
Another Look at LTL Modulo Theory
over Finite and Infinite Traces⋆

Alberto Bombardelli, Alessandro Cimatti, Alberto Griggio, and Stefano
Tonetta

Fondazione Bruno Kessler, Via Sommarive, 18, 38123 Povo TN
{abombardelli,cimatti,griggio,tonettas}@fbk.eu

Abstract. Linear Temporal Logic is a de facto standard for specification
of properties of complex systems. Fundamental problems in formal ver-
ification include satisfiability checking and model checking. Extensions
and variants of LTL have gained significant interest: with LTLf , the tem-
poral formulas are interpreted over finite traces; with safety fragments of
LTL, model checking can be reduced to search for finite trace counterex-
amples; in the context of Verification Modulo Theories, LTL includes
first-order atoms interpreted over background theories. In this paper we
propose a symbolic, automata-theoretic approach for these variants of
LTL in a general and comprehensive framework, show the correctness of
the reduction to liveness and invariant checking, and present a library of
open benchmarks and support tools.

1 Introduction

Temporal logics are a fundamental area of computer science, for their ability to
represent properties of the behaviours of complex dynamical systems. Applica-
tion fields include requirements analysis [12,29], formal verification [2], reactive
synthesis [13,39,22], agent-based systems [41], planning [20], contract-based de-
sign [32], robotics [38], runtime verification [5,31], and test case generation [49].
In the field of design of complex systems (e.g. hardware, software and cyber-
physical), key problems are satisfiability, validity and model checking of tem-
poral logic formulae. Satisfiability and validity allow to check the properties of
requirements formalized as temporal formulae, and to prove contract refinement.
Model checking is used to show that a system, modeled as a transition system
S, satisfies the requirements, formalized as a temporal formula φ.

The paradigm of Linear Temporal Logic (LTL), originally proposed in [59],
has become over the years a de facto standard [67], if compared to branching
time temporal logics [18]. In the seminal works on finite-state model checking,
LTL is propositional, and interpreted over infinite traces. The basic idea in LTL
model checking is to tackle the problem S |= φ, where S is a transition system
and φ an LTL formula, by checking whether all (infinite) execution traces of

⋆ We acknowledge the support of the PNRR project FAIR - Future AI Research
(PE00000013), under the NRRP MUR program funded by the NextGenerationEU.

S satisfy φ. The automata-theoretic approach provides an elegant solution to
reduce reasoning about LTL to fair reachability problems [43]. This is done
by constructing an automaton S¬φ that accepts the traces violating φ. If the
language of the product S×S¬φ is not empty, we have a counterexample to the
original problem. We assume that S¬φ is a degeneralized Büchi automaton, i.e.
it has a single acceptance condition ¬q, sometimes referred to as the fairness
condition.

One of the main advantages of the automata-theoretic approach is that one
can focus on conceiving specialized algorithms for the pattern FGq, which is
the dual of fair reachability. Thus, for example, efficient algorithms such as the
nested depth-first search of [48,36] have focused on finding or proving the absence
of (infinite) traces that visit ¬q infinitely often.

We focus on a symbolic verification paradigm: following [35], both the sys-
tem model and the automaton are represented as symbolic transition systems
described by means of logical formulae. Popular approaches include Bounded
Model Checking [8], liveness to safety [7], and k-liveness [34].

Several extensions and variants of LTL have recently gained significant inter-
est. First, we consider LTL interpreted over finite traces, as in LTLf [45,70,1].
This interpretation has the advantage that the analysis can be restricted to sets
of finite traces (albeit of unbounded length), in contrast to the search for coun-
terexamples of infinite length. Thus, the model checking problem S |=fin φ is

focused on proving that all finite traces of S satisfy φ. The automata-theoretic
approach in this case builds an automaton S¬φ over finite traces, with a final
condition ¬q so that S |=fin φ if and only if ¬q cannot be reached in S × S¬φ.

This is equivalent to the LTLf pattern Gq and analogously to the case on infinite
traces, specialized algorithms for invariant checking can be used.

The interpretation over finite traces is closely related to the semantic notion
of safety languages [53], defined under the infinite trace interpretation, where a
formula can be decided by simply looking at finite prefixes. The identification
of syntactic safety fragments of LTL is particularly relevant because it opens
up the possibility of using invariant checking instead of liveness checking algo-
rithms, hence completely disregarding the notion of fairness. This also justifies
the importance of recent research on relative safety [53,14,46].

Second, we consider the case of LTL modulo theories, LTL(T) [24], where
atoms are not limited to Boolean variables. Rather, temporal formulae are built
over first-order atoms interpreted with respect to a background theory, following
the Satisfiability Modulo Theories [4] paradigm. The problem is particularly
relevant and challenging when the first-order atoms can constrain the current
and next value of individual variables like in the formula G(v′ > v), where v′

represents the next value of v.

