
Towards the verification of a generic interlocking
logic: Dafny meets parameterized model checking

Alessandro Cimatti Alberto Griggio Gianluca Redondi
Fondazione Bruno Kessler (FBK)

Trento, Italy

Abstract
Interlocking logics are at the core of critical systems
controlling the traffic within stations. In this paper, we
consider a generic interlocking logic, which can be instan-
tiated to control a wide class of stations. We tackle the
problem of parameterized verification, i.e. prove that the
logic satisfies the required properties for all the relevant
stations. We present a simplified case study, where the
interlocking logic is directly encoded in Dafny. Then, we
show how to automate the proof of an important safety
requirement, by integrating simple, template-based in-
variants and more complex invariants obtained from a
model checker for parameterized systems. Based on these
positive preliminary results, we outline how we intend
to integrate the approach by extending the IDE for the
design of the interlocking logic.

CCS Concepts: � Software and its engineering
→ Software verification; Model checking; System
modeling languages.

Keywords: Verification, Interlocking logic, Dafny

ACM Reference Format:
Alessandro Cimatti Alberto Griggio Gianluca Re-
dondi. 2024. Towards the verification of a generic interlocking
logic: Dafny meets parameterized model checking. In Pro-
ceedings of Dafny Workshop (Dafny’24). ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Interlocking systems are complex, safety-critical systems
controlling the operation of the devices in a railway sta-
tion. The main function is the creation of safe routes
for trains from different points in the station. This re-
quires that the devices insisting upon a given route (e.g.

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or

to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Dafny’24, January 2024, London, UK

© 2024 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

semaphores, switches, level crossing) must be properly
operated and that mutual exclusion between interfering
routes is ensured. At a high level of abstraction, an in-
terlocking system can be thought of as implementing a
very articulated mutual exclusion protocol, that we refer
to as interlocking logic.
In this paper, we investigate the use of a formal ap-

proach to ensure the reliability and integrity of their
operations, as a complement to the standard validation
and certification techniques. Our context is an ongoing
activity of RFI (the company managing the Italian rail-
ways network), aiming to develop an in-house, framework
to design interlocking logics and support the development
of interlocking systems [3, 5]. One of the goals of this
framework is to develop a computer-based, in order to go
beyond the current relay-based interlocking technology.
Starting from a high-level controlled natural language
to describe the interlocking logic, a model-based Inte-
grated Development Environment supports the railways
signaling engineers in specifying the interlocking logic
in a well-structured and semantically unambiguous way.
Interestingly, the interlocking logic is generic in that
it describes the procedures without specific reference
to a single, given station; rather, it applies to any sta-
tion in a given class. The resulting specification is then
translated into a SysML model, and from there compiled
into executable code. Then, the user can define a spe-
cific station configuration (e.g. the station of the city of
Trento), detailing the exact number of components and
their interactions. Upon configuration, the code can be
tested in a closed loop integration with a yard simulator
modeling the behavior of trains and physical devices.

Formally verifying the interlocking logic is a very im-
portant goal, and several attempts have been made in
this direction [8, 9]. On the one side, we attempted to
apply software model checking techniques on the code
configured with respect to a specific station. This ap-
proach hit a scalability barrier, due to the sheer size
of the resulting, instantiated model. Even more impor-
tantly, the results of the verification would be applicable
to a specific station only. On the other side, we tried to
tackle the problem of verifying the generic interlocking
logic without instantiating it with respect to a specific
station. We attempt to follow an SMT-based approach
aiming at devising quantified invariants. This leads to

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Dafny’24, January 2024, London, UK Alessandro Cimatti Alberto Griggio Gianluca Redondi

large and difficult-to-reason-about formulae, due to the
lack of a proper structure.
Based on these experiences, we are investigating an

alternative approach, that leverages the object-oriented
features of Dafny to obtain a high-level and natural
framework where we tackle the verification of generic
interlocking logics. We present an artificial but represen-
tative case study, that shows how we intend to model the
problem in Dafny and show how we verify some generic
properties. We hint that automation in the verification
can be increased by combining template-based genera-
tion of simple invariants and the use of a parameterized
model checker to generate more complex, problem spe-
cific invariants. We believe that the results are quite
promising and that the approach is worth investigating
further. We discuss the open challenges that we still need
to solve to make this approach scalable.

