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Abstract—We address the problem of computing the exact
abstraction of a program with respect to a given set of predicates,
a key computation step in Counter-Example Guided Abstraction
Refinement. We build on a recently proposed approach that
integrates BDD-based quantification techniques with SMT-based
constraint solving to compute the abstraction. We extend the
previous work in three main directions. First, we propose a much
tighter integration of the BDD-based and SMT-based reasoning
where the two solvers strongly collaborate to guide the search.
Second, we propose a technique to reduce redundancy in the
search by blocking already visited models. Third, we present an
algorithm exploiting a conjunctively partitioned representation
of the formula to quantify. This algorithm provides a general
framework where all the presented optimizations integrate in a
natural way. Moreover, it allows to overcome the limitations of
the original approach that used a monolithic BDD representation
of the formula to quantify. We experimentally evaluate the merits
of the proposed optimizations, and show how they allow to
significantly improve over previous approaches.

I. INTRODUCTION

Computing the abstraction of a program with respect to a
given set of predicates is a crucial step in CEGAR based ver-
ification [1]. In fact, the problem has been given a substantial
amount of interest in recent years, as discussed in [2], [3], [4],
[5], [6], [7], [8].

In this paper, we propose a new approach, where we push
the integration between BDD-based and SMT-based reasoning
to new limits. We address some of the limitations of [8],
we extend it in three main directions, and we perform an
experimental evaluations to understand the merits of the pro-
posed techniques. First, we present a much tighter integration
between the SMT solver and the BDD-based quantification.
Second, we propose a mechanism similar to blocking clauses
to avoid re-visiting portions of the abstract transition relation.
Third, we replace a monolithic BDD-based representation with
an implicit conjunctively partitioned representation.

The paper is structured as follows. In Section II we outline
some background and we outline the algorithm of [8]. In
Section III we discuss the blocking visited models optimiza-
tion. In Section IV we discuss partitioned BDD representation,
while in Section V we discuss the cooperation schema. In
Section VI we describe related work, and in Section VII we
experimentally evaluate the proposed techniques. Finally, in
Section VIII we draw some conclusions and outline future
work.

II. TECHNICAL PRELIMINARIES

Our setting is standard first order logic. We consider a sig-
nature to be composed by individual constants and variables,

function symbols, Boolean variables, and predicate symbols.
A term is either a constant, a variable, or the application of
a function symbol of arity n to n terms. A theory constraint
(also called a theory atom) is the application of a predicate
symbol of arity n to n terms. We use ~x, ~y,~v, . . . for vectors of
individual variables. Terms and formulae by e, e′, e1, e2, . . .,
c, c1, c2, . . . for theory constraints, c(x) to stress the depen-
dence of c on x, and c(~x) to stress the dependence on
~x, P, P ′, P1, P2, . . . , Q,Q′, Q1, Q2, . . . for Boolean variables,
and ~P , ~Q, . . . for vectors of Boolean variables; we write ~Pi

for the i-th variable in ~P . We write Φ(Q) to highlight the fact
that Q occurs in Φ. φ[e/e′] denotes the substitution of every
occurrence of e in φ with e′. If ~e and ~e′ are vectors of (either
individual or Boolean) expressions of the same size, we write
φ[~e/~e′] for the parallel substitution of every occurrence of ~ei

(the i-th element of ~e) in φ with ~e′i (the i-th element of ~e′). We
use Boolean quantification (i.e. quantification over Boolean
variables) ∃Q.(Φ(Q)) as a shortcut for Φ[Q/>] ∨ Φ[Q/⊥].

We use the standard semantic notion of interpretation and
satisfiability. We call truth assignment for a set (vector) of
atoms ~Q a total function µ : ~Q → {>,⊥}. SAT problem is
well-known and has been an area of research for more than
two decades. The more general problem of SMT (satisfiability
modulo a background theory) corresponds to deciding whether
there exists an interpretation in the theory that satisfies the
formula. [9] makes a thorough discussion on SMT solvers.
For ease of explanations we follow the notations of [8] in this
paper.

