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ABSTRACT
Symbolic execution systematically explores program paths by solv-

ing path conditions. Typically, the symbolic variables range over

numbers, arrays and strings. In this work, we introduce symbolic

execution with existential second-order constraints — an extension

of traditional symbolic execution that allows symbolic variables

to range over functions whose interpretations are restricted by a

user-defined language. The aims of this new technique are twofold.

First, it offers a general analysis framework that can be applied in

multiple domains such as program repair and library modelling.

Secondly, it addresses the path explosion problem of traditional

first-order symbolic execution in certain applications. To realize

this technique, we integrate symbolic execution with program syn-

thesis. Specifically, we propose a method of second-order constraint

solving that provides efficient proofs of unsatisfiability, which is

critical for the performance of symbolic execution. Our evaluation

shows that the proposed technique (1) helps to repair programs

with loops by mitigating the path explosion, (2) can enable analysis

of applications written against unavailable libraries by modelling

these libraries from the usage context.
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1 INTRODUCTION
Symbolic execution (SE) is a widely used program analysis tech-

nique that has found many applications including automated test

generation [18], software verification [14], input filtering [10], pro-

gram debugging [30] and program repair [26, 28]. In symbolic ex-

ecution, program inputs are assigned symbolic variables instead

of concrete values. The result of executing a program with sym-

bolic inputs is a set of constraints over these symbolic variables

called path conditions. Path condition of a program path captures

all inputs that would drive the execution along this program path.

Symbolic variables used in existing symbolic execution systems

typically range over numbers, arrays and strings.

We introduce symbolic execution with existential second-order

constraints (SE-ESOC), that extends traditional symbolic execution

by allowing symbolic variables to range over functions. A func-

tion in a program can be marked as “symbolic” via a second-order

symbolic variable. Then, the goal of SE-ESOC is to synthesize an
interpretation of this function that satisfies certain reachability

properties of the analyzed program (the properties depend on the

application). SE-ESOC collects constraints on second-order vari-

ables and solves them through program synthesis.

Example 1.1. Assume that search(data, pred) returns the

index of an element of the array data that satisfies the predicate
pred. Consider the question “What predicate would make search
return 2 given the array [0, 1, 2]?”. SE-ESOC can answer this

question by executing search([0, 1, 2], ρ) symbolically with

a second-order variable ρ, and synthesizing e.g. ρ B λx . x > 1.

Contrary to works [13] utilizing the theory of uninterpreted

functions, SE-ESOC aims to discover implementations of symbolic

functions. Thus, SE-ESOC takes in a language of interpretations
for second-order variables. Similar to the syntax-guided program

synthesis approach [3], a language of interpretations is defined in

our approach via a context-free grammar, and a size bound.

Applications. In this work, we describe two applications of SE-

ESOC: an application to program repair, and a novel application to

library modelling from the usage context. In the context of program

repair, suspicious statements in the buggy program can be replaced

with second-order symbolic variables. Thus, a fragment of code in

a program can be abstracted as a second-order symbolic variable.

Instantiations of the second-order variable then amount to alternate

code fragments to replace the current one, thereby bringing out

the connection between SE-ESOC and program repair. SE-ESOC

https://doi.org/10.1145/3236024.3236049
https://doi.org/10.1145/3236024.3236049
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size_t search(int data[],

size_t len ,

int (*pred)(int)) {

size_t i;

for (i = 0; i < len; i++)

if (pred(data[i]))

return i;

return len;

}

(a) Search function.

Inputs α1,α2,α3 are integer variables:

int pos(int x) { return x > 0; }

search ((int []){α1, α2, α3}, 3, pos);

Symbolic execution results:

Path condition Input Output

α1>0 {1, 0, 0} 0

α1 ≤ 0 ∧ α2>0 {0, 1, 0} 1

α1 ≤ 0 ∧ α2 ≤ 0 ∧ α3>0 {0, 0, 1} 2

α1 ≤ 0 ∧ α2 ≤ 0 ∧ α3 ≤ 0 {0, 0, 0} 3

(b) Traditional SE.

Input ρ is a functional (second-order) variable:

search ((int []){0, 1, 2}, 3, ρ);

Symbolic execution results:

Path condition Input Output

ρ(0) λx . true 0

¬ρ(0) ∧ ρ(1) λx . x > 0 1

¬ρ(0) ∧ ¬ρ(1) ∧ ρ(2) λx . x > 1 2

¬ρ(0) ∧ ¬ρ(1) ∧ ¬ρ(2) λx . false 3

(c) SE-ESOC.

Figure 1: Testing search function via traditional SE and SE-ESOC.

can directly synthesize a patch by finding interpretations of the

symbolic functions. In the context of library modelling, SE-ESOC

can enable symbolic analysis of applications written against un-

available libraries (this might be useful, for example, for analyzing

partially released applications with proprietary software compo-

nents). Specifically, unknown library functions can be replaced with

second-order symbolic variables, which can be complemented with

library sketches. Then, SE-ESOC can synthesize a model of the li-

brary by analyzing how the library is used inside the application. In

both of these applications, SE-ESOC synthesizes interpretations of

second-order variables that enable the reachability of test assertions,

which is equivalent to passing the tests.

Addressing path explosion. The proposed technique alleviates the
path explosion problem in program repair algorithms relying on

first-order symbolic execution. Program repair techniques such as

SemFix [28] and Angelix [26] split patch generation into two steps.

First, they replace suspicious statements with first-order symbolic

variables and infer specification via symbolic execution. As a second

step, they synthesize patches that satisfy the inferred specification.

An important limitation of these approaches is that they have to

potentially explore an infinite number of paths e.g. if the suspicious

statements are inside a loop. However, by raising the order of path

constraints, we can efficiently prune irrelevant paths. The pruning

is achieved by avoiding paths that are infeasible in the context of

considered language of interpretations (the space of patches).

Technical challenges and solutions. To implement SE-ESOC, it is

sufficient, in principle, to apply a syntax-guided synthesizer [3] for

solving queries with second-order variables. However, existing syn-

thesis algorithms are not suitable for this application. SMT solvers

used in symbolic execution engines [8, 36] cannot solve the con-

sidered kind of second-order constraints, however our goal was to

support second-order variables without switching to a specialized

solver. The reason for not switching to specialized solvers is that we

might have second-order variables as well as first-order variables

in various theories in a single path condition. Then, a suitable ap-

proach to support second-order variables is to encode second-order

formulas through first-order formulas as proposed by Jha et al. [15].

However, our experiments demonstrated that the mentioned encod-

ing provides highly inefficient unsatisfiability proofs. Meanwhile,

the performance of symbolic execution critically depends on the

performance of unsatisfiable queries for on-the-fly pruning of in-

feasible paths. To address the above challenges, we introduce a new

method of second-order constraint solving that relies on propo-

sitional encoding, which substantially improves the efficiency of

unsatisfiability proofs compared with previous techniques.

Contributions. The contributions of this work are the following.