2 Developing a Generic Interlocking
Logic

In this section, we overview the approach for the de-
velopment of a generic interlocking logic [2, 3, 5]. The
development of the interlocking logic is model-based
and starts from a domain-specific controlled natural
language (CNL), supported by the tool AIDA. The inter-
locking logic is designed through the creation of sheets,
each defining a logical entity, also referred to as a class.
Examples of entities include shunting routes, i.e. the
high-level process devoted to creating a safe path for a
train within the station, and lower level entities such as
track segments, switches, level crossing, axal counters,
and semaphores. Each sheet is divided into two parts.
The first one defines the structure of the class, i.e. vari-
ables, parameters, and notably lists of other components
that are connected to the class. For example, a shunting
route will have lists of the entities it track segments it
insists upon, e.g. the track segments that must be locked
before the green light is signaled.

The second part of the sheet describes the behavior of
the component, which can be thought of as an extended
Finite State Machine. A distinguished state variable,
taking values from an enumerative set, is used to define
the current location in the FSM. Each state transition
is characterized by the following elements:

∙ Source and Destination;
∙ Triggers, i.e. events that determine the firing of a
transition (e.g. the reception of a command from
an external operator, such as ”create the route
from entrance 3 to platform 12”);

∙ Guards, i.e. the conditions that must be satisfied
to enable a particular transition. Determinism is
ensured by explicitly prioritizing guards;

∙ Effects: when a transition is executed, effects are
applied that alter the internal state of the compo-
nent, and possibly the state of components that
are connected to it.

Guards and effects of a transition may read and or write
the value of variables of the objects in the list of the
connected components connected to the class.
The structured natural language used in the sheets

has been designed to be comprehensible even to those
not trained in formal languages and incorporates gram-
matical structures drawn from domain-specific jargon.
Phrases are structured to ensure traceability to perti-
nent provisions and regulations. For instance, an engineer
might specify a transition guard as follows: ”Check that
all the track segments of the routes are in a free state.”
In AIDA, the sheets written in controlled natural

language are associated with a number of syntactic and
semantic checks and are translated into a SysML model.
From the SysML model, it is possible to extract graphical
views of the FSM for each class. Furthermore, the SysML
can be compiled into executable code (Python and C).

The IDE is complemented by two other tools: TOSCA
and Norma. TOSCA implements a number of functions
for the testing of the interlocking logic. It supports the
specification of test scenarios, using a domain specific
CNL sharing some features with the CNL for the inter-
locking logic. Generic, abstract scenarios may refer to
any specific station and can be automatically instanti-
ated on concrete scenarios. These can then be run on
the suitably instantiated software, in closed loop with
a simulator of the trains and trackside devices. Auto-
mated test case generation oriented to coverage is also
supported.
Norma[2] is the tool for the formal analysis of legacy

interlocking systems based on relay technology. The role
of Norma is to extract formulae from the old designs and
test that the new specifications will reflect the behavior
of the older systems. The definition of a semantic corre-
spondence between the two interlocking technologies is
nontrivial and relies on the definition of specific abstrac-
tions [4] to extract properties to be used in verification.
Within this comprehensive IDE, preliminary exper-

iments in applying formal verification have been at-
tempted, aiming at proving safety properties of the gener-
ated C code. The tool leverages symbolic model-checking
techniques for software verification, with integration into
the Kratos2 model checker [11]. This approach, however,
did not yield the expected results. On the one hand, even
if the generation of C code is generic to all configurations,
its subsequent verification can only take place once the
configuration of a specific station has been provided.
This is necessary to meet the restrictions of Kratos2,
that is unable to deal with objects of unspecified size.

Towards the verification of a generic interlocking logic: Dafny meets parameterized model checking Dafny’24, January 2024, London, UK

As a result, our current capability allows us to assess
the safety of individual stations with regard to specific
properties. Furthermore, the verification of the C im-
plementation of the interlocking logic configured for a
given station incurs scalability problems, due to the large
number of components and their complex connections.
For this goal, we could use the generic generated code
as an input for Kratos2, but the invariant generation
engine of the model checker is not able to synthesize the
correct parameterized invariants. Hence, in the rest of
this paper, we tackle the parameterized verification of
the generic interlocking logic, without assuming that a
specific station configuration is given.

