A Model-Based Approach
to the Design, Verification and Deployment
of Railway Interlocking System

Arturo Amendola', Anna Becchi?, Roberto Cavada?,
Alessandro Cimatti?, Alberto Griggio?, Giuseppe Scaglione!,
Angelo Susi?, Alberto Tacchella?, and Matteo Tessi!

1 RFI Rete Ferroviaria Italiana — Osmannoro, Firenze, Italy
amendola.arturo@yahoo.com, {m.tessi,g.scaglione}@rfi.it
2 Fondazione Bruno Kessler — Povo, Trento, Italy
{abecchi ,cavada,cimatti,griggio,susi, atacchella}@fbk .eu

Abstract. This paper describes a model-based flow for the development
of Interlocking Systems. The flow starts from a set of specifications in
Controlled Natural Language (CNL), that are close to the jargon adopted
in by domain experts, but fully formal. From the CNL, a complete SysML
specification is extracted, leveraging various forms of diagrams, and en-
abling automated code generation. Several formal verification methods
are supported. A complementary part of the flow supports the extrac-
tion of formal properties from legacy Interlocking Systems designed as
Relay circuits. The flow is implemented in a comprehensive toolset, and
is currently used by railway experts.

Keywords: Model-Based Design - Interlocking Systems - Functional
Specifications - Code Generation - Formal Verification.

1 Introduction

Functional specifications of complex embedded systems are often written in natu-
ral language, but can be ambiguous and subject to different interpretations. This
phenomenon emerges in several domains such as avionics and automotive, and
is particularly evident in the specification of railway Interlocking (IzL) systems.
Different regulations and technical specifications expressed in natural language
documents, together with complex legacy relay electrical diagrams, have to be
reconciled and interpreted to design and evolve digital systems. Such represen-
tations usually fail to provide a high-level information about the overall system
logics since the design and the actual implementation of the system is highly
interconnected. Moreover, the work on these documents requires a strong legacy
domain knowledge which is vanishing in these days.

All these aspects contribute to produce different interpretations by Interlock-
ing system suppliers, making railway infrastructure managers weaken or even
losing their knowledge of the systems, and ultimately get locked-in to the spe-
cific supplier providing the system instances.

2 A. Amendola et al.

In this paper, we propose a Model-Based, tool-supported methodology for
the specification, implementation and verification of interlocking systems for the
Italian Railway Signaling network. The aim is to ensure product standardiza-
tion, smooth specification of requirements, and automated code generation and
verification of the system. Moreover, this research is intended to support a sys-
tematic strategy for the migration of legacy relay systems to computer-based
systems.

The approach has several distinguishing features. First, the approach relies
on a Controlled Natural Language (CNL) to support railway experts having deep
knowledge on regulations and provisions, who are not trained in formal methods,
in writing the specification of interlocking procedures using their own language.
The CNL, in fact, has been defined to be very close to the jargon adopted
by domain experts, yet it is unambiguous. From the CNL, models in SysML
and C/Python code are automatically generated, thus retaining full traceability.
The methodology does not allow to manually modify the automatically gener-
ated models and code. Second, the interlocking logics are generic, i.e. specified
on station types rather than on a single station. The configuration process with
respect to a specific station, also model-based, is out of the scope of this pa-
per. This poses the problem of analyzing not only the interlocking procedures
once instantiated on a single station, but also the correctness of the generic pro-
cedures with respect to a class of stations. Third, in order to manage legacy,
the approach supports the digitalization of relay circuit documents, and the au-
tomated extraction of formal models and properties, to allow model checking
and co-simulation [2, 6-8]. Finally, the validation of the interlocking logic is sup-
ported by a number of formal verification engines, ranging from CNL checkers,
to single FSM analyzers, to different model checking engines.

The project is ongoing: the proposed methodology and support tools are
currently in use by domain experts, and various kinds of verification engines are
being integrated and optimized to specific properties of interest.

The paper is structured as follows. Section 2 introduces the overall approach.
Section 3 covers the formalization of the railway specifications; Section 4 their
modelling in SysML, Section 5 describes the transformation of SysML into code.
Section 6 discusses the management of legacy relay IzL, and Section 7 outlines
the verification approach. Section 8 concludes the paper.