First, we introduce SE-ESOC — an extension of symbolic execution

that allows symbolic variables to range over functions whose in-

terpretations are restricted by a user-defined language. Secondly,

we propose a method of second-order constraint solving based

on propositional encoding that provides efficient unsatisfiability

proofs. Finally,we conduct an evaluation that demonstrates that (1)

in the context of program repair, SE-ESOC helps to repair programs

with loops by alleviating the path explosion, and (2) in the context

of library modelling, SE-ESOC can enable analysis of applications

written against unavailable libraries by modelling them from the

usage context.

2 OVERVIEW
This section describes (1) second-order formulas considered in this

work (2) the difference between traditional SE and SE-ESOC, (3) an

application of SE-ESOC to program repair and (4) an application of

SE-ESOC to library modelling.

2.1 Second-order formulas
We view second-order constraint solving as an instance of program

synthesis [11]. Formally, we consider second-order formulas with

existentially quantified second-order variables, and a Henkin (non-

standard) semantics [27] of satisfiability (Definition 4.1). Specifi-

cally, each second-order variable is associated with a domain of

interpretations defined via a user-provided language.

Example 2.1. Assume that ρ is a second-order variable whose

domain is restricted by the language LIA defined as follows:

⟨Term⟩ ::= ⟨Var⟩ | ⟨Constant⟩
| ⟨Term⟩ ‘+’ ⟨Term⟩ | ⟨Term⟩ ‘-’ ⟨Term⟩ | ⟨Constant⟩ ‘*’ ⟨Term⟩

Then, ρ(0) > 0 ∧ ρ(1) ≤ 0 is satisfiable by ρ B λx . 1−x , while
ρ(0)> 0 ∧ ρ(1) ≤ 0 ∧ ρ(2)> 0 is unsatisfiable since all functions in
LIA are monotonic.

Since we rely on a non-standard semantics of satisfiability, we

cannot use the theory of uninterpreted functions supported by

most SMT solvers as in previous works [13]. Thus, we have to

add support for this semantics in an existing SMT solver. To make

the problem more tractable, we bound the size of interpretations

by a user-defined constant D. However, even with this restriction,



SE-ESOC ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

scanf("%d",&x);

for (i=0;i<10;i++) {

int t = x - i;

if (t>0)

printf("1");

else

printf("0");

}

(a) Buggy program.

scanf("%d",&x);

for (i=0;i<10;i++) {

int t = α ;

if (t>0)

printf("1");

else

printf("0");

}

(b) Symbolic state.

scanf("%d",&x);

for (i=0;i<10;i++) {

int t = ρ(i, x );
if (t>0)

printf("1");

else

printf("0");

}

(c) Symb. function.

π1 B α1>0 ∧ α2>0 ∧ ...

π2 B α1 ≤ 0 ∧ α2>0 ∧ ...

π3 B α1>0 ∧ α2 ≤ 0 ∧ ...

(d) First-order PCs.

π1 B ρ(0, 5)>0 ∧ ρ(1, 5)>0 ∧ ...

π2 B ρ(0, 5)≤ 0 ∧ρ(1, 5)> 0 ∧ ...

π3 B ρ(0, 5)≤ 0 ∧ ρ(1, 5)≤ 0 ∧ ...

(e) Second-order PCs.

Figure 2: Repairing program using different approaches.

an integration of second-order solving with symbolic execution

remains challenging, since existing synthesis algorithms are not

optimized for unsatisfiable queries [11]. This motivated us to design

a new SMT-based synthesis method described in Section 4.1.

2.2 Comparing SE-ESOC with traditional SE
Consider the function search in Figure 1a. This function takes

an array data, a value len representing its length, a pointer to a

predicate function pred, and returns the index of the first element

of the array that satisfies the predicate.

In traditional symbolic execution, numeric inputs are replaced

with logical variable as shown for the elements α1,α2,α3 of the

array in Figure 1b. Assume that the predicate pred is a function

pos that checks if a given value is positive. In this context, symbolic

execution explores four paths as shown in the table in Figure 1b,

in which the path conditions are constraints over the variables

α1,α2,α3. The corresponding test inputs are concrete values of the

elements of the array: {1, 0, 0}, {0, 1, 0}, {0, 0, 1} and {0, 0, 0}.

In contrast to traditional symbolic execution, SE-ESOC enables

us to explore possible program executions depending on the defini-

tion of the predicate pred. Assume that pred is represented by a

variable ρ, for which the language of interpretations is as follows:

⟨BoolTerm⟩ ::= ⟨Term⟩ ‘>’ ⟨Term⟩ | ⟨Term⟩ ‘>=’ ⟨Term⟩

| ⟨Term⟩ ‘=’ ⟨Term⟩ | ‘true’ | ‘false’

where Term is defined in Example 2.1. Then, the path conditions

are constraints over ρ as shown in the table in Figure 1c. The

corresponding test inputs are interpretations of ρ: λx . true, λx . x >
0, λx . x > 1 and λx . false.

Note that it is possible to combine first-order and second-order

symbolic variables in the same symbolic execution session by exe-

cuting search((int[]){α1,α2,α3}, 3, ρ). Then, the synthesized pred-
icates ρ will be parameterized by the variables α1,α2,α3.

2.3 Application to program repair
The goal of program repair is to modify a buggy program to elimi-

nate the observable failures. Its important subtask is to fill a hole

in the program (e.g. replace a buggy statement) to enable the pro-

gram to satisfy the requirements (e.g. to pass the tests). We review

existing approaches to solve this subtask relying on traditional SE,

and show how SE-ESOC addresses their limitations.

void main(int argc , char *argv []) {

int a = atoi(argv [1]);

printf("%d\n", 16 / a);

}

(a) Program P using atoi.

P(”4”) → ”4”

P(”16”) → ”1”

(b) Tests.
int accumulation(char *arr) {

int acc , i;

for(i = 0; i < strlen(arr); i++)

acc = ρ(acc , arr[i]);

return acc;

}

(c) Sketch of atoi.

ρ B λxy.

10x + y − 48

(d) Model.

Figure 3: Library modelling from usage context.

Consider a program P in Figure 2a that reads a number, performs

10 loops iterations and, at each iteration, prints “0” or “1” depending

on the sign of the variable t. For instance, for the input “5”, it

prints “1111100000”. Assume that the correct output should be

“1111111000”, and our goal is to repair the program by replacing x -
i with an expression from LIA (defined in Example 2.1) that would

enable the program to pass the test (e.g. x - i + 2).
Semantics-based repair approaches [26, 28] infer a specification

using symbolic execution, and synthesize a patch based on this

specification. First, they replace the identified buggy expression

with a symbolic variable α as shown in Figure 2b. Then, they sym-

bolically execute the program with the input “5" and infer path

conditions π1,π2, ...,π1024 shown in Figure 2d. Finally, a patch is

synthesized by solving the following second-order formula:

∃e ∈ Term. (
∨
i
πi [α 7→ e]) ∧ stdout = “1111111000”

where stdout is a variable that captures the standard output of the

application, πi [α 7→ e] is a formula obtained from πi by substituting
α with the term e . Such techniques suffer from the path explosion

problem. For instance, there are 10 loop iterations and therefore

the algorithm has to explore 1024 paths, as shown in Figure 2d.