3 Dafny encoding
As noted earlier, Dafny classes are a natural candidate
to represent AIDA classes. Moreover, the verification in
Dafny is modular, thus possibly reducing the complexity
of the system to verify the single components. We now
illustrate a possible Dafny implementation of a working
example. In an ideal scenario, this Dafny code is gen-
erated automatically from SysML, complementing the
generation of C and Python code.
Specifically, our example consists of a simple station

with only two kinds of components: tracks, representing
the track segments, and routes, modeling the different
routes for the possible trains.
Each track class of AIDA has two variables: a state

variable, and a direction variable. Similarly, the routes
have a state variable and a Boolean one. In addition,
each route is connected to a set of tracks (the ones used
by the route), which should be in a particular direction.

Regarding transitions, we consider for simplicity only
one simple method of the route class, that mirrors the
transition from an inactive state to an active one. The
guard corresponds to the condition ‘all the tracks of the
route are in a free state and in the requested direction’,
and the effect is ‘assign to all the tracks of the route the
state locked’.
In the figures 1 and 2 we can see the two Dafny defi-

nitions of the classes. We start by defining variables, as
we would find them in the initial segment of an AIDA
sheet. Subsequently, the methods of the class model
the transitions in the second part of the AIDA sheet.
The source and destination states, guards, and effects of
transitions are translated into a series of preconditions
and postconditions for each method. The body of each
method is populated with a representation of the C code
generated by AIDA.
We remark that, unlike the description of the AIDA

sheet, the formalization of the methods in Dafny in-
troduces a ”modifies” clause. Additionally, we must ex-
plicitly include equalities among variables that remain

datatype TrackState = Init | Locked | Free
datatype TrackDirection = Straight | Reverse

class Track
{

var state : TrackState
var direction : TrackDirection

constructor (d : TrackDirection)
ensures this.state =TrackState.Init
ensures this.direction =d

{
state :=TrackState.Init;
direction :=d;

}

method lock()
modifies this
ensures this.state =Locked
ensures this.direction =old(this.direction)

{
this.state :=Locked;

}

method go free()
modifies this
ensures this.state =Free
ensures this.direction =old(this.direction)

{
this.state :=Free;

}

method change dir()
modifies this
ensures this.state =old(this.state)
ensures old(this.direction) ̸=this.direction

{
if (this.direction =Straight)

{
this.direction :=Reverse;

}
else {

this.direction :=Straight;
}

}

}

Figure 1. Dafny encoding of the track class

unchanged in the postconditions. The initial challenge
in automating Dafny code generation lies in accurately
representing these statements.
Up to this point, the verification checks performed

by Dafny are focused on ensuring that the generated
code complies with the specified requirements. The only
invariants required for this verification occur in the while
loop of the ‘activate route’ method. We suppose that we
can generate such invariants automatically, without the
need of an external tool, as they reflect the structure of
the generated code, which is under our control.
Lastly, we introduce the concluding segment of the

Dafny code designed for verifying the safety of the sta-
tion, in figure 3. Within this last code segment, we
introduce the concept of a station, which is portrayed as
a collection of routes and tracks. Subsequently, we define
the station’s scheduler, a crucial element in the system.

Dafny’24, January 2024, London, UK Alessandro Cimatti Alberto Griggio Gianluca Redondi

include ”tracks.dfy”

datatype RouteState = Init | Active | Wait | Inactive

class Route
{

var state : RouteState
var change dir request : bool

const used : seq<Track>
const requested dir : seq<TrackDirection>

ghost predicate ValidRoute()
reads this
{

|this.used| =|this.requested dir|
}

constructor (u : seq<Track>, d : seq<TrackDirection>)
requires |u| =|d|
ensures this.state =RouteState.Init
ensures this.requested dir =d
ensures this.used =u
ensures change dir request =false
ensures ValidRoute()

{
used :=u;
requested dir :=d;
state :=RouteState.Init;
change dir request :=false;