Predicate Abstraction [10] is one of the most widely
used abstraction techniques for Model Checking within the
automated Counter-Example Guided Abstraction Refinement
(CEGAR) [1] framework. The abstract program is constructed
over a given set of predicates γi(~x) which are relations
over variables ~x of the concrete program. Each predicate is
represented by a Boolean variable Vi in the abstract program.
Intuitively, each variable Vi partitions the concrete state space
into two sets: the set of states satisfying γi, (Vi = true), and
those that do not (Vi = false). The abstract program tracks
the behaviour of the predicates. Thus, an abstract state is
associated with the set of concrete states corresponding to the
intersection of the sets corresponding to each abstract literal.
The transition relation of the abstract program is such that two
abstract states are related iff there exist two concrete states in
the respective concretizations that are in the concrete transition
relation.

Predicate abstractions aims at computing a propositional
formula equivalent to ∃~x.(Φ(~x) ∧

∧
i Vi ↔ γi(~x)) where ~x



are the variables we want to abstract away using predicates
Vi ↔ γi(~x), and ~V is the set of Boolean variables to be
retained, also called important variables. In the following, we
denote with ~c the vector of theory constraints occurring either
in Φ or in some γi.

In [8], a naive algorithm to compute predicate abstractions
for a first order logic formula Φ over a set of Boolean
predicates Vi, is discussed. The algorithm builds on the
following steps. First, for each theory constraint ci(~x) in
~c a fresh Boolean (BDD) variable Qi, called its Boolean
abstraction, is created. All the Qi are grouped in ~Q, and the
abstraction bi-jection A is defined as {〈Qi . ci(~x)〉}. Second,
the Boolean formula (Φ(~x) ∧

∧
i Vi ↔ γi(~x))[~c/ ~Q] in the ~V

and ~Q is constructed by replacing each theory atom ci(~x)
with the corresponding Boolean abstraction Qi from the matrix
of the above formula. Third, standard techniques are used to
construct the corresponding BDD representation, also denoted
as Φ(~V , ~Q). Finally, the algorithm depicted in Fig. 1 is used
to compute the abstraction.

1: function BddThAbstract(b, C, V )
2: if (b = >) ∨ (b = ⊥) then return b

3: v := TopVar(b);
4: if BooleanAtom(v) then
5: tt := BddThAbstract(BddThen(b), C, V )
6: if v ∈ V then
7: ee := BddThAbstract(BddElse(b), C, V )
8: return BddITE(v, tt, ee)
9: else

10: ee := BddThAbstract(BddElse(b), C, V )
11: return BddOr(tt, ee)

12: else
13: cv := VarToConstraint(v);
14: if BddThen(b)= ⊥ or ThInconsistent(C, cv) then
15: tt := ⊥
16: else
17: tt := BddThAbstract(BddThen(b), C ∪ {cv}, V )
18: if BddElse(b)= ⊥ or ThInconsistent(C, ¬cv) then
19: ee := ⊥
20: else
21: ee := BddThAbstract(BddElse(b), C ∪ {¬cv}, V )
22: return BddOr(tt, ee)

23: end function

Fig. 1. BDD-based quantification modulo theories..

BddThAbstract interleaves Boolean quantification and prun-
ing modulo theory, and is recursively defined over the structure
of the BDD b representing the formula to be quantified. The
second argument C is a set of constraints, called the context
of simplification, while the third one is the set of important
variables. The A mapping between theory constraints and their
Boolean variables is assumed to be globally available. The
algorithm is best explained as an extension of the existential
quantification in the purely Boolean case, i.e. when the A
mapping is empty, so that the BooleanAtom test (line 4)
always returns true. The lines from 12 to 22 are never
executed, and the algorithm boils down to standard existential
quantification for BDDs [11]. In the base case (line 2), if b is
either > or ⊥, then it is simply returned. Otherwise, recursive
calls are applied both to the then (line 5) and the else (lines 7,
and 10) co-factors w.r.t. variable v = TopVar(b) of BDD b.
If the top level variable v = TopVar(b) is important, then it
must not be quantified, and the results of the recursive calls

