can reach S in i steps.

2.3 Invariant Checking

Let a Boolean transition system Sys = 〈X, I, T 〉 be given. A Boolean formula P
over X is an invariant iff it holds in all the reachable states of Sys. An invariant
checker either proves that P holds for any state reachable from an initial state
in I, or disproves P by producing a counterexample. In the former case, we say
that the property is proven in the system, while in the latter case, the property
is disproved. A counterexample is a finite path from an initial state s to a state
t violating P , i.e., t ∈ ¬P ; such a state is also called a bad state.

Invariant checking, also referred to as safety checking, is reduced to symbolic
reachability analysis. Reachability analysis can be performed in a forward or
backward search. Forward search starts from initial states I and searches for
bad states by computing T i(I) with increasing values of i, while backward search
begins with states in ¬P and searches for initial states by computing T−i(¬P )
with increasing values of i.

State-of-the-art safety checking algorithms utilize SAT techniques to explore
the state space so as to improve the overall performance dramatically. Repre-
sentative approaches include IC3/PDR [8,15], interpolation-based model check-
ing [20], combinations of IC3 with interpolation [27] or k-induction [17], and
(forward and backward) CAR [18]. In the following, we abstract from specific
invariant checking algorithms, and assume that they implement the following
API:
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– check-reachable(I, T,¬P ) denotes a generic procedure for safety check-
ing. It takes as input a set of initial states I, the transition relation T , and the
negation of the candidate invariant P . check-reachable returns unsafe if
P is not an invariant. Otherwise, it returns safe.

– get-invariant() retrieves an inductive invariant proving that the bad states
are unreachable, i.e. a set ι of states closed under T , containing the states
reachable from I, and not intersecting ¬P . More formally, ι is such that
I |= ι, ι ∧ T |= ι′, and ι |= P .

– get-cex-trace() retrieves, if the property is violated, the counterexample
found by the safety checker, i.e. a finite path from I to ¬P .

2.4 Liveness Checking

We now consider the general model checking problem, denoted Sys |= φ, where
φ is a formula in Linear Temporal Logic (LTL) [23]. Following the standard
automata-theoretic approach [26], the problem can be reduced to checking Sys×
A¬φ |= FGq, where ¬q can be seen as the Büchi acceptance condition of A¬φ.
(Symbolic techniques such as [14,12] can be used in practice to encode such
reduction.) FGq intuitively means that, in any satisfying trace, q eventually
holds in all the future states, so that the acceptance condition ¬q can only be
visited a finite number of times. Dually, a counterexample is an infinite path
where ¬q is visited an infinite number of times, i.e. a trace satisfying GF¬q.

In the following, we focus on the (simplified) Sys |= FGq problem, referred
to as liveness checking. If the property is violated, there always exists a lasso-
shaped counterexample3, i.e., an infinite path α · βω where (i) the prefix α is a
finite trace of Sys whose last state t violates q, i.e., t ∈ ¬q, and (ii) the infinitely-
repeating suffix β is a path in Sys from a successor of t to t. We refer to a state
t ∈ ¬q as a ¬q-state.

The algorithms for liveness checking are more complicated than those for
invariant checking. In order to show that a candidate invariant does not hold, it
is sufficient to find a finite path. Liveness checking, on the other hand, requires
finding an infinite (lasso-shaped) counter-example (or proving that none exists).
The most effective solutions to liveness checking are based on invariant checking.
The most relevant to our work are the following.

– The L2S [4] (Liveness-to-Safety) construction introduces a copy of the state
variables in Sys, to record the first state of the loop, and a fresh variable
inLoop, to record that the loop has started. The state vector copy is non-
deterministically assigned a state violating q, i.e. the start of the loop, and
can never change after that. The search tries to reach a state where each state
variable has the same value as its copy and inLoop = true, which implies
that a violating lasso is detected. This translation is sound and complete.

3 Note that this fact only holds in the finite-state case; for infinite-state systems, the
existence of a lasso-shaped counterexample is not guaranteed in case of violation.
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Algorithm 1 k-FAIR = k-Liveness + FAIR

1: Liveness Property: FGq
2: procedure k-FAIR(I, T , q)
3: k := 0, C := ∅, W := ∅ // C: states not in loop, W : wall
4: while true do
5: if not is-SAT(¬qk ∧ ¬C) then // FAIR
6: return safe
7: if check-reachable(I, T , ¬qk ∧ ¬C) is safe then
8: return safe
9: s is the last state from get-cex-trace() // FAIR

