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Abstract—This paper introduces a new algorithm designed
to verify safety properties for asynchronous compositions of
symbolic transition systems. The approach combines under-
approximation and over-approximation: on one side, it zooms in
on a selected set of components, while forcing the remaining ones
to stutter; on the other, the selected components are individually
abstracted and re-composed. This strategy can be advantageous
for scenarios involving large numbers of components, where
only a small subset of key components allows to produce the
right invariants for the system. We detail the application of our
algorithm to a class of parameterized symbolic transition systems,
by using a form of slicing as an abstraction. Our experimental
results, although preliminary, show the potential of the approach.

Index Terms—Compositional Approach, CEGAR, Parameter-
ized Systems

I. INTRODUCTION

This paper focuses on the problem of asynchronous ver-
ification, where multiple systems with shared variables un-
dergo transitions independently. The problem is studied in
the literature across various formalisms. In this paper, we
adopt the formalism of Verification Modulo Theories [3], using
symbolic transition systems defined by formulae in SMT. We
describe an algorithm that we aim to use in a verification
project related to railway interlocking logic [1], [5], which is
characterized by numerous components and a large number of
variables. However, the verification of safety properties may
necessitate examining only a select few of these components.
Additionally, many variables within these components are not
integral to managing safety operations. Hence, our algorithm
seeks to abstract numerous system variables while potentially
concentrating on the pertinent components.

Initially, we outline the algorithm in a generic scenario, not
focusing on particular abstraction or class of systems. Then,
we narrow our focus to a more concrete use case. We define
a class of transition systems capable of modeling parameter-
ized systems and instantiate the aforementioned approach by
providing specific procedures for abstraction and refinement.
Such a scenario can model, for example, the interlocking logic
we are interested in.

The authors acknowledge the support of the PNRR project FAIR - Fu-
ture AI Research (PE00000013), under the NRRP MUR program funded
by the NextGenerationEU, and of the PNRR MUR project VITALITY
(ECS00000041), Spoke 2 ASTRA - Advanced Space Technologies and
Research Alliance.

We have developed a prototype of the algorithm and tested
it on some artificial benchmarks and a simplified case study
related to interlocking logic. The outcomes are encouraging,
suggesting that this algorithm could also perform effectively
on the entire logic system once we acquire the comprehensive
system descriptions.

The paper is organized as follows: Section 2 provides the
necessary background, and it studies the connections between
abstraction and composition. Section 3 details the procedure
for the verification of systems defined via asynchronous com-
position. Section 4 specializes the algorithm in the case of
parameterized systems and presents the experimental evalua-
tion. Finally, Section 5 describes our conclusions and outlines
avenues for future work.

II. BACKGROUND

A. Preliminaries

Our models of computation are symbolic transition systems,
i.e. triples of the form (X, I(X), T (X,X ′)), where X is a set
of variables, called the state variables of the system, and I(X),
T (X,X ′) are formulae over some theory T . Given a model
M for T , a state s is a valuation of the state variables X in
the universe of M. A state is initial iff it is a model of I(X),
i.e., s |= I(X). A pair of states s, s′ denotes a transition iff
s, s′ |= T (X,X ′). A state s is reachable iff there exists a path
π such that π[i] = s for some i.

A formula ϕ(X) is an invariant of the transition system
C = (X, I(X), T (X,X ′)) iff it holds in all the reachable
states. Following the standard model checking notation, we
denote this as C |= ϕ(X). We say that ϕ is inductive for C if
I(X) |= ϕ(X) and ϕ(X) ∧ T (X,X ′) |= ϕ(X ′).

In the following, we will use the notion of case-defined
functions defined in a theory T . These functions are defined by
a sequence of couples {(casei, valuei)}ni=1 where each casei
is a predicate and each valuei is a term (they correspond
to statements of the form if case 1 then value 1, else ...);
moreover, all the case predicates are required to be mutually
exclusive, and their disjunction is a valid formula. Although
case-defined functions are not standard in the SMT setting,
they can be easily handled by using, for example appropriate
if-then-else terms.
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B. Abstraction

Let C be (X, I(X), T (X,X ′)) and C̃ be
(X̃, Ĩ(X̃), T̃ (X̃, X̃

′
)). Let S be the set of states of C,

and S̃ be the set of states of C̃. Let α be a relation between
S and S̃; we write α(s, s̃) to denote that two states s and s̃
are in relation.