are combined into an if-then-else node, otherwise disjunction
is applied to the two results of the recursive calls (lines 9-
11). In the more interesting case, where some variables are
indeed theory constraints, a form of pruning is applied. This
pruning attempts to ensure theory-consistency of the traversed
paths. The key idea is the simplification context, i.e. the set of
theory constraints that “get activated” when descending from
the root to the node b. If the current variable is the abstraction
of a theory atom, then the current context can be extended
with either a positive or negative constraint, depending on the
branch we expand first. However, in order for either expansion
to lead to a model, it has to be theory consistent: if either
extension is inconsistent with the current context, then the
evaluation can be safely pruned. If the context extended with
the positive constraint is not satisfiable (line 14), then ⊥ is
assigned for the right branch tt. In fact, there is no way the
path can be extended to a theory-consistent assignment. In
case of consistency, the context is extended C ∪ {cv} and
recursion on the then co-factor is started. The else branch
is dealt with similarly. The results can be recombined with
disjunction, since the Boolean abstractions of the constraints
have been quantified out.

III. BLOCKING VISITED MODELS

The algorithm in Fig. 1 is such that the same Boolean model
may be repeatedly generated: while computing the model of
important variable below b considering variable v being false
we may end-up in models that are entailed by any model in tt.
Suppose we are exploring A∨B; once A has been computed,
it is safe to explore B ∧ ¬A. This reduces to conjoining on
the fly with the negation of what has been accumulated in the
first branch that has been explored. This is exploited in the
algorithm as follows.

Let tt = BddThAbstract(BddThen(b), V ) be the set of
models of important variables below b considering variable
v being true (lines 5, 17). While computing the model of
important variable below b considering variable v being false
we want to consider only those models that are not entailed
by any model in tt. This is achieved by recurring on the BDD
resulting from the conjunction of the co-factor of BDD b where
variable v is considered false and the negation of BDD tt. (The
negation of BDD tt represents all the models that have not yet
been explored in the co-factor of BDD b when variable v is
considered true.) This is justified by the fact that if v is a non
important variable then:

∃v.Φ(~x) =̇ (Φ(~x)[v/>] ∨ Φ(~x)[v/⊥]) =
(Φ(~x)[v/>] ∨ (Φ(~x)[v/⊥] ∧ ¬Φ(~x)[v/>])).

This optimization (referred in the following as D’Agostino
optimization) is of Boolean nature, and naturally generalizes to
the SMT case. The use of the negated BDD while recurring on
the else branch mimics the effect of adding blocking-clauses,
typical of SAT based approaches. The resulting algorithm is
obtained by replacing in Fig. 1 the statement BddElse(b) at
lines 10 and 21 with BddAnd(BddElse(b), BddNot(tt)). In
practice, the implementation of this optimization requires some
care. At each recursive step, we conjoin the negation of the



1: function BddListThAbstract(~b, C, V )
2: if BddListIs⊥(~b) then return ⊥
3: if BddListIs>(~b) then return >
4: v := TopVar(~b);
5: ~t := BddThenAtLevel(~b, v);
6: ~e := BddElseAtLevel(~b, v);
7: if BooleanAtom(v) then
8: tt := BddListThAbstract(~t, C, V )
9: if v ∈ V then

10: ee := BddListThAbstract(~e, C, V )
11: return BddITE(v, tt, ee)
12: else
13: if (DAgostino) then
14: ee := BddListThAbstract(~e :: BddNot(tt), C, V )
15: else
16: ee := else BddListThAbstract(~e, C, V )
17: return BddOr(tt, ee)

18: else
19: cv := VarToConstraint(v);
20: if BddListIs⊥(~t) or ThInconsistent(C, cv) then
21: tt := ⊥
22: else
23: tt := BddListThAbstract(~t, C ∪ {cv}, V )
24: if BddListIs⊥(~e) or ThInconsistent(C, ¬cv) then
25: ee := ⊥
26: else
27: if (DAgostino) then
28: ee := BddListThAbstract(~e :: BddNot(tt), C ∪ {¬cv}, V )
29: else
30: ee := BddListThAbstract(~e, C ∪ {¬cv}, V )
31: return BddOr(tt, ee)

32: end function

Fig. 2. The partitioned quantification with D’Agostino optimization.

result of the then co-factor recursion with the else co-factor
and then recur on the BDD resulting from this operation. The
use of this standard BDD operation results in a considerable
overhead in terms of unique table and cache look-ups.