10: if check-reachable(T (s), T ∧ (W ↔W ′), s) is unsafe then
11: return unsafe
12: else
13: D := get-invariant()
14: W := W ∪D
15: g := generalizing-noloop(s, D)
16: C := C ∪ g
17: (I, T , ¬qk) := IncreaseCounter(¬qk) // k++

18:

19: function generalizing-noloop(s, D)
20: assert( s ∈ ¬D and T (s) ⊆ D )
21: assert(not is-SAT(T ∧ ¬D′, s)) // s ∧ T → D′

22: g1 := get-UC()
23: assert(not is-SAT(D, s)) // s→ ¬D
24: g2 := get-UC()
25: return g1 ∧ g2

– FAIR [9] tries to construct a lasso-shaped counterexample as follows: first, it
searches for a candidate prefix (α); then, starting from the last (bad) state
t of α, it searches for a suffix (β) that ends with t. Both steps are based
on invariant checking. If the loop cannot be found, this bad state will be
pruned. Fundamental optimizations include state generalization and, more
importantly, extraction of walls (where, intuitively, states in a loop can only
exist on one side of the wall). Then, FAIR iterates trying to find another
candidate prefix for the lasso. The procedure terminates as soon as no prefix
can be detected, in which case the property is proved.

– k-Liveness [13] tries to prove FGq based on the following intuition: if FGq
holds, then there is a (finite) maximum number of times in which q can be
violated in any path. The k-Liveness construction introduces a counter of
the number of times q is violated and calls a safety checker to prove that
the counter cannot exceed the given limit k. In case of failure, the limit is
increased. k-Liveness proves the property if a k is found such that no path
visits ¬q more than k times. In general, k-Liveness is considered effective in
proving the property. Notice, however, that k-Liveness – as described above
– is incomplete, and will diverge if the property does not hold. On the other
hand, it is possible to find counterexamples by checking the existence of
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Fig. 1. Forward expansion and shoal construction (left); Rollback (right).
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Fig. 2. Terminating conditions: counterexample found, unsafe (left); ¬q no longer
reachable from I, safe (right).

repeated bad states from the path returned by the safety-checking call. As
already suggested in [13], k-Liveness can be run in parallel to bounded model
checking [6], that is complete in the case of violation.

– k-FAIR [16] is a more recent approach, designed to inherit advantages from
FAIR and k-Liveness. k-FAIR utilizes k-Liveness for proving correctness while
leveraging FAIR for finding counterexamples. The k-FAIR algorithm is shown
in Alg. 1. We see that FAIR and k-Liveness can both be considered a special
case of k-FAIR. If line 17 is removed, the algorithm becomes FAIR. If line 5
and lines 9-16 are removed, it becomes k-Liveness.

3 Liveness checking with rlive

In this section we informally describe rlive, then present the pseudo code and
some optimizations, and finally characterize its formal properties.

3.1 Overview

rlive is a new algorithm for liveness checking (Sys |= FGq). At a high level, rlive
can be seen as a depth-first search with chronological backtracking and learn-
ing. rlive incrementally tries to build a counterexample to FGq, progressively
extending it with more states in ¬q. In the forward expansion phase, rlive first



8 Y. Xia et al.

looks for a finite path π1 from I to ¬q, with s1 being the last state of π1. Then,
rlive looks for another path π2 from T (s1) to ¬q, and so on. See Fig. 1, left. The
forward expansion proceeds until one of two conditions holds.

1. if sn is equal to si, with i < n, then a lasso-shaped counterexample exists,
and the search terminates with unsafe (Fig. 2, left). The counterexample
can be constructed by concatenating the previously found πi.

2. if sn+1 cannot reach ¬q, then a shoal is built, i.e. a set of states closed under
T and containing T (sn+1), that can reach no target state (shoaln+1 in Fig. 1,
left). Clearly, no state in a shoal can belong to the counterexample; hence,
shoals are learned and used to block the subsequent forward expansions.

In the second case, the algorithm rolls back to the previous level, and restarts
the forward search, looking for a new way to enter ¬q. However, to avoid entering
the shoals again, the target ¬q-state must have successors outside the shoals.
(e.g. s′n+1 in Fig. 1, right). The algorithm terminates with safe whenever it rolls
back to level 0, and finds no way to reach, from the initial states, the remaining
subset of ¬q while avoiding the shoal constraints (Fig. 2, right).

We remark that, upon backtracking, the forward search space is restricted
to avoid the shoal constraints as well as the states in ¬q that do not belong
to the counterexample. Hence, the navigation toward the target is increasingly
restricted because of the discovered shoal constraints and also because the target
is progressively shrunk.

The algorithm described above is naturally implemented with primitives pro-
vided by the safety checker, such as deciding reachability and constructing the
counterexamples and the invariants. A further practical optimization called dead-
state pruning, trades off calls to the safety checker with calls to the SAT solver,
enlarging the shoals with a cheap form of look ahead to further prune the target
set.