Definition 1. We say that C̃ α-simulates C (written C →α C̃)
if the following two conditions hold:

i. For each initial state s of C, there exists an initial state
s̃ of C̃ such that α(s, s̃) holds.

ii. For each pair (s, s̃) such that α(s, s̃) holds, and for each
s′ ∈ S such that s, s′ |= T (X,X ′), there exists a state s̃′

such that α(s′, s̃′) holds and s̃, s̃′ |= T̃ (X̃, X̃
′
).

If α is clear in the context, we might say that C̃ simulates
(or abstracts) C.

Let V ⊆ X ∩ X̃ be a set of variables, and F (V ) be a
formula. We have the following facts about simulations:

Definition 2. We say that the simulation C →α C̃ preserves
the formula F if, for all states s such that s |= ¬F , then for
all s̃ such that α(s, s̃), s̃ |= ¬F .

Proposition 1. Given a simulation C →α C̃ that preserves
F , C̃ |= F ⇒ C |= F .

Proposition 2. Given a simulation C →α C̃ that preserves
F , if F is inductive for C̃, then F is inductive for C.

In many cases, the abstract variables X̃ of the system C̃
are different from the original variables X . In this paper, we
consider only the case X̃ ⊆ X for the sake of simplicity.

If a counterexample is found in C̃, in general, this does not
imply the existence of a counterexample in C. We say that
a counterexample π in C̃ is spurious if there exists no path
s0, . . . , sk in C such that sn |= ¬F and, for all 0 ≤ i ≤ k,
α(si, π[i]). In such cases, the abstraction yields no helpful
information and needs to be refined.

C. Asynchronous Composition

Let C1 = (X1, I1(X1), T (X1, X
′
1)) and C2 =

(X2, I(X2), T (X2, X
′
2)) be two symbolic transition systems.

If V is a set of variables, we denote with Inertia(V ) the
formula

⋀︁
v∈V (v = v′).

Definition 3. The asynchrounous product between C1

and C2, is the transition system C1 ∥ C2 =
(︁
X1 ∪

X2, IC1∥C2
(X1, X2), TC1∥C2

(X1, X2, X
′
1, X

′
2)
)︁
, where:

• IC1∥C2
(X1, X2) is the formula I1(X1) ∧ I2(X2);

• TC1∥C2
is the formula (T1(X1, X

′
1)∧Inertia(X2\X1))∨

(T2(X2, X
′
2) ∧ Inertia(X1 \X2)).

Given a set of variables V ⊆ X1 ∪ X2 and a formula
F (V ), asynchronous verification amounts to prove or disprove
if (C1 ∥ C2) |= F (V ). More generally, if V ̸⊆ Xi, we may
write Ci |= F (V ) with the meaning that we add to the Xi

the remaining V \Xi variables, and we modify Ti by adding
inertia on V \Xi. We have:

Proposition 3. If a formula F is not inductive for C1 ∥ C2,
then there exists an i ∈ {1, 2} such that F is not inductive for
Ci.

We say that two transition system C1 and C2 are compatible
if each partial assignment to the shared variables can be
extended to an initial state of C1 if and only if it can be
extended to an initial state of C2. In practice, this means that
the shared variables are initialized in the same way in the two
systems.

Proposition 4. Consider C1 →α1 C̃1 and C2 →α2 C̃2 two
simulation relations. Suppose that C̃1 and C̃2 are compatible.
Consider α1 ∥ α2 (called the product simulation) defined as

α1 ∥ α2(s, s̃) iff α1(s|X1
, s̃|X1

) and α2(s|X2
, s̃|X2

).

Then, C1 ∥ C2 →α1∥α2
C̃1 ∥ C̃2.

