
LTL falsification in infinite-state systems

Alessandro Cimatti, Alberto Griggio, Enrico Magnago∗

Fondazione Bruno Kessler, Trento, Italy

Abstract

In finite-state systems, if an LTL property is false, there is always a coun-
terexample path (i.e. a witness) for it which is ultimately periodic (i.e. in a
lasso-shaped form). When dealing with infinite-state systems, this is no longer
the case. In this work, we address this issue by proposing an automatic ap-
proach that presents witnesses in an indirect way. The approach is based on
two key insights. First, we leverage the notion of well-founded funnel, where
a ranking function ensures that the states in the source set are guaranteed to
inevitably reach the destination set. We show that, under suitable conditions,
a sequence of funnels ensures the existence of a fair path. Second, we adopt
a compositional approach to partition the original system into projections and
to prove that they result in a non-empty under-approximation of the original
system that only contains fair paths. Then, we propose an algorithm that,
working in an abstract space induced by a set of predicates, identifies candidate
funnels, proves their well-foundedness, and searches for a sequencing order. We
experimentally evaluate the approach on examples taken from software, timed
and hybrid systems, showing its wide applicability and expressiveness, with an
implementation that outperforms various competitor tools.

Keywords: First-Order Linear-Time Temporal Logic, SMT-based Model
Checking, Temporal Satisfiability, Infinite-State Transition Systems

1. Introduction

A well-known result in finite-state LTL model checking guarantees that the
verification problem is decidable and, in particular, if a system does not satisfy a
property there exists a witness in the form of a lasso-shaped fair path [3]. Model
checking of LTL properties in infinite-state systems (e.g. software programs,5

infinite-state transition systems, timed transition systems and hybrid systems)
is an undecidable problem and there could be no lasso-shaped witness for the
violation of some property.

IThis paper combines and extends the works presented in [1] and [2].
∗Corresponding author
Email addresses: cimatti@fbk.eu (Alessandro Cimatti), griggio@fbk.eu (Alberto

Griggio), magnago@fbk.eu (Enrico Magnago)

Preprint submitted to Information and Computation October 24, 2022

A well-known instance of this problem is software (non)termination. In
this context closed recurrence sets [4] are used to represent a witness for the10

nontermination of some software program. A closed recurrence set consists of
a reachable set of states that is disjoint from the end states and inductive with
respect to a left-total transition relation that underapproximates the transition
relation of the program. The set represents at least one infinite execution for the
program: (i) its reachability ensures that there is some finite execution of the15

program ending in some state within the set; (ii) since the set is also inductive,
we know that no transition starting from within the set can reach a state outside
of it and (iii) the left-total transition relation ensures that there always exists at
least one successor state satisfying also the transition relation of the program.

In this work we are interested in representing fair paths of transition systems.20

Therefore, we do not look for any infinite execution, as in the nontermination
case, but consider only those that visit a given set of states, called fair states,
infinitely often. Recurrent sets are not sufficient, apart from some trivial cases,
to conclude that every infinite execution visits some fair state infinitely often.
Unless the set underapproximates the fair states, without additional informa-25

tion, we cannot conclude that the infinite executions described by the closed
recurrence set are fair. For this reason, we split the closed recurrence set into
two components S and D such that D is a subset of the fair states. The union
of S and D must satisfy the same conditions described above for closed recur-
rence sets and, in addition, the left-total transition relation must not allow for30

infinite sequences of S states: every state in S must reach a state in D in a
finite number of steps.

When writing or reasoning on a transition system, a human usually restricts
its attention to a component at-a-time and partitions the state-space into regions
such that all states in a region exhibit similar features and the system visits35

the regions in some order. We propose an approach that mimics this kind
of reasoning by splitting the monolithical problem described above into two
orthogonal directions: by segmenting the infinite paths into finite paths and
decomposing the system with respect to some partitioning of the symbols.

We segment the fair paths into a concatenation of finite paths: we split S40

into multiple regions such that each region represents a set of finite paths that
must eventually reach the following region. Notice that, while each path in a
region must be finite, there might be no upper bound to their length: a region
can represent an infinite number of finite paths with increasing lengths. We
call each segment funnel and their concatenation representing the fair paths45

funnel-loop. In addition, we decompose the system by partitioning its symbols.
Each component, called E -component (for existential component), describes the
behaviour of a subset of the symbols while assuming some properties about the
others. These properties represent the conditions that are necessary for this
behaviour to be enabled and we need to prove that such conditions are ensured50

by some other component.
The main contributions of this work are the following: (i) we define an indi-

rect representation of a non-empty set of fair paths for a transition system using
funnel-loops; (ii) we show such representation to be both sound and relatively

2

complete; (iii) we partition the search problem in two orthogonal directions:55

segmentation and decomposition; (iv) we define a search procedure capable of
identifying funnel-loops; (v) finally, we show the wide applicability and effec-
tiveness of the proposed procedure via a prototype implementation.

This work is an extension and an integration of our previous works presented
in [1] and [2]. In this article, we unify the two approaches in an integrated60

framework, in which the search for a funnel-loop witnessing the falsification
of a given property (first introduced in [2]) can be decomposed by using the
E -component concept of [1] extended with ranking functions.1 Moreover, we
enrich the results of [2] by a relative-completeness theorem for the representation
of fair paths as funnel-loops, and an encoding for the search problem of a funnel-65

loop in existentially-quantified constrained Horn clauses. Finally, we provide all
the proofs of our results and we revised our experimental evaluation considering
also an additional competitor tool.2

The paper is structured as follows. In Section 2 we describe the notation
and introduce the constructs we use in the following sections. In Section 3 we70

provide an overview of the proposed approach. In Section 4 we introduce a
running example that we will use to illustrate our procedures. In Section 5
we define funnels and funnel-loops, prove their properties and show how they
can be used to identify fair paths for a fair transition system. In Section 6 we
define E -components, their composition and projection operators and show the75

relationship between E -components and funnel-loops. In Section 7 we present
an algorithm to search for a funnel-loop describing a non-empty set of fair
paths of a fair transition system. In Section 8 we discuss the related work. In
Section 9 we briefly describe some implementation details of our prototype and
then discuss our experimental results. In Section 10 we draw some conclusions80

and outline the directions for future work.

2. Background

We work in the setting of SMT, with the theory of quantified mixed integer-
real nonlinear arithmetic. We assume the standard notions of interpretation,
model, satisfiability, validity and logical consequence.85

2.1. Symbols, formulae, implicants and entailment

Given a set of symbols V , we use V ′=̇{v′|v ∈ V } for the set containing
the primed version of the symbols. We write φ(V) for a Boolean formula over
the symbols in V and φ(V, V ′) for a Boolean formula or relation over V ∪ V ′.
When clear from the context we will omit the set of symbols and simply write90

φ, ψ and φ′ for φ(V), ψ(V, V ′) and φ(V ′) respectively. We say that a formula
φ(V, V ′) underapproximates a formula ψ(V, V ′) iff every time φ holds then also

1E -components (without ranking functions) were called AG-skeletons in [1].
2In order to aid readability, some of the more technical proofs are presented in appendix.

3

ψ must hold, hence φ → ψ is valid. We use > and ⊥ in formulae to represent
respectively the true and false Boolean constants.

We denote with v a total assignment over V , i.e. a state. Given a formula95

φ(V) we write φ(v) for the evaluation of φ obtained by replacing every symbol
in V with its corresponding assignment in v and φ(v′) for the evaluation of
φ where every symbol v ∈ V is replaced by the assignment of v′ in v′. We
overload the |= symbol: when φ and ψ are SMT formulae, then φ |= ψ stands
for entailment in SMT; when M is a fair transition system and ψ is a linear100

temporal property, then M |= ψ is to be interpreted with the LTL semantics.
Finally, if ψ is a quantifier-free SMT formula and φ is a conjunction of (a

subset of) the atoms of ψ, then φ is an implicant of ψ iff φ |= ψ.

2.2. Well-founded relations and ranking functions

A binary relation ρ ⊆ Q × Q is well-founded if every non-empty subset105

U ⊆ Q has a minimal element with respect to ρ, i.e. there is m ∈ U such
that no u ∈ U satisfies ρ(u,m). Given a relation φ(V, V ′), a ranking func-
tion Rf(V) is a function from the assignments to the symbols V to some
set Q, such that the relation < =̇{〈Rf(v0),Rf(v′1)〉 | v0,v

′
1 |= φ} is well-

founded and we call 0 its minimal element. Given a set of ranking functions110

{Rfi}ni=0, we define their sum as Rf=̇
∑n

i=0 Rfi=̇〈Rf0, . . . ,Rfn〉. Rf is a rank-
ing function with minimal element 0=̇〈00, . . . ,0n〉 and comparison operator
< =̇{〈v0,v1〉|(

∧n
i=0 Rfi(v0) ≤i Rfi(v1)) ∧ (

∨n
i=0 Rfi(v0) <i Rfi(v1))} where

<i is the well-founded relation associated with Rfi and ≤i is a shortcut for the
disjunction of <i and the equality.115

2.3. LTL model checking

A symbolic fair transition system M is a tuple 〈V, I(V), T (V, V ′), F (V)〉,
where V is the set of state variables; I and F denote respectively the initial
and fair states; and T represents the transitions where V ′ refers to the next
state variables. A path or trace of M is a finite or infinite sequence of states120

v0,v1, . . ., such that v0 |= I and vi,v
′
i+1 |= T for all i, where v′i assigns to every

symbol v′ ∈ V ′ the same value assigned by vi to v. A state v is reachable in
M if there is a finite path of M ending in v. Given a formula φ(V) we write
M φ iff there exists a finite path in M ending in a state v such that v |= φ.

A path v0,v1, . . . of M is fair iff for each i there exists j > i such that125

vj |= F and the language of M , written L(M), is the set of all fair paths of
M .3 We also assume the standard notions of temporal logic model checking,
using the usual definitions of U,G,F for the “until”, “always” and “eventually”
temporal operators (LTL [5]): for a LTL property ϕ we write M |= ϕ iff ϕ
holds in every path π ∈ L(M). Given a fair transition system M , we are130

interested in the problem of deciding whether M admits at least one fair path
(i.e. L(M) 6= ∅). Notice that the existential LTL model checking problem, i.e.

3Note that fair paths are necessarily infinite.

4

the problem of deciding whether a system M=̇〈V, I, T,>〉 admits at least a path
that satisfies a given LTL formula ϕ, can be reduced to checking for the existence
of a fair path in the fair transition system M ×Mϕ=̇〈V ∪Vϕ, I ∧Iϕ, T ∧Tϕ, Fϕ〉,135

where Mϕ=̇〈Vϕ, Iϕ, Tϕ, Fϕ〉 is a symbolic encoding of an automaton accepting
the language of ϕ [6], which can be obtained, for example, with the procedure of
[7]. In addition, in finite-state systems liveness-to-safety [8] allows the reduction
of such problem to the falsification of safety properties.

A standard technique for the analysis of infinite-state systems is predicate140

abstraction [9]. Predicate abstraction partitions the state space according to
the equivalence relation induced by a set of predicates. Given a finite set of
predicates, it defines a finite set of abstract states each of which corresponds
to a total truth assignment of such predicates. An abstract state corresponds
to a possibly infinite set of concrete states: all states that agree on the truth145

assignments of the predicates. Implicit abstraction is an approach to avoid the
explicit computation of the abstract space. Implicit abstraction has been used,
e.g. in [10], in combination with liveness-to-safety to identify abstract fair loops
for an infinite-state system in the abstract space. However, in general, there
might not exist a fair path in the concrete system corresponding to the abstract150

one.
Finally, we consider also timed systems such as timed automata [11], timed

transition systems [12] and hybrid systems [13]. Timed systems are infinite-state
transition systems in which each state is associated with a real-valued time and
transitions may cause time to elapse. An LTL property holds in such systems155

iff it holds in all its non-Zeno paths. A path is non-Zeno iff the sequence of
time points associated to its states is diverging (i.e. there is no upper bound on
the value of time along the path).4

3. Overview of the approach

Our objective is to define a representation of and a search procedure for a160

non-empty set of fair paths for a transition system. We split the representation
of the fair paths along two orthogonal directions. We first segment them into
finite sequences of elements each of which represents a set of finite paths. Then,
we decompose the fair transition system with respect to a partitioning of its
symbols; in this case each component represents a set of infinite behaviours for165

a subset of the symbols. Therefore, the search problem is reduced to the problem
of identifying an appropriate set of components such that their composition is
a witness for some fair path in the transition system.

3.1. Segmentation: funnels

We segment fair paths into a sequence of elements called funnels that, like170

actual funnels, take items from a source and constrain them to follow a path

4As for fair paths, also non-Zeno paths are necessarily infinite.

5

Figure 1: Funnels combined into chain forming a funnel-loop.

leading to a destination. Funnels are compact witnesses for universal and ex-
istential reachability [14]: each funnel characterizes a set of finite paths, each
starting from the source region, remaining in it for a bounded number of steps,
and eventually ending in the destination region. Funnels are concatenated in175

chains such that the destination region of a funnel is contained in the source
region of the following one. Funnel-loops are chains of funnels in which the
destination region of the last funnel is included in the source region of first
one. An example of funnel-loop composed of 6 funnels is depicted in Fig. 1.
Funnel-loops describe a loop over the regions of the corresponding funnels and180

we ensure the fairness of such loop by requiring at least one of the destination
regions to contain only fair states. Therefore, we propose to represent witnesses
for fair paths of transition systems by composing a finite number of reachability
witnesses. Sec. 5 formally presents funnel-loops and shows them to be a sound
(Th. 1) and complete (Th. 2) representation of fair paths.185

3.2. Decomposition: existential components

We decompose a fair transition system with respect to a partitioning of
its symbols. For each subset of the symbols, we identify components, called
E -components (for existential components), that represent their behaviour with
respect to a sequence of regions. E -components distinguish three kinds of tran-190

sitions between their regions and all states in the same region must exhibit
transitions of the same kind. In this sense, the regions of an E -component
group states with similar behaviour. We define two operators over these struc-
tures. The first operation, called projection, shrinks the set of paths described
by an E -component by considering only a subset of its regions. The second195

operation, called composition, defines how E -components can be composed to
obtain a description of the behaviour of a larger set of symbols: the union of
the symbols of the composed elements. In this setting we represent fair paths
as the composition and projection of a finite set of E -components.

Sec. 6 formally defines E -components and the two operators, while Theo-200

rems 3 and 6 highlight the relationship between funnel-loops and E -components.
In more detail, Th. 3 shows that a funnel-loop also defines a correspond-
ing E -component and, viceversa, Th. 6 details the conditions under which an

6

E -component corresponds to a funnel-loop proving the existence of at least one
fair path for some fair transition system.205

3.3. Search procedure

We propose a fully-automated procedure that, given a fair transition system
and a possibly empty set of E -components, searches for a funnel-loop containing
at least one and only fair paths (Alg. 1). We propose to search for a funnel-
loop by enumerating candidate fair loops of the transition system (Alg. 2). We210

consider loops such that the first and last state of the path are in the same
abstract state with respect to a set of abstraction predicates. For every such
candidate loop we compute a sequence of regions and transitions containing it
(Alg. 3). Then, we search for a funnel-loop corresponding to a strengthening of
the sequence of regions and transitions such that all required hypotheses are met215

(Sec. 7.4). If the search succeeds we return the obtained funnel-loop, otherwise
we continue by analysing the next candidate fair loop.

The procedure, described in Sec. 7, is fully-automated and deals with an
undecidable problem. Therefore, there will always exist some inputs for which
it fails to provide an answer and, from a more practical perspective, inputs for220

which it takes a very long time to provide an answer. For this reason, the pro-
cedure is capable of exploiting some additional information in the form of a set
of E -components. If some E -components are provided, the procedure identifies
candidate fair loops that are also a path for some composition and projection of
a subset of the E -components. It then tries to identify the funnel-loop that cor-225

responds to an E -component describing the behaviour for the missing symbols:
it completes the E -component with a transition relation over the remaining
symbols such that all assumptions are met.

4. Running example

We now introduce a simple LTL verification problem on a software program230

that will be used as running example throughout this work.
Consider the simple program shown in Fig. 2, where nondet is a function

that nondeterministically selects a value from the set provided as input. Our

1: int x← nondet(Z)
2: real y ← nondet(R)
3: while x2 ≥ xy do
4: y ← nondet(R)
5: x← x+ 1
6: end while

Figure 2: Running example.

objective is to check whether in every infinite execution of such program the

7

value of y will eventually remain always positive or always negative. This state-235

ment can be written in LTL as (FGy ≥ 0) ∨ (FGy ≤ 0). Intuitively, any
counterexample to such specification must be a nonterminating execution of the
program in which both y > 0 and y < 0 hold infinitely often.

We encode the software program as an infinite-state transition system using
an additional variable pc to model the program counter. Then, we employ the
reduction from LTL model checking to the existence of a fair path. The resulting
infinite-state transition system is Ex =̇〈{x, y, pc, f0, f1}, pc = 3, T, f0∧f1〉, where
pc and x are two integer variables, y is a real variable, f0 and f1 are two Boolean
symbols (introduced by the reduction to keep track of the fairness conditions
y > 0 and y < 0) and the transition relation is defined as follows:

T =̇ (pc = 3→ (x2 ≥ xy ∧ pc′ = 4 ∧ x′ = x ∧ y′ = y)) ∧
(pc = 4→ (pc′ = 5 ∧ x′ = x)) ∧
(pc = 5→ (pc′ = 3 ∧ x′ = x+ 1 ∧ y′ = y)) ∧
((f0 ∧ f1)→ (¬f ′0 ∧ ¬f ′1)) ∧
(f ′0 → (f0 ∨ y > 0)) ∧ (f ′1 → (f1 ∨ y < 0)).

The first three lines encode the transition relation of the program. Notice that
every state such that pc = 3 and ¬(x2 ≥ xy) hold is a deadlock for Ex . In all240

such cases, the transition relation admits no successor state. Finally, the last
two lines of the formula ensure that in every execution in which f0 ∧ f1 holds
infinitely often also y > 0 and y < 0 hold infinitely often.

5. Segmenting paths with funnels

Fair

S0

D2

S1

D0

S2

D1

Figure 3: Funnels combined into chain forming a funnel-loop.

In this section, first we formally define funnels and their concatenation into245

funnel-loops; then we provide a set of sufficient conditions for a funnel-loop to
represent at least one fair path of a transition system and show that if such a
fair path exists then also a corresponding funnel-loop must exist.

5.1. Funnels

Funnels segment fair paths into finite subpaths. Given a set of symbols250

V , a funnel is a 4-tuple 〈S(V), T (V, V ′), D(V),Rf(V)〉. S and D are formulae
representing respectively the source and destination regions, T is the transition

8

relation and Rf is a ranking function for S with respect to the transition relation
T . Intuitively, this structure represents a terminating loop over S where D are
the end states of the loop. Depending on the shape of the ranking function,255

the loop might correspond to a simple loop or to more complex termination
arguments such as nested loops. Every path through the funnel starts from a
state in S and follows the relation T such that it remains in S while the ranking
function Rf is greater than the minimal element 0 and, finally, it reaches a
state in D when Rf is 0. If we consider a trivial ranking function that is always260

equal to the minimal element 0 the 4-tuple simply asserts that every state in S
is mapped into D by a single transition T .

Definition 1 (Funnel). Given a set of symbols V , a funnel is defined as the
4-tuple

fnl =̇ 〈S(V), T (V, V ′), D(V),Rf(V)〉

where: Rf is a ranking function with minimal element 0 and S, D and T265

are formulae representing respectively the source region, destination region and
transition relation of fnl. Every funnel satisfies the following hypotheses.

F.1 The transition relation is left-total relative to the source region.

∀V ∃V ′ : S → T

F.2 Every funnel keeps iterating on the source region as long as its ranking
function is greater than the minimal element.270

∀V, V ′ : (S ∧ 0 < Rf ∧ T)→ S′

F.3 Every step from the source region decreases the ranking function.

∀V, V ′ : (S ∧ 0 < Rf ∧ T)→ Rf′ < Rf

F.4 Once the ranking function is equal to 0 the funnel reaches its destina-
tion region.

∀V, V ′ : (S ∧Rf = 0 ∧ T)→ D′

Given a funnel fnli we write Si, Ti, Di and Rfi to refer to its components.
We define the transition system corresponding to a funnel fnl=̇〈S, T,D,Rf〉275

over symbols V as Mfnl=̇〈V, S, (¬D ∧ T) ∨ (D ∧D′),>〉. We refer to the paths
through a funnel fnl meaning the finite paths of the corresponding transition
system that end in D and write fnl |= φ meaning that φ holds in every path in
L(Mfnl). Notice that the paths through a funnel are all finite and each of them
is a prefix of some path in L(Mfnl). From the definition it easily follows that280

every funnel fnl satisfies the following:

fnl |= S U D

9

5.2. Funnel-loops

We define a funnel-loop as a chain of funnels [fnli]
n−1
i=0 such that the desti-

nation region of each funnel is included in the source region of the following one
and the destination region of the last funnel is included in the source region of285

the first one.

Definition 2 (Funnel-loop). A sequence of n ≥ 1 funnels [fnli]
n−1
i=0 over sym-

bols V is a funnel-loop iff the following hold.

FL.1 The destination region of a funnel is included in the source region of
the following funnel.290

∀0 ≤ i < n− 1, V : Di → Si+1

FL.2 The destination region of the last funnel Dn−1 is contained in the
source region of the first funnel S0.

∀V : Dn−1 → S0

We define the paths through a funnel-loop floop, L(floop), as the infinite
paths obtained by infinite concatenation of the paths through the funnels in the
corresponding chain and write floop |= φ meaning that φ holds in all such paths.295

For every funnel different from the last one, Hyp. FL.1 ensures that we can
extend every path of such funnel, ending in its destination region, by following
the transition relation of the next funnel. Therefore, every path starting in any
source region will eventually reach the destination region of the last funnel:

floop |= (

n−1∨
i=0

Si) U Dn−1

By Hyp. FL.2 every time we reach the destination region of the last funnel asso-300

ciated with floop we are also in the source region of the first funnel. Therefore,
we can extend the execution by appending another finite number of steps: a
finite path starting from S0 and ending in the last destination region Dn−1. We
can do this infinitely many times obtaining infinite paths.

floop |= G((

n−1∨
i=0

Si) U Dn−1)

The definition of funnel-loop allows for regions with non-empty intersections.305

This eases the construction of the structure in practical cases. It is possible to
consider one funnel at a time and then chain them simply by checking the
inclusion of each destination into the corresponding source region. However, for
every funnel-loop there exists one with pairwise-disjoint regions that has the
same language projected over the common variables.5 For this reason, when310

5See Appendix B.1 for a proof.

10

proving statements about the language of these structures, we assume without
loss of generality that the regions of every funnel in the funnel-loops are pairwise-
disjoint.

We propose to identify a non-empty set of fair paths for a transition system
M as a funnel-loop floop; every path through floop must correspond to an315

infinite fair execution of M . The totality of the transition relation of each funnel
(F.1) and their chaining (FL.1, FL.2) ensure that all the paths in L(floop) are
infinite. We need such paths to be fair paths, hence they must visit the fairness
condition infinitely often. By construction of floop we know that every path
goes through each Si and each Di infinitely many times. Since by FL.1 and FL.2320

for every source region Si, there exists a destination region Dj that is contained
in it, it is sufficient to require one of the destination regions to contain only fair
states. Without loss of generality we assume such a region to be the last one.
These conditions ensure that floop represents a set of fair paths of M . However,
such set might be empty or non-reachable in M . Therefore, we finally require325

the union of the source regions to contain at least one state reachable in M .
The existence of such state is sufficient to conclude non-emptiness of L(floop)
because the transition relation of each funnel always allows for a successor state
(F.1) and, by induction, this ensures that every region and the language of
floop are not empty. Th. 1 shows that these requirements are sufficient for a330

funnel-loop to prove the existence of a fair path in M and Th. 2 shows that if M
admits a fair path then there exists a funnel-loop of length one for M . Therefore,
funnel-loops composed of a single funnel are expressive enough to represent any
fair path. However, funnel-loops of greater length lead to a description easier to
understand for a person and, in addition, could simplify the search procedure:335

we might not need to consider complex disjunctive representations of the regions,
ranking functions and transition relations.

Theorem 1. Let M=̇〈V, IM , TM , FM 〉 be a fair transition system. Let floop
be a funnel-loop of length n over the symbols V and funnels [fnli]

n−1
i=0 such that:

FF.1 There is at least one state in the union of the source regions of floop340

that is reachable in M :

M
n−1∨
i=0

Si

FF.2 The destination region of the last funnel contains only fair states of
M .

∀V : Dn−1 → FM

FF.3 Every transition of every funnel underapproximates the transition
relation of M . For every funnel fnli in [fnli]

n−1
i=0 :345

∀V, V ′ : Si ∧ Ti → TM

Then M admits at least one fair path.

11

Proof. We first prove that every path in L(floop) is infinite. Then we prove
that every such path is fair with respect to the fairness condition FM and that
every step in every such path satisfies the transition relation TM . Finally, we
prove that L(floop) allows for at least one path which is a suffix of some path350

of M .