3.2 Algorithm

Algorithm 2 describes how rlive is implemented using a generic invariant-checking
engine implementing the API introduced in Section 2.3. To prove or falsify the
liveness property FGq, rlive will maintain a global state set C at line 2, repre-
senting the shoals (i.e. states from which ¬q can be reached only a finite number
of times) discovered so far.

The algorithm starts from line 4, checking whether ¬q is reachable from the
initial states, using check-reachable. If it is not reachable, Gq is proved,
and so FGq is verified. Otherwise, from the counterexample trace returned by
check-reachable, we get a reachable ¬q-state s. Then the search-cex func-
tion is called to search for the next ¬q-state from s.

When C is not empty, we block the states in C from the transition system
by adding the constraint ¬C ∧¬C ′ to T (lines 5 and 17). At the same time, the
states to be searched become ¬q ∩ T−1(¬C), which ensures that the searched
¬q-states have ¬C successors, to exclude the ¬q-states that are proved not to
be part of a counterexample.



Avoiding the Shoals - A New Approach to Liveness Checking 9

Algorithm 2 Implementation of rlive
1: Liveness Property: FGq
2: C := ∅ // shoals: ¬q can only be reached finitely-many times from states in C
3:

4: procedure rlive(I, T , q)
5: while check-reachable(I, T ∧ (¬C ∧ ¬C′), ¬q ∩ T−1(¬C)) is unsafe do
6: s is the reached ¬q-state from get-cex-trace()
7: if search-cex(s, ∅) then
8: return unsafe
9: return safe

10:

11: function search-cex(s,B)
12: if s ∈ B then // B: reachable ¬q-states from initial states
13: return True
14: while True do
15: if prune-dead(s) then
16: return False
17: if check-reachable(T (s), T ∧ (¬C∧¬C′), ¬q∩T−1(¬C)) is unsafe then
18: t is the reached ¬q-state from get-cex-trace()
19: if search-cex(t, B ∪ {s}) then
20: return True
21: else
22: D := get-invariant()
23: C := C ∪D // ¬q ∩ T−1(¬C) cannot be reached from states in D
24: return False
25:

26: function prune-dead(s)
27: while is-SAT(s ∧ T ∧ ¬C′) do
28: µ := get-model()
29: d := {l | l′ ∈ µ}
30: if not is-SAT(T ∧ ¬C′, d) then
31: D := get-UC( ) // unsatisfiable core returned by the SAT solver
32: C := C ∪D // states in D have no successor not in C
33: else
34: return False
35: return True

In the search-cex(s, B) function of line 11, the parameter s serves as a new
reached ¬q-state, and the parameter B contains the ¬q-states that have been
previously reached along the current trace. Therefore, in lines 12-13, when s has
appeared in B, a lasso-shape counterexample has been found, so the function
returns True (a counterexample has been detected). Line 15 is the implementa-
tion of an important heuristic called dead-pruning, which we describe in detail
in the next subsection. A new call to check-reachable is performed to find
the next ¬q ∩ T−1(¬C)-state starting from the successor of s on line 17.The
reason for searching from the T (s)-states is that s itself is a state that meets
¬q∩T−1(¬C). However, calculating the exact set T (s) might be quite expensive,
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so we use an overapproximation of T (s), which we describe below in §3.3. If a
state t can be reached, then the function is called recursively, t is used as the
new starting state, and the s state is added to B. Otherwise, check-reachable
would return an inductive invariant D on line 22. 4 This invariant is an overap-
proximation of the reachable states starting from T (s), and none of these states
can reach ¬q∩T−1(¬C). Therefore, states in D are shoals, so they can be added
to C, and then the function returns False.

3.3 Optimizations

Avoiding the explicit computation of T−1(¬C). When asking for the next
¬q ∩ T−1(¬C)-state in the current trace, we can avoid the explicit computation
of T−1(¬C) by exploiting some additional knowledge about how the reachability
engine check-reachable works. For example, if check-reachable is based
on IC3 [8], we can simply add a constraint T ∧¬C ′ to the SAT solver when asking
for a ¬q-state.

Efficiently over-approximating T (s). Using IC3 as an implementation of
check-reachable allows us also to efficiently overapproximate the states T (s)
in the (recursive) searches for the next ¬q-states in the current trace (line 17). To
do so, we slightly modify IC3,5 and in particular the query that checks whether a
given predecessor b of a bad (¬q-)state intersects the initial states of the system.
Rather than checking whether T (s) ∧ b is satisfiable, we check the satisfiability
of s ∧ T under the assumption of b′. If the formula is unsat, we add the cube
c ⊆ b corresponding to the unsat core produced by the SAT solver (i.e. such that
c′ = get-UC()) to the 0-th frame of IC3. In this way, the 0-th frame of IC3 will
effectively be our desired over-approximation of T (s).

