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Abstract—Designers are often required to explore alternative
solutions, trading off along different dimensions (e.g., power
consumption, weight, cost, reliability, response time). Such ex-
ploration can be encoded as a problem of parameter synthesis,
i.e., finding a parameter valuation (representing a design solution)
such that the corresponding system satisfies a desired property.
In this paper, we tackle the problem of parameter synthesis
with multi-dimensional cost functions by finding solutions that
are in the Pareto front: in the space of best trade-offs possible.
We propose several algorithms, based on IC3, that interleave in
various ways the search for parameter valuations that satisfy the
property, and the optimization with respect to costs. The most
effective one relies on the reuse of inductive invariants and on the
extraction of unsatisfiable cores to accelerate convergence. Our
experimental evaluation shows the feasibility of the approach on
practical benchmarks from diagnosability synthesis and product-
line engineering, and demonstrates the importance of a tight
integration between model checking and cost optimization.

I. INTRODUCTION

Many application domains can be described in terms of
parameterized systems, where parameters are variables whose
value is invariant over time, but is only partially constrained.
Choosing an appropriate value of the parameters is a widely
spread engineering problem, a form of design space explo-
ration where the parameters can represent different design or
deployment decisions. Examples of domains that require the
analysis of various solutions include function allocation [1],
[2], automated configuration of communication media (e.g.,
time-triggered ethernet protocols [3], flexray [4], [5]), prod-
uct lines [6], dynamic memory allocation [7], schedulability
analysis [8], and sensor placement [9], [10]. In fact, finding
an appropriate valuation is rarely sufficient. Often designers
are interested in finding the most appropriate valuation with
respect to weight, latency, memory footprint, flexibility, relia-
bility. Even more interestingly, there are cases where several
of the above dimensions must be taken into account at the
same time, and it may be necessary to trade off according to
multiple cost functions.

In this paper we consider the problem of parameter syn-
thesis when multiple cost functions cannot be easily combined
into one. For example, it is possible that a configuration that is
best in terms of reliability (e.g., due to redundancy) may not
be optimal in terms of weight, cost, or response times. The
solution is to build the so-called Pareto front [11], that is the
set of parameter valuations that cannot be improved along one

dimension without increasing the cost along the others’.

We present several algorithms for the construction of the
Pareto front on the space of parameter valuations that satisfy
a parameterized model checking problem. We remark that we
focus on universal parameter valuations, that guarantee the
satisfaction of a property for all associated execution traces:
this means that it is not sufficient to analyze a single trace (e.g.,
constructed by a bounded model checker) to have a guarantee
that the parameter valuation is valid.

We tackle the problem under the assumption of mono-
tonicity, that naturally occurs in several domains of prac-
tical interest, such as sensor placement [10], product lines
engineering [6] and fault-tree analysis [12]. In particular, we
require that (i) the space of parameters is upward-closed with
respect to property satisfaction, and (ii) the cost functions
are monotonic. We propose several algorithms of increasing
strength. The first idea is to proceed by valuations-first, i.e. to
identify the set of all valuations that satisfy the property, and
then, within this set, represented as a formula in the parameter
variables, to identify the ones on the Pareto front. The upfront
computation of the set of valid parameter valuations, corre-
sponding to the first phase, can be tackled in various ways. One
way is to carry out a symbolic reachability in the parameterized
transition system, e.g., by means of a BDD-based model
checker [13]. The scalability of BDD-based techniques is
however rather limited. An alternative approach is to solve the
existential parameter valuation problem for the negation of the
property and then complement. This can be easily encoded on
top of a SAT-based engine, where the parameters are free. Once
the set of valuations is found, we can independently optimize
the complement set [14]. Unfortunately, this approach does not
allow us to exploit the cost function for pruning.

The second approach, referred to as ome-cost slicing,
prioritizes the search according to one cost function. The
first step is to identify a target value, and to collect all the
valid parameter valuations. Then, the valuation with the best
value along the other cost functions is selected and further
optimized, so that one point in the Pareto front is found.
The process is iterated until the limit target value is reached.
The monotonicity assumption guarantees that the search can
be suitably initialized. Compared to the previous one, this

IMore formally, the Pareto front of a set of parameter valuations is the
subset composed by those valuations associated with cost vectors that are not
strictly dominated by any other solution. One valuation ~y strictly dominates
(or “is preferred to”) a valuation ~/ if each value of - is not strictly greater
than the corresponding value of 4/, and at least one value is strictly less. That
is, v; </, for each ¢, and ~; < ~/; for some i. This is written as v < 7/
to mean that v strictly dominates v’. Then the Pareto frontier is the set of
points from I' that are not strictly dominated by any other point in I".
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approach needs not wait until all the valid parameter valuations
are found; however, it still relies on the computation of the
valuations for the selected slice.