IV. USING PARTITIONED BDDS

One of the main bottlenecks in the algorithm in [8] (see
also Fig. 1) is that the BDD being traversed is monolithic,
and thus subject to space explosion [12]. In this section we
generalize this algorithm to the case of quantification of a list
of (implicitly conjoined) BDDs. TopVar returns the top most
variable over the list of BDDs. BddThenAtLevel(~b, v) builds
a new list of BDDs where BddThen is applied to all the BDDs
whose top level variable is equal to the one given as argument
(v), while those that do not satisfy this condition are simply
copied in the new list. BddElseAtLevel(~b, v) is similar, but
it applies BddElse. BddListIs⊥ returns true if the list of
BDDs contains at least one instance of the ⊥ BDD. Finally,
BddListIs> returns true of the list of BDDs is composed
only of instances of the BDD >.

The algorithm is described in Fig. 2. It is very similar
to the monolithic one: each BDD in the list is processed
according to the highest top variable. Then, we recur on the
respective left and right branches. For the BDDs that have
top variable below the highest one, we simply defer their
evaluation. The D’Agostino optimization is described at lines
14, 28 as a conjunction from a logical view point. In practice it
is implemented as a primitive that adds a new element to a list
of BDDs, applying a series of simplifications (e.g. combining
with BddAnd() the new element with all the other ones, or
applying care-set simplifications [13]). See [13] for a survey
of such simplification techniques. This approach treats the care

set simplification as a conjunct. Whether the list is extended
with one more element, or conjuncted (i.e. BddAnd() with
every element), or subjected to care-set simplification, is left
to the underlying implementation. The important characteristic
is that at each level of the recursion we only consider BDDs
whose variables are guaranteed to be at higher levels than the
level of the currently considered variable.

The disadvantage is that at each recursion on the else
co-factor we potentially enlarge the list of BDDs by one
element to keep track of the partial result on the then co-
factor. However, while recurring it is also the case the list of
BDDs will simplify because of reaching constants (e.g. we
can remove any element of the list which is >).

V. HYBRID ABSTRACTION ENGINE

We now present a novel schema for integrating BDD-based
traversal with SMT techniques. In [8], SMT solver is restricted
to deal only with the theory, completely unaware of the
boolean part of the problem, and subordinate to the traversal
carried out by the BDD-driven traversal. Here we radically
change the schema, by turning it into a hybrid cooperation
engine. The SMT solver is now given the whole problem in
input (not shown in the algorithm), and as in [8], the splitting
is driven by the BDD traversal. We retain all the features of
the SMT solver, in particular unit propagation and conflict
analysis, and we discard the variable selection heuristics. This
upgrade is dictated by several considerations.

First, the partitioned representation may hide important
inferences that would be obvious with a monolithic represen-
tation. The most obvious case is when the BDD list represents
an inconsistent formula without any of the BDDs being false;
similar considerations hold for the truth values of literals. The
SMT solver is also dealing with a partitioned representation,
but it is not bound to a fixed variable ordering; unit propagation
can be seen as a way to “look ahead” paying a low cost,
and overtake the BDD-based traversal order. In particular,
we use the unit propagation in the SMT solver (in addition
to the theory consistency checking) to detect inconsistencies,
and to identify literals that are entailed by the current partial
assignment. Inconsistencies can be used to stop the search of
inconsistent partitioned BDD configurations, while deductions,
to co-factor each of the BDDs, thus possibly enabling further
reductions.

Second, the traversal in [8] is essentially limited to chrono-
logical backtracking, and the conflict analysis carried out by
the SMT solver can be exploited to implement back-jumping.

Finally, D’Agostino optimization prevents repeated search
on the models of the abstract space, without paying the price
of a possibly large representation in form of blocking clauses.
This point has also been discussed in [5].

The status of the SMT is a set of clauses (either original
or learned), an implication graph, and a stack of currently
assigned literals. After initialization and unit propagation, the
clauses are the problem clauses, the implication graph contains
the implications at level 0, and the stack contains the implied
literals.



The hybrid predicate abstraction algorithm is depicted in
Fig. 3.