Dead states pruning. During rlive, lots of dead states, i.e. states that do not
have any successors, are formed due to the strengthening of T and ¬q using the
discovered shoals. To prove that ¬q cannot be reached from such a dead state,
check-reachable needs to search for the predecessor states of ¬q and describe
the overapproximation of the reachable set from the dead state with the literals
in the predecessors, which might require a large number of SAT queries.

Dead-pruning optimization is a simple and effective optimization (but prob-
ably not the only one) used to detect and quickly block the dead states. The
optimization is used before calling check-reachable, to check whether a suc-
cessor of the starting bad state is a dead state. If it is, then it can be excluded
from the search and used to strengthen the shoals C.

4 When the recursive call returns to the previous level, due to the incremental nature
of the IC3, it can reuse the lemmas previously calculated in this level. However, we
empirically found that such reuse doesn’t result in an obvious boost in performance.

5 Note that the same optimization can be applied also to other engines that use an
“IC3-like” search, such as CAR.
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Line 26 in Alg. 2 is the implementation of the dead-pruning heuristic. A
successor d of s is computed on lines 27-29. If d is determined to be a dead state
(line 30), then it can be added to C (after being generalized using the unsat core
produced by the SAT solver). The function returns False once it finds a successor
of s with successors outside of C. If all the successors of s are blocked as dead
states, the function returns True.

3.4 Correctness Proof

This section presents the proofs for the correctness of rlive (Algorithm 2). We
first show the following lemmas which are crucial for the proof.

Lemma 1. Every state t ∈ C can only reach a ¬q-state a finite number of times.

Proof. According to Algorithm 2, C can be updated in either the search-cex or
prune-dead procedure. Since the latter one is optional (it is an optimization),
we first consider the proof without the prune-dead procedure.

In the search-cex procedure, C is the state set that is updated by the union
of different inductive invariants returned by check-reachable (line 23), whose
initial states are an over-approximation of successors of some ¬q-state s. From
the correctness of check-reachable, every state t in the inductive invariant
satisfies: (1) it may be reachable from the initial states (and ¬q-state s) due to
over-approximation, thus may be reachable from s, and (2) it cannot reach the
states in ¬q∩T−1(¬C) (line 17). By construction, assume C = C1∪C2∪ . . .∪Cn
where Ck (1 ≤ k ≤ n) is the k-th inductive invariant added into C. We prove
the lemma by induction over n. Obviously, every state t ∈ C1 cannot reach
states in ¬q (and C1 ∩ ¬q = ∅). So the lemma holds in the base case. For
the inductive step (when k > 1), since every state t ∈ Ck cannot reach ¬q ∩
T−1(¬(

⋃
1≤i≤k−1 Ci)), we consider a state s̃ ∈ ¬q in two different sets. If s̃ ∈

T−1(¬(
⋃

1≤i≤k−1 Ci)), t cannot reach s̃; otherwise, s̃ 6∈ T−1(¬(
⋃

1≤i≤k−1 Ci))
implies that T (s̃) ⊆ (

⋃
1≤i≤k−1 Ci), i.e., every successor of s̃ is in (

⋃
1≤i≤k−1 Ci).

From the inductive hypothesis, every state in (
⋃

1≤i≤k−1 Ci) can only reach a
¬q-state a finite number of times. Therefore, we have that t can only reach a
¬q-state finitely-many times as well.

Taking the prune-dead procedure into consideration, only those states whose
successors are all in C are added into C (line 32). From the hypothesis assump-
tion, every state in C can only visit a ¬q-state a finite number of times, so as
the predecessors, those states can only visit a ¬q-state finitely-many times as
well. ut

Lemma 2. Given s |= ¬C, when the prune-dead(s) procedure returns, it re-
turns True if and only if every successor of s, if existing, is in C.

Proof. (⇒) The procedure returns True implies that either the SAT call at line
27 returns unsat, which indicates that every successor of s is in C, or there is
some successor d of s that is not in C. However, since the procedure returns True,
the SAT call at line 30 must return unsat, which indicates that every successor
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of d, if existing, is in C. Then d will be added into C according to lines 31-32.
So d ∈ C becomes true. The above process will repeat inside the while loop at
line 27 until every successor of s is in C.