We now demonstrate how SE-ESOC can be used to address the

aforementioned limitation of previous techniques. Instead of using

first-order variablesα to infer synthesis specification, we replace the

buggy statement with a symbolic function ρ as shown in Figure 2c.

Then, SE-ESOC is applied to directly synthesize a patch by finding

an interpretation of ρ that satisfies a test-passing path. The key

benefit of this approach is that it substantially reduces the number

of explored paths. For the described example, it will explore at most

20 execution paths as shown in Figure 2e, and the rest of the paths

are infeasible, which can be non-constructively proven as follows.

Proof. There are totally 1024 possible execution paths. Among

them, 20 paths consist of clauses ρ(1, 5) > 0, ..., ρ(i, 5) > 0, ρ(i +
1, 5) ≤ 0, ..., ρ(10, 5) ≤ 0 or ρ(1, 5) ≤ 0, ..., ρ(i, 5) ≤ 0, ρ(i + 1, 5) >

0, ..., ρ(10, 5) > 0 for some i , that is ρ changes its sign once with

the increase of its first argument. Meanwhile, the other 1004 paths

contain the clauses ρ(l , 5)>0, ρ(n, 5)≤ 0, ρ(m, 5)>0 or the clauses
ρ(l , 5) ≤ 0, ρ(n, 5) > 0, ρ(m, 5) ≤ 0 for some l < n < m, that it ρ
changes its sign at least twice with the increase of its first argument.

All these path conditions are unsatisfiable since for any ρ ∈ Term,

λx .ρ(x , 5) is monotonic. �
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lo1

lo2

lo3 lo4
li1
4

li1
3

li2
3

li2
4

0 1 2 3

x y − +

4

+
lo5

li1
5

li2
5

(a) Circuit of term x + y (below are locations).

lo1, lo2 = 0, 1

lo3, lo4 = 2, 3

li2
4
, li1

4
= 0, 1

(b) L-variables.

Figure 4: Encoding via integer location variables.

Note that monotonic functions in this example are given for

clarity. Our approach does not rely on monotonicity, and is effective

in more general cases as shown experimentally in Section 5.2.

SE-ESOC enables a reduction of the number of explored paths

since it takes the language of symbolic function interpretations into

account, i.e. it is syntax-guided. The reduction of the number of ex-

plored paths has important implications, since it might increase the

efficiency of program repair or increase the probability of finding a

patch when repairing programs with loops.

2.4 Application to testing in the presence of
unavailable libraries

Real-world applications rely on libraries and frameworks, which

complicates analysis of these applications. We consider the scenario

when a library used in the analyzed application is unavailable (e.g.,

proprietary) as in [2, 6]. SE-ESOC can be applied to synthesize an

approximate model of the library from the usage context, i.e. by an-

alyzing how the library should behave to satisfy certain properties

of the application (e.g. pass given tests). Then, this model can be

used to perform symbolic analysis of the application.

Consider a program P in Figure 3a. This program uses a function

atoi from the standard library to parse the command-line argu-

ment. Assume that the standard library is not available, then it is

impossible to symbolically analyze the program, since atoi affects

the input-output relationship. SE-ESOC can address this problem by

synthesizing a model of the function atoi from the usage context

using existing tests given in Figure 3b.

To synthesize a model, it is sufficient to replace the function call

with a second-order functional variable and find an interpretation

as explained in Section 2.3. However, this approach scales to only

relatively simple models. To make the technique more practical, we

complement it with sketches of unknown functions. For example,

since atoi takes an array and returns a number, we provide a

generic accumulator sketch that iterates through the array and

applies a symbolic function ρ at each iteration (Figure 3c). Then,

SE-ESOC can synthesize an interpretation of this function (the body

of the loop) that is sufficient to pass the tests, e.g. the function in

Figure 3d (48 is the ASCII code of ’0’). This model can be used to

perform symbolic analysis of the application, e.g. to generate a new

input “0” that triggers a division-by-zero error.

3 BACKGROUND
Jha et al. [15] proposed to semantically encode a space of terms us-

ing linear integer arithmetic constraints. In this approach, terms are

represented as circuits built from user-provided components such

x y − +

Node 1

s1
1

s2
1

s3
1

s4
1

x y − +

s1
2

s2
2

s3
2

s4
2

x y − +

s1
3

s2
3

s3
3

s4
3

Node 2 Node 3

(a) Tree with “abstract” nodes.

s1
1
7→ x

s3
1
∧s1

2
∧s2

3
7→ x−y

s4
1
∧s1

2
7→ {x+T }T∈Term

(b) Selectors to terms.

Figure 5: Encoding via propositional selector variables.

as addition, subtraction, etc. Connections between components are

captured using integer location variables.
Assume that outi is the output of i-th component, loi is the

location of the output of the i-th component, in
j
i is the j-th input

if the i-th component, liji is the locations of the j-th input if the

i-th component, C is the number of components, Ni is the number

of inputs of the i-th component, Fj is the semantics if the j-th
component (e.g. λxy. x + y for addition). The set of well-formed

terms is encoded using ϕwpf B ϕrange ∧ ϕcons ∧ ϕacyc , such that

ϕrange B
∧

i ∈[1,C]

(
0 ≤ loi < C ∧

∧
j ∈[1,Ni ]

0 ≤ liji < C
)

ϕcons B
∧

i, j ∈[1,C],i,j

loi , loj

ϕacyc B
∧

i ∈[1,C], j ∈[1,Ni ]

loi > liji

where range constraints ϕrange allocate inputs and outputs within

a legal range, consistency constraints ϕcons ensure that all outputs
have unique locations, and acyclicity constraints ϕacyc forbid loops.

Besides, connection constraints ϕconn bind location variables and

connections between components, and semantic constraints ϕsem
define the relation between components’ inputs and outputs:

ϕconn B
∧

i, j ∈[1,C],k ∈[1..Ni ]

loi = likj ⇒ outi = inkj

ϕsem B
∧

i ∈[1,C]

outi = Fi (in
1

i , in
2

i , ..., in
Ni
i )

A term is constructed from an assignment of locations variables

that satisfies ϕwpf ∧ϕconn ∧ϕsem using a function Lval2Term. This
function connects inputs and outputs of components that have the

same location. For example, λxy. x + y is constructed from the

assignment in Figure 4b (as in the circuit in Figure 4a).

4 METHODOLOGY
In this section, we first formally describe second-order constraints

used in our approach and a method of solving these constraints.

Secondly, we demonstrate how second-order solving is integrated

with symbolic execution, and describe implemented constraint op-

timizations. Finally, we show how the resulting technique can be

applied for program repair and environment modelling.