The BDD enumerator and the SMT solver interact according
to the following interface:
• TCC.IsAssigned(v) and BDD.IsAssigned(~b, v) return

either true (1), false (0), if the variable has an enforced
value in the SMT solver and in the list of BDDs ~b
respectively. Otherwise they return undef (X).

• TCC.Assume(v, s) adds a literal on the stack posi-
tive (s = +) or negative (s = −). It requires
TCC.IsAssigned(v) = X). This information is unit
propagated and in turn may return newly inferred literals.

• TCC.UndoAssumption(v, s) removes from the stack a
previously assumed literal (either positively s = +, or
negatively s = −).

• TCC.IsConsistentComplete() returns true if stack is
consistent, otherwise false and level to back-jump.

• TCC.IsConsistentApprox() uses an approximate con-
sistency check: it returns true or false and level to back-
jump if the approximate consistency check was able to
conclude, otherwise it returns unknown.

• TCC.IsSatisfiable() returns true if the stack and the
rest of the SMT formula are satisfiable, otherwise false
and level to back-jump if not satisfiable.

• TCC.GetUndoLevel() return the level at which the literal
causing the conflict has been assumed.

The SMT status, corresponding to the active (assumed and
implied) literals, is managed in a stack-based manner. The
BDD-based enumerator can ask the TCC to extend its status
by assuming a literal, or to undo the last assumption(s). The
enumerator can ask the SMT whether its status is consistent,
and ask for the current value of a variable. Depending on
the theory, consistency checking can be carried out with an
incomplete (possibly cheaper) procedure; in such case it is
important to carry out a complete check when a complete
model is found.

The SMT solver may detect reasons for inconsistencies
(conflict sets), and turn them into conflict clauses. Then, by
carrying out conflict analysis it can tell the enumerator the
point of backtracking necessary to undo the inconsistency.
Theory solvers can carry out theory deductions, and combine
them with boolean constraint propagation over the active
clauses. It is thus possible that a variable (be it boolean or
theory) that is unassigned in the current BDD path must in fact
have a value. The role of BCP is to propagate consequences of
the current assumptions, e.g. based on previously discovered
theory inconsistencies. Notice that the SMT solver and the
BDD-based solver are no longer in sync - for instance, the
D’Agostino optimization may force a certain literal in the
BDD solver, while its negation could be implied in the SMT
solver by theory reasoning.

This novel approach opens to several further optimizations.
The theory solvers can deduce theory lemmas that can be used
to co-factor the input problem. If the SMT detects implied
literals (either by theory or boolean reasoning), the choice that
we currently implement is to delay taking them into account

1: function BddListThAbstract(~b, C. V )
2: if BddListIs⊥(~b) then return (⊥, -1)
3: if BddListIs>(~b) then
4: if TCC.IsConsistentComplete() then return (>, -1)
5: else return (⊥, TCC.GetUndoLevel())
6: if not TCC.IsConsistentApprox() then return (⊥, TCC.GetUndoLevel())
7: if NoMoreImportantVariables(~b, V ) then
8: if TCC.IsSatisfiable() then return (>,−1)
9: else return (⊥, TCC.GetUndoLevel())

10: v := TopVar(~b);
11: bv := BDD.IsAssigned(~b, v);
12: sv := TCC.IsAssigned(v);
13: tt := ee := (⊥,−2)
14: cv := VarToConstraint(v);
15: ~t := BddThenAtLevel(~b, v);
16: ~e := BddElseAtLevel(~b, v);
17: if (((bv = 1) ∧ (sv = 1)) ∨ ((bv = X) ∧ (sv = 1))) then
18: tt := BddListThAbstract(~t, C, V ))
19: else if (((bv = 0) ∧ (sv = 0)) ∨ ((bv = X) ∧ (sv = 0))) then
20: ee := BddListThAbstract(~e, C, V ))
21: else if ((bv = 1) ∧ (sv = X)) then
22: TCC.Assume(v, +)
23: tt := BddListThAbstract(~t, C ∪ {cv}, V ))
24: if HaveToUndo(tt, v)) then TCC.UndoAssumption(v, +)