The third approach, referred to as costs-first, is conceptu-
ally rather simple. It is based on a sampling of the space of
cost values, and for each of them, on solving the associated
(non-parameterized) ground model checking problem. This
approach, apparently quite naive, turns out to be extremely
efficient once appropriately cast in the setting of IC3 [15]. In-
tuitively, rather than solving the ground problem, we solve the
parameterized problem under assumptions. When IC3 success-
fully terminates, as a byproduct it produces a parameterized
inductive invariant, possibly containing the assumptions, that
is sufficiently strong to prove the property. From the validity
proof, we extract an unsatisfiable core that allows us to reduce
the candidate set of parameters. This step has a substantial
effect in speeding up the search, by accelerating it towards
(potentially) less expensive parameter configurations. Another
advantage is in the fact that the approach works directly in the
space of good parameters, and is thus providing an “any-time”
algorithm, that can return a subset of the Pareto front if run
only within a given resource bound.

We experimentally evaluated the approach, working on
benchmarks from various sources [10], [16]. The results show
a significant speed up with respect to methods based on
enumeration of violations, both in terms of one cost function,
and in the case of multiple cost functions. Incidentally, we
also report substantial scalability improvements in significant
practical cases, compared to a BDD-based approach previously
used for single-cost optimization [10].

Structure of the Paper: This paper is structured as
follows. In Section II we review some related work. In
Section III we define the spectrum of problems. In Section IV
we define the various solutions, and in Section V we discuss
the impact of IC3 specific techniques. In Section VI we
present two motivating domains. In Section VII we evaluate
experimentally the three approaches. In Section VIII we draw
some conclusions, and outline some directions for future work.

II. RELATED WORK

There are many works dealing with parameter synthesis
and parameter optimization. The literature can be classified
along various dimensions: discrete parameters versus contin-
uous parameters; combinational (e.g., SMT) problems versus
sequential (e.g., reachability) problems; number and quality
of parameter valuations found (one vs all valuations vs the
optimal ones).

a) MaxBMC: The work closest to ours is [17], where
the Pareto front is synthesized in the case of circuit initializa-
tion. An initialization sequence is intended to take the circuit,
starting from any configuration that it could assume at power-
up, to a configuration where all flops are initialized. The work
in [17] analyzes the trade-off between two dimensions, i.e., the
length of the initialization sequence, and the number of flops
initialized after the execution.

There is a key difference with our work: in [17] it is
sufficient to find a suitable trace to have a valid parameter
valuation (i.e., that satisfies the property), even though it

may not be optimal with respect to costs. In this sense,
the parameters are existential with respect to the traces of
the transition system being analyzed. Thus, the framework
of Bounded Model Checking can be directly used to find
candidate valuations. In our work, however, the parameters
are universal with respect to the traces: in order to prove
the validity of a candidate parameters valuation, a full model
checking problem needs to be solved. As a consequence, it
is not possible to leverage the “trace finding” mechanism of
BMC to generate valid candidate valuations. Other differences
are in the fact that in [17] the problem does not fall within the
hypothesis of monotonicity, and that our algorithms rely on an
extension of with IC3, whereas [17] is based on a complete
version of Bounded Model Checking.

b) Combinational Pareto front: Other works on the
construction of the Pareto front in a formal setting are [18], [7].
The key difference between these works and the one presented
here is in the fact that the problem is combinational (e.g., sat-
isfiability) in nature, while we deal with a sequential problem,
i.e., invariant checking for a parameterized transition system.
The work in [18] tackles the computation of the Pareto front
with respect to cost functions imposed on a combinatorial SMT
problem. The work in [7] tackles the problem of Pareto-optimal
solutions for the problem of dynamic memory allocation.