� Every path in L(floop) is infinite. Consider a funnel fnl=̇〈S, T,D,Rf〉
in floop. Hyp. F.1 ensures that its transition relation T allows for a
successor state for every state in S. Hyp. F.2 ensures that every path of
fnl remains in S while 0 < Rf. Hyp. F.3 ensures that every such path will355

eventually reach a state in S ∧Rf = 0. Hyp. F.4 ensures that every state
in such region in one T step reaches a state in D. Therefore, every path
starting from the source region S of each funnel can be extended until it
reaches its destination region D. If fnli−1 has a successor fnli in floop,
by Hyp. FL.1 the destination region Di−1 is included in Si: every state360

in Di−1 is also in Si. Therefore, the concatenation of fnli−1 and fnli
allows to extend every path starting from either Si−1 or Si until it reaches
Di. By induction this shows that the funnel chain allows the extension of
every path starting from the union of the source regions until it reaches
the last destination region:365

floop |= (

n−1∨
i=0

Si) U Dn−1

Hyp. FL.2 requires the last destination region Dn−1 to be a subset of the
first source region S0. As stated above, we can extend every path starting
in every region until it reaches Dn−1, hence from S0 we reach Dn−1 again
in a finite number of steps and at least one. Therefore, since we can extend
each path of a finite non-zero number of steps infinitely many times every370

path in L(floop) is infinite.

� Every path in L(floop) visits FM infinitely often. Hyp. FF.2 ensures that
Dn−1 underapproximates the fair states FM . We have already shown
above that every path of floop reaches a state in Dn−1 infinitely often.
Therefore, such paths visit FM infinitely often.375

� Every step of every path in L(floop) satisfies TM . Every step of every
path in L(floop), by definition, corresponds to a transition of some funnel
fnl. By hypotheses F.2, F.4, FL.1 and FL.2 every such path remains
within the union of the regions and visits them following the order of the
funnels. Therefore, every transition in every path of floop must satisfy380

S∧T for some funnel fnl in the sequence. Hyp. FF.3 ensures that if S∧T
holds that also TM is true. Therefore every step of every path of floop is
also a step of M .

� L(floop) allows for at least one path which is a suffix of some path of M .
Hyp. FF.1 ensures that there exists a finite path πpref of M starting in385

12

IM and ending in some state v such that v |=
∨n−1

i=0 Si. Therefore, v
must be in Si for some 0 ≤ i < n. Then, in floop we can extend v to an
infinite fair path πsuf starting in v. As shown above every step of πsuf
satisfies the transition relation of M and visits the fairness condition FM

infinitely often. The concatenation π of πpref and πsuf without repetition390

of v, starts from a state in IM , every steps satisfies TM and visits FM

infinitely often. Therefore, π is a fair path for M : π ∈ L(M).

�
Th. 2 ensures that if a transition system admits a fair path then there exists

a corresponding funnel-loop, provided it is possible to represent the states in395

the path as formulae and, in particular, we are interested in finite formulae. In
finite-state systems this is always the case: every set of states is finite and can
be represented as a finite quantifier-free formula (e.g. the disjunction of the
assignments in the set). However, this might not be the case in infinite-state
systems: there might be an infinite set of states which cannot be represented400

by a finite formula. Therefore, the following theorem guarantees completeness
relative to the expressiveness of the logic used to represent the regions and the
transition relation of the funnel. Notice that the existence of a finite represen-
tation is not the only source of incompleteness. In fact, the existence of a finite
formula does not imply the existence of a complete procedure capable of finding405

it. We remark that we are dealing with an undecidable problem, hence there
exists no procedure to solve it that is both sound and complete.

Theorem 2. If a fair transition system M admits at least one fair path, then
there exists a funnel-loop floop of length 1 for M . However, the existence of one
representable via finite formulae depends on the expressiveness of the considered410

logic.

Proof. In the following we will define a predicate φ(V) as the set of assignments
v such that v |= φ, meaning that φ(V) is a formula equivalent to the disjunction
of the assignments in the set. Notice that there might be no finite representation
of φ.415

Let M=̇〈V, IM , TM , FM 〉 and, by hypothesis, there exists a fair path π in
L(M). Without loss of generality we assume that π visits every state at most
once. If this is not the case, to obtain a fair path satisfying the hypothesis,
it is sufficient to add an additional integer symbol whose assignment increases
by one at every transition. In more detail, consider the fair transition system420

〈V ∪ c, IM ∧ c = 0, TM ∧ c′ = c+ 1, FM 〉, if π is a fair path of M then, we can
obtain a fair path for the modified system by extending the assignment of every
state of π such that c = 0 in the first state and in all other states assign to c
the assignment of the previous state plus 1.

Let floop be a funnel-loop of length 1, and let its funnel be425

fnl=̇〈S, T,D,Rf〉. We define the components of fnl as follows:

� S contains all and only states of π.

S=̇{v | v ∈ π}

13

� D contains all and only the fair states of π.

D=̇{v | v ∈ π ∧ FM (v)}

� T is a relation containing all pairs of state 〈v,v′〉 such that v′ is the
successor state of v in π.430

T =̇{〈v,v′〉 | 〈v,v′〉 ∈ π}

� Rf associates to every state in π the number of steps required to reach
the next fair state in π minus 1.

∀k > 0,∀V1, . . . , Vk : Rf(V1) = k − 1↔ (

k−1∧
i=1

T (Vi, Vi+1))→ FM (Vk)

This is well-defined since each state appears only once in π and by con-
struction T allows for a single successor for each state. In addition, π is
a fair path by hypothesis, hence there can be at most a finite number of435

non-fair states between every pair of fair states.

We now show that fnl satisfies all hypotheses of Def. 1.

F.1 π is an infinite sequence of states, all states of π are in S and each pair
of subsequent states of π is in T . Therefore, T must be left-total with
respect to S and Hyp. F.1 holds.440

F.2 By construction S contains all states of π and T is a relation between
states of π. Therefore, S is an inductive invariant for T and Hyp. F.2
holds.

F.3 By construction, Rf is greater than 0 in all states that require more than
1 transition to reach a fair state and T is such that it brings all such445

states 1 step closer to the next fair state in π. Therefore, S(V) ∧ 0 <
Rf(V) ∧ T (V, V ′)→ Rf(V) = Rf(V ′) + 1, which implies Hyp. F.3.

F.4 By construction Rf assigns the minimal value 0 to the states that reach
a fair state in 1 step. Therefore, Hyp. F.4 holds.

We now show that fnl corresponds to a funnel-loop floop of length one: it450

satisfies all hypotheses of Def. 2.

FL.1 floop contains a single funnel, hence Hyp. FL.1 trivially holds.

FL.2 By construction S contains all states of π while D contains the subset of
states of π that are also fair. Therefore, D → S is valid and Hyp. FL.2
holds.455

Finally, floop represents fair paths of M : it satisfies all hypotheses of Th. 1

14

FF.1 π is a path of M , hence its first state is an initial state of M . All states
of π are in S. Therefore, S contains at least 1 initial state of M and
Hyp. FF.1 holds.

FF.2 The last destination region of floop is D. By construction D contains460

only fair states, hence Hyp. FF.2 holds.

FF.3 π is a path of M . Therefore, every pair of states 〈v,v′〉 such that v′ is the
successor state of v in π, must also be in the relation TM . By construction
T contains only such pairs, hence T → TM is valid and Hyp. FF.3 holds.

�465

5.3. Example

We now define two funnel-loops, of length respectively 6 and 1, for the run-
ning example introduced in Sec. 4. Both funnel-loops are sufficient to conclude
the existence of a fair path for the fair transition system Ex we defined in Sec. 4.
Here we simply recall that the system has 5 state variables V =̇{x, y, pc, f0, f1}470

and that the fair states are all the states where f0 ∧ f1 holds.

FEx

FEx

T0

x′ = x

y′ = y

T1

x′ = x

y′ = −y

T2

x′ = x+ 1

y′ = y

T5

x′ = x+ 1

y′ = y

S0

pc = 3

x ≥ y > 0

f0 ∧ f1

S1

pc = 4

x ≥ y > 0

¬f0 ∧ ¬f1

S2

pc = 5

x ≥ −y > 0

f0 ∧ ¬f1

T3
x′ = x

y′ = y

T4
x′ = x

y′ = −y

S3
pc = 3

x ≥ −y > 0

f0 ∧ f1

S4
pc = 4

x ≥ −y > 0

¬f0 ∧ ¬f1

S5pc = 5

x ≥ y > 0

¬f0 ∧ f1

Figure 4: funnel-loop floop of length 6.

We first describe the funnel-loop floop=̇[fnli]
5
i=0 depicted in Fig. 4. The

figure reports the source regions and transition relations of each funnel. The
transitions in the figure report only the constraints for x and y, while the ones
for pc, f0 and f1 can be trivially inferred by the assignments in the regions. More475

formally, each funnel fnli is the tuple 〈Si, Ti, Di,Rfi〉. We define each ranking
function such that it is always equal to its minimal element, ∀V : Rfi(V) = 0,
and each destination region as the corresponding source region, Di=̇S(i+1)%6.
We define the remaining components, source regions and transition relations, as
follows.480

15

0. The first funnel fnl0 represents the step from location 3 to location 4 of
Fig. 2. In S0 both f0 and f1 are true, hence S0 contains only fair states and
also D5=̇S0 does. Notice that x ≥ y ∧ y > 0 implies x2 ≥ xy. Therefore,
the condition of the while loop is satisfied.

S0 =̇ pc = 3 ∧ x ≥ y ∧ y > 0 ∧ f0 ∧ f1
T0 =̇ pc′ = 4 ∧ x′ = x ∧ y′ = y ∧ ¬f ′0 ∧ ¬f ′1

1. The second funnel fnl1 performs the step from pc = 4 to pc = 5. In this
step, the program of Fig. 2 assigns a nondeterministic value to y. The
funnel underapproximates this transition by always assigning to y the
opposite of its current value. In addition, since y > 0 in S1, the transition
relation assigns f ′0 to true.

S1 =̇ pc = 4 ∧ x ≥ y ∧ y > 0 ∧ ¬f0 ∧ ¬f1
T1 =̇ pc′ = 5 ∧ x′ = x ∧ y′ = −y ∧ f ′0 ∧ ¬f ′1

2. The third funnel fnl2 performs the last step of the first iteration of the
while loop. Its transition relation increases the value of x by one and,
since y < 0 holds in the current state, f1 is true in the next one.

S2 =̇ pc = 5 ∧ x ≥ −y ∧ y < 0 ∧ f0 ∧ ¬f1
T2 =̇ pc′ = 3 ∧ x′ = x+ 1 ∧ y′ = y ∧ f ′0 ∧ f ′1

3. The fourth funnel fnl3 represents the first step of the loop of Fig. 2 as
fnl0. However, in this case y is negative.

S3 =̇ pc = 3 ∧ x ≥ −y ∧ y < 0 ∧ f0 ∧ f1
T3 =̇ pc′ = 4 ∧ x′ = x ∧ y′ = y ∧ ¬f ′0 ∧ ¬f ′1

4. The fifth funnel fnl4 is analogous to fnl1, but has negative value of y.

S4 =̇ pc = 4 ∧ x ≥ −y ∧ y < 0 ∧ ¬f0 ∧ ¬f1
T4 =̇ pc′ = 5 ∧ x′ = x ∧ y′ = −y ∧ ¬f ′0 ∧ f ′1

5. Finally, funnel fnl5 is analogous to fnl2, but has positive value of y.

S5 =̇ pc = 5 ∧ x ≥ y ∧ y > 0 ∧ ¬f0 ∧ f1
T5 =̇ pc′ = 3 ∧ x′ = x+ 1 ∧ y′ = y ∧ f ′0 ∧ f ′1

It can be easily observed that each funnel satisfies all hypotheses of Def. 1
and the funnels are correctly chained (Def. 2) by definition of the destination
regions. Notice that every region and transition of floop is a purely conjunctive
formula and both S0 and S3 underapproximate the fair states. Therefore, in
every iteration through floop we visit the fair states twice, in S0 with positive y485

16

and in S3 with negative y. floop satisfies all hypotheses of Th. 1 and represents
at least one counterexample for our initial LTL model checking problem.

It is possible to define a funnel-loop composed of a single funnel
fnl=̇〈S, T,D,Rf〉, where the components can be defined in terms of the funnels
we defined above as follows. The source region is the union of the source regions
of the {fnli}5i=0: S=̇

∨5
i=0 Si. The destination region is the last destination re-

gion of floop: D=̇D5. The transition relation can be defined as T =̇
∨5

i=0(Si∧Ti)
by observing that the source regions {Si}5i=0 are pairwise-disjoint. Finally, the
ranking function Rf is defined as a function that maps every assignment to the
symbols in V to a number in N such that it assigns decreasing values to states
in the regions S0, . . . , S4 and assigns the constant 0 to states in S5:

Rf(V)=̇

0 if S5(V),

1 if S4(V),

2 if S3(V),

3 if S2(V),

4 if S1(V),

5 otherwise.

By construction the transition relation maps every state in S0 to some state
in S1, which is in turn mapped into S2 and so on. Therefore, every state in
S∧Rf > 0 is mapped to some other state in S in which the ranking function has490

lower value. S ∧Rf = 0 is equivalent to S5 and in such region T corresponds to
T5. Therefore, in a single transition we reach D5 that, by definition, is equivalent
to D and contained in S0.

6. Model decomposition via Existential Components

In the previous section we segmented the paths of a fair transition system495

into funnels representing finite paths. In the following we adopt an orthogonal
view and decompose the system with respect to a partitioning of its symbols.
For each set of symbols, an existential component (E -component) describes
their behaviour with respect to a set of regions and represents a set of loops
over such regions. Each E -component represents some infinite behaviour that500

a subset of the symbols can exhibit, provided that all other symbols satisfy
a set of assumptions. Therefore, while funnels describe sets of finite paths,
E -components describe (possibly empty) sets of infinite paths.

We will show how E -components can be obtained from funnel-loops with an
additional restriction on their transition relation, hence how an E -component505

can be constructed by concatenating funnels.
We then compose E -components to obtain another E -component whose

loops consider the union of the symbols of the smaller ones. We compose them
until we obtain a component considering all the symbols of the system. Among
all its loops we search for one that is also fair. We then restrict its language to510

only fair paths by projecting the E -component over the regions of the fair loop.

17

We show that such E -component corresponds to a funnel-loop for the transition
system, hence proving that it admits at least one fair path.

We first define the structure and properties of the E -components and we
show under which conditions a funnel-loop corresponds to an E -component.515

Then, we define the composition and projection operators for E -components
and, finally, we show how such operators allow the representation of a funnel-
loop that satisfies all hypotheses of Th. 1.

6.1. E-component

R0

Rf0 = 0
Rf1 = 0

R1

Figure 5: E -component with two regions showing the three kinds of transitions.

An E -component is a transition system associated with a set of regions,520

assumptions and ranking functions. We call the conjunction of a region and
its corresponding assumption restricted region and, in addition, E -components
associate to each restricted region a ranking function. An E -component is such
that its restricted regions group states with “similar behaviour” with respect to
the transition relation. If some state in a restricted region allows for a transi-525

tion with certain characteristics, then a transition with the same characteristics
must exist for all states in the restricted region, hence the name existential
components. In the following, we first describe in more detail what we mean by
similar behaviour via the definition of three predicates that classify transitions.
Then, we employ these predicates to formally define E -components. Finally, we530

characterise the language of such components.
We are interested in transitions representing self-loops over the restricted

regions of two types: self-loops in which the ranking function decreases and
self-loops in which the ranking function remains constant. We call them ranked
and stutter transitions respectively and characterise them using two relations535

rankedT j(V, V
′) and stutterT j(V, V

′) over symbols V and V ′. A transition in
the restricted region with index j is a ranked transition iff rankedT j holds and it
is a stutter transition iff stutterT j does. Finally, we consider transitions between
possibly distinct restricted regions, starting from a state in which the ranking
function is 0 and reaching some state in the second region. We call them progress540

transitions and characterise them using the predicate progressT j,j′(V, V
′). We

call a transition a progress transition from region j to region j′ iff progressT j,j′

holds. Therefore, we distinguish three kinds of transitions between regions and
require that either no state allows for a transition of a given kind or all states
in the same restricted region admit such a transition.545

18

We now proceed to formally define E -components and their operators. For a
set of symbols V , let R=̇{Rj(V)}m−1j=0 be the set of regions, A=̇{Aj(V)}m−1j=0 be

the set of assumptions and W=̇{Rfj(V)}m−1j=0 be the set of ranking functions.

Then, Rj ∧ Aj is the jth restricted region and Rfj is the ranking function
associated to it. We define the three relations that classify the transitions as
follows:

rankedT j(V, V
′) =̇ Rj ∧Aj ∧ 0j <j Rfj ∧R′j ∧A′j ∧Rf′j < Rfj

stutterT j(V, V
′) =̇ Rj ∧Aj ∧R′j ∧A′j ∧Rf′j = Rfj

progressT j,j′(V, V
′) =̇ Rj ∧Aj ∧ 0j = Rfj ∧R′j′ ∧A′j′

Notice that the relations rankedT j and sutterT j are always disjoint; in the
first case the ranking function strictly decreases, while in the second one it
must remain constant. However, they are not a partitioning of all possible
transitions. In fact, transitions in which the ranking function increases or that
move to another region are in neither of the two sets of transitions. In addition,550

progressT j,j′ and rankedT j are always disjoint by definition, while the first one
could have a non-empty intersection with sutterT j if j = j′. In particular, all
transitions that both start and end in a state satisfying Rj ∧ Aj ∧ Rfj = 0j

are in the intersection of stutterT j and progressT j,j . Therefore, the existence
of one such transition implies that all states in the restricted region must allow555

for at least one stutter transition. In addition, for the states in which Rfj = 0j ,
this transition is also a progress transition, hence they all admit at least one
progress transition that remains in the same region.

We remark that E -components represent the possibility of performing such
transitions: they group states for which there exists a successor along the same560

transition types.
Given a partitioning {V i}ni=0 of the symbols V we want to define the re-

stricted regions such that they allow a set of next assignments to the symbols
in a single partition V i, while the assignment to the symbols in V 6=i=̇V \ V i is
abstracted and only the assumptions are retained. For this reason, we introduce565

a quantifier alternation (∃V i′∀V 6=i′), and require the existence of a transition

of the given type for every assignment to the V 6=i′ satisfying the corresponding
assumptions. Therefore, we now formally define E -components as follows.

Definition 3. E-component. Given a set of symbols V such that {V i}ni=0 is a
partitioning of V for some n ∈ N. An E-component Hi of length mi ∈ N and570

responsible for V i is a transition system 〈V, Ii(V), T i(V, V ′)〉 associated with:

� a set of regions Ri=̇{Ri
j(V) | 0 ≤ j < mi},

� a set of assumptions Ai=̇{Ai
j(V

6=i) | 0 ≤ j < mi}, where

V 6=i=̇
⋃

0≤k<n,k 6=i V
k and Ai

j(V
6=i)=̇

∧
0≤k<n,k 6=iA

i,k
j (V k)

� a set of functions Wi=̇{Rfij(V) | 0 ≤ j < mi} such that each Rfij is a575

ranking function with respect to a well-founded relation <i
j and minimal

element 0i
j.

19

such that the following hold:

I . The set of initial states Ii(V) of Hi is a subset of the union of the restricted
regions:580

Hi |=
mi−1∨
j=0

Ri
j ∧Ai

j

II . Either no state admits a ranked transition or all states do.

∀j : 0 ≤ j < mi →
∃V, V ′ : rankedT j(V, V

′) |=

∀V ∃V i′∀V 6=i′ : Ri
j ∧Ai

j ∧ 0i
j <

i
j Rfij ∧Ai

j

′ → Ri
j

′ ∧ T i ∧Rfij
′
<i

j Rfij

III . Either no state admits a stutter transition or all states do.

∀j : 0 ≤ j < mi →
∃V, V ′ : stutterT j(V, V

′) |=

∀V ∃V i′∀V 6=i′ : Ri
j ∧Ai

j ∧Ai
j

′ → Ri
j

′ ∧ T i ∧Rfij
′

= Rfij

IV . All states admit progress transitions with the same destination regions:
they reach the same restricted regions.

∀j, j′ : 0 ≤ j < mi ∧ 0 ≤ j′ < mi →
∃V, V ′ : progressT j,j′(V, V

′) |=

∀V ∃V i′∀V 6=i′ : Ri
j ∧Ai

j ∧Rfij = 0i
j ∧Ai

j′
′ → Ri

j′
′ ∧ T i

When clear from the context we will simply write 0 and < for 0i
j and <i

j

respectively. In the definition, each assumption Ai
j(V

6=i) of E -component i at

index j is composed of n conjuncts {Ai,k
j (V k)}0≤k<n,k 6=i where each conjunct is

a formula over the symbols in a single partition V k different from V i.
We define the language of an E -component H=̇〈V, I, T 〉 over R, A and

W, written L(H), as the language of the corresponding transition system
M=̇〈V, I, TM ,>〉, where TM is defined as follows:

TM =̇T ∧ (

m−1∨
j=0

R′j ∧A′j) ∧
m−1∧
j=0

(Rj ∧Aj ∧ 0 < Rfj)→ (R′j ∧A′j ∧Rf′j ≤ Rfj)

Therefore, we consider only paths that remain within the set of restricted re-585

gions and move from one region to another only if the corresponding ranking
function is equal to the minimal element: we can perform only ranked or stutter
transitions as long as the ranking function corresponding to the current region
is greater than its minimal element.

20

As for funnel-loops, also the definition of E -component allows for regions590

with non-empty intersection. Similarly to the previous case, this eases the con-
struction of these structures since it has more permissive constraints. However,
for every E -component there exists one with pairwise-disjoint regions that ad-
mits the same language.6 For this reason, when proving statements about the
language of these structures, we assume without loss of generality the regions595

of the E -components to be pairwise-disjoint.

6.2. Example decomposition

We now describe a possible decomposition of our running example (Sec. 4)
into E -components. The fair transition system Ex is defined over the set of
variables V =̇{x, y, pc, f0, f1}. We consider one variable at a time and define600

a component representing some of its possible behaviours in the system. It is
possible to define many different components for every subset of the symbols,
for the sake of brevity and clarity we only describe one for each symbol. In
the following E -components we implicitly define every set of initial states as
the disjunction of the regions and every ranking function as always equal to its605

minimal element, hence the E -components will admit no ranked transition.

Rpc
0

pc = 3

Rpc
1

pc = 4

Rpc
2

pc = 5

Figure 6: E -component responsible for pc.

Consider first the program counter pc.
From the transition relation of Ex it is
immediately apparent that the variable
will keep assuming the values [3, 4, 5] in610

this order. For this reason we define
a E -component Hpc, depicted in Fig. 6.
Hpc is responsible for pc and its three regions are defined as Rpc

0 =̇pc = 3,
Rpc

1 =̇pc = 4 and Rpc
2 =̇pc = 5. Then, its transition relation is the disjunction of

the 3 progress transitions between the regions: T pc=̇(pc = 3 ∧ pc′ = 4) ∨ (pc =615

4 ∧ pc′ = 5) ∨ (pc = 5 ∧ pc′ = 3). We do not introduce any self-loop on the
regions, since none exists in the transition relation of Ex . Finally, this behaviour
does not require any assumption. In fact, the transition relation T pc is sufficient
to ensure that we move from one region to another without having to assume
anything about the other symbols.620

Rfi
0

fi

Rfi
1

¬fi

Figure 7: E -components responsible for fi.

Consider now the Boolean symbols
f0 and f1. In this case, we define two
E -components: Hf0 for f0 and Hf1 for
f1. The two E -components are shown
in Fig. 7. In both E -components we625

need to distinguish the truth value of
the two symbols in order to identify the
fair states, hence we define each E -component using two regions. For i ∈ {0, 1},
let Rfi

0 , Rfi
1 be the regions of Hfi and T fi its transition relation. We define

the two regions such that one corresponds to the case in which the variable is630

assigned to true and the other to the case in which the variable is false. In Ex

6See Appendix B.2 for a proof.

21

the two variables can remain constant for any number of steps and toggle their
truth value when a certain condition is met. The simplest components we can
define in this case are defined as Rfi

0 =̇fi, R
fi
1 =̇¬fi and T fi=̇>, for i ∈ {0, 1},

with no assumptions on the other symbols.635

Consider now the variable y and we define Hy as the E -component responsi-
ble for such variable. In the transition relation of Ex the variable appears in the
following predicates {y < 0, y > 0, x2 ≥ xy, y′ = y}. In only one case it appears
together with another symbol: x2 ≥ xy. We can observe that if |x| ≥ |y| then
the predicate must hold. This suggests a dependency between x and y and for640

this reason we could define a single E -component that considers both symbols
together. However, we would like to keep them separated for this example.
We break the dependency between the two symbols by considering the stronger
conditions x ≥ 1 and y ≤ 1. Then, the presence of y < 0 and y > 0 suggests the
need for two regions to distinguish the sign of the variable. Fig. 8 depicts Hy.645

Ry
0

y = −1

x ≥ 1

Ry
1

y = 1

x ≥ 1

y′ = y

y′ = y

y′ = y y′ = y

Figure 8: E -component responsible for y.