25: else if ((bv = 0) ∧ (sv = X)) then
26: TCC.Assume(v,−)
27: ee := BddListThAbstract(~e, C ∪ {¬cv}, V ))
28: if HaveToUndo(ee, v) then TCC.UndoAssumption(v,−)

29: else if ((((bv = 1) ∧ (sv = 0)) ∨ ((bv = 0) ∧ (sv = 1))) then
30: tt := ee := (⊥,−1)
31: else if ((bv = X) ∧ (sv = X)) then
32: TCC.Assume(v, +)
33: tt := BddListThAbstract(~t, C ∪ {cv}, V ))
34: TCC.UndoAssumption(v, +)
35: TCC.Assume(v,−)
36: if (DAgostino ∧ v 6∈ V ) then
37: ee := BddListThAbstract(~e :: BddNot(tt.bdd), C ∪ {¬cv}, V ))
38: else
39: ee := BddListThAbstract(~e, C ∪ {¬cv}, V ))
40: if HaveToUndo(ee, v) then TCC.UndoAssumption(v,−)

41: return Recombine(tt, ee, v, V )
42: end function

1: function Recombine(tt, ee, v, V )
2: if v ∈ V then r.bdd := BddITE(v, tt.bdd, ee.bdd)
3: elser.bdd := BddOr(tt.bdd, ee.bdd)

4: if ((tt.bt = −1) ∨ (ee.bt = −1)) then r.bt := −1
5: else if CompareBT(tt.bt, ee.bt) then r.bt = ee.bt
6: elser.bt = tt.bt
7: return r
8: end function

Fig. 3. The hybrid abstraction algorithm.

until the corresponding level is reached in the enumeration,
and to backjump accordingly. Another possibility would be to
simplify the remaining BDD according to the corresponding
value before continuing with enumeration.

The search also exploits the levels of the BDD. In particular,
if we see that a certain node is below the level of the last
important variable (line 7), then the result corresponds to
simply checking the satisfiability of the sub-tree according to
the current stack (i.e. to call TCC.IsSatisfiable()).

Most of the tricks in the BDD package (e.g. constant time
negation based on pointer complementation) can be retained
without changes. However, this is not the case for memoiza-
tion. Similar to the approach in [8] we disregard memoization
on the grounds that some memoization is carried out in the
recursive calls to disjunction on unimportant variables.

VI. RELATED WORK

The work closest to our work is [8]. The approach presented
in this paper achieves a much tighter integration between



BDD algorithms and SMT reasoning, that employs the best
of BDD algorithms and SMT optimization routines. We
propose a mechanism similar to blocking clauses to avoid
re-visiting portions of the abstract transition relation. We
also replace a monolithic BDD-based representation with an
implicit conjunctively partitioned representation, which helps
in scalability.

BDDs are used as model enumerators in the first versions
of the Harvey [14] decision procedure. BDD simplification
with respect to a background theory are presented in [15]; the
work is limited to abstract data types, and does not deal with
quantification. Decision procedures for computing abstractions
have been explored in [2], [3], [4]. [5] improves over them
by lifting DPLL-based quantification to the case of SMT, but
inherits the model explosion problem.

VII. EXPERIMENTS

We tested the proposed algorithms within the NuSMT
system and framework presented in [8]. The system provides
an implementation of the CEGAR loop integrating SMT
techniques (specifically, the MathSAT SMT solver [16]) and
the NuSMV [17] model checker. NuSMT uses the NuSMV
language extended to deal with real-valued and integer-valued
variables. This allows us to represent the concrete program
with formulae characterizing the set of initial states, the
invariants, and the transition relation. The abstract program is a
finite state program. NuSMT implements a full-blown CEGAR
loop, with counterexample refinement and predicate discovery.
In this paper we focus only on the predicate abstraction part.