¢) Real-values parameter synthesis: The work in [8]
deals with the synthesis of parameters over continuous ranges,
to identify the space of valuations that result in a schedulable
set of tasks. The method is based on complement, i.e., the set
of bad valuations is computed first, and then complemented.
The work in [14] relies on IC3 to solve the same problem
more generally and more efficiently. Other works [19], [20],
[21], [22], [23] synthesize parameters for real-time and hybrid
systems. The key difference with respect to the problem
tackled here is that no cost functions are considered, i.e., the
space of all valuations is considered.

d) Synthesis of Fault trees: The work in [13] proposes
several approaches to automatically generate Fault Trees for
parameterized transition systems. This can be seen as a se-
quential problem of discrete parameter synthesis under the
hypothesis of monotonicity. The key difference is that in [13]
costs are not taken into account - all parameter valuations,
each representing fault combinations in which a property is
falsified, are found. We also remark that the parameters are
existential, i.e., a valuation is deemed valid by the existence
of a trace.

e) Synthesis of Observability Requirements: Identifying
sufficient sets of sensor that guarantee the diagnosability of
properties of interest is tackled in [9] and in [10]. Optimiza-
tions are found with respect to a single cost function, so there
is no notion of Pareto front. The work in [9] proposes an
explicit-state exploration of the space of costs, to synthesize
a minimal configuration that is a global minimum. Domain
specific techniques for the analysis of the sensor placement
problem are also discussed.

III. PROBLEM DESCRIPTION

We consider transition systems of the form S = (X,I,T),
where X is the set of state variables, I(X) is the initial
condition, and T'(X, X”) is the transition relation.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 17



We generalize transition systems to parametric transition
system S = (U, X, I,T), where U is the set of parameters, X
is the set of state variables, I (U, X) is the initial condition, and
T(U,X,X') is the transition relation. Intuitively, a parameter
can be seen as a variable that does not change over time.

We assume that the parameters are Boolean, and valuations
are in I' = BIVI. The order relation < over B induces a partial
order < over the parameter valuations I'.

A valuation to the parameters, -y, provides us with a
transition system S, = (X,I(y,X),T(y,X,X’)), in which
each parameter is replaced with the value assigned in ~.

We assume the usual symbolic representation: a state is
represented as an assignment to the X variables, while a
parameter valuation < is an assignment to the U variables.
Sets of states are expressed as formulae in X; sets of pa-
rameter valuations are expressed as formulae in U, with each
satisfying assignment corresponding to a parameter valuation.
Boolean connectives have the usual set theoretical connotation
(e.g., complementation is represented by logical negation, and
intersection by conjunctions), while projection is represented
by existential quantification.

We write REACHABLEg(U, X)) for the set of reachable
states in S, where a state is a valuation to the variables X
and the parameters U. We notice that REACHABLEg(X) A
7 = REACHABLEg, (X), i.e., the reachable state space of a
parameterized system S can be seen as an association between
an parameter valuation « and the set of reachable states in the
corresponding (non-parameterized) transition system S..

The techniques described in this paper apply both to
finite-state and to infinite-state systems. In the case of finite-
state systems, termination is guaranteed; in the infinite case,
convergence depends on the termination of the calls to the
underlying model checking engine.

Let a property (X)) (¢ for short) be a formula describing
a set of states. A transition system S satisfies ¢ (S = ) iff
REACHABLEg(X) C (X). The set of parameter valuations
valid for ¢ for a parametric transition system S is defined as
VALIDPARSs ,(U) = {y € T | S, = ¢}. A valid parameter
valuation -y guarantees that the property ¢ holds in 5.

We consider cost functions COST ' = N as
integer-valued functions over parameter valuations. A multi-
dimensional cost function is defined as a vector of cost
functions; for brevity we write COST : I' — N. We call
N™ the space of costs. Notice that a cost function can be
symbolically represented as a term. Given two cost vectors
(v1,-++ ,Um) and (wq,- -+ ,wy,), we define the partial order
relation < as (vy, -+ ,Um) =2 (w1, -, W) iff Vi. v; < w,.

Given S, ¢ and COST, we say that an assignment v € I'
is Pareto-Optimal iff:

1) S, E¢, and
2) if there is 4’ s.t. Sy |= ¢ and COST(y') = COST(7)
then v = /.

Pareto-optimality boils down to optimality with respect to a
single cost function when m = 1. The cost function can be
represented symbolically as a term COST(U); a set of assign-
ments is then simply identified by a formula COST(U) < v
where v is a natural number and < is a relation operator.

Higher

Cost TT.0T

FT..TT TR.TT TT..TF

Property
TT..FF False

FF.TT

Lower
Cost FF...FF

Fig. 1. Monotonicity with respect to Property and Cost function

In this paper, we make two assumptions of monotonicity.
The first one is monotonicity of the “property holds” relation,
and the second is monotonicity of the cost function.