}

method activateroute()
modifies this, this.used[..]
requires ValidRoute()
requires this.state =Wait
requires ∀t ∙t in this.used =⇒t.state =Free
requires ∀i ∙0 ≤i < |this.used| =⇒

this.used[i].direction =this.requested dir[i]
ensures ValidRoute()
ensures this.state =Active
ensures this.change dir request =

old(this.change dir request)
ensures (∀ t ∙t in this.used

=⇒t.state =Locked)
ensures (∀ t ∙t in this.used

=⇒t.direction =old(t.direction))
{

var i :=0;
while i < |this.used|

modifies this.used[..]
invariant 0 ≤i ≤|this.used|
invariant ∀t ∙t in this.used[..i]

=⇒t.state =Locked
invariant ∀t ∙t in this.used

=⇒t.direction =old(t.direction)
{

this.used[i].lock();
i :=i + 1;

}

this.state :=Active;
}

}

Figure 2. Dafny encoding of the route class

This scheduler nondeterministically selects a method
that can be executed and proceeds with its execution.
Additionally, we define the property that we seek to

validate, named ”Secure Station,” which corresponds to
the property ‘two incompatible routes cannot be active
together’.

include ”tracks.dfy”
include ”routes.dfy”

class Station
{

const routes : set<Route>
const tracks : set<Track>

ghost predicate ValidStation()
reads this, this.routes
{

∧this.routes ̸={}
∧this.tracks ̸={}
∧(∀ i ∙i in this.routes =⇒

(∃ j ∙j in this.tracks ∧j in i.used))
∧(∀ i, t ∙i in this.routes ∧

t in i.used =⇒t in this.tracks)
∧∀r ∙r in routes =⇒r.ValidRoute()

}
ghost predicate NotCompatibleRoutes(a : Route,

b : Route)
reads a, b

{
(∃ i ∙(i in a.used) ∧(i in b.used)) ∧a ̸=b

}

ghost predicate SecureStation ()
reads this, this.routes

{
∀i,j ∙(i in this.routes) ∧
(j in this.routes) ∧(NotCompatibleRoutes(i,j))
=⇒¬(i.state =Active ∧j.state =Active)

}

ghost predicate SecureInductiveStation()
reads this, this.tracks, this.routes

{
this.SecureStation() ∧
∀r, t ∙(r in this.routes ∧t in this.tracks

∧t in r.used ∧t.state =Free)
=⇒¬(r.state =Active)

}

predicate Precondition(r : Route)
requires r.ValidRoute()
reads r, r.used

{
∧(∀ t ∙t in r.used

=⇒t.state =Free)
∧(∀ i ∙0 ≤i < |r.used|

=⇒r.used[i].direction =
r.requested dir[i])

}

method StationScheduler()
modifies this.routes, this.tracks
requires ValidStation()
requires SecureInductiveStation()
ensures ValidStation()
ensures SecureInductiveStation()
decreases *

{
while true

modifies this.routes, this.tracks
invariant ValidStation()
invariant SecureInductiveStation()
decreases *
{

var r : | r in this.routes;
match r.state {

case Init ⇒r.deactivate();
case Inactive ⇒r.requestroute();
case Wait ⇒if Precondition(r)

{r.activateroute();}
case Active ⇒r.deactivateroute()}

}
}

}

Figure 3. Dafny encoding of the station

Towards the verification of a generic interlocking logic: Dafny meets parameterized model checking Dafny’24, January 2024, London, UK

The loop of the scheduler tries to establish that the
property is preserved by each method. Notably, this
preservation is not true for the initial property itself, ”Se-
cure Station.” However, the verification succeeds when
we provide a stronger inductive invariant that implies
the original property - called ”Secure Inductive Station”.
The goal of this project would be to use a parame-

terized model checker to find these inductive invariants
automatically.