(⇐) If every successor of s is in C, the SAT call at line 27 will return unsat.
Therefore, the while loop directly stops and the procedure returns True at line
35. ut

Lemma 3. 1. search-cex(s,B) returns True if and only if there is a lasso
starting from s and its loop part contains a ¬q-state.

2. search-cex(s,B) always terminates.

Proof. 1. (⇒) The procedure is recursively implemented and it returns True as
soon as a ¬q-state t (which can be the same as s) is already in B, indicating
that a loop is detected. Moreover, t is reachable from the input state s, since
t is detected from the successors of s by check-reachable. Therefore, a
lasso starting from s and looping with t is found when the procedure returns
True.
(⇐) Assume the lasso is s, . . . , t1, . . . , (ti, . . . , tj) in which tj = ti (1 ≤ j ≤ i)
and every tk (1 ≤ k ≤ j) is a ¬q-state. First of all, we can prove that for
each tk, it is true that tk ∈ T−1(¬C), i.e., there is some successor of tk that
is not in C; otherwise, from tk there cannot be a lasso looping with a ¬q-
state, as based on Lemma 1, all successors of tk being in C implies they can
only visit a ¬q-state a finite number of times. Therefore, tk can be found by
the check-reachable call at line 17 and prune-dead(tk) cannot return
True according to Lemma 2, implying that search-cex(s,B) will not return
False at line 16. As a result, search-cex(s,B) will finally return True at
line 13 once it finds tj for the second time.

2. We prove that the while loop of line 17 of search-cex(s,B) is terminating.
The point is that the size of the state set ¬q∩T−1(¬C) keeps shrinking after
each iteration of the loop, because the ¬q-state t at line 18 will be removed
from ¬q∩T−1(¬C). The reason is that when the recursive search-cex(s, ∅)
procedure returns False at line 19, the proof of Item 1 above guarantees that
there is no lasso starting from t and looping with a ¬q-state. So C will be
updated either by the inductive invariant (line 23) or the unsat core in the
prune-dead procedure (line 32) such that t 6∈ T−1(¬C) is true, according
to Lemmas 1 and 2. Therefore, t is successfully removed from ¬q∩T−1(¬C).
In the worst case, the state set will become empty and check-reachable
can terminate with safe as no bad state can be found at line 5.

ut

Lemma 4. 1. rlive(I, T, q) always terminates.
2. rlive(I, T, q) returns safe if and only if the system (I, T ) satisfies the property

FGq.

Proof. 1. The proof is analogous to that of Item 2 of Lemma 3, so it is omitted.
2. (⇒) Assume by contradiction that rlive returns safe, but the property doesn’t

hold. Therefore, there exists a lasso-shaped trace π of the form s, . . . , t1,
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. . . , (ti, . . . , tj) in which tj = ti (1 ≤ j ≤ i) and every tk(1 ≤ k ≤ j)
is a ¬q-state. By Lemma 1, none of the states in π is in C, and moreover
ti ∈ ¬q∩T−1(¬C). Therefore, s, . . . , t1 is a trace reaching the bad state ¬q∩
T−1(¬C) in the system 〈X, I, T ∧(¬C∧¬C ′)〉, which is found by the check-
reachable call at line 5. But then, search-cex(t1, ∅) at line 7 returns
False by Lemma 3, and so rlive returns unsafe, which is a contradiction.

(⇐) The system satisfies the property implies that every ¬q-state that is
reachable from the initial states, if existing, can only be visited finitely-
many times. Assume the number of such reachable ¬q-states is k (k < +∞).
If k = 0, the check-reachable procedure in the while loop of rlive (line
5) will directly return safe and thus rlive returns safe. When k > 0, assume
the reachable ¬q-states are s1, . . . , sk. So there are at most k iterations of
the while loop, since each si (1 ≤ i ≤ k) can be found at most once by the
check-reachable call on line 5 (the argument is similar to the one used
in the proof of Item 2 of Lemma 3). However, search-cex(si, ∅) will return
False, because si can be visited only a finite number of times and thus no
lasso can be detected. As a result, rlive cannot return unsafe inside the loop.
And finally, rlive can only return safe in the worst case that every si is found
and blocked in the while loop.

ut

Theorem 1 (Correctness). rlive can always terminate and terminate with the
correct result.