We say that S |= ¢ is monotonic w.r.t. T' iff
Vv, If Sy FEpthen VY. o <v= S, o

Intuitively, if the property does not hold under a given parame-
ter valuation, then it does not hold for any of its predecessors.
Conversely, if the property holds under a given valuation, then
it also holds for all the successors.

We say that COST is monotonic w.r.t. I" iff

Vy,v'. If ¥ <4 then COST(y) < COST(%)

The Pareto-Frontier PF(COST,p) C I' is the set of
parameter assignments that are valid for ¢ and that are Pareto-
optimal with respect to COST.

The space explored in this paper is depicted in Figure 1.
Above the line are the valuations that are valid for ¢; below
the line are the ones for which the property does not hold, i.e.,
the ones which are associated to at least one counterexample
trace. The vertical arrow on the left denotes a cost function
that is upwards monotonic along each path.

IV. SOLUTION DESCRIPTION

In the following we present several algorithms for the
computation of the Pareto frontier, for a given S, ¢, and
CoST. We assume that both the property satisfaction relation
(S & ¢) and COST are monotonic with respect to I'. For the
sake of presentation, we assume also that there is at least one
parameter valuation v s.t. S, = ¢.

The algorithms that we present define a spectrum based
on how much of the set of VALIDPARS we compute up-
front. In Section IV-A, we compute the whole set of good
valuations up-front, and then proceed to the computation of
the Pareto-Frontier. In Section IV-B, we “slice” the space
VALIDPARS by one dimension and compute one of the slices
at the time; once a slice has been computed, we minimize
w.r.t. to the other costs. By doing so, we are able to skip
slices (using the monotonicity assumption), so that we end up
computing a subset of VALIDPARS. Finally, in Section IV-C
we do not compute VALIDPARS directly, but navigate through
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the valuations lattice driven by the cost functions and test on-
the-fly membership of points to VALIDPARS.

For the sake of presentation, we describe most algorithms
assuming that we have a two-dimensional cost function.

A. The valuations-first approach

function VALUATIONSFIRST(S, COST, )
V P := VALIDPARS(S, ¢)
return PARETOFRONT(COST, V P)
end function

Fig. 2. Valuations First pseudo-code
function VALIDPARS(S, ¢)
Bad := 1
S=(UX,I1,T)
while S -~ ¢ do
~' := project counter-example on U
Bad := Bad Vv «'
I:=1AN-Bad
end while
return ~Bad
end function

Fig. 3. VALIDPARS computation

The first algorithm we present is an eager, two-stage
approach. Figure 2 provides a high-level description of the
algorithm.

The first stage constructs the set of parameter valuations
that are valid for the ¢ property. This gives a closed-form
representation of the solution space, regardless of cost con-
siderations, represented as a formula VALIDPARS. The second
phase carries out an analysis of the solution space taking the
costs into account, selecting the assignments that are Pareto-
optimal, thus building the Pareto front.

Each of the phases can be in turn refined. The computation
of VALIDPARS can be carried out directly, by performing a
reachability analysis on S, thus obtaining REACHABLE(U, X),
and then considering only the valuations for which the states
always satisfy the property. This idea has been explored
with a BDD-based implementation in [13], where it was
applied in the computation of Fault-Trees. In many cases,
however, the computation of the reachable states can be over-
killing. In Figure 3 an alternative approach is presented, based
on the algorithm proposed in [14], that constructs the set
VALIDPARS = {vy; | S E v — ¢} of valid parameter
valuations. The idea is to rely on a model-checking routine
to compute the set InvalidPars = {v; | S £ v — ¢}, i.e., a
representation of the “lower part” of the lattice in Figure 1. At
a very high level, this is done by enumerating counterexample
traces to the negation of ¢. Each trace is associated with an
invalid parameter valuation, which is then accumulated in the
result, and removed from the initial states, thus preventing the
model checker from re-discovering it. Once InvalidPars is
computed, the space of valid parameter valuations is simply
obtained by complement. This algorithm can thus rely on
a model-checker as a black-box, therefore leveraging recent
advancements in SAT-based model-checking techniques (e.g.,
IC3).

The second phase carries out the optimization of the
combinatorial space defined by VALIDPARS with respect to
CosT. This can be done, for example, by enumerating all the
elements in VALIDPARS and comparing the associated costs,
or by considering the symbolical characterization of the Pareto
front:

PARETOFRONT(U) = VP(U)ABU'.(U" <cost U)AV P(U))

A simple way of computing PARETOFRONT(U) is given
by the possibility of encoding the cost functions into SAT
(e.g., using SMT over bit-vectors), and applying an iterative
approach that tightens the constraints on the cost along each
dimension.