4 Invariant inference with a
Parameterized Model Checker

Parameterized model checking is a verification technique
designed to assess whether a given property holds true for
all possible system configurations, making it particularly
valuable for systems with variable sizes or structures.
This approach allows for the analysis of system behav-
ior, safety, and correctness across a range of instances,
providing a formal framework for universal reliability.
Unfortunately, with the exception of a few cases, param-
eterized verification is undecidable. Nonetheless, in the
literature, there are various approaches that can automat-
ically synthesize invariants for parameterized systems
[1, 6, 7, 10]. In particular, the algorithm presented in
[7] is an SMT-based algorithm for the verification of
parameterized systems. In that setting, unbounded com-
ponents are modeled via a theory of a simple type, and
state variables are functions from such types to other
theories.
Our goal is to use such a model checker to synthe-

size automatically the inductive invariants that Dafny
needs to conclude the proof. We illustrate the main
concepts of SMT-based parameterized model checking
continuing the last example. To formalize the whole
system symbolically, we need to define a transition sys-
tem 𝑆 = (𝑋, 𝐼(𝑋), 𝑇 (𝑋,𝑋 ′)), where 𝑋 is a set of vari-
ables, and 𝐼, 𝑇 are formulas over some theory. A key
insight here is that we do not need to represent all
the attributes of the class, but only the one relevant
to building the inductive invariant. For this example,
the only variables we need are two state variables, one
with sort 𝑡𝑟𝑎𝑐𝑘 ↦→ {𝑓𝑟𝑒𝑒, 𝑙𝑜𝑐𝑘𝑒𝑑} and one with sort
𝑟𝑜𝑢𝑡𝑒 ↦→ {𝑎𝑐𝑡𝑖𝑣𝑒, 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒}. The initial formula of the
system is:

∀𝑡 : 𝑡𝑟𝑎𝑐𝑘.(𝑠𝑡𝑎𝑡𝑒[𝑡] = 𝑓𝑟𝑒𝑒)∧∀𝑟 : 𝑟𝑜𝑢𝑡𝑒.(𝑠𝑡𝑎𝑡𝑒[𝑟] = 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒).

Moreover, we model the dependencies between a route
and its associated tracks with a binary predicate 𝑈𝑠𝑒𝑑𝐵𝑦
with sort 𝑟𝑜𝑢𝑡𝑒 × 𝑠𝑡𝑎𝑡𝑒 ↦→ 𝐵𝑜𝑜𝑙. The method ‘activate

route’ can thus be modeled with the following formula:

∃𝑟 : 𝑟𝑜𝑢𝑡𝑒
(︀
𝑠𝑡𝑎𝑡𝑒[𝑟] = 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒∧

∀𝑡1 : 𝑡𝑟𝑎𝑐𝑘(𝑈𝑠𝑒𝑑𝑏𝑦(𝑡1, 𝑟) → 𝑠𝑡𝑎𝑡𝑒[𝑡1] = 𝑓𝑟𝑒𝑒)∧
∧𝑠𝑡𝑎𝑡𝑒′[𝑟] = 𝑎𝑐𝑡𝑖𝑣𝑒∧∀𝑠 : 𝑟𝑜𝑢𝑡𝑒(𝑠 ̸= 𝑟 → 𝑠𝑡𝑎𝑡𝑒′[𝑠] = 𝑠𝑡𝑎𝑡𝑒[𝑠])

∧ ∀𝑡 : 𝑡𝑟𝑎𝑐𝑘.(𝑈𝑠𝑒𝑑𝑏𝑦(𝑡, 𝑟) → 𝑠𝑡𝑎𝑡𝑒′[𝑡] = 𝑙𝑜𝑐𝑘𝑒𝑑

∧ ¬𝑈𝑠𝑒𝑑𝑏𝑦(𝑡, 𝑟) → 𝑠𝑡𝑎𝑡𝑒′[𝑡] = 𝑠𝑡𝑎𝑡𝑒[𝑡])
)︀
.

Then, we define

𝑁𝑜𝑡𝐶𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒(𝑟1, 𝑟2) ⇐⇒
𝑟1 ̸= 𝑟2 ∧ ∃𝑡 : 𝑡𝑟𝑎𝑐𝑘.𝑈𝑠𝑒𝑑𝑏𝑦(𝑡, 𝑟1) ∧ 𝑈𝑠𝑒𝑑𝑏𝑦(𝑡, 𝑟2),

and the candidate property, represented by the formula:

∀𝑟1, 𝑟2 : 𝑟𝑜𝑢𝑡𝑒
(︀
𝑁𝑜𝑡𝐶𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒(𝑟1, 𝑟2) →