Proof. Directly from Lemma 4. ut

4 Related Work

We have already introduced the main SAT-based liveness checking algorithms
in Section 2.4. Here, we discuss their relation with rlive, highlighting both simi-
larities and differences with our approach.

rlive vs L2S [4]. The original liveness-to-safety transformation is conceptually
very simple, and it can be applied with any off-the-shelf safety model checking
algorithm, not necessarily based on SAT. The eager L2S transformation can how-
ever be inefficient, as it requires a duplication of the state variables, which might
lead to significant performance penalties. In contrast, rlive follows a lazier ap-
proach, using an incremental reduction to safety, designed to exploit the invariant
generation capability of modern SAT-based safety checking engines, which does
not require duplicating the state variables and can be more efficient in practice.

rlive vs FAIR [9]. At a high level, rlive and FAIR follow the same principle of
incremental strengthening the input problem by exploiting the inductive invari-
ants generated when refuting candidate counterexamples with a safety model
checker. The main difference is in how the candidate counterexamples are iden-
tified and blocked: while FAIR does that by checking directly for looping paths
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that start from a given reachable ¬q-state, rlive follows a more incremental ap-
proach, in which repeated (and recursive) safety checks are used to build a bad
loop incrementally. As our experimental results show (see Section 5), this dif-
ference turns out to be crucial for performance in practice. A second difference
regards the nature of the information extracted from the inductive invariants
produced by the safety checker: in general, the walls of FAIR are regions that
cannot be crossed to find a counterexample (i.e., all states of a counterexample
to FGq are on one side of the wall), whereas shoals are regions that must be
avoided completely (i.e., no state in a counterexample can part of a shoal).

rlive vs k-Liveness [13]. The incremental approach used by rlive for constructing
counterexamples is inspired by the k-Liveness algorithm; in some sense, rlive
can in fact be seen as a depth-first (DFS) variant of k-Liveness, which performs
instead a breadth-first (BFS) search (relative to the number k of times in which
¬q can occur in the traces of the system). Thanks to its DFS approach, rlive
doesn’t need to maintain a global k value, but uses a different k for each trace;
as such, it can sometims reach values of k which are beyond the capabilities of k-
Liveness (see our results in §5).6 Another difference between the two approaches
is in the capability of finding counterexamples: although in principle complete,
k-Liveness is more effective at proving properties than at disproving them, and
already in the original paper [13] the authors recommend complementing it with
BMC for finding counterexamples; on the other hand, rlive is effective both for
safe and unsafe properties.

rlive vs k-FAIR [16]. k-FAIR is a parametric combination of FAIR and k-Liveness,
in which each candidate counterexample to FGq either is analyzed using FAIR,
or causes an increase in the k counter of k-Liveness (see Algorithm 1). As such,
the comparisons made above between rlive and FAIR or k-Liveness apply also to
k-FAIR. Like k-FAIR, rlive can also be seen as trying to combine the strengths
of the two techniques in a single algorithm; however, the two approaches differ
significantly in how such integration is performed.

5 Evaluation

We have implemented rlive inside the nuXmv model checker [10]. Our imple-
mentation can use three different safety-checking engines, namely IC3, fCAR
(Forward CAR), and bCAR (Backward CAR), relying on the latest version of
CaDiCaL [7] as backend SAT solver. In this section, we experimentally evaluate
rlive by comparing it with different state-of-the-art SAT-based liveness checking
algorithms.

5.1 Experimental Setup

We include in our evaluation nuXmv [10] and IIMC [3], two state-of-the-art tools
implementing SAT-based liveness-checking algorithms which are among the best-

6 Note that here by k we mean the maximum recursion depth reached by rlive for a
given candidate counterexample trace, as there is no explicit k counter in rlive.
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Table 1. Tools and algorithms evaluated in the experiments.

Tools Algorithms Engines

nuXmv

rlive [ -d ]

IC3, fCAR, bCAR
k-Liveness
FAIR
k-FAIR
L2S
k-Liveness + BMC IC3, BMC

IIMC
k-Liveness

IC3
FAIR

performing ones in the most recent liveness-checking tracks of the Hardware
Model Checking Competition (HWMCC) [1,2]. nuXmv implements L2S and k-
Liveness, using a configuration that runs k-Liveness in lockstep with BMC as
suggested in [13] for the latter (which we refer to as k-Liveness + BMC below). In
addition to rlive, we also implemented other three liveness-checking algorithms
on top of nuXmv, namely k-Liveness, FAIR, and k-FAIR. FAIR and k-FAIR are
implemented according to Algorithm 1, and k-Liveness is added with the ability
to find counterexamples by checking for repeated ¬q-states in the violated traces
(before increasing the value of k). IIMC implements FAIR and “plain” k-Liveness
instead (without BMC). Table 1 summarizes the tested tools, algorithms, and
their engines. Regarding rlive, the ‘-d’ flag is used to enable the dead-pruning
optimization, otherwise rlive ignores lines 15-16 of Alg. 2.