2 The Specification and Validation Approach

The Model-Based approach aims at guiding and supporting the analyst from
the definition of an informal specification of the system to its formalization,
verification and validation and deployment. As shown in Figure 1, it is based on
two independent confluent flows. The entire process can be summarized in three
main steps:

— Flow A on the left; the formalization of an input set of documents related
to the Interlocking system, such as natural language specifications, topolog-
ical and signalling data about railroad tracks and stations, performed by

A Model-Based Approach to Interlocking Systems 3

Regulations Flow A Flow B
and .Relay :
Provisions % Extraction of CNL Diagrams Relay Diagrams G T
Requirements Requirements Scanner Diagrams

CNL Patterns SysML R Properties X Disambiguation
Modeling Extraction
Structural &

Behavioral
Diagrams

Parametrized Formal Formal Relay
Model Properties Diagrams
Configuration

~~

Parametrization

Code . . . Boolean
O Model Checking Simulation Abstraction
) i ! v
Executable Proofs & Testcases & Relay

Code Counter-examples Scenarios Exec. Logics
] } } [

I Cross-validation

Fig. 1. The general approach

the experts, the automated modelling of the requirements, the automated
generation of code and its verification.

— Flow B on the right; the automated extraction and formalization of legacy
relay logics, represented by line schematics.

— The artifacts produced in Flows A and B are then used by the analysis
steps such as testing or simulation and cross-validation among the different
artifacts.

The first step of Flow A aims at the elicitation of domain knowledge through
the manual translation of informal textual railways regulations and provisions,
into a set of specifications in CNL using a set of predefined specification pat-
terns. The CNL specifications are then automatically formalized and modeled
as Block Definition and State Machine SysML diagrams, to capture the over-
all taxonomy of railway elements (together with the structure of relationships
among them), and the behavior of the railway logics, respectively. The defini-
tion of a computational model allows the specification of a formal semantics for
the SysML model to enable formal verification, simulation and automatic code
generation. The railway logic is abstract, i.e. not referring to a particular config-
uration of railway stations. Abstraction is allowed by parametric cardinalities in
relations among functional blocks. An abstract logic has none or partial configu-
ration, whilst a complete configuration makes the logic concrete. Concretization
allows the generation of optimized code tailored for specific configurations, and
the application of standard techniques for performing formal analysis such as
verification. However, although very challenging, being able to perform formal
analysis on abstract models is a prime project goal, as it allows for the distribu-
tion of formally verified models prior to their instantiation.

4 A. Amendola et al.

/ /
/
/ :
Requirements e
(CNL)/
4

Traceability
.

/ /
/ /
Code/ J L/
(c //Python) /

/

Fig. 2. The three levels development process

Flow B aims at eliciting the control logic that is implicitly implemented in
legacy relay circuits. After its formalization, this knowledge is used to produce
safety and functional properties, test cases and scenarios, a boolean representa-
tion of the relay logics. Given the complexity, size and number of relay diagrams,
the formalization of these artifacts is performed using a semi-automatic approach
based on a combination of image recognition techniques. This produces a for-
mally defined model that allows the application of formal methods.

Finally, the artifacts produced in the two flows allow the co-simulation with
formal model from flow A, and other cross-validation techniques.

The development process for the Interlocking system follows a V' model and
is based on three levels of activities and related artifacts as described in Fig-
ure 2. In the first level the Functional Requirements Specifications (FRS) are
manually extracted from the domain documents, in the second level the SysML
models are automatically derived from the CNL specification, at the third level
the C/Python code is automatically produced from the models. A complete
traceability is maintained among the artifacts in the three levels allowing the
designer to connect the generated code to the requirements that originated it.

The entire process is supported by the AIDA toolchain, based on the Eclipse
platform, that allows the specification of the requirements and their transforma-
tion into SysML models and code. The toolchain includes tools for the formal
verification of the artifacts produced by the methodology and for the extraction,
representation and formalization of relay circuits to support flow B.