4.1 Second-order solving
As is usual in SMT literature [5], we consider formulas and terms

built from predicate and function symbols (e.g. “+”, “−”, “>”) from
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a given signature Σ. We denote the set of all such formulas and

terms as LΣ. We also consider a background theory T that fixes the

interpretations of the symbols in Σ. In this work, we are interested

in an extended set of formulas and terms LΣ∪P constructed from

the symbols in Σ and an additional set of predicate and function

symbols PB {ρ1, ..., ρn } without interpretations in T , that we refer

to as second-order variables (or symbolic functions).

For a formula ϕ over a second-order variable ρ and a term t ∈ LΣ
with a designated set of variables x1, ...,xn , we say that a first-order
formula ϕ[ρ 7→ t] is a substitution of ρ with t , if it is obtained by

replacing each sub-term ρ(t1, ..., tn ) of ϕ (for some terms t1, ..., tn )
with a term computed as the result of beta-reduction of the lambda

expression (λx1...xn . t) t1 ... tn . For instance, let ϕ be ρ(a, 1) > 0
and t be x1+x2, then ϕ[ρ 7→ t] is defined as a+1>0.

Definition 4.1 (Second-order satisfiability). Let ϕ ∈ LΣ∪P be a

second-order formula,L : P → 2
LΣ

—amapping from second-order

variables to sub-languages of LΣ — be domains of interpretations.

Then, ϕ is satisfiable iff, for some terms t1 ∈L(ρ1), ..., tn ∈L(ρn ),
the first-order formula ϕ[ρ1 7→t1, ..., ρn 7→tn ] is satisfiable w.r.t. T .

The key part of this definition is the domains of interpretations

L that are sub-languages of LΣ for each second-order variable. In

our approach, the sub-languages are either provided by the user

or by a tool/algorithm that relies on SE-ESOC. Particularly, a sub-

language is defined as a pair (G,D) of a context-free grammar G
with the symbols from Σ as terminals (as in SyGuS format [3]) and

an integer value D that describes the maximum depth of considered

terms (i.e. the maximum number of nodes in a path from the root

of a term to its leaf).

Similar to the prior approach described in Section 3, we rely on

a library of components to encode a space of terms from a given

language of interpretations. Note that for a synthesis problem with

a language defined via a pair (G,D), it is straightforward to encode

it as a component-based synthesis problem by considering each

grammar rule N → F (N1, ...,Nn ) (for non-terminals N ,N1, ...,Nn )

of G as a component F with inputs N1, ...,Nn . Thus, without the

loss of generality, we assume later that, instead of a grammar G,
our language is defined through a set of components F1, ..., FC .

One way to implement a solver for the considered kind of second-

order formulas is to encode them through first-order formulas using

e.g. the approach described in Section 3. However, this approach

relies on linear integer arithmetic to encode a space of terms, which

results in inefficient proofs of unsatisfiability. On the other side,

SE-ESOC critically depends on the performance of unsatisfiable

queries to avoid infeasible paths, as shown in Section 2.3.

In order to optimize unsatisfiable queries, we introduce an new

encoding of second-order formulas through propositional selec-
tor variables instead of integer location variables. Intuitively, this

increases the effectiveness of conflict clause learning in CDCL-

based [33] SMT solvers [9, 12] and therefore significantly improves

the performance on unsatisfiable queries, which is shown experi-

mentally in Section 5.

The key idea of the introduced propositional synthesis encoding is
to represent the space of terms constructed from a given library of

components via a tree with “abstract” nodes as shown in Figure 5a.

Specifically, each intermediate node of the tree has as many subn-

odes as the maximal number of inputs of a component in a given

component library. Each leaf of the tree corresponds to components

that have no inputs. The semantics of each node is defined through

the semantics of a component activated via selector variables.

Assume that s
j
i is the j-th selector of the i-th node, outi is the

output of i-th node, C is the number of components, Fj is the se-
mantics if the j-th component (e.g. λxy. x + y for addition). For

each node i with subnodes i1, i2, ..., ik , a set of terms is encoded as

ψi B ψnode ∧ψchoice , such that

ψnode B
∧

j ∈[1,C]

s
j
i ⇒ outi = Fj (outi1 , outi2 , ..., outik )

ψchoice B exactlyOne(s1i , s
2

i , ..., s
C
i )

In this encoding, ψnode describes how the output value of a node

depends on the values of its subnodes,ψchoice ensures that exactly
one of the components is selected inside each node (the cardinality

constraint exactlyOne is implemented using sorting networks [1]).

A term is constructed from an assignment of selector variables

using a function Sval2Term that at each node picks a component

that is activated by the corresponding selector variable as shown in

Figure 5b. For instance, the term x − y is constructed by enabling

the component − of the node 1 (via the selector s3
1
), the component

x of the node 2 (via the selector s1
2
), and the component y of the

node 2 (via the selector s2
3
).

Using the above encoding, a second-order constraint solver can

be implemented on top of a first-order solver. Specifically, for a

given formula ϕ over a second-order variable ρ, we define the

procedure Encode as follows:

• each occurrence of a subterm ρ(t1, ..., tn ) in ϕ (for some

terms t1, ...tn ) is assigned a unique index i;
• for each occurrence of a subterm ρ(t1, ..., tn ) in ϕ with index

i (for some terms t1, ...tn ), the formula ϕ is conjoined with

ψ i
1
∧ ... ∧ψ i

m , wherem is the number of tree nodes and the

terms t1, ..., tn are treated as components without inputs;

• each occurrence of a subterm ρ(t1, ..., tn ) in ϕ with index i
(for some terms t1, ...tn ) is replaced with the variable outi

1

representing the root of the i-th tree in the encoding.

Using this procedure, a second-order formula is transformed into

a first-order formula over selector variables, which can be solved

using an off-the-shelf SMT solver. From any satiafying assignment

of the selector variables, an interpretation of ρ that satisfies ϕ can

be reconstructed using Sval2Term, as stated formally below:

Proposition 4.2. For any assignment of selector variables S B
{s1 7→ b1, ..., sn 7→ bn } that satisfies ϕ ′ B Encode(ϕ), the assign-
ment {ρ 7→ Sval2Term(S)} satisfies ϕ.

4.2 Extension of symbolic execution
Algorithm 1 describes the overall workflow of symbolic execution

with our extension. The function exeSymbolic takes an instruc-

tion pointer, a program state (a mapping from variables to concrete

value or logical terms) and a path condition, performs symbolic

execution of the corresponding instruction, and recursively contin-

ues execution. For an assignment v B e, this function updates the

state by replacing the value of v with e evaluated in the context

S (denoted as JeKS ). Then, the execution continues from the next

instruction. For a conditional if e then C1 else C2, this function
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ALGORITHM 1: Extension of symbolic execution

Procedure exeSymbolic(instruction pointer IP, program state S, path condition PC)
I := getInstruction(IP);
switch I do

case Assignment v B e do
S ′ := S [v 7→ JeKS ];
IP′ = increment(IP);
exeSymbolic(IP′, S ′, PC);

end
case Conditional if e then C1 else C2 do

ϕ := PC ∧ JeKS ;

if isSatisfiable(ϕ) then
IP′ = getPointer(C1);

exeSymbolic(IP′, S, PC ∧ JeKS );
end
... // check the other branch

end
otherwise do

... // handle other instructions

end
end

Procedure isSatisfiable(formula ϕ)
ϕ′

:= Encode(IP);
return underlyingSolver(ϕ′);

checks whether the if-condition is consistent with the current path

condition and whether the negation of the if-condition is consistent

with the path condition (the later case is omitted). If the constraint is

satisfiable, the algorithm continues execution of the corresponding

branch with an augmented path condition.