We evaluate all the configurations on 223 benchmarks, in aiger [5] format,
of the liveness property track of HWMCC 2015 and 2017 [1,2].7 We ran the ex-
periments on a cluster, which consists of Gold 6132 2.6GHz CPUs in 240 nodes
running RedHat 4.8.5 with a total of 96GB RAM. For each test, we set the mem-
ory limit to 8GB and the time limit to 1 hour. During the experiments, each
model-checking run has exclusive access to a dedicated node. For correctness
checking, we compared the results from different solvers and found no discrep-
ancies.

5.2 Experimental Results

Overview. The main results of the experiment are summarized in Table 2, in
which the different tools/configurations are ordered by the total number of suc-
cessfully solved instances within the given resource budget. From the table, we
can see that rlive is the algorithm with the overall best performance in terms
of the number of solved cases. More explicitly, rlive with the dead-pruning op-
timization and using IC3 as the backend solves the largest number of instances
(159), and it is also the configuration that verifies the most cases (66). rlive is
also the algorithm that finds the largest number of counterexamples, and this is

7 Note that HWMCC editions after 2017 did not include a liveness track.
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Table 2. Summary of overall results among different tools/configurations.

Configuration #Solved #Verified #Violated

nuXmv -rlive -d 159 66 93
nuXmv -rlive -d (fCAR) 158 62 96
nuXmv -k-Liveness + BMC 146 61 85
nuXmv -rlive 145 54 91
nuXmv -rlive -d (bCAR) 142 45 97
nuXmv -L2S 139 65 74
nuXmv -k-Liveness 138 63 75
nuXmv -k-FAIR 124 54 70
IIMC -FAIR 82 47 35
nuXmv -FAIR 66 29 37
IIMC -k-Liveness 50 50 0

true for all configurations that we tested (with ‘rlive -d’ using bCAR being the
best one).

Regarding other tools/algorithms, the best performing one is the k-Liveness
+ BMC implementation in nuXmv, solving a total number of 146 cases, which
is 11% less than the best configuration of rlive (i.e., ‘rlive -d’). All the other
configurations solve significantly fewer instances than rlive.

The results in Table 2 also show that using different engines to run the rlive al-
gorithm preserves good performance.8 Under the same implementation platform,
their overall performance is better than k-Liveness using IC3: ‘rlive -d (fCAR)/
(bCAR)’ solves 158/142 instances in total, while k-Liveness only solves 124. Using
fCAR results in a much better performance than bCAR on verifying properties
(62 vs. 45). However, applying the bCAR engine seems to be an advantage in
finding counterexamples, although the gap with other engines is modest (and
rlive in general performs very well on finding counterexamples).

Finally, the results show also the importance of the dead-pruning optimiza-
tion. Before the dead-pruning optimization is enabled, the performance of rlive
is similar to k-Liveness + BMC from nuXmv (145 vs. 146). Dead-pruning im-
proves rlive (using IC3) by verifying 12 more instances and finding 2 additional
violations.

Runtime efficiency. In order to evaluate the runtime efficiency of rlive, we
show in Fig. 3 a plot on the number of solved instances (y-axis) in the given
time limit (x-axis) for a subset of the tested configurations (all using IC3 as a
backend). From the plot, it is evident that ‘rlive -d’ is significantly more efficient
than the other competitors, always solving the largest number of instances within
the timeout ranging from 600 seconds to 3600 seconds.

A more detailed comparison between rlive and other algorithms is shown in
Fig. 4. From the plots, we can see that rlive outperforms other algorithms in a

8 It should be mentioned that we also tried k-Liveness, FAIR and k-FAIR with the fCAR
and bCAR engines in our tool as well, but they do not have better performance than
using IC3. For page limit, we do not list the relevant data in the paper.
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Fig. 4. Time comparison between rlive (with dead-pruning) and other implementa-
tions/configurations. rlive is always on the x-axis. Points above the diagonal indicate
better performance of rlive. Points on the borders indicate timeouts (3600s).

large number of cases, especially in the case of violated properties. An interesting
exception is IIMC-FAIR, which shows strengths that are complementary to those
of rlive, particularly for verified properties.

Portfolio configurations. We analyze the behaviour of rlive in “portfolio” con-
figurations, which is a technique often used in practice to improve performance
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when multiple CPU cores are available. For this, we performed two (virtual)
experiments. In the first experiment, we consider a (virtual) portfolio consisting
of the algorithms using IC3 as the backend,9 and compare it with (virtual) port-
folios obtained by excluding a single algorithm at a time, in order to analyze the
contribution of the excluded algorithm to the virtual best. The results are shown
in Table 3. From the table, we can see that rlive contributes significantly to the
performance of the virtual best, particularly for violated properties. Moreover,
when multiple engines solve the same property, rlive is the fastest in the vast
majority of cases (81 over 183 verified by the virtual best, with the 2nd best
performing being the fastest only in 26 cases).