3 Formalization of the Railway Specifications

The requirements for the IzL is extracted from a set of railway domain docu-
ments such as diagrams describing the structure of a railway station, railway
regulations and provisions. The resulting Functional Requirements Specification
(FRS) document consists of a set of cards each one containing the definition of
the structure and behavior of a so called Class of Logic that is the representation

A Model-Based Approach to Interlocking Systems 5

of the elements of a railway that are relevant for the IzL, such as the safety logics
of physical devices (e.g. Railroad Switch, Train Track, different kinds of Signals),
or the safety logics of higher level entities (e.g. Train Itinerary, Section Block).
The specification of the FRS is performed by domain experts carrying out three
main activities:

— Analysis of the railway documents to identify the relevant aspects and con-
cepts that should become part of the Functional Requirements Specifications;

— Specification of the FRS as a collection of classes using the CNL that allows
the expert to specify in a textual form the structure of the class and its
behavior through the definition of the associated Finite State Machine using
a language that is very close to their jargon;

— Definition of tracing links between the resulting FRS and the railway docu-
ments from which it originated.

In order to guide the specification of the FRS, a set of CNL patterns have
been defined also analysing specification documents produced by the experts
in previous projects. In particular, a document describing a class contains two
main sections: one for the definition of the attributes of the class, the other for
describing the behavior in terms of the states and transitions of the Finite State
Machine (FSM) of the class. Each transition in the FSM is described using the
CNL and is characterized by a set of triggering conditions and a set of effects
that specifies the actions to be performed by the class when changing its state.
An example of triggering conditions and effects are:

conditions: verify that the control Position is not equal to Normal
verify that cdb is free and not locked
verify that the timer TOWait is expired

effects: assign to control Position the value Normal
activate the timer TOWait

The specification of the FRS by the experts is supported by the modeling
tool AIDA that provides an editor and a set of syntactic and semantic checks
for the correct writing of the classes in CNL.

3.1 Architecture of the IzL
The IzL is made of a set of Class of Logic, each possibly interacting with:

— the environment: receiving Manual Commands which are asynchronous events
sent by the user; sending state information for visualization; reading hard-
ware signals from the station plant; writing actuations to the station plant.

— other classes: synchronously reading/writing state of linked classes; send-
ing/receiving Automatic Commands which are asynchronous events possibly
carrying data information.

The classes are organized hierarchically by linking them in a use-a relation-
ship. Relations among links are possible within a class, e.g. class Itinerary having

6 A. Amendola et al.

a pair (Signal, TrackSection). The hierarchy is made by constraining the possi-
ble interactions among the classes. Only higher-level classes can send Automatic
Commands to lower-level classes; only classes at higher or same level can write
state of same or lower-level classes; a class can read the state of all other classes.

3.2 Structure of a class

Each class has an interface to rule the above described possible system interac-
tions (Manual Commands, Automatic Commands, I/O from/to the plant), an
internal state and a deterministic FSM. The internal state is made of: config-
uration parameters and configuration lists (which contain links to other class
instances to implement is-a relationship), both of which are fixed when instan-
tiating the class; variables, whose type can be boolean, integers, literal sets, or-
dered literal sets, timers and counters; the current state of the associated FSM.
functional macros can be defined for the information-hiding of reading state.
procedural macros can be defined for the information-hiding of writing state and
sending Automatic Commands.

The FSM has a set of named states, a set of initial transitions to determine
the initial state, and the set of transitions among states. Each transition is char-
acterized by a guard, an effect, a priority. Guards are functions of reception of
manual and automatic commands, the internal state (including visible state of
linked instances and functional macros). Effects contain state assignments (in-
cluding accessible sate of linked instances), sending of Automatic Commands
and invocation of procedural macros. Priority setting is simplified for the mod-
eler by defining four categories of priority (from the railways domain), and by
associating each transition to a category.

3.3 Execution model

The execution of the IzL logics is performed by a periodic task, which at each
cycle performs the sequence depicted in Figure 3:

1. Reads and latches inputs from the user (Manual Commands) and from the
plant (I)

2. Executes the IzL logics (E)

3. Writes outputs for the user interface and for the plant (O)

The Execution phase (E) is carried out by a Scheduler, which executes all
the active class instances according to three phases:

Manual Phase all instances that received one or more Manual Command are
activated. Each instance can process a single Manual Command by executing
a single transition, if the corresponding guards are enabled. If no transition
can be executed, then the Manual Command is lost.

State Phase every instance having a transition enabled in the current state is
activated. Each instance processes a single transition. The phase terminates
when all activated instances have performed one state transition.