By definition of product simulation, we have the following
corollary:

Corollary 1. Consider C1 →α1
C̃1 and C2 →α2

C̃2 two
simulation relation such that they both preserve a formula F .
Assume that C̃1 and C̃2 are compatible. Then, α1 ∥ α2 also
preserves F .

III. A COMPOSITIONAL APPROACH WITH ABSTRACTION
REFINEMENT

In this section, we outline a procedural framework that
remains parametric, considering a generic family of transition
systems, a generic abstraction procedure, and a target invariant
property denoted as F . In the next section, we delve into a
case study where we provide a more concrete setting.

Suppose that we have a finite family of transition systems
{Ci}i∈I . Let C =∥i∈I Ci be the asynchronous composition of
the systems, and consider a formula F (V ) with V ⊆

⋃︁
i∈I Xi.

The problem that we face is to prove or disprove whether C |=
F . The problem is solved if either we find a counterexample,
i.e. a path π of finite length n, such that π[n] |= ¬F , or if we
find an inductive invariant Ψ for F . If F is not inductive itself,
then by consecutive applications of Proposition 3 it follows
that there exists a subset J of I such that F is not inductive
for ∥j∈J Cj .

To describe our algorithm, we assume to have some sub-
procedures, namely: (i) a model checker, capable of automat-
ically proving if an invariant holds in a transition system.
If so, the model checker provides an inductive invariant for
it. Otherwise, the model checker find a counterexample; (ii)
a theorem prover, capable of checking whether a formula is
inductive for a transition system, or if a counterexample can
be simulated (e.g by bounded model checking). As a pre-
processing step, we suppose to identify the set of components
J for which the property is not already inductive. Moreover,
let C̃ be a transition system such that there exists a simulation
∥j∈J Cj → C̃. The only property that we require on the
abstraction is that the simulation should preserve all inductive
invariants found by the model checker. We consider the
following procedure, depicted in Figure 1:



• we start by asking a model checker if C̃ |= F . The model
checker can either find an inductive invariant, Ψ, or a
counterexample, π;

• If an invariant is found, we ask the prover to check if Ψ
is also inductive for the whole asynchronous composition
C. Note that, since the simulation preserves Ψ, we
already know that it is inductive for the components
{Cj}j∈J by Proposition 2.

• If the prover proves the induction, then we are done.
Otherwise, there must exist a new set of components
J ′ ⊆ I \ J for which the induction check fails. We thus
update the set J to be equal to J ∪J ′, and we restart the
loop by updating the abstraction C̃.

• Suppose instead that the model checker finds a coun-
terexample in C̃. Then, we ask the prover if the coun-
terexample can be simulated by C. If so, the algorithm
terminates with a counterexample. Otherwise, we refine
the abstraction to remove the abstract counterexample.

The key differences of our approach from conventional
CEGAR methods in compositional verification such as [13],
[7] lies in the fact that the system C̃ doesn’t abstract entire
composition C =∥i∈I Ci; instead, it abstracts only the under-
approximation ∥j∈J Cj . We could eventually abstract all
components, when J = I , and C → C̃ is simulation - but
our method is best suited for situations where this should not
happen.

Even when C̃ doesn’t represent the entire system, the
algorithm’s soundness is evident. This is because we conduct
an additional induction check to verify whether the invariant
identified during model checking is also inductive for the
broader composition C.

IV. VERIFICATION OF CONCURRENT PARAMETERIZED
SYSTEMS

In this section, we illustrate the application of the pro-
cedure outlined in Section III through a specific use case.
Our algorithm was conceived to facilitate the verification of
interlocking logic within railway stations, as part of a larger
initiative to integrate various formal methods into railway
design [1]. In this scenario, the system’s components are each
represented by parameterized transition systems. These com-
ponents interact by sharing multiple variables; our objective
is to ascertain the general safety of the composition of them.
Despite the presence of a vast number of components, only
a subset is critical for ensuring safety. Furthermore, while
the systems may involve a large number of variables, we
recognize that only a limited number are pertinent to safety
concerns. Consequently, our approach to abstraction focuses
on narrowing down to these essential variables.