There are two big disadvantages in the valuations-first
algorithm. First, in order to compute VALIDPARS, we need
to enumerate all the elements of InvalidPars. This means
that the first phase may be in some cases inherently expensive.
Second, the first phase proceeds by under-approximating the
complement of the valid space, regardless of the cost infor-
mation. This means that virtually no information on what is
a valid (let alone optimal) solution is found until convergence
in the accumulation has been reached, i.e., until the whole
InvalidPars set has been computed.

B. The one-cost slicing approach

function SLICING(S, COST, )
PF =0
y=1T;
c1 := CoST1(y)
S’ := FizCost(S,COST; = c1)
V Pcost, := VALIDPARS(S’, )
while V Pcosr, #0 do
(7, c2) = MINIMIZE (COST2, V Pcosr; )
(7, ¢1) := REDUCE cost, (S, 7> @, C2)
PF.add(v, c1, c2)
C1 ==C1 — 1
S’ := FIXCOST(S, COST1 = c1)
V Pcost, := VALIDPARS(S’, ¢)
end while
return PF
end function

function FIxCosT(S, CostFExpr))
S=(UX,1,T)
S = (U,X,I A CostExpr,T) return S’
end function

Fig. 4. Slicing algorithm

The second algorithm (Figure 4) we propose interleaves
the analysis of the cost information with checks on the validity
of the parameters. This is done by slicing the space of valid
parameters along the different dimensions (i.e., cost functions).

We first initialize c; to the highest possible value, and the
Pareto frontier to the empty set. We iterate as follows. First, we
compute all the candidate solutions on the parametric system
S’ in which we fixed the cost COST; to the value ¢;. We
then search in the set of candidates (V Pcosr,) for the best
valuation and cost for COST2. Once an optimal cost ¢y has
been found, we fix it and try to find a smaller valuation w.r.t.
Co0STy, and add the solution to the Pareto front. This is done
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by calling a function REDUCEcesr, Which, given a solution
~ of cost (c1,c2), returns another solution 4" of cost (¢}, ¢2)
with ¢} < ¢1. For now, REDUCE is simply a function that tries
to improve a candidate solution y. We shall describe its actual
implementation in the next Section.

In order to find the other points of the Pareto frontier, we
decrease c; and test whether any solution (independently of
CoST,) exists. If it does, we repeat the process, otherwise we
terminate.

Note that in the function MINIMIZE we operate on the set
of the solutions, while in REDUCE, we generate a candidate
7" =< 7 and test whether it is still a solution (i.e. S = ¢).
Due to the monotonicity assumption, REDUCE cannot skip
solutions. However, REDUCE can drastically accelerate the
search by avoiding the enumeration of all costs in c;.

In the pseudo-code, the addition of solutions to the Pareto
front is slightly simplified. In practice, we cannot add a
solution y; immediately in the Pareto front, but we need to
wait for the next solution 7, to be added (PF.add). If the
costs of 1 and v, are incomparable, then 7; is Pareto-optimal
and gets added to the frontier. If v5 is smaller than v;, then
71 is not optimal and is discarded. This pair-wise operation
guarantees that only Pareto optimal solutions are considered.

This approach only computes slices of VALIDPARS when
needed. Although in the worst-case we can end-up computing
it all by slices, when calling the REDUCE function, it is gen-
erally possible to accelerate the search and skip intermediate
slices.

C. The costs-first approach

function COSTSFIRST(S, COST, )
PF := ()
vi=T;
c1 = CosT1(y); ¢z = CosT2(7)
repeat
Cc2 = C2
for v; € MAXSMALLERCANDIDATECost, (€1, C2) do
if S,, = ¢ then
(v, ¢2) := REDUCE cost, (S, 7, @, €1)
end if
end for
(7, ¢1) := REDUCE cosr, (S, 7, ¢, ¢2)
PFE.add(v, c1, c2)
ci1:=c1—1
until No solution exists for FIXCOsT(S, COST1 = ¢1)
return PF
end function
Fig. 5. CostsFirst pseudo-code
One of the key insights of the slicing algorithm is that
big parts of VALIDPARS might not be necessary in order
to compute the Pareto front. In the costs-first approach we
take this idea to the extreme: we do no compute VALIDPARS
anymore. Instead, we explore the lattice of valuations induced
by the cost functions. Every time we find a promising valuation
7y, we test whether it is actually a solution (i.e., S, E ©). Due
to the monotonicity assumption, whenever we find a valuation
that is not a solution, we can prune all of its predecessors in
the lattice (since they cannot be solutions either).