Compared with traditional SE, SE-ESOC modifies the function

isSatiafiable highlighted in Algorithm 1. Specifically, it adds

support for second-order constraints by implementing the approach

described in Section 4.1. The function isSatiafiable encodes each
query ϕ using Encode before passing it to the underlying SMT

solver. Later, a model of ϕ can be reconstructed from the model

computed by the underlying SMT solver using Sval2Term.

Definition 4.3 (Second-order infeasible paths). Let P be a program

taking a function as an input, ρ be a second-order variable, and L be

a sub-language of LΣ. Then, a path along which SE-ESOC computes

a path condition π by executing P with the symbolic input ρ is

infeasible iff the second-order formula π is unsatisfiable w.r.t. the

domain of interpretations {ρ 7→ L}.

This definition of infeasible path depends on the syntax of the

language of interpretations L. This property is crucial for mitigating

the path explosion as will be shown in Section 5.2.

4.3 Program repair and library modelling
SE-ESOC can be used, among others, to synthesize patches for pro-

gram defects or models for unavailable libraries. Similarly to prior

works [26, 28], the workflow of both these applications consists of

three steps: injecting second-order symbolic variables, performing

specification inference, and synthesizing patches/models.

Symbolic variable injection. In the context of program repair,

suspicious program statements are substituted with applications

of symbolic functions to local program variables. Suspicious pro-

gram statements can be identified using, for instance, statistical

fault localization [16]. For each of the identified suspicious state-

ments, we iteratively apply the following transformation schemas

parameterized with second-order variable ρ:

• changing the right-hand side of an assignment:

x B E; 7→ x B ρ(v1, ..., vn);

• changing a condition:

if (E) {...} 7→ if (ρ(v1, ..., vn)) {...}

• adding an if-guard:

S; 7→ if (ρ(v1, ..., vn)) S;

where S is a statement, E is an expression, and v1, ...vn are visible
program variables. Specifically, we adopted a recently proposed

heuristics [38] to select up to 10 local program variables whose

definitions are the closest to the considered suspicious location.

In the context of library modelling, symbolic functions are used

to replace calls of unknown library functions. Specifically, we re-

place all calls of an unknown function either with a fresh second-

order variable ρ or a generic sketch parameterized with ρ, depend-
ing on the signature of this function:

• func has integer inputs and an integer output:

func(E1, ..., En) 7→ ρ(E1, ..., En);

• func has integer and array inputs and an integer output:

func(E1, ..., En) 7→ accumulation(E1, ..., En);

• func has integer and array inputs and an array output:

func(E1, ..., En) 7→ transformation(E1, ..., En);

where E1, ...En are expression, and the sketches accumulation and
transformation are defined in the following way:

int accumulation(char *arr , ...) {

int acc , i;

for(i = 0; i < strlen(arr); i++)

acc = ρ(acc , arr[i], ...);

return acc;

}

void transformation(char *arr , char *out , ...) {

int i;

for(i = 0; i < strlen(arr); i++)

out[i] = ρ(acc , arr[i], ...);

}

In principle, an arbitrary C function parameterized with first-order

and second-order variables can be used as a sketch.

Specification inference. The purpose of specification inference is

to collect constraints over the injected second-order variables such

that any interpretation that satisfies these constraint would meet

our requirements. Specifically, our goal is to find interpretations of

the symbolic functions that would enable the program to pass given

tests. Assume that P is the original program, and P ′ is a program
obtained by injecting a second-order variable ρ into P . Assume also

that {ini ,ϕi }i ∈[0,n] is a set of tests, where ini is the input of the
i-th test and ϕi is the test assertion. For each test i , we execute the
program P ′ using SE-ESOC with the concrete input ini and obtain

a set of path conditions π i
1
, ...,π ik , which are constraints over the

variable ρ. Then, the specification is defined as follows:

n∧
i=0

(

k∨
j=0

π ij ) ∧ ϕi (1)

The above second-order formula captures the property that for each

test with index i there should be at least one path π ij along which

the test assertion ϕi holds.
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Patch/model synthesis. To synthesize interpretations of symbolic

functions that satisfies the formula (1), we apply the second-order

constraint solving method described in Section 4.1. For program

repair, these interpretations constitute patches, and for library mod-

elling, these interpretations constitute models of the unknown

library functions.

In the context of program repair (and also library modeling),

tests are typically insuffient to guarantee the correctness of patches,

which causes the test-overfitting problem [34]. The proposed ap-

proach is orthogonal to the problem of test-overfitting, however

it is straightforward to integrate it with existing techniques for

alleviating overfitting such as synthesizing minimal change via

maximum satiafiability [25] or applying anti-pattens [35] or ap-

plying correctness assertions — by conjoining the encoding with

additional constraints over selector variables.

4.4 Implementation
We implemented SE-ESOC as an extension

1
of KLEE [8], a widely

used symbolic execution engine for C programs. Firstly, we ex-

tended KLEE to support second-order variables and implemented

the generation of second-order path conditions in the symbolic exe-

cution runtime. Secondly, we implemented the encodings described

in Section 3 and Section 4.1 on top of the underlying SMT solver.

KLEE provides an intrinsic function klee_make_symbolic for

injecting symbolic variables. For example, the following call marks

the memory corresponding to the variable foo as symbolic.

klee_make_symbolic (&foo , sizeof(foo), "foo");

To let users introduce second-order variables, we added an intrin-

sic function klee_apply_symbolic. This function applies a sym-

bolic function to program expressions. For instance, the following

code can be used to inject a call of ρ in Example 2c:

int t = klee_apply_symbolic("rho", 2, (int[]){i, x});

where "rho" is the name of the second-order variable, 2 is the num-

ber of arguments, and (int[]){i, x} is the array of arguments.

5 EVALUATION
This evaluation addresses the following research questions:

(RQ1) Does SE-ESOC reduce the number of explored paths com-

pared with program repair techniques relying in first-order

symbolic execution? Does it improve the effectiveness of

program repair?

(RQ2) Can SE-ESOC synthesize library models from the usage con-

text that improve symbolic execution-based test generation?

(RQ3) Does the introduced second-order solving method based

on propositional encoding improve SE-ESOC performance

compared to previous encodings?