A Model-Based Approach to Interlocking Systems 7

cycle 1 cycle 2 cycle 3
| E |O I E o] I{E|O
cycle period t
B S —

Fig. 3. Delta Cycle

Automatic Phase all instances that received one or more Automatic Com-
mand are activated. Since in the effects of any transition other Automatic
Commands can be sent, in this phase a given instance may get activated
multiple times. If a command cannot be processed (as unexpected or as the
truth value of guards do not enable any transition) the command is lost.
This phase is repeated until fixpoint is reached, i.e. all instances reaches a
quiescent state where no further Automatic Commands are sent.

The execution is deterministic. The three phases are executed in the same
order; the instances in each phase are also fired in the same order, although
this order is not known to the IzL designer. The execution of each FSM is
also deterministic, as the priority uniquely determines the transitions that the
scheduler activates. The execution runs to completion by construction: in the
Manual Phase and in the State Phase at most one transition per instance is
executed; in the Automatic Phase, structural constraints on the system hierarchy
assure the absence of execution loops.

4 Automated SysML model generation

4.1 SysML for Model-Based System Engineering Applications

SysML (System Modeling Language - https://sysml.org/) is a generic lan-
guage for architecture design widely adopted in Model-Based System Engineer-
ing (MBSE) applications It supports specification, analysis, design, verification
and validation of a wide range of systems, such as hardware, software, informa-
tion, processes, resources and structures. SysML is a dialect derived from UML
2, defined as a UML profile. In 2006 the Object Management Group (OMG)
adopted OMG SysML as a standard, and manages it maintenance. The current
version is OMG SysML 1.6. SysML diagrams also in UML are: Activity, Block
Definition (Class in UML), Internal Block (Composite Structure in UML), Se-
quence, State Machine, and Use Case. Diagrams that are unique in SysML are
Requirement and Parametric. Diagrams in SysML are mainly split into two
groups:

Structural Diagrams Allow the definition of the system entities to be mod-
elled, relations among them, and their structural content, like properties,
operations and other member attributes.

8 A. Amendola et al.

«Blocks

SegnaleAlto

properties

[chiusura: Boolean

£z esclusoDM: Boolean

[esclusolS: Boolean

Eg fsmState: SegnaleAlto_StatesEnum

[Eg lettura: Enumerator_13

[EL letturaPrecedente: Enumerator_15

[EL pippo: Enumerator_13

=

[E3 target: Enumerator_15

[55 attesaRealizzazioneComande: Timer= 0

operations
i getChiusura(): Boolean
&% getEsclusoDM(): Boolean
£ getEsclusolS): Boolean
& getFsmState(): SegnaleAlto_StatesEnum
48 getlettura(): Enumerator_15
3 setlettura(in value: Enumerator_15)
48k getSerittura(): Enumerator_15
@& getTarget{): Enumerator_15
&% setTarget(in value: Enumerator_15)
@& ManovraSs le(in arg1: Er 13, in arg2: Bools
& guard_INITIALIZATION_Statolniziale_DiscordanzaSafe_000{ocut return: Boolean]
&2 effect_INITIALIZATIOM_Statolniziale_DiscerdanzaSafe_000(
&= guard_PERMANENCE_Discordanzallnsafe_000{out return: Boclean)
£ effect PERMANEMNCE_DiscordanzaUnsafe_000()
3 guard_NOMINAL ACTUATION_DiscordanzaSafe_Concordanza_000{out return: Boolean)

a3

Fig. 4. Fragment of SysML: :Block. Attributes’ colors denote different typologies

Behavioral Diagrams Define the dynamic behaviour of the entities, both in
terms of internal dynamics and interaction among them.

SysML allows meta-model extensions through the use of stereotypes, to create
new elements of the meta-model derived from the existing ones.

4.2 Modeling of the abstract IzL System

The abstract IrzL system is modeled as an Object-Oriented system of classes
communicating by mean of Operations, and whose execution is ruled by the
Scheduler and scheduling schema described in Section 3.3.