An overview of the algorithm is provided in Figure 5. We
start by getting an upper-bound on both costs by considering
the cost of the top valuation. In the outer-loop we decrease
the value of COST;, similarly to the slicing approach. Within
the inner-loop, however, we proceed by enumerating the so-
lutions that have smaller value w.rt. COSTy. In particular,
MAXSMALLERCANDIDATE returns the maximal solution(s)
with the same cost ¢; but with smaller cs.

The process terminates whenever no solution can be found
for a given value of COST;. Note how the structure of this
algorithm is similar to the one of the slicing approach. The
main difference is that we never need to compute VALIDPARS.

This algorithm allows us to find subsets of the Pareto front,
since it can be interrupted at any point and is guaranteed to
provide an under-approximation of the Pareto-Frontier. This
is in contrast with the approaches described in Section II for
parameter synthesis, that require termination of the procedure
in order to provide the solution space of the parameters.

V. IC3-BASED IMPLEMENTATION

We implemented the approaches described in the previous
section using IC3-based techniques.

In particular, there are two key ideas that we can leverage in
order to have an efficient algorithm using IC3. First, we notice
that S, = ¢ holds iff S =+ — . This observation makes it
possible to reason always on the same system, and moves the
choice of the valuations within the property. This leads us to
the second fundamental observation. If S = v — ¢, we can
extract from the IC3 model-checker the inductive invariant ).
By definition of inductive invariant we know that ¢ = v — ;
moreover, it might be the case that we can reuse the same
invariant to check whether another valuation 7’ is a solution:
ie., ¥ =~ — . We will use this idea when trying to reduce
the valuation, since this makes it possible to reason locally
on a (relatively small) formula, and does not require unrolling
or computing reachable states. The efficiency of the procedure
will then largely depend on how well the reduction step works.

Figure 6 presents the adaptation of the costs-first algorithm
when using the inductive invariant to perform the REDUCE
step. The same idea for the REDUCE can be applied in the
slicing algorithm.

We navigate the lattice by picking the maximal candidate(s)
of smaller cost w.rt. COSTy (MAXSMALLERCANDIDATE).
This fact guarantees that the algorithm will terminate, since
we are always picking a solution of smaller dimension. We
then check that the property still holds for the new valuation
v;, by using IC3. If this is the case, we are provided with an
inductive invariant 1, s.t., 1 = v; — ¢.

The operation of picking a cost-predecessor could be, in
principle, delegated to a pseudo-boolean constraint solver, or to
other reasoning engines that are able to deal with costs natively.
For our simple implementation, we use an SMT solver with
the theory of bit-vectors.

When considering the parameters as a set of elements, we
can try to minimize the set by implementing the REDUCE pro-
cedure using unsat-cores. Namely, we check the unsatisfiability
of 1 A—¢ under the assumption of v; and use standard features
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function COSTSFIRSTIC3(S, COST, )
PF =)
vi=T;
c1 = CoST1(7); ¢z = COST2(7)
repeat
Cy = C2
for v; € MAXSMALLERCANDIDATEcost, (€1, c2) do
(res, ) = IC3(S,v; — ¢)
if res == Safe then
# 1 is an inductive invariant s.t. Y |= vy — ¢
('Yi7 C1, 02) = REDUCECOST2 (1/)7 Vi, 4,0)
end if
end for
(71'7 C1, 62) = REDUCECOSTl (¢7 Vi, 90)
PF.add(v, c1, c2)
C1 :=C1 — 1
until No solution exists for FixCost(S, COST1 = ¢1)
return PF
end function

Fig. 6. 1C3-based CostsFirst pseudo-code

from modern SAT solvers to minimize the unsat-core that, in
turn, translates in picking a subset of the parameters that makes
the formula unsatisfiable. By doing so, we are able to “jump”
and quickly reduce the valuation . For integer parameters,
instead, we use a REDUCE procedure that performs a linear or
binary search, using the inductive invariant.

In general, we could use the identity function as REDUCE,
and this would still guarantee the correctness and termination
of the algorithm. However, this would end-up requiring an
explicit state search of the lattice. Having a smart REDUCE
procedure makes it possible to jump and terminate faster.