The E -component has two regions:
Ry

0=̇y = −1 and Ry
1=̇y = 1. The re-

gions differentiate the two cases and we
introduce two corresponding assump-
tions Ay

0=̇x ≥ 1 and Ay
1=̇x ≥ 1. Fi-650

nally, we define the transition relation
T y of Hy such that it allows stutter
transitions in both regions and also
progress transitions to move from one
region to the other: T y=̇y′ = y ∨ y′ = −y.655

Rx
0

x ≥ 1

y ≤ 1

x′ = x+ 1 x′ = x

Figure 9: E -component responsible
for x.

The only remaining symbol is x, for which
we define the E -component Hx depicted in
Fig 9. In the transition relation of Ex the
variable appears in the following predicates
{x2 ≥ xy, x′ = x, x′ = x + 1}. We apply660

the same reasoning as above to analyse the
predicate x2 ≥ xy and obtain a single region
Rx

0=̇x ≥ 1 with assumption Ax
0=̇y ≤ 1 for

Hx. We define the transition relation T x of
Hx as the disjunction of the two remaining predicates, T x=̇x′ = x∨ x′ = x+ 1.665

The purpose of E -components is to split the process of identifying some fair
path into two phases. In the first phase, one symbol or one group of closely
related symbols should be considered at a time to identify possible infinite be-
haviours over them, as exemplified above. The successive step requires to iden-
tify how they should be composed in order to obtain a structure that represents670

fair paths of the transition system. For this reason, in §6.4 we introduce two
operators over E -components. The operators need to ensure that the compo-
nents to be combined are compatible and preserve the existence of the infinite
behaviours. We achieve this by combining E -components such that the respec-
tive assumptions are met. §6.5 shows how the E -components we defined above675

can be composed to prove the existence of a fair path in Ex .

22

6.3. From funnel-loops to E-components

The following theorem shows the correspondence between a funnel-loop and
an E -component. Therefore, it enables the use of funnels and funnel-loops in
the decomposition of a system.680

Theorem 3. Given a set of symbols V̂ ⊆ V , a funnel-loop floop composed of
funnels [fnli]

n−1
i=0 such that all its transition relations are of the form Ti(V, V̂

′)

corresponds to an E-component H=̇〈V,
∨n−1

i=0 Si,
∨n−1

i=0 Si ∧ Ti〉 responsible for

symbols V̂ and associated with regions {Si}n−1i=0 , ranking functions {Rfi}n−1i=0

and assumptions {>}n−1i=0 .685

Proof. We show that H satisfies all hypotheses of Def. 3.

I By definition all assumptions are > and the initial states are defined as
the union of the regions. Therefore, Hyp. I holds.

II Hyp. F.1 ensures that in every region Si, Ti always allows for a successor
state. Therefore, also

∨n−1
i=0 Si∧Ti is left-total in the union of the regions.690

Hyp. F.3 ensures that every self-loop on Si decreases the associated rank-
ing function Rfi. If a self-loop exist such transition is a ranked transition
and all such transitions are ranked. All such states admit a successor and
the successor must decrease the value of the ranking function. Therefore,
Hyp. II holds.695

III As observed in the previous case, all self-loops on a region must decrease
the corresponding transition relation. Therefore, H admits no stutter
transitions and Hyp. III holds.

IV Hyp. F.4 ensures that from every region Si when the ranking function Rfi
is equal to 0, in one transition Ti we always reach a state in Di and, by700

hypotheses FL.1 and FL.2, such state is in the following region S(i+1)%n.
Since, the transition relation is left-total by Hyp. F.1, then all states in
Si∧Rfi = 0 admit at least one and only successors in S(i+1)%n. Therefore,
Hyp. IV holds.

�705

6.4. Operators over E-component

We now define the projection and composition operators for E -components.
Intuitively, the first operator shrinks an E -component by considering only a
subset of its regions, while the second operator computes the product of n
E -components. These two operators will be useful to identify an E -component710

that meets some additional requirements in order to represent a funnel-loop.

23

E-component projection. We define a projection operation for E -components
that can be used to obtain a smaller E -component describing a subset of the
paths of the original structure. We project an E -component over an ordered
subset of its regions, then we restrict the transition relation by removing all715

stuttering transitions and such that the progress transitions must follow the
ordering of the regions and from the last region they can only reach the first
one. Therefore, the projection restricts the language of an E -component to the
paths that visit only regions in the sequence in order and are either finite or
reach the last region infinitely often.720

Definition 4. Given an E-component H=̇〈V, I, T 〉 over m regions R, assump-
tions A and ranking functions W, we define its projection to a sequence of k
indexes idxs=̇〈j↓0 , . . . , j

↓
k−1〉 such that idxs ⊆ {0, . . . ,m−1} as the E-component

H↓=̇〈V, I↓, T ↓〉 associated with regions R↓, assumptions A↓ and ranking func-
tions W↓ defined as follows:725

� I↓=̇I ∧
∨

j∈idxs(Rj ∧Aj);

� T ↓=̇T ∧
∧k−1

h=0Rj↓h
→ ((R′

j↓h
∧Rf′

j↓h
< Rfj↓h

) ∨ (Rfj↓h
= 0 ∧R′

j↓
(h+1)%k

))

� R↓=̇{Rj | j ∈ idxs ∧Rj ∈ R};

� A↓=̇{Aj | j ∈ idxs ∧Aj ∈ A};

� W↓=̇{Rfj | j ∈ idxs ∧Rfj ∈ W}.730

Notice that in the projection we restrict the set of initial states to only
those in one of the restricted regions corresponding to the indexes idxs, and
the transition relation is strengthened such that it imposes that the regions in
idxs are always visited in order. In addition, the projection operator does not
modify the regions, assumptions and ranking function of an E -component, but735

considers a subset of them.

Theorem 4. The projection H↓ over indexes idxs of an E-component H over
regions R, assumptions A and ranking functions W is an E-component.

The proof of Th. 4 is reported in Appendix B.3.

E-component composition. We compose E -components such that they meet740

their respective assumptions. Given a set {Hi}ni=0 of E -components, we say
that a set of transitions from regions {Ri

ji
}ni=0 to regions {Ri

j′i
}ni=0 are com-

patible, if every transition T i ensures that
∧n

s=0,s6=iA
s,i
j′s

holds. In addition, we
compose restricted regions of E -components iff the corresponding ranking func-
tions are independent: it is possible to decrease one independently from the745

others. In the following we define two binary predicates compatible{Hi}ni=0
and

indepRank{Hi}ni=0
that hold iff the two conditions are met.

24

Definition 5 (compatible transitions). Let {Hi}ni=0 be a set of
E-components such that {V i}ni=0 are pairwise disjoint and

⋃n
i=0 V

i ⊆ V .
A transition from state v to v′ is compatible iff the transitions of the
E-components, from every pair of states in the same regions, meet the respective
assumptions of the E-components.

compatible{Hi}ni=0
(V̂ , V̂ ′)=̇∀V, V ′ :

∧
0≤j0<m0,0≤j′0<m0,...,0≤jn<mn,0≤j′n<mn︸ ︷︷ ︸

all possible pair of indexes for the E-components {Hi}ni=0

(

n∧
i=0

Ri
ji(V̂) ∧Ai

ji(V̂
6=i) ∧Ri

j′i
(V̂ ′) ∧Ai

j′i
(V̂ 6=i′)︸ ︷︷ ︸

ji,j′i containing both V̂ and V̂ ′

∧

Ri
ji(V) ∧Ai

ji(V
6=i) ∧Ri

j′i
(V ′) ∧Ai

j′i
(V 6={h}

n
h=0
′
) ∧ T i(V, V ′)︸ ︷︷ ︸

for all V in ji, V ′ in j′i such that V, V ′ |= T i and V ′ meets all
assumptions of Hi at j′i on symbols of E-components not in {Hi}ni=0

∧

(Rfij′i(V̂
′) < Rfiji(V̂)↔ Rfij′i(V

′) < Rfiji(V))︸ ︷︷ ︸
transition V,V ′ of the same type of transitionV̂ ,V̂ ′

∧

(0 < Rfiji(V̂)↔ 0 < Rfiji(V)) ∧ (0 < Rfij′i(V̂
′)↔ 0 < Rfij′i(V

′)))→
n∧

i=0

n∧
h=0,h6=i

Ai,h
j′i

(V h′).︸ ︷︷ ︸
all assumptions of Hi on the {V h}nh=0 are met

A set of transitions has independent ranks if it is possible to decrease each
ranking function independently from the others. Consider the restricted regions
{Ri

ji
∧Ai

ji
}ni=0, there exist transitions with independent ranks if, for each Rfirjir750

with 0 ≤ ir ≤ n, it is possible to perform a self-loop on the conjunction of the
restricted regions

∧n
i=0R

i
ji
∧ Ai

ji
such that Rfirjir decreases and all the other

ranking functions remain constant:
∧n

i=0,i6=ir
Rfiji

′
= Rfiji .

Definition 6 (independent ranks). Let {Hi}ni=0 be a set of the
E-components such that {V i}ni=0 are pairwise disjoint and

⋃n
i=0 V

i ⊆ V .
A self-loop over the intersection of the restricted regions has independent
ranks iff for every ranking function there exists a compatible conjunction of the

25

transitions decreasing only that function.

indepRank{Hi}ni=0
(V̂ , V̂ ′)=̇

∧
0≤j0<m0,...,0≤jn<mn︸ ︷︷ ︸

all possible indexes for the E-components {Hi}ni=0

(((

n∑
i=0

Rfiji)(V̂
′) < (

n∑
i=0

Rfiji)(V̂)︸ ︷︷ ︸
some ranking function decreases, all others remain constant

∧

n∧
i=0

Ri
ji(V̂) ∧Ai

ji(V̂
6=i) ∧Ri

ji(V̂
′) ∧Ai

ji(V̂
6=i′)︸ ︷︷ ︸

V̂ ,V̂ ′are in restricted regions ji,j′i

)→

n∧
i=0

(∀V : (

n∧
h=0

Rh
jh

(V) ∧Ah
jh

(V 6=h))→ Rfiji(V) = 0)︸ ︷︷ ︸
current ranking function Rfiji

is always 0

∨

∃V, V ′ : (

n∧
h=0

Rh
jh

(V) ∧Ah
jh

(V 6=h) ∧ Th(V, V ′) ∧Rh
jh

(V ′) ∧Ah
jh

(V 6=h′))︸ ︷︷ ︸
V,V ′ in same restricted regions of V̂ ,V̂ ′

∧

Rfiji(V
′) < Rfiji(V) ∧ (

n∧
h=0,h6=i

Rfhjh(V ′) = Rfhjh(V))︸ ︷︷ ︸
current ranking function decreases, all others remain constant

∧

compatible{Hk}nk=0
(V, V ′))

The composition operator for a set of E -components {Hi}ni=0 requires the
corresponding sets {V i}ni=0 to be pairwise disjoint. We write {V i}i 6∈{0,...,n} for755

the possibly empty list of other sets to complete the partitioning: {V i}ni=0 ∪
{V i}i 6∈{0,...,n} is a partitioning of V .

Definition 7 (composition of E-components). We define the composition
of a set of E-components {Hi}ni=0, such that the sets of local symbols {V i}ni=0

are pairwise disjoint, as Hc=̇
⊗n

i=0H
i = 〈V, Ic, T c〉 where:760

� V c=̇
⋃n

i=0 V
i.

� The set of regions is the intersection of the regions and assumptions over
V c of the E-components.

Rc=̇{
n∧

i=0

Ri
ji ∧

n∧
h=0,h6=i

Ai,h
ji
| ∀i ∈ {0, . . . , n}, ji ∈ {0, . . . ,mi − 1} : Ri

ji ∈ R
i∧

∀h ∈ {0, . . . , n} \ {i} : Ai
ji ∈ A

i ∧Ai,h
ji
∈ Ai

ji}

26

� The set of assumptions is given by the conjunction of the assumptions of
the {Hi}ni=0 over the symbols not in V c.

Ac=̇{
n∧

i=0

∧
h6∈{0,...,n}

Ai,h
ji
| ∀i ∈ {0, . . . , n}, h 6∈ {0, . . . , n}, ji ∈ {0, . . . ,mi − 1} :

Ai
ji ∈ A

i ∧Ai,h
ji
∈ Ai

ji}

� The ranking functions for the regions are obtained by considering the sum
of the ones corresponding to the regions of the {Hi}ni=0.

Wc=̇{
n∑

i=0

Rfiji | ∀i ∈ {0, . . . , n}, ji ∈ {0, . . . ,m
i − 1} : Rfiji ∈ W

i}

� Ic=̇
∧n

i=0 I
i;

� The set of transitions is given by the conjunction of the transition relations
of the {Hi}ni=0 restricted to the compatible transitions.

T c=̇compatible{Hi}ni=0
∧ indepRank{Hi}ni=0

∧
n∧

i=0

T i

Theorem 5. Given a set of E-components {Hi}ni=0, their composition765

Hc=̇
⊗n

i=0H
i = 〈V, Ic, T c〉 is an E-component with respect to regions Rc, as-

sumptions Ac and ranking functions Wc.

The proof of Th. 5 is reported in Appendix B.4.
We remark that the definition of the composition operator ensures that Hc ad-
mits only transitions that satisfy both compatible and indepRank . In addition,770

we consider only simple interactions between the ranking functions of different
E -components. It is possible to extend the operator to allow for more complex
combinations such as nesting of ranking functions or allowing the ranking func-
tion of an E -component to decrease once every time all the other E -components
perform a loop over their regions. However, including this kind of compositions775

would make the definitions and proofs much more complex and with many more
cases to be considered.

6.5. Example E-components composition

We now show how the E -components we defined in Subsec. 6.2 can be com-
bined to conclude the existence of a fair path in the fair transition system Ex780

defined in Sec. 4.
We first compute a E -component Hf0,f1 as Hf0 ⊗ Hf1 . Hf0 and Hf1

have no assumptions and all ranking functions are always equal to their
minimal element. Therefore, all transitions are compatible and the result
of the composition is the synchronous product of the two E -components.785

27

Rf0,f1
0

¬f0 ∧ ¬f1

Rf0,f1
1

f0 ∧ ¬f1

Rf0,f1
3

¬f0 ∧ f1

Rf0,f1
2

f0 ∧ f1

Figure 10:
E -component responsible for {f0, f1}.

Fig. 10 depicts the resulting
E -component Hf0,f1 . Hf0,f1 has
four regions, one for each of the
possible truth assignments of the two
Boolean symbols f0 and f1 and it790

allows all 16 possible transitions and
self-loops over them.

We now compute Hx,y responsible
for x and y as the composition of Hx

and Hy; the E -component is depicted795

in Fig. 11. The assumption of Hx re-

x′ = x+ 1
y′ = y

x′ = x
y′ = y

Rx,y
0

x ≥ 1
y = −1

x′ = x+ 1
y′ = y

x′ = x
y′ = y

Rx,y
1

x ≥ 1
y = 1

x′ = x+ 1 ∧ y′ = −y

x′ = x ∧ y′ = −y

x′ = x ∧ y′ = −y

x′ = x+ 1 ∧ y′ = −y

Figure 11: E -component responsible for {x, y}.

quires y ≤ 1 and both assumptions of Hy require x ≥ 1. Therefore, it can
be easily seen that Hx will always meet the assumptions required by Hy and
vice-versa also Hy meets the assumption of Hx. Since the two E -components
do not have any assumptions on the other symbols, the resulting E -component800

Hx,y has no assumptions. Hx,y has two regions, obtained by the conjunction
of the two regions of Hy with the only region of Hx. The transition relation
of Hx,y is given by the conjunction of the transition relations of Hx and Hy.
Both regions of the E -component admit stutter transitions of two kinds: one in
which both variables x and y remain constant, and one in which y is constant805

and x increases by one. Notice that the ranking functions of the regions are
always constant and equal to the minimal element. Therefore, the transitions
satisfy indepRank because its definition (Def. 6) is an implication in which the
left-hand-side requires at least one ranking function to decrease. Finally, Hx,y

also admits progress transitions from one region to the other of two kinds: in810

both cases the value of y changes its sign, while in one case x remains constant
and in the other it increments by one.

Finally, we compute H=̇Hpc ⊗ Hx,y ⊗ Hf0,f1 . None of the E -components
has assumptions and all their ranking functions are always equal to the minimal
element. For this reason, all transitions are compatible and have independent
ranks. Therefore, the transition relation of H is the conjunction of the transition
relations of the 3 E -components. H has 24 regions, given by the product of the 3
regions of Hpc, 2 of Hx,y and 4 of Hf0,f1 . The regions represent all the different

28

configurations that can be reached by employing compatible transitions of our
E -components Hpc, Hf0 , Hf1 , Hx and Hy. Recall that our objective is to
identify fair paths for the fair transition system Ex defined in Sec. 4. Not all
transitions of H are also transition of Ex . For example, H admits a transition
that increases the value of x from states where pc = 3, while this is not possible
in Ex . However, using the projection operator we can restrict H by considering
a subset of its regions. In particular, we are interested in the sequence of regions
that would allow us to obtain a representation of at least one fair path for Ex .
We select 6 regions and depict the projection of H over such regions in Fig. 12.
We call this projection H↓. In particular we consider the following regions:

R0 =̇ f0 ∧ f1 ∧ y = 1 ∧ x ≥ 1 ∧ pc = 3,

R1 =̇ ¬f0 ∧ ¬f1 ∧ y = 1 ∧ x ≥ 1 ∧ pc = 4,

R2 =̇ f0 ∧ ¬f1 ∧ y = −1 ∧ x ≥ 1 ∧ pc = 5,

R3 =̇ f0 ∧ f1 ∧ y = −1 ∧ x ≥ 1 ∧ pc = 3,

R4 =̇ ¬f0 ∧ ¬f1 ∧ y = −1 ∧ x ≥ 1 ∧ pc = 4,

R5 =̇ ¬f0 ∧ f1 ∧ y = 1 ∧ x ≥ 1 ∧ pc = 5.

Notice that the 6 regions underapproximate those that we have already consid-
ered in the funnel-loop described in §5.3. In particular, for every i ∈ {0, . . . , 5}
Ri underapproximates Si. In fact, there is correspondence between the paths815

of H↓ and those of the funnel-loop. Therefore, H↓ proves the existence of a
fair path in the language of the fair transition system Ex and we reached our
goal. In the following we formalise this relationship between E -components and
funnel-loops. Th. 6 details the conditions under which an E -component implies
the existence of a funnel-loop proving the non-emptiness of the language of a820

R0

pc = 3

f0 ∧ f1
x ≥ 1

y = 1

x′ = x

y′ = y

R1

pc = 4

¬f0 ∧ ¬f1
x ≥ 1

y = 1

x′ = x

y′ = −y

R2

pc = 5

f0 ∧ ¬f1
x ≥ 1

y = −1

x′ = x+ 1

y′ = y

R3

pc = 3

f0 ∧ f1
x ≥ 1

y = −1

x′ = x

y′ = y

R4

pc = 4

¬f0 ∧ ¬f1
x ≥ 1

y = −1

x′ = x

y′ = −y

R5

pc = 5

¬f0 ∧ f1
x ≥ 1

y = 1

x′ = x+ 1

y′ = y

Figure 12: E -component responsible for all symbols.

29

fair transition system.

6.6. From E-components to funnel-loops

We now provide a sequence of sufficient conditions for an E -component
H=̇〈V, I, T 〉 over regions R, assumptions A and ranking functions W to de-
scribe a funnel-loop.825

Theorem 6. Let M be a given fair transition system M=̇〈V, IM , TM , FM 〉.
The existence of an E-component H=̇〈V, I, T 〉 responsible for all symbols V
over regions R and ranking functions W of length m satisfying all the following
conditions, implies the existence of a funnel-loop for M , hence the existence of
at least one fair path in M .830

H.0 An initial state of H is reachable in M :

M I

H.1 The transition relation of H, restricted to the transitions that follow the
sequence of regions R, underapproximates the transition relation of M :

∀j, V, V ′ : Rj ∧ T ∧ ((Rf′j < Rf ∧R′j) ∨ (Rfj = 0 ∧R′(j+1)%m))→ TM

H.2 From the last region in R, H can only reach fair states.

∀V, V ′ : Rm−1 ∧Rfm−1 = 0 ∧ T ∧R′0 → FM ′

H.3 There must exist a transition from each Rj with Rfj = 0 to the following835

region R(j+1)%m:

∀j∃V, V ′ : 0 ≤ j < n− 1→ Rj ∧Rfj = 0 ∧ T ∧R′(j+1)%m

H.4 If a region has a non-trivial ranking function, then it must be possible to
decrease it:

∀j : 0 ≤ j < m→ (∀V : Rfj = 0) ∨ (∃V, V ′ : Rj ∧ T ∧R′j ∧Rf′j < Rf)

Proof. Since H is responsible for all symbols V , then all assumptions in A are
empty. We first define the funnel-loop floop corresponding to the E -component840

H and then prove that: all of its funnels meet the hypotheses of Def. 1, floop
is indeed a funnel-loop (Def. 2) and floop meets all the hypotheses of Th. 1.

Define floop as the concatenation of the funnels {fnlj}m−1j=0 . Each funnel
fnlj is the 4-tuple 〈Sj , Tj , Dj ,Rfj〉 such that:

� Sj=̇Rj for Rj ∈ R;845

� Tj=̇T ∧ ((Rf′j < Rfj ∧R′j) ∨ (Rfj = 0 ∧R′(j+1)%m));

� Dj=̇∃V ′ : Rj ∧Rfj = 0 ∧ T ∧R′(j+1)%m;

30

� Rfj ∈ W.

We show that each fnlj is a funnel (Def. 1).

F.1 Tj is left-total with respect to Sj because T always allows for at least one850

successor that is either in the same region with decreasing ranking function
or in the following region. H is an E -component, hence it satisfies Hyp. II
and Hyp. IV. Hypotheses H.4 and H.3 ensure that at least one transition
of both kinds exists in H. Therefore, from every state in Sj with 0 < Rfj
there exists a successor in the same region with Rf′j < Rfj and from every855

state in Sj with Rfj = 0, T admits a successor in S(j+1)%m.

F.2 holds by construction of Tj ; 0 < Rfj implies that the second component
of the disjunction in Tj is false and Tj becomes equivalent to T ∧Rf′j <
Rfj ∧R′j which implies R′j .

F.3 holds by construction of Tj ; 0 < Rfj implies that the second component860

of the disjunction in Tj is false and Tj becomes equivalent to T ∧Rf′j <

Rfj ∧R′j which implies Rf′j < Rfj .

F.4 holds by construction of Di: we defined it as the existential image of
Rj ∧Rfj = 0 with respect to T ∧R′(j+1)%m.

We now show that floop is a funnel-loop (Def. 2).865

FL.1, FL.2 By construction each Tj , from a state in Rj ∧Rfj = 0 with j < m
can only reach states that are in R(j+1)%m. Therefore, by construction of
Dj both Hyp. FL.1 (for j < m− 1 and Hyp. FL.2 (for j = m− 1) hold.

Finally, we show that floop meets all hypotheses of Th. 1.

FF.1 Hyp. I ensures that the initial states of H underapproximate the union of870

its regions. Hyp. H.0 ensures that there exist a reachable initial state in
H. Therefore, there is a reachable state in the union of the regions and
Hyp. FF.1 holds.

FF.2 Dm−1 is defined as the existential image of Rm−1 ∧ Rfm−1 = 0 with
respect to T ∧ R′0. Hyp. H.2 ensures that all such states are also fair,875

hence Hyp. FF.2 holds.

FF.3 By construction each Sj∧Tj underapproximates T . Hyp. H.1 ensures that
T underapproximates TM . Therefore each Sj∧Tj underapproximates TM .

�

7. Search procedure880

This section describes the procedure for the synthesis of a funnel-loop. Given
a fair transition system M and a set of E -components H, the procedure tries to
find, in a fully automated manner, a funnel-loop fnl loop for M and a finite path

31

of M ending in a region of fnl loop. H is a possibly empty set of E -components
provided by the user to guide the search. For this reason we will refer to them885

as hints. The procedure selects a possibly empty subset of hints and uses them
as building blocks to define the funnel-loop while synthesising the missing com-
ponents. When the set of hints is empty the procedure identifies a funnel-loop
for a fair transition system without relying on any additional information. In
the following, we call trivial hint the E -component H=̇〈V,>,>〉 responsible for890

no symbols (V H=̇∅) such that all its regions and assumptions are the constant
> and all its ranking functions are always 0.

Algorithm 1 search-funnel-loop(M , H)

. Iterate over candidate loops of increasing length.
1: for 〈prefix , loop r , loop t , H〉 ∈ generate-candidate-loops(M,H) do
2: v0 ← prefix [len(prefix)− 1] . Witness for reachability, Hyp. FF.1.