We work in the setting of Verification Modulo Theories [25], where the
infinite-state transition system S is symbolically described by means of SMT
formulae. This opens up the possibility to model transition systems with state
defined by arrays, integer- and real-valued variables, and complex, nonlinear
dynamics, and to represent timed automata, hybrid automata, software, and

Infinite Traces Finite Traces
S |= φ S |=fin φ

LTL Safety Fragments LTLf

Propositional S × S¬φ |= FGq S × S¬φ |=fin Gq

Modulo Theories S × S¬φ̂ × Spi↔γi(V) |= FGq S × S¬φ̂ × Spi↔γi(V) |=fin Gq

Engine Liveness Checker Invariant Checker

Table 1: Symbolic automata-theoretic approaches.

their combinations. We remark that in the infinite-state case, differently from
the finite state case, when a property is violated there is no guarantee that a
lasso-shaped counterexample α ·βω exists. This makes the reduction to invariant
checking even more appealing, when possible, because it avoids the analysis of
infinite traces, and supports the use of practically effective invariant checkers
such as [27,47,52,50].

In this paper we provide a general and comprehensive view of the applica-
bility of the symbolic automata-theoretic approach to LTL and its extensions.
See Table 1. We start from the classical symbolic automaton construction [35],
used to reduce LTL model checking1 to fair reachability. In case of safety LTL
and LTLf , this can be reduced to checking if q holds invariantly, i.e. the fairness
condition ¬q simplifies to a reachability condition. In the infinite-state case of
Verification Modulo Theories, the construction is applied to the Boolean ab-
straction of φ, denoted φ̂, which is φ where each theory atom p is replaced by a

fresh Boolean variable vp. The definition constraints S
lift
φ are then added to the

description of the transition system. As detailed in the paper, additional rewrit-
ing is necessary in case of finite words to handle the presence of next variables
in the theory atoms.

To illustrate the generality of the approach, we contribute with a library of
benchmarks, expressed in the VMT-LIB open format [28], collected from mul-
tiple sources from the literature. We also provide a set of tools, integrated in
the open source pyVMT framework [60], to reduce the different variants of LTL
to the appropriate liveness or invariant checking problems for symbolic transi-
tion systems, using a general symbolic automaton construction that supports
uniformly LTL, LTLf and SafetyLTL.

The rest of this paper is structured as follows. In Section 2 we give some pre-
liminaries on Satisfiability Modulo Theories and on Verification Modulo The-
ories. In Section 3 we present the syntax and semantics of LTL and its vari-
ants. In Section 4 we describe the symbolic automata-theoretic reduction to
liveness/invariant checking. In Section 5 we introduce the benchmark library

1 The approach also supports LTL validity and satisfiability checking. |= φ is reduced
to a model checking problem SU |= φ, where SU is the universal transition system.
Satisfiability is obtained by dualization, i.e. φ is satisfiable iff SU ̸|= ¬φ.

and the tools implementing the reduction. Finally, in Section 6 we draw some
conclusions and describe some directions for future work.

2 Satisfiability and Verification Modulo Theories

2.1 SMT

In the next section, we define syntax and semantics of LTL(T) and LTLf (T),
which are parametrized by a given first-order theory T . We work in the setting of
Satisfiability Modulo Theory (SMT) [4] and LTL Modulo Theory (see, e.g., [24]).

First-order formulas are built as usual by logic connectives, a given set of
variables V and a first-order signature Σ. Given a formula ϕ, a Σ-structure M
that interprets the symbols in Σ, and an assignment µ of the variables V in the
domain M , we use the standard notion of ⟨µ,M⟩ |= ϕ, which indicates that ϕ
is satisfied by µ and M . If µ1 and µ2 are assignments to two disjoint sets of
variables V1 and V2, we denote with µ1 ·µ2 the assignment over V1∪V2 mapping
each variable vi ∈ Vi to µi(vi).

A first-order theory T determines a first-order signature ΣT of symbols and
a set MT of interpretations of such symbols. In the following, we assume to
be given a background theory T so that first-order formulas are meant to be
ΣT -formulas and structures range in MT .

2.2 States and traces

Given a structure M and a set of variables V , a state is an assignment from
V to the domain of M . A [finite] trace is an infinite sequence π = s0, s1, . . .
[resp., finite sequence s0, s1, . . . , sk] of states. Given a finite or infinite trace
π = s0s1 . . . , we denote by |π| the size of π. Thus, |π| = +∞ if π is infinite. We
denote by π[i] the i+1-th state si of the trace and by π≥i the suffix of π starting
from π[i]. Given a finite trace π1 and a finite or infinite trace π2, we denote by
π1π2 their concatenation. Given an infinite trace π, we denote by Pref (π) the
set of prefixes, i.e., Pref (π) = {π1 | π = π1π2}.

If π1 and π2 are traces of the same length over two disjoint sets of variables
V1 and V2, we denote with π1 · π2 the trace over V1 ∪ V2 such that for all i,
0 ≤ i < |π1|, (π1 · π2)[i] = π1[i] · π2[i].

Finally, we denote by ΠM (V) and ΠM
f (V) the set of all possible respectively

infinite and finite traces over the variable set V .