5.1 Experimental setup
To address the research questions, we conducted experiments with

programs from GNU Coreutils
2
, GNU Findutils

3
and GNU Grep

4
,

mature and widely-used implementations of UNIX utilities included

1
Our second-order KLEE extension: http://angelix.io/second-order.html

2
GNU Coreutils: https://www.gnu.org/software/coreutils/

3
GNU Findutils: https://www.gnu.org/software/findutils/

4
GNU Grep: https://www.gnu.org/software/grep/

Table 1: Subjects of DBGBench dataset

Program Description Defects

find Search for files in directory hierarchy 14

grep Search for lines containing match to specified pattern 13

Table 2: Modelled library functions

Function Description Sketch

read Read bytes from file with specified descriptor Transformation

write Write bytes to file with specified descriptor Transformation

stat Return information about file -

seek Change read/write position of file descriptor -

chmod Change permissions of file -

chown Change ownership of file -

malloc Allocate block of memory -

strtol Convert string to int Accumulation

strlen Return string length Accumulation

strcmp Compare two strings Accumulation

Table 3: Usage of library functions.

Program Description Used functions

base64 Compute Base64 read, write

cat Concatenate files strcmp, stat, read, malloc

cp Copy file read, write, chown, chmod, stat, malloc

head Print beginning of file read, write, seek, malloc, strcmp

ls List files in directory write, stat, malloc, strcmp, strlen

pr Convert text files strtol

pwd Print current directory malloc, stat

sort Sort lines write, malloc, strcmp

test Evaluate expression stat

wc Count words strtol, read

in the majority of Linux distributions, that have been also employed

in previous symbolic execution studies [8, 29].

In the context of program repair, we used a recently introduced

DBGBench dataset [7]. DBGBench is a collection of 27 bugs from

GNU Findutils and GNU Grep shown in Table 1. We chose this

benchmark because it contains real error in widely used software,

and because this dataset was designed for evaluating, among others,

program repair techniques.

To evaluate our library modelling method, we first selected 12

standard C library functions that are frequently used by C programs,

and that have been studied in related works [31]. These functions

include file systems related functions: read, write, seek, chmod,
chown and stat, malloc, and string functions: strtol, strlen,
strcmp. To synthesize models of these functions, we used prede-

fined sketches specified in Table 2. Note that some of the functions

(e.g. memory allocation) depend on OS kernel, that cannot be mod-

elled using our method. For these function, we modelled only the

part of functionality that does not rely on OS kernel behavior, such

as computing the real allocation size for malloc.
To perform modelling, we selected programs from GNU Core-

utils that rely on these functions. We run provided tests for all 89

programs from GNU Coreutils 6.11 with ltrace
5
in order to identify

which of the selected library functions are used by these programs.

5
ltrace: http://www.ltrace.org/

http://angelix.io/second-order.html
https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/findutils/
https://www.gnu.org/software/grep/
http://www.ltrace.org/
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⟨Bool⟩ ::= ⟨Int⟩ ‘<’ ⟨Int⟩ | ⟨Int⟩ ‘<=’ ⟨Int⟩ | ⟨Int⟩ ‘==’ ⟨Int⟩
| ⟨Bool⟩ ‘||’ ⟨Bool⟩ | ⟨Bool⟩ ‘&&’ ⟨Bool⟩ | ‘!’ ⟨Bool⟩

⟨Int⟩ ::= ⟨Var⟩ | ⟨Constant⟩
| ⟨Int⟩ ‘+’ ⟨Int⟩ | ⟨Int⟩ ‘-’ ⟨Int⟩ | ‘-’ ⟨Int⟩

(a) Boolean functions.
⟨Term⟩ ::= ⟨Var⟩ | ⟨Constant⟩
| ⟨Term⟩ ‘+’ ⟨Term⟩ | ⟨Term⟩ ‘-’ ⟨Term⟩ | ‘-’ ⟨Term⟩

| ⟨Bool⟩ ‘?’ ⟨Term⟩ ‘:’ ⟨Term⟩

(b) Integer functions.

Figure 6: Language of interpretations (search space).

Then, we chose 10 programs from GNU Coreutils that rely on dif-

ferent combinations of library functions as shown in Table 3.

To examine the effect of second-order constraints on the path

explosion, we compared our approach with Angelix [26], a state-

of-the-art program repair system that relies on first-order symbolic

execution. Specifically, we used the following three configurations:

FO Angelix that relies on first-order symbolic execution.

SO/CBS SE-ESOC that uses the encoding by Jha et al. [15] for

second-order constraint solving.

SO/PSE SE-ESOC that uses the introduced propositional en-

coding for second-order constraint solving.

Since the proposed library modelling method is the first that

synthesizes library models from the usage context, we compared

it against the baseline approach (treating all outputs of unknown

library functions as symbolic) and manually-written models. Specif-

ically, we used the following configurations:

Baseline Treating outputs of unknown functions as symbolic.

SE-ESOC Using models synthesized by SE-ESOC.

Manual Using models provided by KLEE.

We do not experimentally compare our approachwith themodelling

technique by Qi et al. [31], since their approach executes the library

to collect output values, while our goal is to synthesize models

when the library is not available.

We conducted all experiments on an Intel
®
Core™ i7-2600 CPU

3.40GHz machine running Ubuntu 14.04 with 8GB of memory.

5.2 Program repair
To investigate the effect of second-order constraints on path ex-

plosion, we compared SE-ESOC configurations with Angelix (FO).

Particularly, we executed repair algorithms described in Section 4.3

on the subjects of DBGBench, using developer-provided tests as

the correctness criteria for patches. For each suspicious program

location, we bounded
6
the number of explored paths to 400, and

used a 10 minutes time limit. SE-ESOC configurations used the

languages of interpretations given in Figure 6a and Figure 6b. The

same languages were used by Angelix (FO) synthesizer. Besides,

we specified the depth bound D B 3 for the synthesized functions.

Table 4 summarizes the results of our experiments. The column

“Subject” lists subject program and their versions (commit hashes).

The columns “Patch” show if a patch was generated by each configu-

ration; we present only versions for which at least one configuration

6
It is common for synthesis-based program repair techniques to rely on path bounds.

For instance, an enumerative approach SPR [21] uses the bound of 11 paths.

generated a repair. In these columns, “Correct” indicates that the

generated patch is syntactically equivalent to the developer patch,

otherwise the patch is classified as “Plausible”.

In order to investigate the cause of failures of some configura-

tions to find a patch, we collected additional statistics of symbolic

execution sessions. For each configuration, we collected data for

the session in which the program is executed symbolically with

the failing test and a symbolic variable is installed in the fix loca-

tion. Specifically, the columns “Paths” in Table 4 denote how many

paths were explored by each configuration during this symbolic

execution session. The columns “Time” show the time taken by

each configuration to explore these paths.

Overall, the configurations based on second-order constraints

generated all the patches generated by the approach based on first-

order constraints, and SO/PSE also found three additional patches

for find.091557f6, find.dbcb10e9 and grep.54d55bba. For each of

these three cases, FO reached the limit of 400 paths during explo-

ration, while SO/PSE reduced the number of explored paths to

14-26, which led to the successful generation of patches. However,

SO/PSE required slightly more time on average for path exploration

compared with FO (1m 24s for SO/PSE, and 1m 5s for FO).