. Iterate over funnel-loop templates for current candidate loop.
3: for template ∈ generate-templates(v0, loop r , loop t , H) do
4: ef constrs ← template.ef constraints() . Get ∃∀ problem.
5: 〈found ,model〉 ← seach-parameter-assignment(ef constrs)
6: if found == > then . Replace parameters with assignment.
7: fnl loop ← template.instantiate(model)
8: return 〈prefix , fnl loop〉 . Reachability witness and funnel-loop.
9: end if

10: end for
11: end for
12: return unknown

Alg. 1 describes the main steps of the procedure. We reduce the synthesis
problem to a sequence of SMT queries. In order to reduce the search space,
given a E -component H we only look for funnel-loops obtained by deterministic895

completions of H; we strengthen the transition relation of H by adding deter-
ministic assignments to the symbols for which H is not responsible. More in
detail, Alg. 1 enumerates candidate conjunctive fair loops of the fair transition
system and compositions of E -components that admit such loop (line 1). If
generate-candidate-loops selects no hints or H is empty the returned H is900

the trivial hint. For each candidate loop, the procedure generates a sequence
of parameterised funnel-loops, called funnel-loop templates, as a strengthening
of the corresponding E -component (line 3). The predicates of a funnel-loop
template are over the symbols of the system M and a set of parameters P . The
procedure searches an assignment to the parameters such that all the hypothe-905

ses of Defs. 1 and 2 and of Th. 1 hold. At line 4 the procedure obtains the
∃∀-quantified problem associated with the funnel-loop template and then, at
line 5 tries to solve it. Finally, at line 7, it replaces the parameters with the as-
signment identified at the previous step, thus obtaining the desired funnel-loop.

The procedure relies on ranking functions to perform two different tasks.910

Alg. 2 tries to synthesise ranking functions to avoid considering candidate loops

32

for which we know a ranking function exists. The existence of the ranking
function proves that the loop must eventually terminate, hence it cannot cor-
respond to an infinite path. Then, ranking function templates are also used as
components for the funnels of the funnel-loop template generated by Alg. 3.915

Before going into the details of the procedure, we first show its application
to our running example. We then describe how we represent and enumerate
candidate loops and compositions of E -components for the transition system M .
After that, we detail how a funnel-loop template is generated from a candidate
loop and E -component. Finally, we report the synthesis problem associated920

with a funnel-loop template.

7.1. Example funnel-loop search

We first recall the definition of the fair transition system Ex we introduced
in Sec. 4. Let V =̇{x, y, pc, f0, f1} be a set of symbols such that pc and x are
integer variables, y has real type and f0 and f1 are two Boolean symbols. Then,
the fair transition system is Ex =̇〈V, I, T, F 〉, where:

I =̇ pc = 3;

F =̇ f0 ∧ f1;

T =̇ (pc = 3→ (x2 ≥ xy ∧ pc′ = 4 ∧ x′ = x ∧ y′ = y)) ∧
(pc = 4→ (pc′ = 5 ∧ x′ = x)) ∧
(pc = 5→ (pc′ = 3 ∧ x′ = x+ 1 ∧ y′ = y)) ∧
((f0 ∧ f1)→ (¬f ′0 ∧ ¬f ′1)) ∧
(f ′0 → (f0 ∨ y > 0)) ∧ (f ′1 → (f1 ∨ y < 0)).

In addition, we assume no hints were provided, i.e. H=̇∅. Let Ex and H
be the inputs of our procedure. Alg. 1 at line 1 iterates over the candidate
loops generated from Ex and H. 〈v0, loop r , loop t , H〉. loop r and loop t are
sequences of predicates over V and V ∪ V ′ respectively. The two sequences,
together with H, describe the abstract loop. Instead, v0 is a state in the first
region of loop r reachable in Ex . Therefore, it is the last state of a finite
path prefix of Ex that starts its initial states and ends in v0. We compute
〈v0, loop r , loop t , H〉 by employing a liveness-to-safety [8] transformation of
Ex where the loop-back is identified in an abstract state. We then employ an
unrolling of the transition relation in the style of Bounded Model Checking
(BMC) [15] to enumerate concrete paths of Ex with such abstract loop-back.
The stem of this concrete path corresponds to our prefix . loop r and loop t
are obtained from the loop of the concrete path by computing an implicant for
the unrolling of the transition relation of Ex . We then partition the predicates
in the implicant depending on their index in the unrolling and whether they
contain only current (loop r) or both current and next-state variables (loop t).
Assume we are considering a BMC unrolling of 6 transitions of Ex and obtain

33

the following path:

0 : f0 ∧ f1 ∧ pc = 3 ∧ x = 1 ∧ y = 1;

1 : ¬f0 ∧ ¬f1 ∧ pc = 4 ∧ x = 1 ∧ y = 1;

2 : f0 ∧ ¬f1 ∧ pc = 5 ∧ x = 1 ∧ y = −1;

3 : f0 ∧ f1 ∧ pc = 3 ∧ x = 2 ∧ y = −1;

4 : ¬f0 ∧ ¬f1 ∧ pc = 4 ∧ x = 2 ∧ y = −1;

5 : ¬f0 ∧ f1 ∧ pc = 5 ∧ x = 2 ∧ y = 2;

6 : f0 ∧ f1 ∧ pc = 3 ∧ x = 3 ∧ y = 2;

where the states with indexes 0 and 6 correspond to the same state in the
abstract space defined by the predicates appearing in Ex . We use this path to
compute an implicant for the formula F (V0) ∧

∧5
i=0 T (Vi, Vi+1). The implicant925

is a conjunction of a subset of the atoms appearing in the formula such that it
implies the formula itself. In addition, the path is a satisfying assignment also
for the implicant. Each predicate in the unrolling depends either on a single
Vi or on Vi ∪ Vi+1 for some i, hence the same holds for the predicates in the
implicant. We partition the atoms of the implicant such that the predicates930

that depend only on Vi are in loop r [i%6] and those that depend on Vi ∪ Vi+1

are placed in loop t [i]. The first and last state correspond to the same abstract
region, hence their predicates are placed together into loop r [0].

The computation above allows us to obtain the following. Since H is empty
H is the trivial hint. The prefix contains a single state: prefix =̇ [f0 ∧ f1 ∧ pc =
3∧ x = 1∧ y = 1], loop r and loop t have length 6 and each loop r [i]∧ loop t [i]
underapproximates the transition relation T .

0 :

1 :

2 :

3 :

4 :

5 :

loop r =̇ [

f0 ∧ f1 ∧ pc = 3 ∧ x2 ≥ xy,
¬f0 ∧ ¬f1 ∧ pc = 4 ∧ y > 0,

f0 ∧ ¬f1 ∧ pc = 5 ∧ y < 0,

f0 ∧ f1 ∧ pc = 3 ∧ x2 ≥ xy,
¬f0 ∧ ¬f1 ∧ pc = 4 ∧ y < 0,

¬f0 ∧ f1 ∧ pc = 5 ∧ y > 0]

loop t =̇ [

¬f ′0 ∧ ¬f ′1 ∧ pc′ = 4 ∧ x′ = x ∧ y′ = y,

f ′0 ∧ ¬f ′1 ∧ pc′ = 5 ∧ x′ = x,

f ′0 ∧ f ′1 ∧ pc′ = 3 ∧ x′ = x+ 1 ∧ y′ = y,

¬f ′0 ∧ ¬f ′1 ∧ pc′ = 4 ∧ x′ = x ∧ y′ = y,

¬f ′0 ∧ f ′1 ∧ pc′ = 5 ∧ x′ = x,

f ′0 ∧ f ′1 ∧ pc′ = 3 ∧ x′ = x+ 1 ∧ y′ = y]

We now search for a funnel-loop as a strengthening of this candidate loop.
Notice that the candidate loop by itself is not sufficient. In fact, loop t [1] does
not constrain the next assignment of y′, hence it does not guarantee that y < 0
holds in the next state as required by loop r [2]. Before building the funnel-loop
template, we can perform some simplifications on the candidate loop to reduce
the number of parameters introduced by the template and ease the presentation.
First of all, notice that every step i in loop t assigns to the variables f0, f1 and
pc a constant value that corresponds to the one required by loop r [(i + 1)%6].
Therefore, for brevity, we will omit such constraints from the formulae in loop t
and focus our presentation on x and y. Moreover, many steps in loop t require

34

x or y to remain constant. Consider a step t=̇loop t [i] that requires y to be
constant. We need t to map states in rs=̇loop r [i] into rd=̇loop r [(i + 1)%6].
Therefore, if rd requires y to be positive (y > 0), then the same must hold in
rs and vice-versa. We can exploit identity relations in loop t to symbolically
propagate constraints in loop r . By employing these transformations we obtain
the following:

0 :

1 :

2 :

3 :

4 :

5 :

loop r =̇ [

f0 ∧ f1 ∧ pc = 3 ∧ x2 ≥ xy ∧ y > 0,

¬f0 ∧ ¬f1 ∧ pc = 4 ∧ y > 0,

f0 ∧ ¬f1 ∧ pc = 5 ∧ y < 0,

f0 ∧ f1 ∧ pc = 3 ∧ x2 ≥ xy ∧ y < 0,

¬f0 ∧ ¬f1 ∧ pc = 4 ∧ y < 0,

¬f0 ∧ f1 ∧ pc = 5 ∧ y > 0]

loop t =̇ [

x′ = x ∧ y′ = y,

x′ = x,

x′ = x+ 1 ∧ y′ = y,

x′ = x ∧ y′ = y,

x′ = x,

x′ = x+ 1 ∧ y′ = y]

We now define a funnel-loop template of length 6 that can be generated by the
procedure at line 3. For i ∈ {0, . . . , 5}, we define the ith funnel of the template935

as a strengthening of loop r [i] and loop t [i]. In the template we use symbols
from the set P =̇{pi|i ∈ N}, disjoint from V , as parameters. The parameters
are variables for which we need to find an assignment such that the template
corresponds to an actual funnel-loop. Notice that the steps in loop t already
prescribe functional assignments for all variables but for y at steps 1 and 4. For940

this reason, we introduce 2 parametric affine expressions to underapproximate
the assignment to y′. In addition, we introduce parametric affine inequalities
over x and y to strengthen the elements of loop r. Also in this case we reduce
the number of parameters we need to introduce by exploiting the functional
assignments of loop t. For i ∈ {0, 1 . . . , 5}, let fnli=̇〈srci, ti,0, dsti〉 be the ith945

funnel of the template. We define each destination region dsti as the set of
states reachable from the previous source region when the ranking function is
equal to the minimal element. Since we defined every ranking function to be
always equal to the minimal element, we define each destination region as:

dsti=̇∃V : srci(V, P) ∧ ti(V, V ′, P).

We define the source regions and transition relations as follows.

src0 =̇ loop r [0] ∧ p6x+ p7y + p8 ≥ 0,

src1 =̇ loop r [1] ∧ p6x+ p7y + p8 ≥ 0,

src2 =̇ loop r [2] ∧ p9x+ p10y + p11 + p9 ≥ 0,

src3 =̇ loop r [3] ∧ p9x+ p10y + p11 ≥ 0,

src4 =̇ loop r [4] ∧ p9x+ p10y + p11 ≥ 0,

src5 =̇ loop r [5] ∧ p6x+ p7y + p8 + p6 ≥ 0;

t0 =̇ loop t [0],

t1 =̇ loop t [1] ∧ y′ = p0x+ p1y + p2,

t2 =̇ loop t [2],

t3 =̇ loop t [3],

t4 =̇ loop t [4] ∧ y′ = p3x+ p4y + p5,

t5 =̇ loop t [5].

We introduced two parametric inequalities: p6x + p7y + p8 ≥ 0 at index 1 and950

p9x+p10y+p11 ≥ 0 at index 4. Then, we propagated the inequalities backward

35

exploiting the assignments to x and y of loop t . In particular, in loop t [0] and
loop t [3] both x and y must remain constant. In loop t [2] and loop t [5], instead,
y remains constant and x increases by 1. Therefore, p9x + p10y + p11 ≥ 0 in
src3 implies that p9x + p10y + p11 + p9 ≥ 0 must hold in src2 and similarly955

p6x+ p7y + p8 ≥ 0 in src0 implies p6x+ p7y + p8 + p6 ≥ 0 at src5. We remark
that exploiting the equalities in the transition relations is an optimisation we
employ to reduce the number of parameters and has no effect on the correctness
of the approach.

Now, we need to identify an assignment to the parameters p0, . . . , p11 such960

that the funnel-loop template satisfies all hypotheses of Def. 1, Def. 2 and Th. 1.
The procedure generates this synthesis problem at line 4 and it searches for
a solution (assignment to the parameters) at line 5. The synthesis problem
requires the funnel-loop to be reachable in Ex (FF.1), hence also not empty.
We ensure this by requiring the first region of the funnel-loop to contain the965

last state of the prefix, hence the state f0, f1, pc = 3, x = 1, y = 1 must be in
src0. Then, the funnel-loop must never encounter a deadlock (F.1). This is
true by construction of the transition relations of the funnels, because every ti
is left-total for every assignment to the parameters. We need the funnels to be
correctly chained (FL.1, FL.2) and to underapproximate the transition relation970

T of Ex (FF.3). We defined the destination regions as the set of states reachable
from the source region in one step. Therefore, we require the following to hold:

∃P∀V : srci(V, P) ∧ ti(V, V ′, P)→ src(i+1)%6(V ′, P) ∧ T (V, V ′)

Finally, every state in src0 is a fair state, hence every path through the funnel-
loop template is a fair path of Ex (FF.2).

The following assignment to the parameters satisfies all these requirements:
p0 = 0, p1 = −1, p2 = 0, p3 = 0, p4 = −1, p5 = 0, p6 = 1, p7 = −1, p8 = 0, p9 =
1, p10 = 1, p11 = 0. We can substitute these values in the funnel-loop template
and obtain the following funnel-loop.

src0 =̇ loop r [0] ∧ x ≥ y,
src1 =̇ loop r [1] ∧ x ≥ y,
src2 =̇ loop r [2] ∧ x ≥ −y,
src3 =̇ loop r [3] ∧ x ≥ −y,
src4 =̇ loop r [4] ∧ x ≥ −y,
src5 =̇ loop r [5] ∧ x ≥ y;

t0 =̇ loop t [0],

t1 =̇ loop t [1] ∧ y′ = −y,
t2 =̇ loop t [2],

t3 =̇ loop t [3],

t4 =̇ loop t [4] ∧ y′ = −y,
t5 =̇ loop t [5].

Notice that in this process the parametric expressions allowed us to identify975

an underapproximation of the transition relation of Ex that toggles the sign
of y instead of allowing any possible assignment. In addition, the parametric
inequalities restricted the regions we obtained from the candidate loop to only
the states in which x ≥ |y|, hence ensuring that the loop condition x2 ≥ xy of
our example holds. In fact, x2 ≥ xy is redundant in src0 and src3; it is implied980

by x ≥ y ∧ y > 0 in the first region and by x ≥ −y ∧ y < 0 in the second one.
Therefore, this funnel-loop is equivalent to the one we defined in §5.3.

36

7.2. Candidate fair loops: representation and enumeration

We identify lasso-shaped paths in the abstract space built by the assignments
to a finite set of predicates: two states that agree on the truth assignment for985

all such predicates correspond to the same abstract state. We then represent
the fair loop as a sequence of transitions and regions (sets of states) that un-
derapproximate the transition relation of M .

Given a fair transition system M=̇〈V, IM , TM , FM 〉 we describe a can-
didate fair loop of length n for M , associated with an E -component
H=̇〈V, IH , TH〉 over regions R=̇[Ri]

n−1
i=0 , assumptions A=̇[Ai]

n−1
i=0 , ranking func-

tions Rf=̇[Rfi]
n−1
i=0 and responsible for symbols V H ⊆ V , as a sequence of re-

gions loop r=̇[loop r i(V)]n−1i=0 , transitions loop t=̇[loop t i(V, V
6=H ′)]n−2i=0 and an

initial state v0, where V 6=H=̇V \ V H . Such that: (i) v0 |= loop r0 ∧ IH , (ii)
v0 is reachable in M , (iii) the conjunction of a loop r i and the corresponding
restricted region Ri ∧Ai underapproximates the fair states

∃i∀V : loop r i ∧Ri ∧Ai → FM ,

and (iv) for each step, the conjunction of loop t i and the transition relation TH

of H is an implicant for a transition in M

∀i, V, V ′ : (loop r i ∧Ri ∧Ai ∧ loop t i ∧ TH∧
((0 < Rfi ∧R′i) ∨ (Rfi = 0 ∧R′i+i)))→ TM .

Without loss of generality, and to simplify the presentation, we assume the
fair region to be the first one. The structure of a candidate loop resembles a990

funnel-loop. However, candidate loops are not guaranteed to satisfy all required
hypotheses. In particular, the transitions loop t i ∧ TH could admit deadlocks
(Hyp. F.1) and they are not guaranteed to map every state in the previous region
into some state in the following one (Hypotheses FL.1 and FL.2). In addition,
H may not provide all the required ranking functions. For this reason, in order995

to identify a funnel-loop, we look for a strengthening of the candidate loop that
also satisfies these conditions.

The enumeration of candidate loops and compositions is performed by Alg. 2.
The procedure is based on Bounded Model Checking (BMC) [15], for the enu-
meration of candidate paths, and on the computation of an underapproximation1000

of M for each path. The function encode-l2s-fair-abstract-loop (line 1)
encodes the search for a fair lasso-shaped path in the intersection of M and the
composition of a subset of H into a reachability problem given by 〈V, I, T, bad〉.
The problem requires us to identify paths over the variables V , starting in I(V)
and following the steps given by T (V, V ′) that end in some state in bad(V). We1005

obtain this encoding via a liveness-to-safety [8] construction that transforms the
problem of identifying an abstract lasso into a reachability problem. The loop-
back state is identified in the abstract space defined by the predicates in the
E -components and in the transition relation and fairness condition of M . The
last state and the loop-back state of the abstract lasso must agree on the truth1010

37

Algorithm 2 generate-candidate-loops(M , H)

. L2S encoding into reachability problem and E -component selection.
1: 〈V, I, T, bad〉 ← encode-l2s-fair-abstract-loop(M,H)
2: for k ∈ [0, 1, 2, . . .] do . BMC unrolling: k steps.

3: query ← I(V0) ∧
∧k−1

i=0 T (Vi, Vi+1) ∧ bad(Vk) . BMC reachability.
4: 〈sat ,model〉 ← smt-solve(query) . Find first path of length k.
5: refs ← [] . Keep track of visited paths of length k.
6: while sat do . Generate all candidates from paths of same length.
7: H ← get-candidate-composition(model) . Path selects hints.
8: 〈conflict〉 ← get-comp-error(H)
9: if conflict 6= ⊥ then . Learn incompatible transitions.

10: 〈V, I, T, bad〉 ← remove-conflict(V, I, T, bad , conflict)
11: else . H is valid E -component.
12: 〈loop r , loop t〉 ← underapproximate(model , query , H)
13: 〈is ranked , rf 〉 ← rank-loop(loop r , loop t , H)
14: if is ranked then . Learn ranking function.
15: 〈V, I, T, bad〉 ← remove-ranked-loops(V, I, T, bad , rf)
16: else . Unable to find ranking function, could be nonterminating.
17: prefix ← get-prefix(model) . Get stem of abstract lasso.
18: yield 〈prefix , loop r , loop t , H〉 . Coroutine returns triples.
19: refs.append(¬(

∧
r∈loop r r ∧

∧
t∈loop t t)) . Mark visited.

20: end if
21: end if
22: query ← I(V0) ∧

∧k−1
i=0 T (Vi, Vi+1) ∧ bad(Vk) ∧

∧
ref∈refs ref

23: 〈sat ,model〉 ← smt-solve(query) . Find next path of length k.
24: end while
25: end for

assignment of all such predicates, hence they may not be the very same assign-
ment. In the encoding, a set of fresh Boolean variables selects the E -components
to be considered, and the path must be such that at most one ranking function
decreases at a time. We then rely on a SMT-solver to identify fair lasso paths of
increasing length k (line 2), as done for the abstract liveness-to-safety algorithm1015

of [10]. The models of this BMC unrolling describe a path in the language of
both M and the composition of a subset of the E -components in H. If H is
empty or none of the hints is selected, get-candidate-composition (line 7)
returns the trivial hint H of length equal to the number of states in the ab-
stract lasso. Instead, if some hints are selected, H is given by their composition1020

projected over the ordered sequence of regions visited by the path. The se-
lected E -components might not be compatible, for this reason, after extracting
the candidate composition at line 7 from the BMC model, get-comp-error
(line 8) checks if each transition in the composition is compatible (the trivial hint
is trivally compatible). If this is not the case, a conflict predicate representing1025

the transitions that are not compatible is used by remove-conflict to refine

38

the reachability problem 〈V, I, T, bad〉 such that we avoid generating the same
conflict again. If H is a valid E -component the function underapproximate
(line 12) computes two sequences of n − 1 formulae: loop r=̇[loop r i(V)]n−2i=0

and loop t=̇[loop t i(V, V
′)]n−2i=0 such that each loop r i ∧ loop t i, together with1030

H, underapproximates the transition relation of M . The function computes an
implicant for the formula query such that the assignments of the lasso described
by model satisfy both formulae. We then partition, for each step i, the predi-
cates in the implicant into two sets. All predicates containing only symbols of
V at step i are in loop r i, while the predicates containing symbols from V ∪ V ′1035

at step i are in loop t i. Therefore, we split the predicates used to describe the
regions from the ones that constrain the transitions. We use loop r i and loop t i
as formulae meaning the conjunction of all the predicates in the set and they,
together with H, describe the candidate fair loop.

Then, at line 13, we try to synthesise a ranking function for such candidate1040

loop via the method rank-loop. In the literature there are many approaches
for the synthesis of ranking functions [16, 17, 18], here we simply assume we are
given a method that returns the representation of a ranking function rf proving
the termination of a candidate loop. If the procedure succeeds in identifying a
ranking function, the reachability problem 〈V, I, T, bad〉 is refined such that we1045

avoid enumerating other loops ranked by the same function, as described in [10].
This is achieved by calling remove-ranked-loops at line 15). Otherwise, at
line 17, get-prefix extracts from model the prefix of the loop; i.e. the path
of M ending in the the loop-back state. The prefix represents a witness for the
reachability of the first region of the candidate loop in M and the procedure1050

returns it together with the current candidate loop, at line 18. If no candi-
date loop of length k exists, we clear the list of refinements and enumerate the
candidate loops of length k + 1.

Example. We now provide a brief example on the computation of the under-
approximation of M described by loop r and loop t . Assume the transition1055

relation of M is T =̇(a ≤ 1 → b′ > b) ∧ (a ≥ 2 → b′ < b), and the loop de-
scribed by model is given by the assignments a0 = 1, b0 = 0, a1 = 2, b1 = 1
and a2 = 0, b2 = 0. Three steps of M are represented by the formula
T (V0, V1)∧T (V1, V2). An implicant for such formula satisfied by model is given
by {a0 ≤ 1, b1 > b0, a1 ≥ 2, b2 < b1}. Such an implicant can be obtained,1060

for example, by applying the techniques presented in [19, 20]. Finally, we par-
tition this set into loop r and loop t by defining their components as follows:
loop r0=̇a ≤ 1, loop t0=̇b′ > b, loop r1=̇a1 ≥ 2 and loop t1=̇b′ < b.

7.3. Funnel-loop templates

We call funnel-loop template a candidate funnel-loop whose predicates con-1065

tain symbols of both V and a set of parameters P (P and V are disjoint).
For each candidate fair loop we generate a sequence of such templates and
try to identify an assignment to the symbols P such that by replacing them
with the identified values we obtain a funnel-loop satisfying all the required
hypotheses. In the following, the function called new-param-expr generates1070

39

expressions over the symbols V and the parameters P , e.g. affine linear func-

tions p0 +
∑|V |

i=1 pivi, where |V | is the number of symbols in V and for all i,
pi ∈ P and vi ∈ V . The function introduces as many parameters as necessary
to generate the required expressions.

Algorithm 3 generate-templates(v0, loop r , loop t , H)

1: ineqs ← heuristic-pick-num-ineqs(loop r , loop t , H)
2: 〈V H , IH , TH ,R,A,Rf〉 ← H . Get components defining H.
3: for ineq ∈ ineqs do . Use ineq parametric inequalities in regions.
4: n← len(loop r) . Length of template + 1: loop-back region.
5: funnels ← [] . List of funnels for funnel-loop template.
6: for i ∈ [0..n− 2] do . Create ith funnel: 〈src, t, rf , dst〉.
7: src ← loop r [i] ∧R[i] ∧ A[i] ∧

∧ineq−1
j=0 new-param-expr(V) ≥ 0

8: if ∃V : 0 < Rf[i](V) then
9: rf ← Rf[i] . H defines ranking function.