¬(𝑠𝑡𝑎𝑡𝑒[𝑟1] = 𝑎𝑐𝑡𝑖𝑣𝑒 ∧ 𝑠𝑡𝑎𝑡𝑒[𝑟2] = 𝑎𝑐𝑡𝑖𝑣𝑒)
)︀
.

using the (implementation of the) algorithm of [7], we
can find (in less than one second) the lemma

∀𝑟 : 𝑟𝑜𝑢𝑡𝑒, 𝑡 : 𝑡𝑟𝑎𝑐𝑘(𝑈𝑠𝑒𝑑𝑏𝑦(𝑡, 𝑟) ∧ 𝑠𝑡𝑎𝑡𝑒[𝑡] = 𝑓𝑟𝑒𝑒)

→ (𝑠𝑡𝑎𝑡𝑒[𝑟] ̸= 𝑎𝑐𝑡𝑖𝑣𝑒)

which, in conjunction with the original property, is an
inductive invariant for 𝑆. This is the same invariant as
the ‘Secure Inductive Station’ in the Dafny code of the
station. It’s important to highlight that the symbolic
system 𝑆 represents a simplified version of the station. In
this simplified example, both tracks and routes contain
fewer variables compared to their original counterparts.

This straightforward illustration portrays an ideal sce-
nario where Dafny and a parameterized model checker
seamlessly collaborate to arrive at a conclusive proof.
Without Dafny, the typical approach would require mono-
lithic use of the model checker, but this approach often
struggles to scale effectively when dealing with excep-
tionally large models.

5 Ongoing and Future Work
We tackle the problem of formally verifying an inter-
locking logic expressed in a domain specific language.
The main problem is that the logic is parameterized, in
the sense that it is intended to control any station with
an arbitrary number of components. We preliminarily
analyzed a highly simplified case study, with two main
insights. First, we confirm that it is possible to directly
encode the main features of the interlocking logic in
Dafny in a very natural way. Second, we investigate
verification and the relation to simple invariants (from
predefined schemata) and to more complex invariants
(resulting from the application of parameterized model
checker [7]).
Given the successful preliminary steps, we intend to

extend the IDE for the Interlocking logic to support

Dafny’24, January 2024, London, UK Alessandro Cimatti Alberto Griggio Gianluca Redondi

parameterized verification. The first step will be to de-
vise an encoder to automatically generate Dafny code
automatically from SysML. We expect this step to be
relatively simple, given that the interlocking logic con-
structs have a direct correspondence to Dafny ones, and
back-and-forth traceability can be achieved. The Dafny
code will incorporate both the method bodies, mirror-
ing the C and Python code, and the preconditions and
postconditions, echoing the engineers’ natural language
specifications. Second, we will integrate a way to express
the properties to be proved, likely leveraging the lan-
guage for specifying the abstract scenarios in the TOSCA
environment [3]. Third, we will integrate the generation
of invariants required to show that the interlocking logic
satisfies the expected properties. On the one side, we
will instrument the encoding to automatically generate
”simple” invariants via templates, to check the compli-
ance of the generated code to specification. On the other,
we will integrate a parameterized model checker (and
possibly other invariant generators) to infer invariants
for general safety properties of the interlocking logic.
For the latter, we anticipate a more complex path.

Parameterized model checkers are not designed for tack-
ling large-scale problems. Hence, our plan is to utilize
them on smaller abstractions derived from the code.
After the abstraction is built, we are not interested in
finding immediately an invariant: even if the parame-
terized model checker takes hours to synthesize a good
invariant, we would be satisfied. However, the most hard
challenge will likely be finding the correct abstractions.
It could be possible to explore the notion of guiding
this abstraction process with insights gained from failed
verifications. Extracting such insights from the Dafny
verification conditions may be arduous, as the formulae
generated by Boogie might be cryptic. As a result, we
think that the design of the abstraction-refinement loop
should be conducted outside the realm of Dafny.
Furthermore, we do not dismiss the idea of a semi-

automated approach, where railway engineers can con-
tribute lemmas or provide guidance in the abstraction
process, potentially in controlled natural language.