The automatic translation process takes the FRS as input, and generates
a SysML model as output. The structural part of each class is translated as
SysML: :Block. Each class attribute is translated to a block’s UML: :Property,
which have been stereotyped to model its domain-specific typology, like Man-
ual Commands, Automatic Commands, parameters, linked instances, variables,
plant inputs and outputs, etc. Primitive types exploit basic UML types (boolean,
integer, etc.), while the other types like Timer, Counter, Enumeratives, Records,
etc. are generated into a dedicated UML: : Package. A stereotyped UML: : Operation
is used to model each attribute’s getter, setter, macro, guard function and effect
procedure. Each Manual Command and Automatic Command is translated into
a UML: :CallEvent, and a UML: :Operation get associated to the event to model
its behaviour. Fig. 4 shows a sample of a SysML: :Block taken from the domain.

Each class’s FSM is translated as a UML::State Machine, which is asso-
ciated to the corresponding SysML::Block. Each state of the FSM is trans-
lated as a UML: :State, each transition is translated with a UML::Transition

A Model-Based Approach to Interlocking Systems 9

extended with stereotypes that provide information about priority, its cate-
gory and scheduling phase. The UML: :Transition’s guard and effect consist
of UML: :Operation calls to the operation containing the guard expression and
effect procedure, respectively (Fig. 5).

StateMachine

_—

;{"))
/ :
/

NFuoriContrallo
RPerditaControllo =

_—
e
=

Natuszone = ——>—>>>

Fig.5. UML: :State Machine of the logics of a Railroad Switch. Transition colors de-
notes the typology

Guards expressions and effects statements are translated into a concrete lan-
guage that is formally-defined subset of C extended with an object-oriented
notation, and corresponding Abstract Syntax Tree get attached to the Opera-
tions corresponding to each guard/effect. The following example shows a CNL
guard and the automatically translated code:

all the following

verify that the variable PowerSupply is equal to true
verify that the control Position is not equal to Normal
verify that cdb is free and not locked

verify that the timer TOWait is expired

VVY
return (
(PowerSupply == true) &&
(! (Position == Normal)) &&
all(CdBRec iter: cdb, iter.cdb.getFree() && ! iter.cdb.getLocked()) &&
TOWait.isExpired())

The evaluation context is the class instance containing the UML: :Operation
associated to the guard, so PowerSupply, Position cdb and TOWait are in-
stance’s attributes. Notice the Object-Oriented dotted notation to call linked

10 A. Amendola et al.

instances’ Operations, like in cdb.getLocked(). As cdb is a list of records, func-
tional flavors for quantifiers (all(...)) are provided by the concrete language.

5 Automated Code Generation

The code generation process takes as input the SysML model and produces two
different artifacts:

— A first version of the code, written in the Python programming language, is
intended for debugging and simulation purposes, running on a host machine.

— The second version, written in the C programming language, is intended
for deployment on the target platform and contains the code that will be
effectively executed on the field.

The overall structure of the two versions is very similar and will be explained
in the next subsection. The details of the two implementations are, of course,
quite different: whereas the Python version fully leverages the dynamic nature
of its execution environment, the C version allocates every data structure either
statically or at initialization time, as soon as the configuration parameters are
known.

5.1 Structure of the IxL code

In both versions of the IzL code each Class of Logic is translated to a sepa-
rate module. In the Python version, to each Class of Logic corresponds a single
Python class derived from a common base class. In the C version, each Class of
Logic is translated into a separate compilation unit, that is a .h/.c file pair.

The code generated for each Class of Logic implements the interface of the
Class, as described in the corresponding Block Diagram of the SysML model,
and the execution logic of the associated Finite State Machine. In more detail,
each module contains:

— the declaration of the local variables of the state machines, as extracted from
the SysML model;

— for each variable, a pair of getter and setter methods;

— the interface procedures init and exec, whose job is, respectively, to initial-
ize the variables of the FSM and to pick the correct transition for the state
machine, by checking the current state and the relevant guards in turn;

— for each transition specified by the state machine, a guard function that
checks if the triggering conditions of that particular transition hold, and an
effect procedure that performs the corresponding set of effects.

The generation process itself is driven by a template engine that operates on a
data structure which is preliminarly populated directly from the SysML model.

The code produced by the generation process is parametric on the number
of instances of each Class of Logic and on the inter-relationships between the
various Classes. In order to be executed, this code must be instantiated according
to a specific configuration, as described in subsection 5.3.

A Model-Based Approach to Interlocking Systems 11
5.2 Execution of IzL code

Each instance of a Class of Logic represents a distinct process. The execution of
such processes is orchestrated by a scheduler whose code is generic, that is it
does not depend on the specific station configuration.