Since the inductive invariant does not depend on the costs,
it is possible to reuse the invariant from previous calls in an
incremental way. Intuitively, this provides us with stronger
invariants that are more likely to allow us to reduce the
parameters aggressively.

VI. MOTIVATING APPLICATION DOMAINS

We describe now two motivating application domains: sen-
sor placement for diagnosability and product line engineering.

Sensor Placement: The problem is of practical rele-
vance, and substantial interest has been devoted to it in the
setting of autonomous systems. Typical architectures integrate
components for Fault Detection and Identification (FDI) that
are used to detect, during operation, whether some (and which)
faults may have occurred [24], [10]. The information produced
by FDI is then used for Fault Isolation and Recovery, i.e., to
respond to the effects of faults, e.g., by reconfiguration.

Intuitively, the problem is to identify a suitable set of
sensors that will allow the FDI subsystem to have enough
information to carry out, within a given delay, its diagnosis
task. In this setting, a parameter represents whether a sensor
is present in the design, and a parameter valuation identifies
a subset of all available sensors. There is a trade off between
the observation power of the available sensors, and the delay
required to diagnose a certain condition of interest. Intuitively,
a reduction in the set of sensors may lead to an increase in the
delay.

The property ¢ that we want to show is diagnosability with
respect to a given delay d, i.e., the ability to detect an event
of interest within at most d steps. In the case of a given set of
sensors, this is reduced to the model checking problem on the
so-called twin plant, a construction based on the composition
of two replicas of the plant under observation [10]. The twin
plant encodes the existence of a critical pair, i.e., two indis-
tinguishable traces satisfying a pair of conditions of interest
(e.g., the occurrence of two faults of different type that must
be identified).

The problem is generalized by considering a parameter set
U, defined as {s1,..., sk, d}, where a valuation to the vector
(81,...,8k) of k sensor parameters identifies a configuration
in the design space. The delay d is an integer valued parameter.
The space of assignments is then B* x N

The diagnosability property ¢ is defined as the invariant
property:
—((delayy > d) A 0bseq)

where delay, counts the steps since the occurrence of the
condition of interest v». This formula is satisfied in the twin-
plant iff there is no critical pair. In general, we assume that an
upper-bound on the delay for the model is known. In addition
to the theoretical bound that always exists for state transition
systems, in practice there usually is an application specific
time-frame after which the diagnosis is not useful anymore
(e.g., mission life-span, propagation time). Several interesting
CosT functions are possible. For the sensor placement problem
we use one based on weights/delay pairs:

COSTweighted(Sh <oy Sky d) = (Z W;Sq, d)
)

Product Lines: When designing a product, engineers
are often faced with a high degree of variability in terms
of possible features. Such variability is usually captured in
product line models (sometimes referred to as feature mod-
els). For instance, in [16] the authors model variability in a
controller design, and the authors of [6] consider software
product lines. Here we are specifically interested in the analysis
of dynamic systems as opposed to static contexts which are
usually addressed with constraint programming techniques.

The goal of product line engineering is usually to identify
which combinations of features satisfy a certain property. Here
however we specifically address the Pareto-optimal trade-off
problem. In various works there are different assumptions on
the monotonicity of features, that is whether by adding features
the possible behaviors increase monotonically or whether some
behaviors can be overridden. In our work we only assume the
monotonicity of the property of interest in terms of feature
additions.

VII. EXPERIMENTAL EVALUATION
A. Experimental Setup

We have implemented the algorithms described above on
top of the NUXMV model checker [25]. Although our frame-
work can in principle support any number of cost functions,
our current implementation only supports two of them. The
executables and benchmark instances used in the evaluation
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are available at https://es-static.fbk.eu/people/griggio/papers/
fmcad14pareto.tar.bz2.

We evaluate our approach on a series of benchmarks
coming from the domains of sensor placement [10] and product
lines [16]. The sensor placement examples were obtained from
realistic case studies on a simpler problem, i.e. finding a good
set of sensors for a fixed delay. These simpler benchmarks were
challenging and in some case not solvable for our previous
techniques [10]. The properties for the product lines bench-
marks that were derived for our invariant checking framework
are artificial but tailored specifically for these examples. For
both cases we are unfortunately not aware of other publicly
available industrial benchmarks.