10: else
11: rf ← new-param-expr(V) . Parametric ranking function.
12: end if
13: t← R[i] ∧ A[i] . Transition of H in ith region.
14: t← t ∧ TH ∧ ((0 < rf ∧R[i]′ ∧ rf ′ ≤ rf) ∨ (rf = 0 ∧R[i+ 1]′))
15: for vi+1 ∈ Vi+1 \ V H

i+1 do . Add functional assign for vi+1 in t
16: if vi+1 = f(Vi) ∈ loop t [i] for some function f then
17: t← t ∧ vi+1 = f(Vi) . Functional assignment in candidate.
18: else
19: t← t ∧ vi+1 = new-param-expr(Vi) . Create new expr.
20: end if
21: end for
22: P ← collect-parameters(src, rf , t) . Params in current funnel.
23: dst(V ′, P)← ∃V : src(V, P) ∧ rf (V, P) = 0 ∧ t(V, V ′, P)
24: funnels.append(Funnel(src, t, rf , dst))
25: end for
26: yield Funnel-loop(funnels,v0) . Coroutine returns templates.
27: end for

Alg. 3 shows the procedure we use to generate funnel-loop templates from a1075

candidate loop. We generate templates of the same length as the candidate loop.
Function heuristic-pick-num-ineqs (line 1) selects a list of natural numbers
to be used to generate the funnel-loop templates. Each number corresponds
to the amount of parametric inequalities added to each region of the candidate
loop to define the corresponding source region of a funnel template (line 7).1080

The higher the number the more freedom will the template have in shrinking
the regions, but in the search problem we will have more parameters and a
larger space to explore. Notice that, since the first region of the candidate
loop is fair by construction, then the last destination region in the funnel-loop
template will be fair and Hyp. FF.2 holds. We create the ith funnel of the funnel-1085

40

loop template (lines 6–25) as a restriction of the conjunction of the ith region
and transition of the candidate loop. In addition, the only nondeterministic
component in t is given by the transition relation of H. All other components
of the transition relation t of the funnel are a deterministic functional assignment
as follows. Let V H be the symbols for which H is responsible. For each symbol1090

vi+1 ∈ Vi+1 \ V H
i+1, if loop t i already contains a functional assignment for vi+1,

then we use that (line 17). Otherwise, we generate a functional assignment for
vi+1 as a parametric expression over the symbols in Vi (line 19). The resulting
transition relation is total and Hyp. F.1 holds. We define the destination region
of a funnel implicitly as the set of states reachable in one step from S ∧Rf = 01095

(line 23), hence Hyp. F.4 holds by construction. Finally, the procedure returns
the funnel-loop template associated with the list of parametric funnels and initial
state v0. We will ensure that v0 is in the first source region of the funnel-loop.
Therefore, since v0 is reachable in M , Hyp. FF.1 holds.

Example. We now provide an example to illustrate how a funnel is generated in1100

the lines from 7 to 24. In this example we assume the following: V =̇{a, b, c} is a
set of real-valued symbols; new-param-expr generates affine linear expressions
over V and a set of parameters P =̇{pi}i∈N; we are constructing a funnel-loop
template adding a single predicate to shrink the region (ineq = 1); loop r [i]=̇b <
c; loop t [i]=̇c′ = c ∧ b′ > b + a ∧ b′ > c and the hint H responsible for {a} has1105

the following components: R[i]=̇a > 0, R[i + 1]=̇a > 0, A[i]=̇>, Rf[i]=̇0 and
TH=̇a′ > a.

For simplicity, we defined P as an infinite set. However, in this example we
will use 12 parameters {pi}11i=0; we will introduce 3 affine parametric expressions
each of which requires 4 parameters. The first expression represents an addi-1110

tional inequality for the region, the second one is used to represent the ranking
function, and the last one corresponds to the functional assignment of b′ in the
transition relation.

Line 7 defines the source region src of the funnel as the conjunction of the
loop r [i], the restricted region of H and, since ineq = 1 it introduces a single1115

parametric predicate: p0 + p1a+ p2b+ p3c ≥ 0.

src(V, P) =̇ b < c ∧ a > 0 ∧ p0 + p1a+ p2b+ p3c ≥ 0.

The condition at line 8 is false since the ranking function provided by H is
always equal to 0. The procedure then executes line 11, which introduces a new
parametric expression to represent the ranking function:

rf (V, P) =̇ p4 + p5a+ p6b+ p7c.

We implicitly consider the function equal to the minimal element 0 if rf (V, P) ≤
0. Then, line 14 initialises t from the transition relation of H as:

t =̇ a > 0 ∧ a′ > a ∧ ((rf (V, P) ≤ 0 ∧ a′ > 0) ∨
(0 < rf (V, P) ∧ a′ > 0 ∧ rf (V ′, P) ≤ rf (V, P))).

41

The loop starting at line 15 iterates over the symbols in {b, c}. Consider first the
symbol c, in loop t [i] we find the equality c′ = c, hence the condition at line 16
holds and the equality is added to t as a conjunct. Consider now the symbol
b, loop t [i] prescribes no equality for b′, hence a new parametric expression is
introduced and added to t at line 19, let such equality be b′ = p8 + p9a+ p10b+
p11c. Therefore, the final t is as follows:

t =̇ a > 0 ∧ a′ > a ∧ ((0 < rf (V, P) ∧ a′ > 0 ∧ rf (V ′, P) ≤ rf (V, P))∨
(rf (V, P) ≤ 0 ∧ a′ > 0)) ∧ c′ = c ∧ b′ = p8 + p9a+ p10b+ p11c.

Finally, dst is defined as the set of states that admit a predecessor through t in
src with rf = 0:

dst(a′, b′, c′, P) =̇ ∃a, b, c : src(a, b, c, P) ∧ rf (a, b, c, P) ≤ 0 ∧ t(a, b, c, a′, b′, c′, P).

7.4. Funnel-loop synthesis problem1120

We now describe the ∃∀ quantified formula that corresponds to the synthesis
problem of a funnel-loop template. Alg. 1 computes this formula for every
funnel-loop template template via the method ef constraints at line 4. We
search for an assignment to the parameters P of the funnel-loop template such
that by replacing them with the identified values we obtain a funnel-loop that1125

satisfies all hypotheses of Defs. 1, 2 and of Th. 1. In the hypotheses, for every
funnel fnl i=̇〈Si, Ti, Di,Rfi〉, we replace each destination region Di with the
quantified formula:

Di(V
′) =̇ ∃V : Si(V) ∧Rfi(V) = 0 ∧ Ti(V, V ′). (1)

Every instance of the funnel-loop template must contain a fair region since
loop r0 is a subset of the fair states and S0, by construction, underapproximates1130

loop r0. We ensure that Hyp. FF.1 holds by requiring that v0 is in the source
region of the first funnel fnl0 with the constraint:

∃P : S0(v0, P). (2)

Hyp. F.1 holds by construction, since the next region implies the assump-
tions required by the E -component. Therefore, the transition relation of the
E -component must always allow for a successor for all assignments to the V 6=H ′.
In addition, the other components of the transition relation of the funnel de-
scribe a functional assignment to the V 6=H ′ without any circular dependency.
Hyp. F.4 holds since we implicitly defined the destination region of each funnel
fnl i as the set of states reachable in one step from Si ∧ Rfi = 0. Then, we
ensure that every instantiation of every funnel template fnl i in the funnel-loop
template satisfies hypotheses F.2 and F.3 by requiring that the following hold:

∃P ∀V, V ′ : (Si(V, P) ∧ 0 < Rfi(V, P) ∧ Ti(V, V ′, P))→ Si(V
′, P); (3)

∃P ∀V, V ′ : (Si(V, P) ∧ 0 < Rfi(V, P) ∧ Ti(V, V ′, P))→ Rfi(V
′, P) < Rfi(V, P).

(4)

42

The funnels must be correctly chained for hypotheses FL.1 and FL.2 to hold.
Notice that in these formulae are implications whose left-hand-side is Di and we
bring the existential quantifier out in front of the formula as a universal quan-1135

tifier. For Hyp. FL.1 to hold we require every two consecutive funnel templates
fnl i and fnl i+1 in the funnel-loop template to satisfy the following:

∃P ∀V, V ′ : (Si(V, P) ∧Rfi(V, P) = 0 ∧ Ti(V, V ′, P))→ Si+1(V ′, P). (5)

Similarly, considering the first and last funnels fnl0 and fnln−1, for Hyp. FL.2
we require:

∃P ∀V, V ′ : (Sn−1(V, P)∧Rfn−1(V, P) = 0∧Tn−1(V, V ′, P))→ S0(V ′, P). (6)

This ensures that Dn−1 is a subset of S0. We have observed above that S01140

contains only fair states, hence FF.2 holds. Finally, we require each funnel-loop
instance to underapproximate M (Hyp. FF.3) by requiring the following to hold
for every funnel fnl:

∃P ∀V, V ′ : S(V, P) ∧ T (V, V ′, P)→ TM (V, V ′). (7)

The final synthesis problem is then given by the conjunction of all the con-
straints (1)–(7). A solution for this problem is a model that assigns a value to1145

each symbol in P such that the formulae hold for all possible assignments to the
symbols in V ∪V ′. From one such model we can generate a concrete funnel-loop
by substituting the parameters P with their assignment.

8. Related work

Most of the literature in verification of temporal properties of infinite-state1150

transition systems, hybrid automata and termination analysis focuses on the
universal case, while the existential one has received relatively little attention.

Most closely related are the works concerned with proving program non-
termination. The works [21] and [4] are based on the notion of closed recurrence
set, that corresponds to proving the non-termination of a relation. Instead, the1155

works [22] and [23] search for non-terminating executions via a sequence of
safety queries. Other approaches look for specific classes of programs ([24] and
[25] prove the decidability of termination for linear loops over the integers), or
specific non-termination arguments (in [26] non-termination is seen as the sum
of geometric series). However, none of these works deals with fairness and they1160

rely on the existence of a control flow graph, whereas we work at the level of
transition system.

The work [27] reduces the verification of the universal fragment of CTL on
a infinite-state transition system to the problem of deciding whether a program
always returns true. The approach can be applied also on LTL properties by1165

relying on a reduction based on prophecy variables and it relies on some off-the-
shelf tool for the analysis of the program. Therefore, its capability of proving

43

or identifying a counterexample for some property depends on the ones of the
considered underlying tool.

The work [28] explicitly deals with fairness for infinite-state programs and1170

supports full CTL*; it is able to deal with existential properties and to provide
fair paths as witnesses. The approach focuses on programs manipulating integer
variables, with an explicit control-flow graph, rather than more general symbolic
transition systems expressed over different theories (including real arithmetic).
Another approach supporting full CTL* is proposed in [29]. The work presents1175

a model checking algorithm for the verification of CTL* on finite-state systems
and a deductive proof system for CTL* on infinite-state systems. In the first
case the authors reduce the verification of CTL* properties to the verification of
properties without temporal operators and a single fair path quantifier in front
of the formula. To the best of our knowledge there is no generalisation of this1180

algorithm, first reported in [30] and then also in [31], to the infinite state setting.
The rules presented in the second case have been exploited in [32] to implement
a procedure for the verification of CTL properties, while our objective is the
falsification of LTL properties. Moreover, in these settings ([28], [29]) there is
no notion of non-zenoness.1185

The works on timed automata are less relevant: although the concrete sys-
tem may exhibit no lasso-shaped witnesses, due to the divergence of clocks,
the problem is decidable, and lasso-shaped counterexamples exist in finite bi-
simulating abstractions. This view is adopted, for example, in Uppaal [33].
Other tools directly search for non lasso-shaped counterexamples, but the pro-1190

posed techniques are specific for the setting of timed automata [34, 12] and lack
the generality of the method proposed in this paper.

Our approach can be applied also to hybrid systems. Most of the works in
this context are concerned with the verification of safety properties [35]. In-
stead, we deal with the falsification of general LTL, liveness properties. The1195

works [36] and [37] propose a general approach for the verification of LTL prop-
erties on such systems. However, they can only identify lasso-shaped counterex-
amples and lack the generality of the approach we present in this work. Other
approaches consider only particular types of liveness properties or impose ad-
ditional restrictions on the model. The technique presented in [38] considers1200

only stability properties and [39] falsifies properties under robustness assump-
tions, while [40] considers robust discrete time systems. In [41] the authors
propose a technique to falsify LTL properties via randomised search, however
it is restricted to safety LTL and does not consider Zeno paths.

Inductive Reachability Witness (IRW), defined in [14], is a structure roughly1205

equivalent to our definition of funnel. [14] proposes to identify a single IRW as a
witness for reachability queries in imperative programs over real variables: hence
as a compact representation of a finite path. Instead, we look for a sequence
of funnels, in the form of a funnel-loop, that represents an infinite path for an
infinite-state fair transition system.1210

Finally, the verification conditions we identify in this work for the search of a
funnel-loop can be expressed in the form of existentially-quantified constrained

44

Horn-like clauses (E-CHCs) [32].7 E-CHCs are an extensions of constrained
Horn clauses (CHCs) [42, 43, 44] with existential quantifiers. The two for-
malisms have been proposed as means to decouple the definition of verification1215

problems from the actual solving algorithm. This enables the separation of the
proof methodology from the procedures used to address the problem. Unfortu-
nately, we were not able to obtain any tool capable of identifying solutions to
E-CHCs, hence we could not investigate this direction any further.

9. Experimental Evaluation1220

This section first presents our implementation of the approach (9.1), then
describes the benchmarks we used (9.2) and briefly presents the other state-of-
the-art tools we considered (9.3), finally it reports the setup, the results and the
discussion of the experimental evaluation we performed (9.4).

9.1. Implementation1225

We have implemented these procedures in a prototype, called F38 (for Find-
FairFunnel), written in Python. F3 uses MathSAT5 [45] and Z3 [46] as un-
derlying SMT engines, interacting with them through pysmt [47]. SMT-solvers
sometimes take a very long time on a single query. For this reason we associate
a timeout to each call to SMT-solve. If the solver is unable to answer within1230

the given time F3 assumes unknown as result and continues. F3 takes as in-
put a transition system M , a fairness condition F and a possibly empty set of
E -components H, and tries to identify a funnel that proves that M admits at
least one path that visits F infinitely-often. We then employ the usual tableau
construction to support LTL specifications via reduction to the previous case.1235

In order to support timed systems, we use the product construction described
in [37] to remove all Zeno-paths of the model. F3 enumerates funnel templates
in increasing order of complexity. By default, F3 considers a minimum of 0 and
a maximum of 2 inequalities in the implementation of heuristic-pick-num-
ineqs of Alg. 3. F3 considers only simple ranking functions corresponding to the1240

PR-ranking template described in [16] which are simple affine linear functions.
Such ranking functions are used in the definition of the funnel templates and
when trying to identify a ranking function for a candidate abstract loop in Alg. 2.
In addition, we only synthesise predicates in the form of affine linear equalities
or inequalities; the implementation of the function new-parametric-expr in1245

F3 generates affine linear expressions. An important optimization is that F3
generates ranking function templates (line 11 of Alg. 3) only when it finds a pair
of abstract states that prescribe the same assignment to the Boolean variables
of M ; if the abstract states differ in their Boolean variables, rf is simply set

7Appendix A reports an encoding for the funnel-loop search problem in E-CHCs and proves
it to be both sound and complete.

8the tool and the benchmarks can be downloaded from https://github.com/
EnricoMagnago/F3

45

https://github.com/EnricoMagnago/F3
https://github.com/EnricoMagnago/F3

to the constant 0. This avoids the introduction of unnecessary parameters for1250

funnels which do not need an explicit ranking function. F3 solves the param-
eter synthesis problem described in Sec. 7 via a combination of the EF-SMT
procedure of [48] and the application of Motzkin’s transposition theorem [49]
to reduce the problem into a purely existentially-quantified one which can then
be solved via standard quantifier-free SMT reasoning: we first try to apply EF-1255

SMT, and resort to the elimination of universal quantifiers only if this fails to
provide a definite answer. Finally, when applying the Motzkin’s transposition
theorem, F3 replaces non-linear terms with fresh symbols, in order to obtain
a linear system. This simple way of handling non-linearities has the benefit of
being very easy to implement; on the other hand, however, it can produce very1260

coarse approximations, which can prevent F3 from finding counterexamples in
cases where non-linearities play a significant role. A possible approach to handle
non-linearities in a more precise manner is described in [14].

9.2. Benchmarks

In order to evaluate the effectiveness of our method, we have evaluated F31265

on a wide range of benchmarks coming from different domains, from software
(non)termination to timed automata and infinite-state symbolic transition sys-
tems. More specifically, we considered a total of 455 benchmarks, divided into
6 categories:

LS consists of 52 nonterminating linear software benchmarks taken from the C1270

programs of the software termination competition [50];

NS contains 30 nonlinear software programs, of which 29 have been taken from
[4] and one we defined;

ITS are 70 LTL falsification problems on infinite-state systems; 2 of such prob-
lems are proof obligations generated in the verification of a contract-based1275

design, 29 come from the scaling to up to 30 processes of a model of the
bakery mutual exclusion protocol in which we introduced a bug, other 29
come from the scaling to up to 30 processes of a semaphore-based syn-
chronisation protocol, and the last 10 are instances we created;

TA contains 174 LTL falsification problems on timed automata; we consider 61280

different protocols taken from [51] (critical, csma, fddi, fischer, lynch and
train) and scale each of them from 1 to 30 processes;

TTS consists of 120 LTL falsification problems on timed transition systems,
of which 116 come from the scaling from 1 to 30 processes of 4 protocols
(inspired by the csma, fischer, lynch and token ring protocols), and 41285

are handcrafted instances. The 4 protocols are a subset of the ones we
considered in the TA instances. However, in this case we have extended
them to obtain models that cannot be represented as timed automata. For
the csma protocol we introduced an adaptive backoff time for each process
that increases every time a station encounters a collision and decreases1290

46

each time it successfully communicates the whole message. We extended
the fischer and lynch protocols by allowing each process to propose a wait
time, then the actual waiting time used to ensure mutual exclusion is
the maximum of the proposed values. Finally, in the token ring protocol
we added a stopwatch variable that keeps track of the total amount of1295

time spent while transmitting and we ask to verify whether such value is
bounded by 10 subject to a fairness assumption on the token manager of
the protocol.

HS are 9 LTL falsification problems on hybrid systems (encoded as nonlinear
infinite-state transition systems), 5 of which have been taken from the1300

ARCH competition [52] and 4 are models of a bouncing ball which differ
on the behaviour of the bounce.

F3 only handles symbolic transition systems, and not software programs;
therefore, we have encoded the software benchmarks as infinite-state transition
systems by introducing an explicit program counter as state variable. Moreover,1305

since F3 only supports systems with Boolean, integer and real variables, we have
not considered programs that involve recursion or dynamic memory allocation.

9.3. Competitor tools

We compare F3 with the following state-of-the-art tools: Anant [4],
AProVe [53], DiVinE3 [54], iRankFinder [55], MITLBMC [56],1310

nuXmv [12], T2 [57], Ultimate [58] and Uppaal [59]. Unfortunately we could
not obtain the software described in [32] to solve E-CHC problems. Most of
the other tools are not able to handle all the benchmarks we have considered.
Therefore, we limit their application as follows:

� we ran Anant, AProVe, iRankFinder and T2 only on the software1315

nontermination problems (LS and NS groups);

� we ran DiVinE3, MITLBMC and Uppaal only on the timed automata
(TA) benchmarks; moreover, since Uppaal supports only a fragment of
LTL which is not sufficient to express the properties of the fischer and
lynch benchmarks, we could run it only on 116 of the 174 TA instances;1320

� as Ultimate doesn’t support non-linear arithmetic, we didn’t run it on
the NS family. Moreover, since it supports LTL specifications but works
on programs rather than transition systems, we translated the benchmarks
to LTL verification problems on software programs, using the same ap-
proach described in [10].1325

� nuXmv is the only other tool (besides F3) that supports all the bench-
marks. Our focus is falsification of universal properties (or dually verifica-
tion of existential ones), hence we ran nuXmv using only its BMC engine.
The other algorithms available in nuXmv have no additional falsification
capabilities and also try to verify the property.1330

47

Table 1: Summary of experimental results (number of solved instances per benchmark family).

Benchmark family F
3

(n
o

h
in

ts
)

A
n

a
n
t

A
P

ro
V

e

D
iV

in
E

3

iR
a
n

k
F

in
d

e
r

M
IT

L
B

M
C

n
u

X
m

v

T
2

U
lt

im
a
te

U
p

p
a
a
l

LS (52) 52 38 43 – 39 – 28 38 49 –
NS (30) 30 25 5 – 6 – 14 2 – –
ITS (70) 67 – – – – – 4 – 8 –
TA (174) 130 – – 43 – 151 90 – 0 103
TTS (120) 50 – – – – – 8 – 1 –
HS (9) 4 – – – – – 0 – – –
Total (455) 333 63 48 43 45 151 144 40 58 103

Entries marked with “–” denote that the tool cannot handle the given benchmarks.

9.4. Evaluation

We executed each tool on the corresponding benchmarks on a machine run-
ning Ubuntu 20.04 equipped with an Intel(R) Xeon(R) Gold 6226R 2.90 GHz
CPU, using a 1 hour timeout and a memory limit of 30 GB for each bench-
mark. A summary of the evaluation results is reported in Table 1. We run1335

F3 on those benchmarks without providing any hint and the table shows, for
each tool, the number of solved instances in each benchmark family. When a
tool is not applicable to a specific family, this is marked with “-”. From the
table, we can see that F3 solved the highest number of instances overall and also
the highest number of instances in all categories with the exception of timed1340

automata. In this category F3 is outperformed only by MITLBMC, which
implements a technique explicitly developed for timed automata. This demon-
strates the generality of our approach, although (unsurprisingly) it is possible
to define more efficient procedures to target specific classes of problems. F3
successfully identifies a fair path in all nonlinear software benchmarks and also1345

in 4 of the hybrid (nonlinear) systems. Therefore, while being coarse-grained,
the approximation of the nonlinear terms used by F3 appears to be sufficient in
these cases. Finally, we should remark that the competitor tools (with the ex-
ception of MITLBMC and nuXmv in BMC mode) are also able to prove that
a universal property holds, whereas F3 can only find counterexamples. On the1350

other hand, however, our techniques can be easily integrated with approaches
focusing on proving properties, such as [10, 37].

We then considered the 5 hybrid benchmarks that F3 failed to solve without
hints. In 4 cases the definition of a single hint is sufficient to allow F3 to
identify a fair path. The remaining benchmark is a handcrafted one representing1355

a bouncing ball such that the interval of time between consecutive bounces
follows the harmonic series and the tool is required to identify a non-Zeno path
in which the ball keeps bouncing forever. We know that the harmonic series

48

diverges, hence such a path exists. However, the path does not have the finite-
variability property, often assumed in real-time temporal logics (e.g. [60, 61]);1360

there is no bound on the number of times predicates change truth assignment
for any finite interval of time: there is no lower bound on the time between
two bounces. In addition, the absence of such bounds hinders the definition
of simple ranking functions, since they require a minimum constant progress
at every transition. We remark that the HS instances are the most complex1365

ones, they involve both nonlinearities and timing constraints. The definition
of the hints for such complex systems requires in depth analysis of each model
and also an understanding of the features that the automated procedure could
struggle to analyse. However, the integration of the hints within an automatic
procedure allows the user to focus on the few hardest components of the model,1370

while relying on the automated procedure to analyse the relatively simpler ones.
Therefore, it provides an additional possibility to be explored to analyse the
system before resorting to a purely manual inspection. Our experiments, while
relatively limited in number, showed this approach to be viable allowing the
procedure to identify 4 additional counterexamples on complex instances that1375

no other tool managed to address successfully.
We conclude with some general observations about F3. F3 identifies funnel-

loops by trying to instantiate a number of templates. As in every template-
based approach, this implies that it will fail to identify funnel-loops that do
not match the considered templates. For example, F3 generates the templates1380

by strengthening the candidate loops with affine expressions and inequalities,
hence it will fail to identify funnel-loops that require the procedure to identify
nonlinear assignments or constraints. In our experiments this issue has been
mitigated by the fact that the candidate loop itself might provide the necessary
nonlinear terms, hence F3 does not need to synthesise them. F3 employs sym-1385

bolic reasoning and inherits the instability typical of this kind of techniques that
deal with undecidable problems. The execution time of F3 is greatly affected
by the order in which the candidate loops are explored. For each candidate
loop for which it fails to identify a ranking function, F3 generates and tries to
instantiate a number of funnel-loop templates. The number of these templates1390

can be relatively large and, in our experiments, F3 spent most of the time in
trying to instantiate them. For this reason, the execution time of F3 might
change significantly depending on the order in which the SMT-solvers identify
candidate loops. F3 tries to mitigate this problem by analysing the templates in
increasing order of complexity and by applying heuristics normalizations on the1395

expressions before calling the SMT-solver. In principle each funnel-loop tem-
plate can be analysed independently from the others and performing such tasks
in parallel could mitigate this issue; in addition, one could also analyse different
candidate loops in parallel. However, we did not explore this possibility and our
prototype does not employ any kind of parallelism.1400

49

10. Conclusions

In this work we presented an approach to automatically verify existential
properties on infinite-state fair transition systems which can also benefit from
some user-defined hints. The witness for the existential property is given as
a sequence of funnels and can represent paths that do not have a lasso-shape1405

structure. We evaluated a prototype implementation of the approach on a wide
variety of benchmarks. The prototype is effective and able to address verification
tasks successfully in many different domains. However, there are still some
classes of problems that exhibit behaviours that are outside the scope of our
prototype, as we have seen in the case of the harmonic bouncing ball.1410

In the future, we plan to improve the procedure by automating the sys-
tem decomposition and by investigating different heuristics for the selection of
funnel-loop templates and to better exploit the system decomposition. Another
interesting direction is to improve the support for nonlinear expressions, e.g. it
should be possible to integrate the technique presented in [14] in our procedure.1415

Finally, we plan to integrate our procedure with dual approaches used to verify
LTL properties.