The scheduler execution is based on a loop (delta cycle) with three distinct
phases: input reading, elaboration, and output writing. At every cycle, the elab-
oration is performed on the inputs extracted from the snapshot taken at the
previous step (input latching).

In the elaboration phase each process is activated in turn by the scheduler
according to a fixed order, which is specified ahead of time and is part of the
configuration data, so that it can be customized depending on the characteristic
of each specific station.

The execution of the processes takes place according to a policy of coop-
erative scheduling: the scheduler halts its execution until each process yields
back control. In this way, execution of the IzL is guaranteed to be deterministic
and purely sequential, which eliminates every possible problem stemming from
concurrency.

Inter-process communication is realized through the exchange of Automatic
Commands, as described in Section 3. The scheduler is responsible for forwarding
the Automatic Commands from the source process to the target one.

Each execution cycle is divided in the three phases described in Section 3.3:
manual phase, state phase, and automatic phase.

5.3 The code configuration mechanism

As pointed out above, the IzL code is parametric: the number of instances of
each Class of Logic, and the mutual references between the various instances,
are not known at code generation and must be supplied at a later time in order
to instantiate the code for a particular station. This data is globally referred to
as the “configuration”.

The instantiation mechanism is different for Python and C code. In the first
case, the Python runtime reads the configuration at startup from a JSON file and
dynamically fills the corresponding data structures. This is appropriate for exe-
cution on a host machine, where access to a filesystem can be taken for granted.
On the target platform, however, the resources available to the IzL code are min-
imal, and are provided by a tailor-made OS. In this case the configuration data
is stored in a binary file with the same layout as a direct memory dump of the
corresponding C data structures. This binary file is loaded at system initializa-
tion in a specific memory area which is subsequently marked as read-only. The
initialization routine of the IzL code is then called to set up appropriately the
pointers to the configuration data for each instance of a Class of Logic. Various
checks are performed to ensure that no pointer remains uninitialized and that
configuration data is correctly validated.

12 A. Amendola et al.

6 Automated Formalization of Relay Schematics

Relay diagrams are standard representations of networks of electro-mechanical
components. We now describe how to extract the controlling logics left implicit in
these circuits, hidden by non-trivial physical laws. The behaviour of the network
is induced by the characteristics of the components, such as resistance values,
and by both wired and remote connections. As an example, a relay can open or
close a switch, possibly belonging to a different circuit, depending on the value
of the induced magnetic field.

Firstly, a graphical front-end based on an extension of the DIA diagram ed-
itor (https://gitlab.gnome.org/GNOME/dia) allows for the digital modeling
of relay schemata that are originally provided as paper-based sheets. Digital
modeling is done by overlaying components and connections on the top of the
scanned images of the original sheets. Components are picked from a palette
which is context aware to help choosing from hundreds of components. Pick-
ing components, entering data (name and other properties) and construction of
electrical connections, is aided by OCR, template matching and deep learning
image recognition techniques.

Each component, such as power supplies, switches, resistors and electrically-
controlled contacts, is mapped into the library of known electrical elements.
Here, each symbol is associated with a set of parameters and specifications. The
XML format provides a modular and flexible description for the connections and
the remote-controlling interactions between the tagged elements. The front-end
provides also some sanity checks on the status of the network, like dangling
terminals or connections with incompatible symbols.

The subsequent step is to convert the circuit in a formalism amenable for
verification. Following [3], we adopt a methodology to analyze and understand
Relay Interlocking Systems, by reduction to a Switched Multi-Domain Kirchhoff
Network which is compiled in a hybrid automaton. A compiler implements a
component-based translation of the XML file into the HyDI language [5]. The
resulting automaton is the synchronous composition of the models of the com-
ponents: shared variables implement remote discrete interactions, while wired
connections are handled locally, by imposing Kirchhoff conservation laws be-
tween the voltage and current values at every node.

The independent modeling of single components can be done with differ-
ent levels of abstraction. Due to internal inertial electro-mechanical phenomena,
some components exhibit transient states between stationary condition. The pre-
cise approach requires considering complex differential equations defining con-
tinuous variables. A more pragmatic approach consists in extracting a hybrid
automaton with a piecewise-linear abstraction of the dynamics. Namely, state
changes of components exhibiting transient conditions, such as delayed relays,
are modeled as discrete transitions happening within a constrained time interval.