References
[1] Parosh Aziz Abdulla, A. Prasad Sistla, and Muralidhar

Talupur. 2018. Model Checking Parameterized Systems.
Springer International Publishing, Cham, 685–725. https:
//doi.org/10.1007/978-3-319-10575-8 21

[2] Arturo Amendola, Anna Becchi, Roberto Cavada, Alessandro

Cimatti, Andrea Ferrando, Lorenzo Pilati, Giuseppe Scaglione,

Alberto Tacchella, and Marco Zamboni. 2022. NORMA: a tool
for the analysis of Relay-based Railway Interlocking Systems.

In Tools and Algorithms for the Construction and Analysis
of Systems, Dana Fisman and Grigore Rosu (Eds.). Springer
International Publishing, Cham, 125–142.

[3] Arturo Amendola, Anna Becchi, Roberto Cavada, Alessandro
Cimatti, Alberto Griggio, Giuseppe Scaglione, Angelo Susi,

Alberto Tacchella, and Matteo Tessi. 2020. A Model-Based Ap-
proach to the Design, Verification and Deployment of Railway

Interlocking System. In Leveraging Applications of Formal

Methods, Verification and Validation: Applications, Tiziana
Margaria and Bernhard Steffen (Eds.). Springer International

Publishing, Cham, 240–254.
[4] Anna Becchi and Alessandro Cimatti. 2022. Abstraction

Modulo Stability for Reverse Engineering. In Computer Aided

Verification, Sharon Shoham and Yakir Vizel (Eds.). Springer
International Publishing, Cham, 469–489.

[5] Roberto Cavada, Alessandro Cimatti, Alberto Griggio, and

Angelo Susi. 2023. A Formal IDE for Railways: Research Chal-
lenges. In Software Engineering and Formal Methods. SEFM

2022 Collocated Workshops, Paolo Masci, Cinzia Bernarde-

schi, Pierluigi Graziani, Mario Koddenbrock, and Maurizio
Palmieri (Eds.). Springer International Publishing, Cham,

107–115.

[6] Alessandro Cimatti, Alberto Griggio, and Gianluca Redondi.
2021. Universal Invariant Checking of Parametric Systems

with Quantifier-free SMT Reasoning. In Automated Deduction
– CADE 28, André Platzer and Geoff Sutcliffe (Eds.). Springer

International Publishing, Cham, 131–147.

[7] Alessandro Cimatti, Alberto Griggio, and Gianluca Redondi.
2022. Verification of SMT Systems with Quantifiers. In Au-

tomated Technology for Verification and Analysis, Ahmed
Bouajjani, Lukáš Hoĺık, and Zhilin Wu (Eds.). Springer In-
ternational Publishing, Cham, 154–170.

[8] Alessandro Fantechi, Gloria Gori, Anne E. Haxthausen, and
Christophe Limbrée. 2022. Compositional Verification of Rail-
way Interlockings: Comparison of Two Methods. In Reliability,

Safety, and Security of Railway Systems. Modelling, Analy-
sis, Verification, and Certification, Simon Collart-Dutilleul,

Anne E. Haxthausen, and Thierry Lecomte (Eds.). Springer

International Publishing, Cham, 3–19.
[9] Alessio Ferrari and Maurice H. Ter Beek. 2022. Formal Meth-

ods in Railways: A Systematic Mapping Study. ACM Com-

put. Surv. 55, 4, Article 69 (nov 2022), 37 pages. https:
//doi.org/10.1145/3520480

[10] Silvio Ghilardi and Silvio Ranise. 2010. MCMT: A Model

Checker Modulo Theories. In Automated Reasoning, Jürgen
Giesl and Reiner Hähnle (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 22–29.

[11] Alberto Griggio and Martin Jonáš. 2023. Kratos2: An SMT-
Based Model Checker for Imperative Programs. In Computer
Aided Verification, Constantin Enea and Akash Lal (Eds.).
Springer Nature Switzerland, Cham, 423–436.

https://doi.org/10.1007/978-3-319-10575-8_21
https://doi.org/10.1007/978-3-319-10575-8_21
https://doi.org/10.1145/3520480
https://doi.org/10.1145/3520480

	Abstract
	1 Introduction
	2 Developing a Generic Interlocking Logic
	3 Dafny encoding
	4 Invariant inference with a Parameterized Model Checker
	5 Ongoing and Future Work
	References