References

[1] A. Cimatti, A. Griggio, E. Magnago, Proving the existence of fair paths in
infinite-state systems, in: F. Henglein, S. Shoham, Y. Vizel (Eds.), Verifi-1420

cation, Model Checking, and Abstract Interpretation - 22nd International
Conference, VMCAI 2021, Copenhagen, Denmark, January 17-19, 2021,
Proceedings, Vol. 12597 of Lecture Notes in Computer Science, Springer,
2021, pp. 104–126. doi:10.1007/978-3-030-67067-2_6.

[2] A. Cimatti, A. Griggio, E. Magnago, Automatic discovery of fair paths in1425

infinite-state transition systems, in: Z. Hou, V. Ganesh (Eds.), Automated
Technology for Verification and Analysis - 19th International Symposium,
ATVA 2021, Gold Coast, QLD, Australia, October 18-22, 2021, Proceed-
ings, Vol. 12971 of Lecture Notes in Computer Science, Springer, 2021, pp.
32–47. doi:10.1007/978-3-030-88885-5_3.1430

[3] D. Giannakopoulou, K. S. Namjoshi, C. S. Pasareanu, Compositional rea-
soning, in: E. M. Clarke, T. A. Henzinger, H. Veith, R. Bloem (Eds.),
Handbook of Model Checking, Springer, 2018, pp. 345–383. doi:10.1007/
978-3-319-10575-8_12.

[4] B. Cook, C. Fuhs, K. Nimkar, P. W. O’Hearn, Disproving termination1435

with overapproximation, in: Formal Methods in Computer-Aided Design,
FMCAD 2014, Lausanne, Switzerland, October 21-24, 2014, IEEE, 2014,
pp. 67–74. doi:10.1109/FMCAD.2014.6987597.
URL http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=
69756801440

50

http://dx.doi.org/10.1007/978-3-030-67067-2_6
http://dx.doi.org/10.1007/978-3-030-88885-5_3
http://dx.doi.org/10.1007/978-3-319-10575-8_12
http://dx.doi.org/10.1007/978-3-319-10575-8_12
http://dx.doi.org/10.1007/978-3-319-10575-8_12
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6975680
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6975680
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6975680
http://dx.doi.org/10.1109/FMCAD.2014.6987597
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6975680
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6975680
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6975680

[5] A. Pnueli, The temporal logic of programs, in: 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977, IEEE Computer Society, 1977, pp. 46–57.
doi:10.1109/SFCS.1977.32.

[6] M. Y. Vardi, An automata-theoretic approach to linear temporal logic, in:1445

Banff Higher Order Workshop, Vol. 1043 of LNCS, Springer, 1995, pp.
238–266.

[7] E. M. Clarke, O. Grumberg, K. Hamaguchi, Another look at LTL model
checking, Formal Methods in System Design 10 (1) (1997) 47–71.

[8] A. Biere, C. Artho, V. Schuppan, Liveness checking as safety checking,1450

Electron. Notes Theor. Comput. Sci. 66 (2) (2002) 160–177. doi:10.1016/
S1571-0661(04)80410-9.

[9] S. Graf, H. Säıdi, Construction of abstract state graphs with PVS, in:
O. Grumberg (Ed.), Computer Aided Verification, 9th International Con-
ference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings, Vol. 12541455

of Lecture Notes in Computer Science, Springer, 1997, pp. 72–83. doi:

10.1007/3-540-63166-6_10.

[10] J. Daniel, A. Cimatti, A. Griggio, S. Tonetta, S. Mover, Infinite-state
liveness-to-safety via implicit abstraction and well-founded relations, in:
S. Chaudhuri, A. Farzan (Eds.), Computer Aided Verification - 28th In-1460

ternational Conference, CAV 2016, Toronto, ON, Canada, July 17-23,
2016, Proceedings, Part I, Vol. 9779 of Lecture Notes in Computer Science,
Springer, 2016, pp. 271–291. doi:10.1007/978-3-319-41528-4_15.

[11] R. Alur, D. L. Dill, A theory of timed automata, Theor. Comput. Sci.
126 (2) (1994) 183–235. doi:10.1016/0304-3975(94)90010-8.1465

[12] A. Cimatti, A. Griggio, E. Magnago, M. Roveri, S. Tonetta, Extending
nuxmv with timed transition systems and timed temporal properties, in:
I. Dillig, S. Tasiran (Eds.), Computer Aided Verification - 31st Interna-
tional Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part I, Vol. 11561 of Lecture Notes in Computer Science,1470

Springer, 2019, pp. 376–386. doi:10.1007/978-3-030-25540-4_21.

[13] T. A. Henzinger, The theory of hybrid automata, in: Proceedings, 11th
Annual IEEE Symposium on Logic in Computer Science, New Brunswick,
New Jersey, USA, July 27-30, 1996, IEEE Computer Society, 1996, pp.
278–292. doi:10.1109/LICS.1996.561342.1475

URL http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4265

[14] A. Asadi, K. Chatterjee, H. Fu, A. K. Goharshady, M. Mahdavi, Polynomial
reachability witnesses via stellensätze, in: S. N. Freund, E. Yahav (Eds.),
PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, Virtual Event, Canada, June 20-25,1480

20211, ACM, 2021, pp. 772–787. doi:10.1145/3453483.3454076.

51

http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1016/S1571-0661(04)80410-9
http://dx.doi.org/10.1016/S1571-0661(04)80410-9
http://dx.doi.org/10.1016/S1571-0661(04)80410-9
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/978-3-319-41528-4_15
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1007/978-3-030-25540-4_21
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4265
http://dx.doi.org/10.1109/LICS.1996.561342
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4265
http://dx.doi.org/10.1145/3453483.3454076

[15] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu, Bounded
model checking, Adv. Comput. 58 (2003) 117–148. doi:10.1016/

S0065-2458(03)58003-2.

[16] J. Leike, M. Heizmann, Ranking templates for linear loops, Log. Methods1485

Comput. Sci. 11 (1). doi:10.2168/LMCS-11(1:16)2015.

[17] R. Bagnara, F. Mesnard, A. Pescetti, E. Zaffanella, A new look at the
automatic synthesis of linear ranking functions, Inf. Comput. 215 (2012)
47–67. doi:10.1016/j.ic.2012.03.003.

[18] A. R. Bradley, Z. Manna, H. B. Sipma, Linear ranking with reachability,1490

in: K. Etessami, S. K. Rajamani (Eds.), Computer Aided Verification,
17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July
6-10, 2005, Proceedings, Vol. 3576 of Lecture Notes in Computer Science,
Springer, 2005, pp. 491–504. doi:10.1007/11513988_48.

[19] D. Déharbe, P. Fontaine, D. L. Berre, B. Mazure, Computing prime im-1495

plicants, in: Formal Methods in Computer-Aided Design, FMCAD 2013,
Portland, OR, USA, October 20-23, 2013, IEEE, 2013, pp. 46–52.
URL http://ieeexplore.ieee.org/document/6679390/

[20] A. Previti, A. Ignatiev, A. Morgado, J. Marques-Silva, Prime compilation of
non-clausal formulae, in: Q. Yang, M. J. Wooldridge (Eds.), Proceedings of1500

the Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, AAAI Press, 2015,
pp. 1980–1988.
URL http://ijcai.org/Abstract/15/281

[21] A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, R. Xu, Proving1505

non-termination, in: G. C. Necula, P. Wadler (Eds.), Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2008, San Francisco, California, USA, January 7-12,
2008, ACM, 2008, pp. 147–158. doi:10.1145/1328438.1328459.
URL http://dl.acm.org/citation.cfm?id=13284381510

[22] H. Y. Chen, B. Cook, C. Fuhs, K. Nimkar, P. W. O’Hearn, Proving nonter-
mination via safety, in: E. Ábrahám, K. Havelund (Eds.), Tools and Algo-
rithms for the Construction and Analysis of Systems - 20th International
Conference, TACAS 2014, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April1515

5-13, 2014. Proceedings, Vol. 8413 of Lecture Notes in Computer Science,
Springer, 2014, pp. 156–171. doi:10.1007/978-3-642-54862-8_11.

[23] D. Larraz, K. Nimkar, A. Oliveras, E. Rodŕıguez-Carbonell, A. Rubio,
Proving non-termination using max-smt, in: A. Biere, R. Bloem (Eds.),
Computer Aided Verification - 26th International Conference, CAV 2014,1520

Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
July 18-22, 2014. Proceedings, Vol. 8559 of Lecture Notes in Computer

52

http://dx.doi.org/10.1016/S0065-2458(03)58003-2
http://dx.doi.org/10.1016/S0065-2458(03)58003-2
http://dx.doi.org/10.1016/S0065-2458(03)58003-2
http://dx.doi.org/10.2168/LMCS-11(1:16)2015
http://dx.doi.org/10.1016/j.ic.2012.03.003
http://dx.doi.org/10.1007/11513988_48
http://ieeexplore.ieee.org/document/6679390/
http://ieeexplore.ieee.org/document/6679390/
http://ieeexplore.ieee.org/document/6679390/
http://ieeexplore.ieee.org/document/6679390/
http://ijcai.org/Abstract/15/281
http://ijcai.org/Abstract/15/281
http://ijcai.org/Abstract/15/281
http://ijcai.org/Abstract/15/281
http://dl.acm.org/citation.cfm?id=1328438
http://dl.acm.org/citation.cfm?id=1328438
http://dl.acm.org/citation.cfm?id=1328438
http://dx.doi.org/10.1145/1328438.1328459
http://dl.acm.org/citation.cfm?id=1328438
http://dx.doi.org/10.1007/978-3-642-54862-8_11

Science, Springer, 2014, pp. 779–796. doi:10.1007/978-3-319-08867-9\
_52.

[24] F. Frohn, J. Giesl, Termination of triangular integer loops is decidable, in:1525

I. Dillig, S. Tasiran (Eds.), Computer Aided Verification - 31st Interna-
tional Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part II, Vol. 11562 of Lecture Notes in Computer Science,
Springer, 2019, pp. 426–444. doi:10.1007/978-3-030-25543-5_24.

[25] M. Hosseini, J. Ouaknine, J. Worrell, Termination of linear loops over the1530

integers, in: C. Baier, I. Chatzigiannakis, P. Flocchini, S. Leonardi (Eds.),
46th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2019, July 9-12, 2019, Patras, Greece, Vol. 132 of LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, pp. 118:1–118:13.
doi:10.4230/LIPIcs.ICALP.2019.118.1535

[26] J. Leike, M. Heizmann, Geometric nontermination arguments, in: D. Beyer,
M. Huisman (Eds.), Tools and Algorithms for the Construction and Analy-
sis of Systems - 24th International Conference, TACAS 2018, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part1540

II, Vol. 10806 of Lecture Notes in Computer Science, Springer, 2018, pp.
266–283. doi:10.1007/978-3-319-89963-3_16.

[27] B. Cook, E. Koskinen, M. Y. Vardi, Temporal property verification as a
program analysis task - extended version, Formal Methods Syst. Des. 41 (1)
(2012) 66–82. doi:10.1007/s10703-012-0153-5.1545

[28] B. Cook, H. Khlaaf, N. Piterman, Verifying increasingly expressive tem-
poral logics for infinite-state systems, J. ACM 64 (2) (2017) 15:1–15:39.
doi:10.1145/3060257.

[29] Y. Kesten, A. Pnueli, A compositional approach to ctl* verification, Theor.
Comput. Sci. 331 (2-3) (2005) 397–428. doi:10.1016/j.tcs.2004.09.023.1550

[30] Y. Kesten, A. Pnueli, L. Raviv, Algorithmic verification of linear tempo-
ral logic specifications, in: K. G. Larsen, S. Skyum, G. Winskel (Eds.),
Automata, Languages and Programming, 25th International Colloquium,
ICALP’98, Aalborg, Denmark, July 13-17, 1998, Proceedings, Vol. 1443
of Lecture Notes in Computer Science, Springer, 1998, pp. 1–16. doi:1555

10.1007/BFb0055036.

[31] Y. Kesten, A. Pnueli, L. Raviv, E. Shahar, Model checking with strong
fairness, Formal Methods Syst. Des. 28 (1) (2006) 57–84. doi:10.1007/

s10703-006-4342-y.

[32] T. A. Beyene, C. Popeea, A. Rybalchenko, Solving existentially quantified1560

horn clauses, in: N. Sharygina, H. Veith (Eds.), Computer Aided Verifica-
tion - 25th International Conference, CAV 2013, Saint Petersburg, Russia,

53

http://dx.doi.org/10.1007/978-3-319-08867-9_52
http://dx.doi.org/10.1007/978-3-319-08867-9_52
http://dx.doi.org/10.1007/978-3-319-08867-9_52
http://dx.doi.org/10.1007/978-3-030-25543-5_24
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.118
http://dx.doi.org/10.1007/978-3-319-89963-3_16
http://dx.doi.org/10.1007/s10703-012-0153-5
http://dx.doi.org/10.1145/3060257
http://dx.doi.org/10.1016/j.tcs.2004.09.023
http://dx.doi.org/10.1007/BFb0055036
http://dx.doi.org/10.1007/BFb0055036
http://dx.doi.org/10.1007/BFb0055036
http://dx.doi.org/10.1007/s10703-006-4342-y
http://dx.doi.org/10.1007/s10703-006-4342-y
http://dx.doi.org/10.1007/s10703-006-4342-y

July 13-19, 2013. Proceedings, Vol. 8044 of Lecture Notes in Computer
Science, Springer, 2013, pp. 869–882. doi:10.1007/978-3-642-39799-8\
_61.1565

[33] G. Behrmann, A. David, K. G. Larsen, A tutorial on uppaal, in:
M. Bernardo, F. Corradini (Eds.), Formal Methods for the Design of Real-
Time Systems: 4th International School on Formal Methods for the Design
of Computer, Communication, and Software Systems, SFM-RT 2004, no.
3185 in LNCS, Springer–Verlag, 2004, pp. 200–236.1570

[34] R. Kindermann, T. A. Junttila, I. Niemelä, Beyond lassos: Complete smt-
based bounded model checking for timed automata, in: H. Giese, G. Rosu
(Eds.), Formal Techniques for Distributed Systems - Joint 14th IFIP WG
6.1 International Conference, FMOODS 2012 and 32nd IFIP WG 6.1 Inter-
national Conference, FORTE 2012, Stockholm, Sweden, June 13-16, 2012.1575

Proceedings, Vol. 7273 of Lecture Notes in Computer Science, Springer,
2012, pp. 84–100. doi:10.1007/978-3-642-30793-5_6.

[35] R. Alur, Formal verification of hybrid systems, in: S. Chakraborty, A. Jer-
raya, S. K. Baruah, S. Fischmeister (Eds.), Proceedings of the 11th Inter-
national Conference on Embedded Software, EMSOFT 2011, part of the1580

Seventh Embedded Systems Week, ESWeek 2011, Taipei, Taiwan, October
9-14, 2011, ACM, 2011, pp. 273–278. doi:10.1145/2038642.2038685.

[36] D. Bresolin, Hyltl: a temporal logic for model checking hybrid systems, in:
L. Bortolussi, M. L. Bujorianu, G. Pola (Eds.), Proceedings Third Inter-
national Workshop on Hybrid Autonomous Systems, HAS 2013, Rome,1585

Italy, 17th March 2013, Vol. 124 of EPTCS, 2013, pp. 73–84. doi:

10.4204/EPTCS.124.8.

[37] A. Cimatti, A. Griggio, S. Mover, S. Tonetta, Verifying LTL properties of
hybrid systems with k-liveness, in: A. Biere, R. Bloem (Eds.), Computer
Aided Verification - 26th International Conference, CAV 2014, Held as1590

Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
18-22, 2014. Proceedings, Vol. 8559 of Lecture Notes in Computer Science,
Springer, 2014, pp. 424–440. doi:10.1007/978-3-319-08867-9_28.

[38] A. Podelski, S. Wagner, Region stability proofs for hybrid systems,
in: J. Raskin, P. S. Thiagarajan (Eds.), Formal Modeling and Analy-1595

sis of Timed Systems, 5th International Conference, FORMATS 2007,
Salzburg, Austria, October 3-5, 2007, Proceedings, Vol. 4763 of Lecture
Notes in Computer Science, Springer, 2007, pp. 320–335. doi:10.1007/

978-3-540-75454-1_23.

[39] T. Nghiem, S. Sankaranarayanan, G. E. Fainekos, F. Ivancic, A. Gupta,1600

G. J. Pappas, Monte-carlo techniques for falsification of temporal prop-
erties of non-linear hybrid systems, in: K. H. Johansson, W. Yi (Eds.),

54

http://dx.doi.org/10.1007/978-3-642-39799-8_61
http://dx.doi.org/10.1007/978-3-642-39799-8_61
http://dx.doi.org/10.1007/978-3-642-39799-8_61
http://dx.doi.org/10.1007/978-3-642-30793-5_6
http://dx.doi.org/10.1145/2038642.2038685
http://dx.doi.org/10.4204/EPTCS.124.8
http://dx.doi.org/10.4204/EPTCS.124.8
http://dx.doi.org/10.4204/EPTCS.124.8
http://dx.doi.org/10.1007/978-3-319-08867-9_28
http://dx.doi.org/10.1007/978-3-540-75454-1_23
http://dx.doi.org/10.1007/978-3-540-75454-1_23
http://dx.doi.org/10.1007/978-3-540-75454-1_23

Proceedings of the 13th ACM International Conference on Hybrid Sys-
tems: Computation and Control, HSCC 2010, Stockholm, Sweden, April
12-15, 2010, ACM, 2010, pp. 211–220. doi:10.1145/1755952.1755983.1605

[40] W. Damm, G. Pinto, S. Ratschan, Guaranteed termination in the ver-
ification of ltl properties of non-linear robust discrete time hybrid sys-
tems, Int. J. Found. Comput. Sci. 18 (1) (2007) 63–86. doi:10.1142/

S0129054107004577.

[41] E. Plaku, L. E. Kavraki, M. Y. Vardi, Falsification of LTL safety properties1610

in hybrid systems, Int. J. Softw. Tools Technol. Transf. 15 (4) (2013) 305–
320. doi:10.1007/s10009-012-0233-2.

[42] S. Grebenshchikov, N. P. Lopes, C. Popeea, A. Rybalchenko, Synthesizing
software verifiers from proof rules, in: J. Vitek, H. Lin, F. Tip (Eds.), ACM
SIGPLAN Conference on Programming Language Design and Implemen-1615

tation, PLDI ’12, Beijing, China - June 11 - 16, 2012, ACM, 2012, pp.
405–416. doi:10.1145/2254064.2254112.

[43] T. A. Beyene, S. Chaudhuri, C. Popeea, A. Rybalchenko, A constraint-
based approach to solving games on infinite graphs, in: S. Jagannathan,
P. Sewell (Eds.), The 41st Annual ACM SIGPLAN-SIGACT Symposium on1620

Principles of Programming Languages, POPL ’14, San Diego, CA, USA,
January 20-21, 2014, ACM, 2014, pp. 221–234. doi:10.1145/2535838.

2535860.

[44] A. Gurfinkel, N. Bjørner, The science, art, and magic of constrained horn
clauses, in: 21st International Symposium on Symbolic and Numeric Al-1625

gorithms for Scientific Computing, SYNASC 2019, Timisoara, Romania,
September 4-7, 2019, IEEE, 2019, pp. 6–10. doi:10.1109/SYNASC49474.

2019.00010.

[45] A. Cimatti, A. Griggio, B. J. Schaafsma, R. Sebastiani, The mathsat5 SMT
solver, in: N. Piterman, S. A. Smolka (Eds.), Tools and Algorithms for1630

the Construction and Analysis of Systems - 19th International Conference,
TACAS 2013, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings, Vol. 7795 of Lecture Notes in Computer Science, Springer,
2013, pp. 93–107. doi:10.1007/978-3-642-36742-7_7.1635

[46] L. M. de Moura, N. Bjørner, Z3: an efficient SMT solver, in: C. R. Ra-
makrishnan, J. Rehof (Eds.), Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference, TACAS 2008, Held
as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceed-1640

ings, Vol. 4963 of Lecture Notes in Computer Science, Springer, 2008, pp.
337–340. doi:10.1007/978-3-540-78800-3_24.

55

http://dx.doi.org/10.1145/1755952.1755983
http://dx.doi.org/10.1142/S0129054107004577
http://dx.doi.org/10.1142/S0129054107004577
http://dx.doi.org/10.1142/S0129054107004577
http://dx.doi.org/10.1007/s10009-012-0233-2
http://dx.doi.org/10.1145/2254064.2254112
http://dx.doi.org/10.1145/2535838.2535860
http://dx.doi.org/10.1145/2535838.2535860
http://dx.doi.org/10.1145/2535838.2535860
http://dx.doi.org/10.1109/SYNASC49474.2019.00010
http://dx.doi.org/10.1109/SYNASC49474.2019.00010
http://dx.doi.org/10.1109/SYNASC49474.2019.00010
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://dx.doi.org/10.1007/978-3-540-78800-3_24

[47] M. Gario, A. Micheli, Pysmt: a solver-agnostic library for fast prototyping
of smt-based algorithms, in: SMT Workshop 2015, 2015.

[48] B. Dutertre, Solving exists/forall problems with yices, in: Workshop on1645

satisfiability modulo theories, 2015.

[49] T. S. Motzkin, Two consequences of the transposition theorem on linear
inequalities, Econometrica (pre-1986) 19 (2) (1951) 184.

[50] J. Giesl, A. Rubio, C. Sternagel, J. Waldmann, A. Yamada, The termina-
tion and complexity competition, in: D. Beyer, M. Huisman, F. Kordon,1650

B. Steffen (Eds.), Tools and Algorithms for the Construction and Analysis
of Systems - 25 Years of TACAS: TOOLympics, Held as Part of ETAPS
2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part III, Vol.
11429 of Lecture Notes in Computer Science, Springer, 2019, pp. 156–166.
doi:10.1007/978-3-030-17502-3_10.1655

[51] R. Farkas, G. Bergmann, Towards reliable benchmarks of timed automata,
in: B. Pataki (Ed.), Proceedings of the 25th PhD Mini-Symposium, Bu-
dapest University of Technology and Economics, Department of Measure-
ment and Information Systems, 2018, pp. 20–23.

[52] G. Frehse, M. Althoff (Eds.), ARCH19. 6th International Workshop on1660

Applied Verification of Continuous and Hybrid Systemsi, part of CPS-IoT
Week 2019, Montreal, QC, Canada, April 15, 2019, Vol. 61 of EPiC Series
in Computing, EasyChair, 2019.

[53] J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto,
M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, R. Thiemann,1665

Proving termination of programs automatically with aprove, in: S. Demri,
D. Kapur, C. Weidenbach (Eds.), Automated Reasoning - 7th Interna-
tional Joint Conference, IJCAR 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 19-22, 2014. Proceedings, Vol.
8562 of Lecture Notes in Computer Science, Springer, 2014, pp. 184–191.1670

doi:10.1007/978-3-319-08587-6_13.

[54] J. Havĺıček, Untimed ltl model checking of timed automata, Ph.D. the-
sis, Master’s thesis. Masaryk University, Faculty of Informatics, 2013. url:
http . . . (2013).

[55] J. Doménech, S. Genaim, irankfinder, WST 18 (2018) 83.1675

[56] R. Kindermann, T. A. Junttila, I. Niemelä, Bounded model checking of
an MITL fragment for timed automata, in: J. Carmona, M. T. Lazarescu,
M. Pietkiewicz-Koutny (Eds.), 13th International Conference on Applica-
tion of Concurrency to System Design, ACSD 2013, Barcelona, Spain, 8-10
July, 2013, IEEE Computer Society, 2013, pp. 216–225. doi:10.1109/1680

ACSD.2013.25.

56

http://dx.doi.org/10.1007/978-3-030-17502-3_10
http://dx.doi.org/10.1007/978-3-319-08587-6_13
http://dx.doi.org/10.1109/ACSD.2013.25
http://dx.doi.org/10.1109/ACSD.2013.25
http://dx.doi.org/10.1109/ACSD.2013.25

[57] M. Brockschmidt, B. Cook, S. Ishtiaq, H. Khlaaf, N. Piterman, T2: tem-
poral property verification, in: M. Chechik, J. Raskin (Eds.), Tools and
Algorithms for the Construction and Analysis of Systems - 22nd Inter-
national Conference, TACAS 2016, Held as Part of the European Joint1685

Conferences on Theory and Practice of Software, ETAPS 2016, Eind-
hoven, The Netherlands, April 2-8, 2016, Proceedings, Vol. 9636 of Lec-
ture Notes in Computer Science, Springer, 2016, pp. 387–393. doi:

10.1007/978-3-662-49674-9_22.

[58] M. Heizmann, J. Christ, D. Dietsch, E. Ermis, J. Hoenicke, M. Linden-1690

mann, A. Nutz, C. Schilling, A. Podelski, Ultimate automizer with smtin-
terpol - (competition contribution), in: N. Piterman, S. A. Smolka (Eds.),
Tools and Algorithms for the Construction and Analysis of Systems - 19th
International Conference, TACAS 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy,1695

March 16-24, 2013. Proceedings, Vol. 7795 of Lecture Notes in Computer
Science, Springer, 2013, pp. 641–643. doi:10.1007/978-3-642-36742-7\
_53.

[59] A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen, Up-
paal smc tutorial, International Journal on Software Tools for Technology1700

Transfer 17 (4) (2015) 397–415. doi:10.1007/s10009-014-0361-y.