We compared the algorithms presented in this paper against
the one presented in [8]. We conducted experiments on net-
works of hybrid automata of different sizes (HANn−s−t−v),
with constraints in linear arithmetic over the reals. A test
case family with name “HANn” consists of a composition
of n hybrid automata, each of them having s locations and
t transitions. We experimented with n ∈ {2, 3, 4} and with
(s, t) ∈ {(5, 10), (5, 30), (10, 10), (10, 30)}. Each state of the
automata is associated with an invariant, while each transition
has both a precondition and an effect; all of them are formulae
in linear arithmetic over v variables with v ∈ {5, 10}. The
experiments were run on a 3GHz Intel(TM) Xeon(TM) Dual
Processor running Linux equipped with 4GB of RAM. We
fixed a memory limit of 2 GB and a CPU time limit of 1
hour. The plots shown have the number of instances in our
benchmark set along the x-axis and the cumulative abstraction
time (in logarithmic scale) along the y-axis. When we mention
partitioned approach (referred as Bddarray in the following),
unless otherwise specified we use a partition size (also referred
to as threshold) of 3000 BDD nodes for the elements of the
Bddarray. In Figures 4(b), (e) and (f), we use a relatively
‘good’ variable order, described in the following.

We restrict ourselves to the comparison of the most impor-
tant parameters of the algorithm. The relevant files of experi-
ments are available at http://es.fbk.eu/people/roveri/date2010/.

1) Bddarray Approach: The plots in Fig. 4(a) and (b) show
the comparison of Bddarray approach against [8]. Fig. 4(b)

corresponds to using a reasonably good BDD ordering. We
see that Bddarray approach performs consistently better.

2) Impact of D’Agostino Optimization: The plot in Fig. 4(c)
and (d) show the impact of D’Agostino simplification (block-
ing clause optimization) on the performance of abstraction
algorithm using Bddarray approach (with monolithic and par-
titioned approach with threshold set to 3000 respectively), and
the impact of this optimization is apparent.

3) Effect of Partitioning: A ‘good’ partition size ideally
depends on the structure of the problem. To illustrate that
there is an effect of threshold limit on performance, we
experimented with different threshold limits to show the effect.
We notice from Fig 4(e) that, a threshold of 300 BDD nodes
appears to be a bad choice as it does not complete as many
instances as the other thresholds within the specified time
limit.

4) Impact of Variable Order: As with any technique involv-
ing BDD traversals, the performance of our approach crucially
depends on variable order. However, when we are dealing
with predicates (important variables) and theory variables,
an ordering heuristic would be to choose the predicates to
be at the top of the variable order and the remaining ones
below. This is because of the following reasons. As the BDD
traversal happens, we are actually accumulating models. This
traversal happens according the variable order specified in an
order file. When an important variable is encountered and if
its value is deduced to be true (false), we are ruling out a
portion of the state space corresponding to the value being
false (true) respectively. In the set of benchmark instances
we work with, when we encounter non-important variables
at the beginning of the traversal, when it has a deduced
value, we are basically ruling out only a very small portion
(a small set of points that do not satisfy the constraints
corresponding to the non important variables) of the search
space. In Fig. 4(f), we compare the effect of different variable
orderings on performance. The experiments were run with
a threshold limit of 3000 BDD nodes and with D’Agostino
optimization turned on. In 4(f), we refer to as ‘good variable
order’, the experiments with important variables on the top of
the variable order, and ‘bad variable order’ the ones which
have the important variables at the bottom of order. With ‘bad
variable order’, all except smallest benchmark instances time
out. The third category, has important variables interspersed
with non-important variables.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the problem of effi-
ciently computing precise abstractions. We have presented a
novel combination schema where BDD-based and SMT-based
quantification engines exchange complementary information
to aggressively limit the search space. Within this schema,
additional optimizations are presented, including partitioned
BDDs, a schema for blocking already visited models, and
use of early calls to the SMT solver. Experimental eval-
uations demonstrate additional advantages over the original
framework [8]. The approach embeds reasoning with respect
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Fig. 4. Experimental Analysis

to the background theory within a BDD-based quantification
algorithm, and is able to outperform previous approaches.

We plan to extend this work along different dimensions. We
plan to investigate dedicated ordering heuristics, to take into
account the individual variables occurring in the constrains,
heuristics to guess the best threshold to perform partitioning.
We will investigate techniques that will try to exploit the
structure of the original problem to achieve better performance
and the impact of incrementality of our approach in the setting
of a CEGAR. Finally, we will apply the approach to the
verification of timed and hybrid systems, as well as Verilog
models.
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