The formalization of the relay diagram as a hybrid automaton allows for
different kinds of analysis. The expected properties of both the components and
the whole network can be checked with the HYCOMP back-end verifier [4]. In
addition, it is possible to formally reason on the behaviours of the circuits as

A Model-Based Approach to Interlocking Systems 13

the language of the corresponding automata (or by one of their abstractions)
for a more thorough comparison with the language of the generated code. The
target of such a verification step is to check whether the legacy circuit, while
being based on different internal electro-mechanical variables, responds on the
railway elements in the same way of the digital implementation.

7 System Verification

The verification activities are carried out at three different levels: (i) verification
of structural properties of the components, operating at the SysML level; (ii) ver-
ification of properties of the generated C code for a specific station/configuration;
(iii) verification of properties of the abstract interlocking logic on a given set of
configurations.

Structural checks The first level consists of a set of “light-weight” checks on
the SysML model generated by the CNL translation. These checks are meant
to verify structural properties of the model, that are independent from the ac-
tual application domain. Examples include absence of deadlock states in the
state machines, mutual exclusion among different transition guards, absence of
unreachable states and/or unreachable transitions (due e.g. to guards that are
always true/false). These checks are essentially local to each generated state
machine, and can typically be performed very efficiently. Although conceptually
quite simple, they offer a very useful debugging aid to domain experts during
the initial phases of development of new Classes of Logic.

Code verification The second level consists on the verification of the correctness
of the automatically-generated implementation of the interlocking logic for a
specific station with respect to a set of user-specified properties.

We follow an approach based on software model checking, in which the C
implementation of the interlocking logic, combined with an abstraction of its
execution environment and instantiated for a specific configuration, is translated
into a symbolic transition system which can then be formally verified with state-
of-the-art model checking tools such as nuXmv [1].

More specifically, the translation from the C implementation to the transition
system for verification is performed as follows. First, the generated C code for the
Classes of Logic is instantiated according to the specific configuration under ver-
ification. All dynamic data structures (e.g. lists and vectors whose size depends
on configuration parameters) are statically allocated, and all indirect references
(expressed as pointers in the C code) are statically resolved; Second, the code is
simplified and specialized according to the configuration: static loops (with upper
bounds depending on the configuration) are unrolled, dead code is eliminated,
and methods of each Class of Logic are specialised for each of the instantiated
objects. Then, a model of the execution environment (properly instantiated for
the specific configuration) is added. This consists of a main scheduling loop that
executes the different instances in a “scan cycle” mode: input acquisition (ab-
stracted as nondeterministic assignment to the input variables), logic execution

14 A. Amendola et al.

(according to the specified scheduling policy), output generation. Finally, the
imperative program is compiled to a symblic transition system using standard
techniques: inlining of all functions, removal of side effects, generation of a SSA
form, symbolic encoding of the control-flow-graph and the program statements
into SMT constraints.

An advantage of approaches based on model checking is their capability of
producing counterexample traces witnessing the violation of some property. In
our flow, such traces are automatically translated into a high-level sequence of
commands/controls from the environment (i.e. the actual train station) that
can be used to drive the interactive simulator for the interlocking logic, so that
the erroneous scenarios can be immediately visualized and understood by the
domain experts. Moreover, the same approach can also be used for automatic
test-case generation, given a target system state to reach.

The verification at the level of concrete/instantiated code has two drawbacks.
First, scalability is a major issue. Even the smallest stations involve hundreds
of instances, which quickly become thousands for medium-sized configurations.
When performing full specialization of the code, the resulting transition sys-
tem can significantly blow-up in size and become unmanageable for the model
checker. As mitigation strategies, we are adopting various abstraction and sim-
plification techniques, in which the transition system is generated incrementally,
via a successive sequence of increasingly-precise approximations, guided by an
analysis of the generated spurious counterexamples; ultimately however, the ap-
proach will still be limited by the size of the actual configuration. Second, the
results of the verification are only valid for one specific configuration, and cannot
be easily lifted to different configurations/stations.