[60] R. Alur, T. Feder, T. Henzinger, The Benefits of Relaxing Punctuality, J.
ACM 43 (1) (1996) 116–146.

[61] A. Rabinovich, On the Decidability of Continuous Time Specification For-
malisms, J. Log. Comput. 8 (5) (1998) 669–678.1705

57

http://dx.doi.org/10.1007/978-3-662-49674-9_22
http://dx.doi.org/10.1007/978-3-662-49674-9_22
http://dx.doi.org/10.1007/978-3-662-49674-9_22
http://dx.doi.org/10.1007/978-3-642-36742-7_53
http://dx.doi.org/10.1007/978-3-642-36742-7_53
http://dx.doi.org/10.1007/978-3-642-36742-7_53
http://dx.doi.org/10.1007/s10009-014-0361-y

Appendix A. Encoding of funnel-loop search in E-CHC

We described the funnel-loop synthesis problem using exist-forall quantified
First-Order Logic formulae and defined an ad-hoc procedure to address this
problem. In the literature it is possible to find formalism meant to decouple the
definition of the verification problem and the actual solving algorithm: they sep-1710

arate the proof methodology from the procedures used to address the problem.
One such formalism is Constrained Horn clauses (CHCs) [42, 43, 44], for which
off-the-shelf solvers have been developed. In the following, we consider an ex-
tension of CHCs, namely existentially-quantified constrained Horn-like clauses
(E-CHCs) [32]. E-CHCs are expressive enough to represent the funnel-loop1715

synthesis problem, hence allow an alternative representation of our synthesis
problem. However, possibly due to the complexity of solving such problems
in general, there is a lack of tools capable of identifying solution for E-CHCs.
Therefore, the encoding in E-CHCs has no impact on the theoretical and ex-
perimental results we present in this work. We believe that representing the1720

problem in a common framework to describe verification tasks could provide a
better perspective on how the approach and techniques we propose in this work
fit into the broader context of formal verification.

For the syntax and semantics of E-CHCs we refer to [42]. In the following we
present a sound and complete encoding for the search problem of a funnel-loop1725

of length one in E-CHCs. It is possible to define a similar E-CHC encoding
that also considers a set of user-defined E -components as hints, similarly to the
procedure described in Sec. 7. However, such encoding is rather complex and
does not provide any additional contribution to our discussion since we were
not able to obtain any tool capable of identifying solutions for E-CHCs.1730

Let M=̇〈V, IM , TM , FM 〉 be a fair transition system and let R(c, V),
T (V, V ′) and Rank(V, V ′) be query symbols, where c is a fresh Boolean symbol
(c 6∈ V). A solution to the E-CHC problem below is an intepretation for R,
T and Rank satisfying all its formulae. R represents the source region, and
c ∧ R(c, V) underapproximates the fair states. Th. 7 shows that any solution1735

to the E-CHC below corresponds to a funnel-loop and Th. 8 shows that if M
admits a funnel-loop then there exists an interpretation for the query symbols
satisfying the following E-CHC. Therefore, the encoding is sound (Th. 7) and
relatively complete (Th. 8). While it is possible to represent in E-CHC the
search of a funnel-loop of arbitrary length n, Th. 2 ensures that looking for1740

funnel-loops of length one is sufficient.

58

> → ∃c, V : R(c, V) ∧ IM (V) (A.1)

T (V, V ′) → ∃c : R(c, V ′) (A.2)

R(c, V) ∧ T (V, V ′) → TM (V, V ′) (A.3)

R(c, V) → ∃V ′ : T (V, V ′) (A.4)

c ∧R(c, V) → FM (V) (A.5)

¬c ∧R(c, V) ∧ T (V, V ′) → Rank(V, V ′) (A.6)

dwf (Rank) (A.7)

Let Cex=̇〈V,∃c : R(c, V), T (V, V ′),>〉 be the transition system associated
with an interpretation of the query symbols of the E-CHC above. Eq. (A.1)
requires the existence of some initial state of M in R: the set of initial states
of Cex is not empty. Eq. (A.2) ensures that T can only reach states in R, and1745

Eq. (A.3) guarantees that in such region T is an underapproximation of TM :
Cex is simulated by M , hence a path of Cex is also a path in M . Eq. (A.4)
requires T to be left-total with respect to R: Cex cannot reach a deadlock.
Eq. (A.5) requires R(⊥, V) to be a subset of the fair states of M . Eq. (A.6)
requires the relation T (V, V ′) describing pairs of current and next states such1750

that the first one is in R(⊥, V) to underapproximate some well-founded relation
Rank . The well-foundedness of Rank ensures that there is no infinite chain of
states in R(⊥, V), hence it must eventually reach a state in R(>, V), hence by
Eq. (A.5) must eventually reach a fair state.

Theorem 7. Given a fair transition system M=̇〈V, IM , TM , FM 〉 and an in-1755

terpretation for the queries R, T and Rank satisfying all Eqs. (A.1)–(A.7). Then
there exist a funnel-loop for M .

The proof of Th. 7 is reported in Appendix B.5.

Theorem 8. Let floop be a funnel-loop of length one for a transition system
M=̇〈V, IM , TM , FM 〉. Then, there exists an intepretation for the query symbols1760

R, T and Rank satisfying all Eqs. (A.1)–(A.7).

The proof of Th. 8 is reported in Appendix B.6.

Appendix B. Theorems and proofs

Appendix B.1. Funnel-loop disjoint regions

In this section we show that for every funnel-loop there exist a corresponding1765

one whose regions are pairwise disjoint and that admits the same paths. Let
floop=̇[fnli]

n−1
i=0 be a funnel-loop of length n over symbols V . We define a

corresponding funnel-loop f̂ loop=̇[f̂nli]
n−1
i=0 over symbols V̂ =̇V ∪{l} that admits

the same set of paths projected over the symbols V and whose regions are
pairwise disjoint. l is a fresh symbol (l 6∈ V) we use to keep track of the index1770

of the current region. More formally we have the following:

59

� V̂ =̇V ∪{l}, where l 6∈ V is a fresh symbols whose domain are the integers
from 0 to n− 1.

� Ŝi=̇Si ∧ l = i.

� D̂i=̇Di ∧ l = (i+ 1)%n.1775

� R̂fi=̇Rfi.

� T̂i=̇Ti ∧ (0 < Rfi ∧ l′ = l) ∨ (Rfi = 0 ∧ l′ = (l + 1)%n)

Theorem 9. Let floop be a funnel-loop. Then, all [f̂nli]
n−1
i=0 satisfy the hy-

potheses of Def. 1 and f̂ loop satisfies the hypotheses of Def. 2.

Proof. We first show that each f̂nli in [f̂nli]
n−1
i=0 is a funnel and then show1780

that they are correctly concatenated in f̂ loop hence it is a funnel-loop.

F.1 By definition T̂i=̇Ti ∧ (0 < Rfi ∧ l′ = l) ∨ (Rfi = 0 ∧ l′ = (l + 1)%n).
In each state either Rfi = 0 holds or 0 < Rfi does. Therefore, in the
first case T̂i admits a successor in such that l′ = (l + 1)%n, in the second
case it admits a successor in which l′ = l. Since Hyp. F.1 holds for fnli,1785

its transition relation Ti(V, V
′) is left-total. Therefore, also T̂i is left-total

and Hyp. F.1 holds for each f̂nli in f̂ loop.

F.2 By definition T̂i=̇Ti ∧ (0 < Rfi ∧ l′ = l) ∨ (Rfi = 0 ∧ l′ = (l + 1)%n).

Therefore, every pair of states 〈v̂, v̂′〉 ∈ T̂i such that v̂ |= Ŝi must be such
that they assign the same value i to l. Let v and v′ be the projection of v̂1790

v̂′ to the symbols V , Then, 〈v,v′〉 ∈ Ti and v |= Si. Since, Hyp. F.2 holds
for fnli, then v′ |= S′i also holds. v′ |= S′i and the fact that v̂′ assigns l

to i implies that v̂′ |= S′. Therefore, Hyp. F.2 holds for f̂nli.

F.3 By applying the same reasoning as above, for every such step in f̂nli we
obtain a corresponding step in fnli by projecting the assignments over1795

the symbols in V . Hyp. F.3 holds for fnli hence those assignments must
decrease the value of the ranking function Rfi. Therefore, since Rfi does

not depend on l its value must decrease also in all such steps of f̂nli and
Hyp. F.3 must hold.

F.4 By applying the same reasoning as the previous two cases, for every such1800

step in f̂nli we obtain a corresponding step in fnli by projecting the
assignments over the symbols in V . Hyp. F.4 holds for fnli hence the
second projected state must be in Di. By definition of T̂ , the second state
must assign to l the index of the next region. Such an assignment agrees

with the assignment required by D̂i, therefore Hyp. F.4 holds for f̂nli.1805

We now show that f̂ loop is a funnel-loop.

60

FL.1, FL.2 Each D̂i requires the same assignment to l as Ŝ(i+1)%n. Therefore, since

hypotheses FL.1 and FL.2 holds for floop, they must also hold for f̂ loop.

�

Theorem 10. The languages of floop and f̂ loop admit the same set of paths1810

projected over the symbols V .

Proof. We show that f̂ loop admits all paths of floop and vice-versa by induction
of their funnels and the length of the path.

� Assume floop admits a path starting from some state v. Then by def-
inition v |= Si for some i. Let v̂ assign l to i and agree with v on the1815

assignments of all symbols in V . Then v̂ |= Ŝi and v̂ is an initial state for

f̂ loop.

Viceversa, assume f̂ loop admits a path starting from some state v̂. Then
by definition v̂ |= Ŝi for some i. Let v be its projection over the symbols
V , then v |= Si and is an initial state for floop.1820

� Let π be a path of floop ending in state v and π̂ be the correspoding path

of f̂ loop ending in v̂. Let Si be the region of floop such that v |= Si and

let Ŝi be its corresponding region in f̂ loop.

Assume floop admits a successor state v′ of v. Then either v′ |= S′i or
v′ |= S′(i+1)%n. Let v̂′ be the assignment that extends v′ with l′ = i in the1825

first case and l′ = (i+1)%n otherwise. v̂′ is a successor of v̂ corresponding
to v′ such that π extended with v′ corresponds to π̂ extended with v̂′.

Viceversa, assume f̂ loop admits a successor state v̂′ of v̂. Let v′ be the
restriction of v̂′ to the symbols in V . Then, v′ is a successor for v such
that π̂ extended with v̂′ corresponds to π extended with v′.1830

�

Appendix B.2. E-components disjoint regions

In this section we show that for every E -component there exist a corre-
sponding one whose regions are pairwise disjoint and that admits the same
paths. Given an E -component H=̇〈V, I(V), T (V, V ′)〉 of length m over regions1835

R, assumptions A, ranking functions W and responsible for Vr ⊆ V , we define
a corresponding E -component Ĥ=̇〈V̂ , Î(V̂), T̂ (V̂ , V̂ ′)〉 over regions R̂, assump-
tions A, ranking functionsW and responsible for V̂r whose regions and pairwise
disjoint. Ĥ, with respect to H, has an additional symbol l used to keep track of
the index of the current region and each region is strengthened by requiring the1840

correct assignment for such symbol, while the sets of assumptions and ranking
functions remain the same. More formally we have the following:

� V̂ =̇V ∪{l}, where l 6∈ V is a fresh symbols whose domain are the integers
from 0 to m− 1.

61

� V̂r=̇Vr ∪ {l}.1845

� R̂=̇{Rj ∧ l = j | Rj ∈ R}

� Î(V̂)=̇I(V) ∧
∧m−1

j=0 l = j → Rj(V) ∧Aj(V).

� T̂ (V̂ , V̂ ′)=̇T (V, V ′) ∧
∧m−1

j=0 l′ = j → Rj(V
′)

Notice that by construction the R̂ are pairwise disjoint. We now show that H
and Ĥ admit the same paths with respect to the assignments over the common1850

symbols V and that Ĥ is in fact an E -component.

Theorem 11. If H satisfies all hypotheses of Def. 3 then also Ĥ does.

Proof.

I By hypothesis I →
∨m−1

j=0 Rj ∧Aj holds and we need to show that

(I ∧
m−1∧
j=0

l = j → (Rj ∧Aj))→
m−1∨
j=0

Rj ∧Aj ∧ l = j

also holds. By hypothesis, for every state v in I there must exist some1855

j0 such that v |= Rj0 ∧ Aj0 . By definition of l,
∨m−1

j=0 l = j is valid,
hence the left-hand-side of the implication l = j → (Rj ∧ Aj) cannot

be always false. Consider an assignment v̂ over V̂ and let j0 such that
v̂ |= l = j0. Then, if v̂ 6|= Rj0∧Aj0 our objective formula holds. Otherwise,

v̂ |= Rj0 ∧Aj0 ∧ l = j0, hence v̂ |=
∨m−1

j=0 Rj ∧Aj ∧ l = j.1860

II, III, IV If Ĥ admits a transition between two restricted regions R̂j0 ∧ Aj0 and

R̂j1 ∧Aj1 of one of the 3 kinds then, by construction of T̂ , H must admit
a transition of the same kind between its restricted regions Rj0 ∧Aj0 and
Rj1 ∧ Aj1 . Let t be the kind of the transition. All three hypotheses hold
for H, hence every state in Rj0 ∧Aj0 admits at least one successor in Rj11865

via a t-transition, provided Aj1 holds. For every state v̂ in R̂j0 ∧ Aj0 , let
v be its restriction to the symbols in V . v is in Rj0 ∧ Aj0 and it admits
a successor v′ via a t-transition. Then, v̂′ defined by extending v′ with
l′ = j1, is a t-successor for v̂ in Ĥ.

�1870

Theorem 12. The languages of H and Ĥ admit the same set of paths projected
over the symbols V .

Proof. We prove the statement by induction on the length of the path. We first
show that there is a one-to-one correspondence between the initial states and
then show that a one-to-one correspondence exists also between the transitions.1875

62

� Every initial state v0 of H must be such that I(v0) is true and, by Hyp. I
there exists 0 ≤ j0 < m such that Rj0(v0)∧Aj0(v0) also holds. We define

an assignment v̂0 over V̂ by extending v0 with the assignment l = j0. By
construction, Î(v̂0) and R̂j0(v̂0)∧Aj0(v̂0) hold, hence v̂0 is an initial state

for some path in L(Ĥ).1880

Viceversa, given an initial state v̂0 of Ĥ, we define v0 by restricting v̂0 to
the assignments of the symbols in V . By construction, I(v0) is true and
there exists 0 ≤ j0 < m such that Rj0(v0) ∧ Aj0(v0) holds. Therefore, v0

is an initial state for H.

� Consider a transition of H from assignment v to v′: v,v′ |= Rj ∧Aj ∧T ∧1885

Rj′ ∧ Aj′ for some 0 ≤ j < m and 0 ≤ j′ < m. By inductive hypothesis

there is an assignment v̂ for the symbols V̂ corresponding to v. We show
that Ĥ admits a successor v̂′ for v̂ that corresponds to v′. By hypothesis,
v′ |= Rj′ ∧ Aj′ . We define v̂′ by extending the assignment v′ with l = j′.

Then, v̂′ corresponds to v′ and v̂, v̂′ |= R̂j ∧Aj ∧ T̂ ∧ R̂j′ ∧ Âj′ .1890

Viceversa, consider now a transition of Ĥ from assignment v̂ to v̂′ and an
assignment v=̇v̂↓V for the symbols V corresponding to v̂. By hypothesis,

v̂ |= R̂j ∧ Aj and v̂′ |= R̂j′ ∧ Aj′ for some j and j′. By definition of

R̂j′ the following holds: v̂′ |= Rj′ . v′=̇v̂′↓V is an assignment over the
symbols V corresponding to v̂′. Since Rj′ and Aj′ do not depend on l and1895

v̂′ |= Rj′ ∧Aj′ , then v′ |= Rj′ ∧Aj′ . Hence, v,v′ |= Rj∧Aj∧T ∧Rj′ ∧Aj′ .
Therefore, v′ is a successor for v in H corresponding to v̂′.

�

Appendix B.3. Projection of E-components is closed

Theorem 4. The projection H↓ over indexes idxs of an E-component H over1900

regions R, assumptions A and ranking functions W is an E-component.

Proof. We prove that hypotheses I–IV hold for H↓.

I holds by construction since every state v such that I↓(v) must also satisfy∨
j∈idxs(Rj(V) ∧ Aj(V)) hence, by definition of R↓ and A↓, v is also in

some restricted region of H↓.1905

II For any j↓ ∈ idxs, the region R↓
j↓

, assumption A↓
j↓

and ranking function

Rf↓
j↓

are in both H↓ and H. In all transitions such that Rj ∧ Rf′j <

Rfj ∧R′j holds for some j ∈ idxs, T ↓ is equivalent to T . Therefore, since

Hyp. II holds for H, it must also hold for H↓: if T admits a successor for
every state in Rj ∧Aj such that Rf′j < Rfj ∧R′j hold, then so does T ↓.1910

III By construction of T ↓ admits no stutter transition. Therefore, the left-
hand-side of the entailment is false and Hyp. III holds.

63

IV For any j↓, j↓
′ ∈ idxs, if they do not denote consecutive regions in the

sequence, H↓ does not admit any transition between them and Hyp. IV
holds. Otherwise, j↓ and j↓

′
are the consecutive indexes of the regions R↓

j↓
,1915

R↓
j↓′ , the assumptions A↓

j↓
, A↓

j↓′ and ranking functions Rf↓
j↓

. If H does

not admit any progress transition between these regions, neither does H↓

and Hyp. IV holds. Otherwise if H admits at least one transition between
these regions, the following holds:

∃V, V ′ : R↓
j↓
∧A↓

j↓
∧Rf↓

j↓
= 0 ∧ T ∧R↓

j↓′ ∧A↓j↓′

Every such V and V ′ satisfies T ↓, hence it is also a transition for H↓.1920

Therefore, since Hyp. IV holds for H, for every state in R↓
j↓
∧A↓

j↓
∧Rf↓

j↓
=

0 H admits a successor in R↓
j↓′ ∧ A↓j↓′ . Every such transition is also

admitted by H↓ and Hyp. IV holds for H↓.

�

Appendix B.4. Composition of E-components is closed1925

Theorem 5. Given a set of E-components {Hi}ni=0, their composition
Hc=̇

⊗n
i=0H

i = 〈V, Ic, T c〉 is an E-component with respect to regions Rc, as-
sumptions Ac and ranking functions Wc.

Proof. We need to prove that hypotheses I–IV hold for Hc of length mc.
In the following we write Ai,6=c

ji
for

∧
h6∈{0,...,n}A

i,h
ji

(V h).1930

I requires us to prove that the initial states of Hc are a subset of the union
of the regions. This holds trivially from the definition of Ic since every

state in this set must satisfy
∨mc

jc=0R
c
jc
∧Ac

jc
.

II requires us to prove the following

∀j : 0 ≤ j < mc →
∃V, V ′ : (Rc

j ∧Ac
j ∧ T c ∧Rfcj

′ < Rfcj ∧Rc
j
′ ∧Ac

j
′) |=

∀V ∃V c′∀V 6=c′ : Rc
j ∧Ac

j ∧ 0 < Rfcj ∧Ac
j
′ → Rc

j
′ ∧ T c ∧Rfcj

′ < Rfcj

Hc=̇
⊗n

i=0H
i hence, by definition of ⊗, Rc

j and Ac
j are the conjunction of

some region and assumptions of {Hi}ni=0. Therefore, we can rewrite it as

64

follows:

∀{ji}ni=0 : (

n∧
i=0

0 ≤ ji < mi)→

∃V, V ′ : (

n∧
i=0

Ri
ji ∧ (

n∧
h=0,h6=i

Ai,h
ji

) ∧Ai,6=c
ji
∧ T i) ∧ compatible{Hi}ni=0

∧

indepRank{Hi}ni=0
∧Rfcj

′ < Rfcj ∧ (

n∧
i=0

Ri
ji

′ ∧ (

n∧
h=0,h 6=i

Ai,h
ji

′
) ∧Ai,6=c

ji

′
) |=

∀V ∃{V i′}ni=0∀V 6=c′ : ((

n∧
i=0

Ri
ji ∧ (

n∧
h=0,h6=i

Ai,h
ji

) ∧Ai,6=c
ji

) ∧Ac
j
′ ∧ 0 < Rfcj)→

((

n∧
i=0

Ri
ji

′ ∧ (

n∧
h=0,h 6=i

Ai,h
ji

′
) ∧ T i) ∧ compatible{Hi}ni=0

∧ indepRank{Hi}ni=0
∧

Rfcj
′ < Rfcj)

For any 0 ≤ i ≤ n Ai
j(V

6=c)∧
∧n

h=0,h6=iA
i,h
ji

(V h) is equivalent to Ai
j(V

6=i).
Therefore, our objective formula can be rewritten as:

∀{ji}ni=0 : (

n∧
i=0

0 ≤ ji < mi)→

∃V, V ′ : (

n∧
i=0

Ri
ji ∧A

i
ji ∧ T

i ∧Ri
ji

′ ∧Ai
ji

′
) ∧ compatible{Hi}ni=0

∧

indepRank{Hi}ni=0
∧Rfcj

′ < Rfcj |=

∀V ∃{V i′}ni=0∀V 6=c′ : ((

n∧
i=0

Ri
ji ∧A

i
ji) ∧A

c
j
′ ∧ 0 < Rfcj)→ ((

n∧
i=0

T i ∧Ri
ji

′∧

n∧
h=0,h6=i

Ai,h
ji

′
) ∧ compatible{Hi}ni=0

∧ indepRank{Hi}ni=0
∧Rfcj

′ < Rfcj)

If indepRank{Hi}ni=0
[resp. compatible{Hi}ni=0

] does not hold in the left-
hand-side of the entailment the formula is trivially true. By definition
of indepRank{Hi}ni=0

[resp. compatible{Hi}ni=0
], if it holds in the left-

hand-side of the entailment it must also hold on the right-hand-side,
since on both sides V and V ′ belong to the same regions. Therefore,
compatible{Hi}ni=0

must hold and when both sides of the implication on

the right-hand-side of the entailment hold,
∧n

i=0

∧n
h=0,h 6=iA

i,h
j′i

(V h′) must

65

be true. We can further simplify our objective formula as follows:

∀{ji}ni=0 : (

n∧
i=0

0 ≤ ji < mi)→ ∃V, V ′ : (

n∧
i=0

Ri
ji ∧A

i
ji ∧ T

i ∧Ri
ji

′ ∧Ai
ji

′
)∧

compatible{Hi}ni=0
∧ indepRank{Hi}ni=0

∧Rfcj
′ < Rfcj |= ∀V ∃{V i′}ni=0∀V 6=c′ :

((

n∧
i=0

Ri
ji ∧A

i
ji) ∧A

c
j
′ ∧ 0 < Rfcj)→ ((

n∧
i=0

T i ∧Ri
ji

′
) ∧Rfcj

′ < Rfcj)

If the left-hand-side of the entailment is false, then the formula is trivially
true. Therefore, assume that there exists a transition performing a self-
loop on the restricted region Rc

j ∧Ac
j with independent ranks in which the

sum of the ranking function decreases. Under this assumption, we need
to prove the following for any j=̇〈j0, . . . , jn〉 satisfying the above:

∀V ∃{V i′}ni=0∀V 6=c′ :

((

n∧
i=0

Ri
ji ∧A

i
ji) ∧A

c
j
′ ∧ 0 < Rfcj(V))→ ((

n∧
i=0

T i ∧Ri
ji

′
) ∧Rfcj

′ < Rfcj)

Since indepRank{Hi}ni=0
holds for indexes 〈j0, . . . , jn〉 we have:

n∧
i=0

(∀V : (

n∧
h=0

Rh
jh
∧Ah

jh
)→ Rfiji = 0)∨

∃V, V ′ : (

n∧
h=0

Rh
jh
∧Ah

jh
∧ Th ∧Rh

jh

′ ∧Ah
jh

′
)∧

Rfiji
′
< Rfiji ∧ (

n∧
k=0,k 6=h

Rfiji
′

= Rfiji) ∧ compatible{Hi}ni=0

In addition, since there exists a transition in the restricted regions such
that Rfcj decreases, there must be some 0 ≤ ir ≤ n such that ∃V :

(
∧n

h=0R
h
jh

(V)∧Ah
jh

(V 6=h))∧ 0 < Rfirjir (V). Then, there exist compatible

transitions in which its ranking function decreases Rfirjr (V ′) < Rfirjr (V),

while all other ranking function remain constant
∧n

i=0,i6=ir
Rfiji(V

′) =

Rfiji(V). Hyp. II holds for Hir :

∀jr : 0 ≤ jr < mir → ∃V, V ′ : (Rir
jr
∧Air

jr
∧ T ir ∧Rfirjr

′
< Rfirjr ∧R

ir
jr

′ ∧Air
jr

′
) |=

∀V ∃V ir ′∀V 6=ir ′ : Rir
jr
∧Air

jr
∧ 0 < Rfirjr ∧A

ir
jr

′ → Rir
jr

′ ∧ T ir ∧Rfirjr
′
< Rfirjr

and Hyp. III holds for all {Hi}ni=0,i6=ir
:

∀ji : 0 ≤ ji < mi → ∃V, V ′ : (Ri
ji ∧A

i
ji ∧ T

i ∧Rfiji
′

= Rfiji ∧R
i
ji

′ ∧Ai
ji

′
) |=

∀V ∃V i′∀V 6=i′ : Ri
ji ∧A

i
ji ∧A

i
ji

′ → Ri
ji

′ ∧ T i ∧Rfiji
′

= Rfiji

66

If there is no transition in the intersection of the restricted regions such
that Rfcj decreases or they are not compatible, the objective formula triv-
ially holds because the left-hand-side of the entailment is false. Then, the
conjunction of the hypotheses for the {Hi}ni=0 implies:

∀{ji}ni=0 : (

n∧
i=0

0 ≤ ji < mi)→

∃V, V ′ : (

n∧
i=0

(Ri
ji ∧A

i
ji ∧ T

i ∧Ri
ji

′ ∧Ai
ji

′
) ∧Rfirjr

′
< Rfirjr ∧

n∧
i=0,i6=r

Rfiji
′

= Rfiji) |=

∀V ∃V ir ′∀V 6=ir ′ : Rir
jr
∧Air

jr
∧ 0 < Rfirjr ∧A

ir
jr

′ → Rir
jr

′ ∧ T ir ∧Rfirjr
′
< Rfirjr∧

n∧
i=0,i6=r

∀V ∃V i′∀V 6=i′ : Ri
ji ∧A

i
ji ∧A

i
ji

′ → Ri
ji

′ ∧ T i ∧Rfiji
′

= Rfiji

The left hand side of the entailment must hold, otherwise our objective
formula is trivially true.