The systems are modeled with a subclass of the formalism
of [14] and similar to [9], where parameterized systems are
modeled as symbolic transition systems with state variables
that are functions from an uninterpreted theory (with finite
but unbounded universes) to a generic theory. Moreover,
quantifiers occur in the system description to model the
unboundedness of possible instances.

Definition 4. An array-based transition system C =
(X, I(X), T (X,X ′)) is a symbolic transition system where:

• X are a set function symbols;
• I(X) is a formula of the form ∀j.

⋀︁
x∈Y x(j) = valx -

where valx is a constant of the appropriate signature,
and Y ⊆ X;

• T (X,X ′) is a disjunction of formulae of the form (called
transition rules)

∃i.(ϕG(i,X) ∧ ϕU (i,X,X ′)) (1)

where ϕG(i,X) is called the guard, and ϕU (i,X,X ′) is
the functional update, i.e., a formula of the form

∀j.
⋀︂
x∈X

x′(j) = Fx(i, j,X,X ′)

with {Fx}x∈X a family of case-defined function.

We start by defining the simulation relation that we will use.

Definition 5. Let V ⊆ X a set of variables. We define a
relation α between two assignments s, s̃ of X and V by

α(s, s̃) ⇔ s|V ≡ s̃,

i.e. we ask that the two states are in relation iff they assign
the same value to the variables in V .

Given a (sub)set of variables V and a transition system C
defined as in Definition 4, we now define a new transition
system C̃

V
such that there exists a simulation between the two

systems. The new variables will be V ∪B∪E, with B and E
sets of fresh input variables. The abstract initial formula of the
system, denoted Ĩ(V ), is simply obtained from I by dropping
the conjuncts that are not assigning variables in V ; that is, we
have that

Ĩ(V ) =
⋀︂
v∈V

∀j.v(j) = valv.

For the abstract transition formula, denoted as
T̃ (V,B,E, V ′), we need more steps. We will work on
the single transition rules of the concrete transition, that are
of the form (1). The abstract transition will be a disjunction
of formulae of the form ∃i.(ϕG̃(i, V ) ∧ ϕŨ (i, V,B,E, V ′))
where

• ϕG̃(i, V ) is obtained by ϕG by replacing each atom that
contains variables in X \ V with the constant true, if it
occurred positively in the formula, or false otherwise;

• ϕŨ (i, V,B,E, V ′) is the formula
⋀︁

v∈V ∀j.v′(j) =

Fṽ(i, j, V,B,E, V ′) where Fṽ is a case-define function
with a sequence of case˜ i(V,B) statements and a se-
quence of corresponding terms val˜ i(V,B,E) such that:

– case˜ i(V,B) is either equal to casei(V ) if the orig-
inal case predicate is defined only over the V vari-
ables, or is a fresh boolean constant b ∈ B otherwise;

– val˜ i(V,B,E) is either equal to vali(V ) if the origi-
nal term is defined only over V , or is a fresh constant
e ∈ E of the appropriate type otherwise.

Let C̃
V
= ({V,B,E}, Ĩ(V ), T̃ (V,B,E, V ′)). We have:



C̃ |= F?

Induction Check Spurious CheckRefine J Refine ∼

Proof found Cex found

Invariant Found Cex Found

Failed Spurious

Result

Reasoning Phase

Model Checking Phase

Fig. 1. The procedure

Proposition 5. C̃
V

simulates C.

Moreover, since the simulation relation is the equality on
V , we have that:

Proposition 6. The simulation preserves each formula F (V )
defined only over the set of variables V .

Therefore, in order for the abstraction ∼V to preserve the
property, we need that the set of variables V always include
all the state variables occuring in the property to prove. Thus,
from Corollary 1, we have that, given any family of compatible
array-based transition systems:

Corollary 2. ∥ Ci →∥ C̃
V

i via the product simulation.
Moreover, the product simulation preserves all the formulas
defined over V .