Table 3. Virtual Best results among implementations by IC3 engine. VBS \ (Algo-
rithm a) refers to the removal of a from the portfolio, so the reduction in the number
of solutions represents the contribution of a to the portfolio. #Fastest Solution rep-
resents the number of times algorithm a solves a case fastest in the full VBS portfolio.

Configuration #Verified #Violated #Contribute #Fastest Solution

VBS 82 101 - -
VBS \ (nuXmv -rlive -d) 82 85 17 81
VBS \ (IIMC -FAIR) 78 101 4 20
VBS \ (nuXmv -k-Liveness + BMC) 82 97 4 14
VBS \ (nuXmv -L2S) 82 101 0 26
VBS \ (nuXmv -k-FAIR) 82 101 0 18
VBS \ (nuXmv -FAIR) 82 101 0 15
VBS \ (nuXmv -k-Liveness) 82 101 0 10

In the second experiment, we compose (virtual) portfolios in a “bottom up”
way, by considering only configurations running two different algorithms in par-
allel. Also, in this case, the results in Table 4 clearly show the impact of rlive.

Table 4. Top 10 combinations of 2 algorithms implementation into one portfolio.

Configurations #Solved #Verified #Violated

nuXmv -rlive -d & IIMC -FAIR 174 78 96
nuXmv -rlive -d & nuXmv -k-Liveness + BMC 172 71 101
nuXmv -rlive -d & nuXmv -L2S 172 76 96
nuXmv -rlive -d & nuXmv-k-Liveness 170 74 96
nuXmv -rlive -d & nuXmv-k-FAIR 166 71 95
nuXmv -rlive -d & nuXmv-FAIR 161 66 95
nuXmv -k-Liveness + BMC & nuXmv -L2S 161 76 85
nuXmv -k-Liveness + BMC & IIMC -FAIR 159 74 85
nuXmv -L2S & nuXmv -k-FAIR 152 76 76
nuXmv -L2S & nuXmv -k-Liveness 151 76 75

9 We exclude ‘nuXmv -rlive’ because it is subsumed by ‘nuXmv -rlive -d’.
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Analysis of rlive behaviour. We explore the
reasons for the excellent performance of rlive
through Fig. 5, which compares the k value
of k-Liveness to the corresponding maximum
recursion depth in rlive on verified properties.
They both represent that the algorithm can
find a path containing at most k ¬q-states be-
fore terminating with safe. When both algo-
rithms terminate within the time limit, the
k value of rlive is always less (or equal) than
the value of k-Liveness. Since k-Liveness per-
forms a breadth-first search (in terms of k),
it always needs to find the path that contains
the most ¬q-states before it can terminate.
On the other hand, the shoals generated by
rlive during the search process help in block-
ing other ¬q-states, allowing rlive to converge

at a smaller depth. In addition, rlive is better at solving cases where there is
a path containing a large number of ¬q-states in the system, where k-Liveness
needs to reach a very large k value to converge. These cases are located on the
right border of Fig. 5. The recursion depths of rlive on these cases reach far
over 100, with the deepest one reaching 4095. However, the maximum k value
of k-Liveness is only around 100. Figure 5 shows also some cases (located in the
upper border of the plot) which could be solved by k-Liveness but not by rlive.
We investigated them and found that dead states caused the rollback steps of
rlive to be slower. The current dead-pruning optimization, which only performs
a one-step lookahead to discover dead states, is not effective for such instances
(though in most cases this simple strategy works), suggesting future directions
for improvement.

6 Conclusions

We presented rlive, a novel algorithm for the liveness checking problem FGq.
The idea is to search for a lasso-shaped counterexample by repeatedly calling
a safety checker to re-enter the ¬q states set. The search proceeds in depth-
first, backtracking when a state in ¬q can be excluded by proving that ¬q can
only be reached finitely-many times from its successors, and cannot be part
of a counterexample. The invariants returned by the underlying safety checker
restrict the search progressively. We called such invariants shoals, as intuitively
they represent states that must be avoided when searching for a counterexample.
A thorough experimental evaluation clearly demonstrates that rlive is superior
to the other liveness checkers, both in terms of benchmarks solved and run time.

Regarding future research, we plan to extend this work in several directions.
First, we will investigate heuristics to control the exploration order of bad states
and the counterexamples produced by the safety checker. Second, we will con-
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sider the extraction of proofs from rlive. Third, we will consider extensions of
rlive to the infinite-state case, in combination with algorithms for finding non-
lasso-shaped counterexamples such as [11].
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