In all three cases for which SO/PSE exclusively generated patches,

the modified statements are executed multiple times by the failing

tests. To explain how the reduction of explored paths is achieved in

this case, we consider the experiments with the bug find.091557f6

in greater details. This bug in find utility is caused by a wrong

handling of symbolic link loops when searching for files in a di-

rectory. One of the possible correct fixes is to add the disjunct

ent->fts_errno == ELOOP to the condition shown in Figure 7a.

To synthesize a patch, Angelix (FO) replaces the buggy condition

with a first-order variable, and performs symbolic execution to infer

synthesis specification. The condition is evaluated multiple time

during an execution of the failing test, and Angelix (FO) fails to

infer sufficient specification to synthesize a patch due to the path

explosion (since it terminates after reaching the limit of 400 paths).

Contrary to Angelix, SE-ESOC injects a second-order variable ρ
applied to local program variables as shown in Figure 7a. It also as-

sociates the language in Figure 6a and the boundD B 3with ρ, that
effectively define the search space of patches. This enables SE-ESOC

to take advantage of the stronger notion of infeasibility (Defini-

tion 4.1) to prune irrelevant paths. Specifically, it determines that

only 16 execution paths are feasible w.r.t. the considered language

of interpretations, and synthesizes the interpretations ρ1, ..., ρ16 in
Figure 7b corresponding to the 16 feasible paths.

In order to prune infeasible paths, SE-ESOC has to solve more

complex constraints than FO, which results in additional perfor-

mance overhead. However, the execution time of SE-ESOC is less

dependent on the bounds of symbolic execution. To demonstrate

this, we executed FO and SE/PSE with the example in Figure 7a,

ranging the number of explored paths (--max-forks KLEE options)

from 100 to 2000. The results of our experiment are presented in

Figure 7c. As can be seen, the time taken by FO increases with the

increase of the path bound, while the time taken by SE/PSE does

not depend on the path bound, since it only has to explore 16 paths.

Overall, SE-ESOC helps alleviate path explosion when repaired

expressions are executed multiple times during program execution.
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Table 4: Program repair results.

Subject

Patch Paths Time SAT/UNSAT

FO SO/CBS SO/PSE FO SO/CBS SO/PSE FO SO/CBS SO/PSE SO/CBS SO/PSE

find.091557f6 - - Correct 400 0 16 2m 35s Timeout 2m 29s 3.5s/Timeout 2.2s/3.8s

find.24bf33c0 Plausible Plausible Plausible 2 2 2 2s 3s 3s 1.3/- 0.5s/-

find.24e2271e Correct Correct Correct 24 24 24 39s 1m 1s 1m 43s 2.1s/- 2.2s/-

find.07b941b1 Plausible Plausible Plausible 11 11 11 29s 41s 31s 0.7s/- 0.5s/-

find.e6680237 Correct Correct Correct 46 46 46 56s 2m 41s 2m 23s 1.2s/- 1.1s/-

find.dbcb10e9 - - Correct 400 0 14 3m 31s Timeout 3m 1s 3.0s/Timeout 1.7s/5.8s

find.e1d0a991 Plausible Plausible Plausible 4 4 4 5s 5s 5s 2.2s/- 1.9s/-

grep.55cf7b6a Correct Correct Correct 2 2 2 3s 3s 3s 0.8s/- 0.4s/-

grep.3220317a Plausible Plausible Plausible 27 27 27 41s 1m 5s 1m 11s 1.2s/- 1.1s/-

grep.db9d6340 Plausible Plausible Plausible 2 2 2 2s 3s 2s 1.8s/- 0.6s/-

grep.c96b0f2c Plausible Plausible Plausible 41 41 41 1m 19s 1m 59s 2m 11s 2.2s/- 2.3s/-

grep.5fa8c7c9 Correct Correct Correct 34 34 34 55s 2m 43s 1m 35s 4.9s/- 3.8s/-

grep.54d55bba - - Plausible 400 0 26 2m 42s Timeout 2m 59s 4.1s/Timeout 2.4s/5.2s

Overall 10 10 13 107.2 14.8 19.2 1m 5s 1m 21s 1m 24s 2.2s/- 1.6s/4.9s

...

else if (ent ->fts_info == FTS_DC)

{

issue_loop_warning(ent);

error_severity (1);

return;

}

// ρ(ent->fts_info, ent->fts_errno, prev_depth)

else if (ent->fts_info == FTS_SLNONE)

{

if (symlink_loop(ent ->fts_accpath))

{

error(0, ELOOP , ent ->fts_path);

error_severity (1);

return;

...

(a) Buggy condition in find.091557f6.

ρ1 B(4 <= ent ->fts_info)

ρ2 B!(ent ->fts_errno == prev_depth)

ρ3 B((4 < ent ->fts_info) && (prev_depth <= ent ->fts_errno))

ρ4 B!(0 == ent ->fts_errno)

ρ5 B((ent ->fts_info == ent ->fts_errno) || (9 <= prev_depth))

ρ6 B(ent ->fts_info == (7 + prev_depth))

ρ7 B(( prev_depth + ent ->fts_errno) == (ent ->fts_info - 6))

ρ8 B((ent ->fts_errno < prev_depth) || (6 == ent ->fts_info))

ρ9 B(ent ->fts_info < (4 + ent ->fts_errno))

ρ10 B(ent ->fts_info <= (ent ->fts_errno + 6))

ρ11 B!(ent ->fts_info == 6)

ρ12 B(0 <= prev_depth)

ρ13 B!(4 < ent ->fts_info)

ρ14 B!(1 <= prev_depth)

ρ15 B((ent ->fts_errno < prev_depth) || (ent ->fts_info <= 1))

ρ16 B((ent ->fts_errno < 32) || (prev_depth == ent ->fts_info))

(b) Interpretations of ρ found along feasible paths.
(c) Time and explored paths.Figure 7: Repairing wrong handling of symbolic link loops in find.

5.3 Library modelling
To evaluate the effect of library modelling on the effectiveness of

symbolic analysis, we computed the coverage of test suites gener-

ated by symbolic execution using the synthesized models. First, we

used the available tests of GNU Coreutils to synthesize models of

the unknown library functions using SE-ESOC.

To check the efficacy of our modelling technique, we used three

sets of library templates: Baseline, SE-ESOC and Manual, that are

defined in Section 5.1. Using these three approaches, we generated

test suites using KLEE. We used the recommended configuration for

testing GNU Coreutils available on KLEE website
7
, and set the time

limit of a half an hour for test generation. Then, to check the efficacy

of the library models, we check the efficacy of the generated test

suites in the three approaches, as follows. We linked application

programs that use the libraries, with the real libraries (not the
models). Then, we computed the line coverage of the generated test

suites in the programs linked against the real libraries.