ORBITER, ROVERSMALL, and ROVERBIG are models of
an orbiter and of a planetary rover, both developed in the
OMCARE project (see [26], [27]). The models describe the
functional level, with various relevant subsystems including
failure modes. CASSINT models the propulsion system of the
Cassini spacecraft (see [13]). It is composed of two engines
fed by redundant propellant/gas circuit lines, which contain
several valves and pyro-valves. Leakage failures are attached
to all components. ELEVATOR models an elevator controller,
parameterized by the number of floors. The modeled properties
are cabin and door movement, request and reset operations at
each floor, and the controller logic. C432 is a boolean circuit
used as a benchmark in the DX Competition [28], whose
gates can permanently fail (inverted output). The observables
are the inputs and output values for the gates of the circuit.
X34 is a benchmark describing a simplified version of the
main propulsion system of a spacecraft [29]. All models also
contain faults based on which a sensor placement problem is
formulated. PRODUCT LINES are benchmark instances derived
from [16], describing a railway switch controller. The product-
line features correspond to possible communication strategies
used by the controller. We explore a design trade-off along two
dimensions. The first is the upper bound on message sequence
lengths. The second one is a cost associated to dropping a
particular feature, specified by a random cost function. Our
aim is to minimize both the message sequence bound and the
cost of removing features in order to guarantee it.

For each example, we generated multiple benchmarks by
varying both the number of parameters considered and the
(randomly-generated) costs of the individual parameters. Over-
all, our benchmark set consists of 81 instances. The number
of Pareto-optimal solutions varies between 0 and 5.

B. Results
one-cost
Family #Instances || valuations-first slicing | costs-first
c432 32 11 13 32
cassini 21 6 12 21
elevator 4 4 4 4
orbiter 4 4 4 4
roversmall 4 4 4 4
roverbig 4 4 4 4
x34 4 4 4 4
product lines 8 6 4 8
TOTAL [ 81 43 ] 49 ] 81
Fig. 7. Number of solved instances by each approach
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Fig. 8. Accumulated-time plot showing the number of solved instances (x-
axis) in a given total time (y-axis) for the various algorithms.
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Fig. 9. Runtime for different number of parameters

We executed the experiments on a Linux cluster equipped
with 2.5Ghz Intel Xeon CPUs with 96Gb of RAM. We used
a time limit of 1 hour and a memory limit of 6Gb.

In Figure 7 we present the number of instances solved for
each problem family. For the 432, CASSINI and PRODUCT
LINES benchmarks, we can see how the costs-first approach
finds all the solutions within the timeout, whereas the other
two approaches fail on several instances. Figure 8 shows the
accumulated-time plots for the different algorithms, plotting
the number of solved instances (y-axis) in the given total
amount of time (x-axis) in logarithmic scale.

For the €432 and CASSINI benchmark, we show in Fig-
ure 9 the runtime as a function of the parameters. As expected,
on the same model, the number of parameters has a big impact
on the runtime. Indeed, for the valuations-first and the one-cost
slicing approaches this has an exponential tendency.

Finally, in order to evaluate the impact of the REDUCE
procedure in the costs-first algorithm, we performed an exper-
iment in which we ran costs-first without applying REDUCE.
From the scatter plot of Figure 10, we can see that REDUCE is
crucial for performance: without it, costs-first solves only 48
instances, and the runtimes increase by orders of magnitude.
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Fig. 10. Impact of REDUCE in the costs-first algorithm.

VIII. CONCLUSIONS

In this paper we have proposed a new method for the syn-
thesis of optimal parameter valuations for multi-dimensional
monotonic cost functions, enabling the construction of the
Pareto front with respect to the cost function.

We analyzed three algorithms of increasing efficiency, that
interleave in various ways the search for parameter valuations
that satisfy the property and the optimization with respect to
costs, and we showed how to implement them on top of IC3,
exploiting its features for efficiency.

Our experimental evaluation shows the feasibility of the
approach on benchmarks from important practical domains,
and demonstrates the importance of a tight integration between
model checking and cost optimization.

In the future we will generalize the approach to deal with
real-valued parameters; in particular, we will investigate the
generalization of the notion of monotonicity. From a practical
point of view, it would be important to find an effective way
of automatically testing the monotonicity assumptions. We will
also generalize our implementation to support more than two
cost functions, and devise strategies to handle multiple cost
functions in an effective way. Further interesting directions are
the investigation of specialized techniques for specific patterns
of properties (e.g., response time), thus enabling the approach
to be applied beyond safety properties, and techniques for
relaxing the assumptions of monotonicity currently required.
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