Abstract verification The third level of verification consists in tackling the cor-
rectness of the interlocking logic independently from any specific configuration.
From the formal point of view, this can be formalized as a parametric verification
problem, in which each Class of Logic corresponds to a different process type.
Although the problem of automatic verification of parametric systems has been
extensively studied in the literature, the complexity of the task is significantly
beyond the state of the art: current automatic techniques are typically focused
on handling distributed protocols specifications, involving very few process types
(on the order of 2-4) with a few tens of transition actions. In our context, in-
stead, the parametric description consists of tens of different process types, with
hundreds of transition actions. This is an extremely challenging activity, which
however has the potential of offering significant advances to the state of the art.

8 Conclusions and Future Work

The paper presents a model-based methodology for the design, deployment and
verification of Interlocking systems. The approach has several key feature. First,
there is a strong connection among different abstraction levels of the design: Con-
trolled Natural Language for requirements specification, and the automatically

A Model-Based Approach to Interlocking Systems 15

generated SysML models and C/Python code. Second, the verification is sup-
ported by various verification methods. Third, a strong connection with legacy
systems: the specification documents of relay legacy systems are automatically
modeled and formally analyzed to extract reference specifications.

The methodology is supported by tools that are currently being used by
domain experts. In the future, we plan to add new verification and validation
techniques specialized to the most common properties, to complement the formal
verification techniques with model-based testing techniques for the generated
code, and to address the problem of certification.

References

1. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover,
S., Roveri, M., Tonetta, S.: The nuxmv symbolic model checker. In: Biere, A., Bloem,
R. (eds.) Computer Aided Verification - 26th Intl. Conf, CAV 2014, Vienna, Austria,
July 18-22, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8559, pp.
334-342. Springer (2014). https://doi.org/10.1007/978-3-319-08867-9-22

2. Cavada, R., Cimatti, A., Micheli, A., Roveri, M., Susi, A., Tonetta, S.: Othelloplay:
a plug-in based tool for requirement formalization and validation. In: Bishop, J.,
Breitman, K.K., Notkin, D. (eds.) Proceedings of the 1st Workshop on Developing
Tools as Plug-ins, TOPI 2011, Waikiki, Honolulu, HI, USA, May 28, 2011. p. 59.
ACM (2011). https://doi.org/10.1145/1984708.1984728

3. Cavada, R., Cimatti, A., Mover, S., Sessa, M., Cadavero, G., Scaglione, G.: Analysis
of relay interlocking systems via smt-based model checking of switched multi-domain
kirchhoff networks. In: Bjgrner, N., Gurfinkel, A. (eds.) 2018 Formal Methods in
Computer Aided Design, FMCAD 2018, Austin, TX, USA, October 30 - November
2, 2018. pp. 1-9. IEEE (2018). https://doi.org/10.23919/FMCAD.2018.8603007

4. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Hycomp: An smt-based model
checker for hybrid systems. In: Baier, C., Tinelli, C. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems - 21st Intl. Conf., TACAS 2015. London,
UK. Proceedings. Lecture Notes in Computer Science, vol. 9035, pp. 52-67. Springer
(2015). https://doi.org/10.1007/978-3-662-46681-0_4

5. Cimatti, A., Mover, S., Tonetta, S.: Hydi: A language for symbolic hybrid
systems with discrete interaction. In: 37th EUROMICRO Conference on Soft-
ware Engineering and Advanced Applications, SEAA 2011, Oulu, Finland, Au-
gust 30 - September 2, 2011. pp. 275-278. IEEE Computer Society (2011).
https://doi.org/10.1109/SEAA.2011.49

6. Cimatti, A., Roveri, M., Susi, A., Tonetta, S.: Formalizing requirements with object
models and temporal constraints. Software and Systems Modeling 10(2), 147-160
(2011). https://doi.org/10.1007/s10270-009-0130-7

7. Cimatti, A., Roveri, M., Susi, A., Tonetta, S.: Validation of requirements for hybrid
systems: A formal approach. ACM Trans. Softw. Eng. Methodol. 21(4), 22:1-22:34
(2012). https://doi.org/10.1145/2377656.2377659

8. Ferrari, A., Gori, G., Rosadini, B., Trotta, I., Bacherini, S., Fantechi, A., Gnesi,
S.: Detecting requirements defects with NLP patterns: an industrial experience
in the railway domain. Empirical Software Engineering 23(6), 3684-3733 (2018).
https://doi.org/10.1007/s10664-018-9596-7