Table 5 summarizes the statistics of the generated test suites. The

columns “Tests” contain the number of tests generated by KLEE

using different models. The columns “Coverage” depict the line

coverage produced by the test suites and computed using gcov.
The coverage achieved using models synthesized by SE-ESOC is

52.17%which is greater than 41.2% coverage achieved using baseline

7
KLEE configuration for Coreutils: http://klee.github.io/tutorials/testing-coreutils/

Table 5: Library modelling results.

Program

Baseline SE-ESOC Manual

Tests Coverage Tests Coverage Tests Coverage

base64 53 76.19% 62 89.32% 78 91.43%

cat 64 71.55% 60 86.10% 63 88.36%

cp 51 35.33% 154 54.73% 168 67.66%

head 44 23.76% 48 29.26% 90 70.32%

ls 35 27.10% 41 36.10% 55 46.07%

pr 22 40.07% 55 58.65% 75 63.36%

pwd 29 15.25% 20 16.61% 18 20.34%

sort 59 27.23% 90 36.60% 106 46.53%

test 12 29.08% 42 42.92% 111 68.63%

wc 54 66.41% 57 71.40% 69 82.44%

Overall 42.3 41.20% 62.9 52.17% 83.3 64.51%

approach. However, the automatically generated library models

using SE-ESOC achieve lower coverage than the carefully crafted

hand-written models which achieve around 64.51% coverage.

5.4 Second-order solving
Since our approach relies on the notion of infeasibility (Defini-

tion 4.1) to prune explored paths, it is critical that it can efficiently

handle unsatisfiable second-order queries. To investigate how ex-

isting component-based synthesis (CBS) encoding (Section 3) and

the introduced propositional (PSE) encoding (Section 4.1) perform

http://klee.github.io/tutorials/testing-coreutils/
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on unsatiafiable formulas that occur in the context of symbolic

execution, we collected solver statistics in Table 4. The columns

“SAT/UNSAT” demonstrate the average time taken by satisfiable

and unsatisfiable queries during path exploration (“-” indicates that

no such queries are performed). As can be seen, both CBS and PSE

demonstrated comparable performance on satisfiable formulas (on

average, CBS requires 2.2s, and PSE requires 1.6s). However, CBS

did not solve any unsatisfiable queries within the time limit (10 min-

utes), while the average time taken by PSE on unsatisfiable queries

is 4.9s, which is similar to the time taken by satisfiable queries.

Thus, PSE is crucial in enabling SE-ESOC to avoid infeasible paths.

6 RELATEDWORK
Symbolic execution. Godefroid [13] proposed to use higher order

constraints to model imprecision of symbolic execution. Specifi-

cally, this approach replaces unknown/complex instructions with

uninterpreted functions and generates inputs by solving universal
constraints over uninterpreted functions. The main difference of

our approach is that it solves existential constraints over functions
whose interpretations are restricted by a user-defined language,

which implies different methodology and applications. First, the

approach with uninterpreted functions cannot reduce the number

of explored paths as shown in Section 2.3 in the context of program

repair, since this reduction is achieved by restricting of the space of

interpretations. Second, the approach with uninterpreted functions

cannot be used for library modelling as shown in Section 2.4, since it

relies on input-output function sampling that cannot be performed

when the library is not available. Palikareva et al. [29] proposed to

test divergences between program versions by encoding two ver-

sions in a single symbolic execution session. Our approach differs

in that it encodes a potentially infinite number of program versions

inside a single symbolic execution session.

Program synthesis and second-order constraint solving. From the

logical point of view, program synthesis is existential second-order

constraint solving [11]. Several techniques have been proposed for

solving such second-order constraints. Enumerative techniques [3,

4] that explicitly generate and test individual terms cannot be ap-

plied in the context of symbolic execution because they would

require checking satisfiability of path constraint for each possible

expression in the search space. Reynolds et al. [32] introduced an

algorithm for synthesizing programs inside an SMT solver. This

approach tends to synthesize complex solutions consisting of thou-

sands of nodes
8
that cannot be understood by humans, whichmakes

it unsuitable for program repair. The encoding of second-order for-

mulas proposed by Jha et al. [15] relies on linear integer arithmetic

constraints, which results in inefficient proofs of unsatisfiability.

Symbolic execution requires checking unsatisfiability of path con-

straints to avoid infeasible paths, needing efficient unsatisfiability

proofs. The second-order formula encoding introduced in this work

addresses the above limitations of existing techniques.

Program repair algorithms. Various program repair techniques

have been recently proposed [20, 22]. The most relevant works to

our approach are techniques [23, 26, 28] that employ first-order

symbolic execution to infer patch synthesis specification [23, 26].

8
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Since these techniques rely on symbolic execution, they suffer

from the path explosion problem as shown in Section 2.3. SE-ESOC

alleviates the path explosion, which leads to repairing more defects

in programs with loops.

Specification inference and modelling of libraries. In order to en-

able analysis of code written against libraries, a common approach

is to provide a library model, summary or specification. KLEE [8]

symbolic execution engine relies on manually-written POSIX li-

braries models to analyze system software. Qi et al. [31] proposed

to synthesize a library model for symbolic execution by using the

library as an oracle for program synthesis, i.e. it executes the library

to collect output values. Our approach differs in that it is designed

for the case when the library is not available. Several techniques

have been proposed to derive specification by analyzing the library

usage context, when library is not available. Bastani et al. [6] infer

data-flow library specification from the usage context. Albargh-

outhi et al. [2] synthesize a maximal library specification to ensure

the correctness of a given program that uses this library. Our library

modelling technique differs from the approach by Albarghouthi et

al. in that (1) we synthesize a code fragment that captures input-

output relationship of library functions (to enable generation of

tests that reach certain locations), rather than a specification for

proving program properties for all inputs and (2) our technique is

unsound (it relies on inductive generalization without verification

and imprecise symbolic execution), but more applicable (it can be

used with real-world software without formal specification).

Test-equivalence analysis. Test-equivalence is a property of two

modifications of a program to behave equivalently (for some defini-

tion of equivalence) when executing a given test. This property has

been applied in multiple domains such as mutation testing [17, 37],

program repair [24], and compiler testing [19]. The analysis tech-

nique proposed in this paper can be considered as a generaliza-

tion of previously used test-equivalence analyses. Specifically, a

second-order path constraint captures the set of all modifications

of a given program that would drive the test execution along the

corresponding path (as in Section 2.3). Thus, it defines path-based

test-equivalence relation on the space of program modifications.

7 DISCUSSION
We have proposed symbolic execution with existential second-order

constraints. We developed a method for second-order constraint

solving that provides efficient proofs of unsatisfiability, which is

needed for efficient symbolic execution. We described two applica-

tions, namely automated program repair and library modelling. We

experimentally showed that the proposed technique can reduce path

explosion when applied for program repair, which helps to repair

more bugs in programs with loops. Besides, it can be used to synthe-

size models of unavailable libraries. Our work is being made avail-

able as an extension of KLEE http://angelix.io/second-order.html
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