∀V ∃V ir ′∀V 6=ir ′ : Rir
jr
∧Air

jr
∧ 0 < Rfirjr ∧A

ir
jr

′ → Rir
jr

′ ∧ T ir ∧Rfirjr
′
< Rfirjr∧

n∧
i=0,i6=r

∀V ∃V i′∀V 6=i′ : Ri
ji ∧A

i
ji ∧A

i
ji

′ → Ri
ji

′ ∧ T i ∧Rfiji
′

= Rfiji

If a ∀V ∃V i′∀V 6=i′ quantified implication holds, then for every assignment
to the symbols V such that Ri

ji
(V), Ai

ji
(V 6=i) and, if i = ir, also 0 <

Rfirjr (V) hold, there exists an assignment to V i′ satisfying the assumptions

of all other E -components
∧n

s=0,s6=iA
s,i
js

(V i′), for all assignments to the

V 6=i′. Therefore, we can write the following:

∀V ∃{V i′}ni=0∀V 6=c′ : (Rir
jr
∧Air

jr
∧ 0 < Rfirjr ∧A

ir,6=c
jr

′
→ Rir

jr

′ ∧ T ir ∧Rfirjr
′
< Rfirjr)∧

n∧
i=0,i6=r

Ri
ji ∧A

i
ji ∧A

i,6=c
ji

′
→ Ri

ji

′ ∧ T i ∧Rfiji
′

= Rfiji

0 < Rfirjr (V) implies 0 < Rfcj(V) and, since (a → b) ∧ (c → d) implies
(a ∧ c)→ (b ∧ d), the formula above implies:

∀V ∃{V i′}ni=0∀V 6=c′ : (0 < Rfcj ∧ (

n∧
i=0

Ri
ji ∧A

i
ji ∧A

i,6=c
ji

′
))→

Rfirjr
′
< Rfirjr ∧ (

n∧
i=0,i6=ir

Rfiji
′

= Rfiji) ∧
n∧

i=0

Ri
ji

′ ∧ T i

The formula Rfirjr (V ′) < Rfirjr (V)) ∧ (
∧n

i=0,i6=ir
Rfiji(V

′) = Rfiji(V)) im-

plies Rfcj(V
′) < Rfcj(V) and

∧n
i=0A

i
ji

(V 6=c) is equivalent to Ac
j(V

6=c)

67

Therefore, we obtain the implied statement:

∀V ∃{V i′}ni=0∀V 6=c′ :

((

n∧
i=0

Ri
ji ∧A

i
ji) ∧A

c
j
′ ∧ 0 < Rfcj)→ ((

n∧
i=0

T i ∧Ri
ji

′
) ∧Rfcj

′ < Rfcj)

which is exactly the formula we wanted to prove.

III requires us to prove the following

∀j : 0 ≤ j < mc →
∃V, V ′ : (Rc

j ∧Ac
j ∧ T c ∧Rfcj

′ = Rfcj ∧Rc
j
′ ∧Ac

j
′) |=

∀V ∃V c′∀V 6=c′ : Rc
j ∧Ac

j ∧Ac
j
′ → Rc

j
′ ∧ T c ∧Rfcj

′ = Rfcj

By definition of ⊗ and since Hc=̇
⊗n

i=0H
i we can rewrite it as:

∀{ji}ni=0 : (

n∧
i=0

0 ≤ ji < mi)→

∃V, V ′ : (

n∧
i=0

Ri
ji ∧ (

n∧
h=0,h6=i

Ai,h
ji

) ∧Ai,6=c
ji
∧ T i) ∧ compatible{Hi}ni=0

∧

indepRank{Hi}ni=0
∧Rfcj

′ = Rfcj ∧ (

n∧
i=0

Ri
ji

′ ∧ (

n∧
h=0,h 6=i

Ai,h
ji

′
) ∧Ai,6=c

ji

′
) |=

∀V ∃{V i′}ni=0∀V 6=c′ : ((

n∧
i=0

Ri
ji ∧ (

n∧
h=0,h6=i

Ai,h
ji

) ∧Ai,6=c
ji

) ∧Ac
j
′)→ ((

n∧
i=0

Ri
ji

′∧

(
∧

h=0,h6=i

Ai,h
ji

′
) ∧ T i) ∧ compatible{Hi}ni=0

∧ indepRank{Hi}ni=0
∧Rfcj

′ = Rfcj)

On both sides of the entailment Rfcj(V
′) = Rfcj(V) holds, hence

indepRank{Hi}ni=0
is trivially true: the left-hand-side of the implication

in its definition is false. In addition, for any 0 ≤ i ≤ n Ai
j(V

6=c) ∧∧n
h=0,h 6=iA

i,h
ji

(V h) is equivalent to Ai
j(V

6=i). Therefore, our objective for-
mula can be rewritten as:

∀{ji}ni=0 : (

n∧
i=0

0 ≤ ji < mi)→

∃V, V ′ : (

n∧
i=0

Ri
ji ∧A

i
ji ∧ T

i ∧Ri
ji

′ ∧Ai
ji

′
) ∧Rfcj

′ = Rfcj ∧ compatible{Hi}ni=0
|=

∀V ∃{V i′}ni=0∀V 6=c′ : ((

n∧
i=0

Ri
ji ∧A

i
ji) ∧A

c
j
′)→ ((

n∧
i=0

T i ∧Ri
ji

′ ∧
∧

h=0,h 6=i

Ai,h
ji

′
)∧

Rfcj
′ = Rfcj ∧ compatible{Hi}ni=0

)

68

If compatible{Hi}ni=0
(V, V ′) does not hold, then the left-hand-side of

the entailment is false, hence the entailment is true. Otherwise,
compatible{Hi}ni=0

holds and since it holds on the left-hand-side of
the entailment, it must also hold on the right-hand-side; when both
sides of the implication on the right-hand-side of the entailment hold,∧n

i=0

∧n
h=0,h 6=iA

i,h
j′i

(V h′) must be true since compatible{Hi}ni=0
holds. We

can further simplify our objective formula as follows:

∀{ji}ni=0 : (

n∧
i=0

0 ≤ ji < mi)→

∃V, V ′ : (

n∧
i=0

Ri
ji ∧A

i
ji ∧ T

i ∧Ri
ji

′ ∧Ai
ji

′
) ∧Rfcj

′ = Rfcj ∧ compatible{Hi}ni=0
|=

∀V ∃{V i′}ni=0∀V 6=c′ : ((

n∧
i=0

Ri
ji ∧A

i
ji) ∧A

c
j
′))→ ((

n∧
i=0

T i ∧Ri
ji

′
) ∧Rfcj

′ = Rfcj)

If the left-hand-side of the entailment is false, then the formula is trivially
true. Therefore, assume that there exists a transition performing a self-
loop on the restricted region Rc

j∧Ac
j in which the ranking function remains

constant. Under this assumption, we need to prove the following for any
j=̇〈j0, . . . , jn〉 satisfying the above:

∀V ∃{V i′}ni=0∀V 6=c′ : ((

n∧
i=0

Ri
ji ∧A

i
ji) ∧A

c
j
′)→ (Rfcj

′ = Rfcj ∧
n∧

i=0

T i ∧Ri
ji

′
)

Hyp. III holds for all E -components {Hi}ni=0:

∀ji : 0 ≤ ji < mi →

∃V, V ′ : (Ri
ji ∧A

i
ji ∧ T

i ∧Rfiji
′

= Rfiji ∧R
i
ji

′ ∧Ai
ji

′
) |=

∀V ∃V i′∀V 6=i′ : Ri
ji ∧A

i
ji ∧A

i
ji

′ → Ri
ji

′ ∧ T i ∧Rfiji
′

= Rfiji

By assumption there exists a transition in the intersection of their re-
stricted regions such that Rfcj(V

′) = Rfcj(V), and hence Rfiji(V
′) =

Rfiji(V) for all i. Therefore, their conjunction implies:

n∧
i=0

∀V ∃V i′∀V 6=i′ : Ri
ji ∧A

i
ji ∧A

i
ji

′ → Ri
ji

′ ∧ T i ∧Rfiji
′

= Rfiji

If a ∀V ∃V i′∀V 6=i′ quantified implication holds then for every assignment
to the symbols V such that Ri

ji
(V) ∧ Ai

ji
(V 6=i) ∧ Ai

ji
(V 6=i′) holds, there

exists an assignment to the V i′ satisfying the assumptions of all other
E -components

∧n
s=0,s6=iA

s,i
js

(V i′), for all assignments to the V 6=i′. There-
fore, we can write the following:

∀V ∃{V i′}ni=0∀V 6=c′ :

n∧
i=0

((Ri
ji ∧A

i
ji ∧A

i,6=c
ji

′
)→ (Ri

ji

′ ∧ T i ∧Rfiji
′

= Rfiji))

69

Since (a → b) ∧ (c → d) implies (a ∧ c) → (b ∧ d) and
∧n

i=0 Rfiji(V
′) =

Rfiji(V) implies Rfcj(V
′) = Rfcj(V), the formula above implies:

∀V ∃{V i′}ni=0∀V 6=c′ : (

n∧
i=0

Ri
ji ∧A

i
ji) ∧A

c
j
′ → (Rfcj

′ = Rfcj ∧
n∧

i=0

T i ∧Ri
ji

′
)

which is exactly the formula we wanted to prove.1935

IV requires us to prove the following

∀j, j′ : 0 ≤ j < mc ∧ 0 ≤ j′ < mc →
∃V, V ′ : (Rc

j ∧Ac
j ∧ T c ∧Rfcj = 0 ∧Rc

j′
′ ∧Ac

j′
′) |=

∀V ∃V c′∀V 6=c′ : Rc
j ∧Ac

j ∧Rfcj = 0 ∧Ac
j′
′ → Rc

j′
′ ∧ T c

By definition of ⊗ and since Hc=̇
⊗n

i=0H
i we can rewrite it as:

∀{ji}ni=0, {j′i}ni=0 : (

n∧
i=0

0 ≤ ji < mi ∧ 0 ≤ j′i < mi)→

∃V, V ′ : (

n∧
i=0

Ri
ji ∧ (

n∧
h=0,h6=i

Ai,h
ji

) ∧Ai,6=c
ji
∧ T i) ∧ compatible{Hi}ni=0

∧

indepRank{Hi}ni=0
∧Rfcj = 0 ∧ (

n∧
i=0

Ri
j′i

′ ∧ (

n∧
h=0,h 6=i

Ai,h
j′i

′
) ∧Ai,6=c

j′i

′
) |=

∀V ∃{V i′}ni=0∀V 6=c′ : ((

n∧
i=0

Ri
ji ∧ (

n∧
h=0,h6=i

Ai,h
ji

) ∧Ai,6=c
ji

) ∧Rfcj = 0 ∧Ac
j′
′)→

((

n∧
i=0

Ri
j′i

′ ∧ T i ∧
n∧

h=0,h6=i

Ai,h
j′i

′
) ∧ compatible{Hi}ni=0

∧ indepRank{Hi}ni=0
)

If j 6= j′, indepRank{Hi}ni=0
trivially holds, since the left-hand-side of

the implication in its definition is false. Otherwise, if j = j′, Rfcj(V) =
0 contradicts Rfcj(V

′) < Rfcj(V) and again indepRank{Hi}ni=0
trivially

holds because the left-hand-side of the implication in its definition is false.
In addition, for any 0 ≤ i ≤ n Ai

j(V
6=c) ∧

∧n
h=0,h6=iA

i,h
ji

(V h) is equivalent

70

to Ai
j(V

6=i). Therefore, our objective formula can be rewritten as:

∀{ji}ni=0, {j′i}ni=0 : (

n∧
i=0

0 ≤ ji < mi ∧ 0 ≤ j′i < mi)→

∃V, V ′ : (

n∧
i=0

Ri
ji ∧A

i
ji ∧ T

i ∧Ri
j′i

′ ∧Ai
j′i

′
) ∧ compatible{Hi}ni=0

∧Rfcj = 0 |=

∀V ∃{V i′}ni=0∀V 6=c′ : ((

n∧
i=0

Ri
ji ∧A

i
ji) ∧Rfcj = 0 ∧Ac

j′
′)→

((

n∧
i=0

T i ∧Ri
j′i

′ ∧
n∧

h=0,h6=i

Ai,h
j′i

′
) ∧ compatible{Hi}ni=0

)

If compatible{Hi}ni=0
(V, V ′) does not hold, then the left-hand-side of

the entailment is false, hence the entailment is true. Otherwise
compatible{Hi}ni=0

holds and since it holds on the left-hand-side of
the entailment, it must also hold on the right-hand-side; when both
sides of the implication on the right-hand-side of the entailment hold,∧n

i=0

∧n
h=0,h 6=iA

i,h
j′i

(V h′) must be true since compatible{Hi}ni=0
holds. We

can further simplify our objective formula as follows:

∀{ji}ni=0, {j′i}ni=0 : (

n∧
i=0

0 ≤ ji < mi ∧ 0 ≤ j′i < mi)→

∃V, V ′ : (

n∧
i=0

Ri
ji ∧A

i
ji ∧ T

i ∧Ri
j′i

′ ∧Ai
j′i

′
) ∧ compatible{Hi}ni=0

∧Rfcj = 0 |=

∀V ∃{V i′}ni=0∀V 6=c′ : (Rfcj = 0 ∧
n∧

i=0

Ri
ji ∧A

i
ji ∧A

i,6=c
j′i

′
)→ (

n∧
i=0

T i ∧Ri
j′i

′
)

If the left-hand-side of the entailment is false, then the formula is trivially
true. Therefore, assume that there exists a transition from a state in
Rc

j ∧Ac
j ∧Rfcj = 0 to Rc

j′ ∧Ac
j′ Under this assumption, we need to prove

the following for any j=̇〈j0, . . . , jn〉 satisfying the above:

∀V ∃{V i′}ni=0∀V 6=c′ : (Rfcj = 0 ∧
n∧

i=0

Ri
ji ∧A

i
ji ∧A

i,6=c
j′i

′
)→ (

n∧
i=0

T i ∧Ri
j′i

′
)

Each E -component Hi allows for a transition from its restricted region
with index ji to the one with index j′i. In this transition since Rfcj(V) = 0,

then Rfiji(V) = 0 holds in the source state. The following holds since

Hyp. IV holds for all {Hi}ni=0.

∃V, V ′ : (Ri
ji ∧A

i
ji ∧ T

i ∧Rfiji = 0 ∧Ri
j′i

′ ∧Ai
j′i

′
) |=

∀V ∃V i′∀V 6=i′ : (Ri
ji ∧A

i
ji ∧Rfiji = 0 ∧Ai

j′i

′
)→ Ri

j′i

′ ∧ T i

71

If a ∀V ∃V i′∀V 6=i′ quantified implication holds then for every assignment
to the symbols V such that Ri

ji
(V) ∧ Ai

ji
(V 6=i) ∧ Ai

j′i
(V 6=i′) holds, there

exists an assignment to the V i′ satisfying the assumptions of all other
E -components

∧n
s=0,s6=iA

s,i
j′s

(V i′), for all assignments to the V 6=i′. There-
fore, we can write the following:

∀V ∃{V i′}ni=0∀V 6=c′ :

n∧
i=0

((Ri
ji ∧A

i
ji ∧Rfiji = 0 ∧Ai,6=c

j′i

′
)→ (Ri

j′i

′ ∧ T i))

Since (a → b) ∧ (c → d) implies (a ∧ c) → (b ∧ d) and
∧n

i=0 Rfiji(V) = 0
implies Rfcj(V) = 0, we can write the following implied statement:

∀V ∃{V i′}ni=0∀V 6=c′ : (Rfcj = 0 ∧
n∧

i=0

Ri
ji ∧A

i
ji ∧A

i,6=c
j′i

′
)→ (

n∧
i=0

T i ∧Ri
j′i

′
)

which is exactly the formula we wanted to prove.

�

Appendix B.5. E-CHC encoding of funnel-loop search is sound

Theorem 7. Given a fair transition system M=̇〈V, IM , TM , FM 〉 and an in-
terpretation for the queries R, T and Rank satisfying all Eqs. (A.1)–(A.7). Then1940

there exist a funnel-loop for M .

Proof. We first show that, R(c, V) and T (V, V ′) correspond to a funnel and
then show that such funnel corresponds to a funnel-loop of length one. We define
a funnel fnl=̇〈S(V), Tfnl(V, V

′), D(V),Rf(V)〉, where (i) S(V)=̇∃c : R(c, V),
(iv) Tfnl(V, V

′)=̇T (V, V ′) ∧ (D(V ′)↔ Rf(V) = 0), (iii) D(V)=̇∃c : c ∧R(c, V)1945

and (iii) Rf(V) is a ranking function witnessing the well-foundedness of relation
Rank(V, V ′). Rf is such that Rf(V) = 0 for all V such that there exist no V ′

making ¬c ∧R(c, V) ∧ T (V, V ′) ∧ ∧c′R(c′, V ′) hold:

∀c, V, c′ : ¬(∃V ′ : ¬c ∧R(c, V) ∧ T (V, V ′) ∧ c′ ∧R(c′, V ′))→ Rfi(V) = 0

and in all other cases (R(c, V) ∧ T (V, V ′) ∧ R(c, V ′) holds for all V , V ′) the
following must hold:1950

∀V, V ′ : (¬c ∧R(c, V) ∧ T (V, V ′) ∧R(c, V ′))→ Rf(V) ≥ Rf(V ′) + 1

These two constraints allow for many different interpretations of Rf. Every
such interpretation satisfies our requirements and it is sufficient for such set
to be non-empty. The well-foundedness of Rank implies, by Eq. (A.6), that
¬c ∧ R(c, V) ∧ T (V, V ′) ∧ R(c, V ′) is well-founded. Therefore, there must exist
some V such that Rf(V) = 0: in particular all the states in ¬c ∧ ¬R(c, V)1955

and all the states in ¬c ∧ R(c, V) for which T does not admit any successor
in the same region. Since ¬c ∧ R(c, V) ∧ T (V, V ′) ∧ R(c, V ′) is well-founded it

72

cannot allow for any infinite chain of states, hence it cannot allow any loop of
states. Therefore, the constraints above do not contain any circular dependency
in the definition of the assignments to the Rf(V) and there exists at least one1960

interpretation for Rf.
We now show that fnl satisfies all hypotheses required by Def. 1.

F.1 follows directly from Eq. (A.4) and the fact that Rf = 0 implies that T
does not admit any successor in ¬c ∧ R(c, V), hence it must admit some
successor in c ∧R(c, V), which by definition is in D.1965

F.2 By construction S contains all states of ∃c : R(c, V). Eq. (A.2) ensures
that this is an invariant, hence Hyp. F.2 holds.

F.3 By construction, Rf assigns decreasing integers to the chains described by
the relation ¬c ∧ R(c, V) ∧ T (V, V ′) ∧ R(c, V ′). Therefore, at every such
step Rf must decrease and Hyp. F.3 holds.1970

F.4 Eq. (A.2) and the well-foundedness of ¬c∧R(c, V)∧T (V, V ′), ensures that
from a state in ¬c∧R(c, V) in a finite number of T steps we must reach a
state in c∧R(c, V). We defined Rf such that Rf = 0 in the states whose
T successors are in c ∧R(c, V), hence in D. Therefore, Hyp. F.4 holds.

We now show that fnl is a funnel-loop: it meets all hypotheses of Def. 21975

FL.1 trivially holds since fnl is the only funnel.

FL.2 We defined S as the union of c ∧ R(c, V) and ¬c ∧ R(c, v) and D as
c ∧R(c, V). Therefore D → S and Hyp. FL.2 holds.

Finally, we show that this funnel-loop represents at least one fair path of M
by showing that it meets all hypotheses of Th. 1.1980

FF.1 holds since Eq. (A.1) ensures that R(c, V) has a non-empty intersection
with the initial states IM .

FF.2 holds since Eq. A.5 ensures that every state in c∧R(c, V) satisfies FM (V).
We defined D=̇R(>, V), hence D → FM and Hyp. FF.2 must hold.

FF.3 follows directly from Eq. (A.3).1985

�

Appendix B.6. E-CHC encoding of funnel-loop search is complete

Theorem 8. Let floop be a funnel-loop of length one for a transition system
M=̇〈V, IM , TM , FM 〉. Then, there exists an intepretation for the query symbols
R, T and Rank satisfying all Eqs. (A.1)–(A.7).1990

73

Proof. Given a floop of length one, we define an interpretation for the
query symbols R, T and Rank for the E-CHC. Let fnl=̇〈S, Tfnl, D,Rf〉 be the
funnel of floop. By Th. 1 there exists a finite sequence of states π such that: it
starts from an initial state of M , follows the transition relation of M and ends
in a state in the source region S. Without loss of generality we assume π does1995

not contain any state in S other than the last one. In the following we write
π(V) for the predicate that holds iff V is in π and π(V, V ′) for the predicate
that holds iff V and V ′ are two consecutive states in π. We define the inter-
pretation for the queries as follows: (i) R(c, V)=̇(π(V) ∨ S(V)) ∧ (c ↔ D(V)),
(ii) T (V, V ′)=̇π(V, V ′) ∨ (S(V) ∧ Tfnl(V, V ′)) and (iii) Rank(V, V ′)=̇π(V, V ′) ∨2000

Rf(V ′) < Rf(V). We now show that this interpretation satisfies all Eqs. (A.1)–
(A.7).

Eq. (A.1) By construction ¬c ∧ R(c, V) contains all states in π. By hypothesis, the
first state of π is an initial state of M . Therefore, Eq. (A.1) holds.

Eq. (A.2) R(c, V) contains all states of π and of S. T either follows the transitions of2005

π or, once it reaches S follows the transition relation of fnl. By hypothe-
ses F.2, F.4, FL.1 and FL.2 such transitions must remain in S. Therefore,
from every state not in S and not in π T is false and the left-hand-side
of Eq. (A.2) is false; otherwise, every T transition must remain within
R(c, V) and Eq. (A.2) is true.2010

Eq. (A.3) Every step in π is also a step in M and by Hyp. FF.3 every step of
floop underapproximates the transition relation ofM . Therefore, T (V, V ′)
underapproximates TM and Eq. (A.3) holds.

Eq. (A.4) Since Hyp. F.1 must hold for fnl and every state in π must admit a suc-
cessor until a state in S is reached, by construction T (V, V ′) always allows2015

from some successor state in each region R(V, c). Therefore, Eq. (A.4)
holds.

Eq. (A.5) By Hyp. FF.2 the destination region D underapproximates the fair states.
By construction c∧R(c, V) is equivalent to such region. Therefore, Eq. A.5
holds.2020

Eq. (A.6) holds by construction of the interpretation for Rank .

Eq. (A.7) holds since π is a finite sequence of states and each Rf is a ranking function
with respect to Tfnl and the corresponding S.

�

74

	Introduction
	Background
	Symbols, formulae, implicants and entailment
	Well-founded relations and ranking functions
	LTL model checking

	Overview of the approach
	Segmentation: funnels
	Decomposition: existential components
	Search procedure

	Running example
	Segmenting paths with funnels
	Funnels
	Funnel-loops
	Example

	Model decomposition via Existential Components
	E-component
	Example decomposition
	From funnel-loops to E-components
	Operators over E-component
	Example E-components composition
	From E-components to funnel-loops

	Search procedure
	Example funnel-loop search
	Candidate fair loops: representation and enumeration
	Funnel-loop templates
	Funnel-loop synthesis problem

	Related work
	Experimental Evaluation
	Implementation
	Benchmarks
	Competitor tools
	Evaluation

	Conclusions
	Encoding of funnel-loop search in E-CHC
	Theorems and proofs
	Funnel-loop disjoint regions
	E-components disjoint regions
	Projection of E-components is closed
	Composition of E-components is closed
	E-CHC encoding of funnel-loop search is sound
	E-CHC encoding of funnel-loop search is complete