Thanks to the latter, we can use as an abstraction for ∥i∈J Ci

the composition of the individual abstractions, i.e. ∥i∈J C̃
V

i

A. Refinement

Suppose that, during the model checking phase, we found
an abstract counterexample π. For refinement, we check as
usual the satisfiability of the concrete unrolling. In the case of
satisfiability, we are in the presence of a real counterexample,
and we can exit from the procedure. In case of unsatisfiability,
we are in presence of a spurious counterexample, and we
follow this refinement procedure: we start by computing an
unsat core of the latter formula. Then, let V ′ be the set of
variables that occur in at least one literal of the core and not
in V . We update V to be V ∪V ′. We have the following result
that ensures that ensures that V ′ is never empty:

Proposition 7. In case a spurious counterexample in ∥i∈J C̃
V

i

is found, then there exists a literal in the unsat core of the
concrete unrolling that contains a variable not occurring in
V .

This refinement allows us to have a notion of progress, since
at each spurious counterexample we decrease the number of
variables that not abstracted.

B. Implementation and first results

We developed the algorithm presented in the preceding
section using Python3, leveraging the SMT solvers Z3 and

Mathsat, along with the parameterized model checker Lambda
[4]. Given that Mathsat lacks support for quantified formu-
lae, we exclusively utilized Z3 for the ’Induction Check’
sub-procedure. For ’Spurious Check’ and ’Refinement’ sub-
procedures, both Mathsat5 and Z3 were employed. Lambda,
capable of processing system descriptions in the VMT lan-
guage [6], is able to synthesize inductive invariants for systems
as defined in Definition 4.

We tested the algorithm on a simplified case study of
the railway logic, with 5 parameterized components (with
a total of 15 variables) and two properties. For the set of
abstracted variables V , we always initialize it with the set
of state variables occuring in the property to prove. The first
property was verified by the algorithm in 4.2 seconds, by
using only 5 variables and 2 components, and one refinement
step. Instead, the monolithic approach (i.e. using the model
checker on the entire system description of the composition)
took around 9 seconds. On the other hand, the second property
was a false assertion whose counterexample involved most
of the components and variables used. In that case, the
monolithic approach can find a counterexample faster then
the compositional algorithm. Although these outcomes are
not entirely satisfactory, it’s crucial to acknowledge that our
case study was quite limited compared to the actual system.
In reality, the system comprises over 100 components, each
with numerous variables, and a full symbolic description has
yet to be achieved. A second source of benchmarks derives
from two parameterized protocols, which we have adapted by
integrating N components capable of altering certain shared
variables. We test the algorithm on properties that are true
and are independent of the modifications enacted by these
additional components. The results are depicted in Figure
2. The x-axis represents the number of components, while
the y-axis measures the time taken by the procedures in
seconds (presented on a logarithmic scale). Compared to the
monolithic approach (in orange), our algorithm’s verification
process (in blue) is significantly less time-consuming and
remains relatively constant. A virtual machine to replicate the
results is available here, together with an extended version of
this paper.

https://doi.org/10.5281/zenodo.11070896


Fig. 2. Results on protocols with additional components

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a method for verifying the
safety properties of asynchronous compositions of symbolic
transition systems defined over an SMT theory T . We believe
that this method is particularly suited for scenarios requiring
the verification of properties across a large family of com-
ponents, where the inductive invariant can be identified by
examining a subset of those components. If the procedure
terminates by abstracting only a subset of the components,
then we can determine a posteriori that a split invariant
[10] between the abstracted and non-abstracted components
is found.

We applied this general algorithm to a family of symbolic
transition systems designed to describe parameterized systems
and defined a form of splicing as an abstraction strategy that
concentrates on a subset of the system’s variables. A prototype
of the algorithm was developed and tested on simple bench-
marks. The initial results are promising, and we plan to extend
its application to a comprehensive verification project focused
on interlocking logic, where the previously described situation
(numerous components with many variables) frequently arises.
Moreover, future work may integrate assumption-guarantee
methods in our approach, such as those found in [2], [12],
[11], [8] to further simplify the verification.
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