2.3 VMT

LetM be given. Let ·′ be a bijective function that maps a variable v to a variable
v′, and let V ′ = {v′ | v ∈ V }. If s is a state over V , s′ is the state defined over V ′

such that s′(v′) = s(v) for all v in V . A first-order Symbolic Transition System
(STS) S is a tuple S = ⟨V, I, T ⟩, where V is a set of (state) variables, I(V) is
a formula representing the initial states, and T (V, V ′) is a formula representing

the transitions. A trace π defined over V is a finite [resp. infinite] trace of S iff
⟨π[0],M⟩ |= I and, for all 0 < i < |π|, ⟨π[i−1] · π′

[i],M⟩ |= T . We say that a state
s is reachable in S iff there exists a finite trace of S ending in s. We say that a
state s is a deadlock state of S iff s is reachable and there does not exist a state
s such that ⟨s · s′,M⟩ |= T . Moreover, we say that S is deadlock free iff there is
no deadlock state in S.

Given two transition systems S1 = ⟨V1, I1, T1⟩ and S2 = ⟨V2, I2, T2⟩, we
denote with S1 × S2 the synchronous product ⟨V1 ∪ V2, I1 ∧ I2, T1 ∧ T2⟩.

Invariant and liveness properties. Generally speaking, temporal properties are
often divided between safety and liveness properties. The former are usually
reduced to invariant properties, while the latter to properties about eventual
invariance, stating that a formula q holds invariantly from a certain point on.
Different terminologies exist in the literature for referring to eventual invariance,
including persistence [21], progress [17], or simply liveness [34]. In this paper,
we follow the latter and call them liveness properties.

Invariant and liveness properties are basic properties, respectively on finite
and infinite traces, for which various algorithms exist (see next section). They
correspond respectively to a pattern of LTLf and LTL model checking, which
are introduced later, but we use the same notation for clarity.

Given a STS S and a first-order formula q over the variables of S, S satisfies
the invariant property Gq, denoted by S |=fin Gq, iff for all reachable states s

in S, s |= q. Consequently, a counterexample for Gq is a finite trace s0, . . . , sk of
S such that sk |= ¬q.

S satisfies the liveness property FGq, denoted by S |= FGq, iff for all infinite
traces s0, . . . , si, . . . of S, ∃i.∀j > i.sj |= q. Consequently, a counterexample for
FGq is an infinite trace s0, . . . , si, . . . of S such that ∀i.∃j > i.sj |= ¬q.

2.4 Algorithms for verification modulo theories

Several successful symbolic model checking algorithms for finite-state systems
are based on SAT solvers, e.g. [8,64,57,16]. With the significant improvements
achieved in SMT solving over the last two decades, many of these algorithms have
been adapted and extended for the verification of infinite-state systems, using
SMT solvers as reasoning engines. In the following, we provide an overview of
the main techniques used for checking invariant and liveness properties.

Invariant checking. In the case of invariant properties, several effective SAT-
based algorithms can be näıvely applied to infinite-state systems by simply re-
placing the underlying decision procedure (i.e., from a SAT to an SMT solver).
This is the case for instance of Bounded Model Checking (BMC) [8] and the
interpolation-based algorithm of [57]. In contrast, extending the IC3 algorithm [16]
to the infinite-state case requires more sophisticated approaches, combining to
various extents techniques like predicate abstraction, interpolation, and approxi-
mated quantifier elimination, e.g. [27,47,52,50]. Such extensions of IC3 represent

the current state of the art for invariant checking of infinite-state symbolic tran-
sition systems. An alternative approach that has become increasingly popular
in the last few years consists in expressing an invariant verification problem as
a satisfiability checking problem in the formalism of Constrained Horn Clauses
(CHC) [10]. It should be noted however that several of the most effective CHC
solvers are still based on extensions of IC3 [47,52].

Liveness checking. The liveness property verification problem S |= FGq amounts
to show that no infinite trace in S visits ¬q infinitely often. Existing SAT-
based procedures work by encoding such problem as an invariant model checking
problem, either monolithically [7] or incrementally [34,17]. The liveness to safety
reduction of [7] exploits the fact that, in the case of finite-state systems, it is
enough to consider lasso-shaped traces when searching for counterexamples to a
liveness property. The algorithm transforms the system S into a new transition
system SL2S with additional variables. It non-deterministically guesses a loop
start state, records if ¬q is seen since the loop start, and checks for a lasso-shaped
trace visiting ¬q infinitely often. This reduces the liveness checking problem S |=
FGq to the invariant checking problem SL2S |= ¬loop. The possibility to consider
only lasso-shaped traces is exploited also by the Fair algorithm of [17], which
works by incrementally strengthening the transition relation with constraints
obtained by refuting candidate lasso-shaped traces visiting ¬q infinitely-often.
The k-liveness algorithm of [34], instead, exploits another property of finite-
state systems, namely the fact that if S |= FGq, then there exists a concrete
upper bound k on the number of states in which ¬q holds along all traces of
S. The liveness verification problem is then reduced to a sequence of invariant
verification problems on an extension of S with additional logic that increments
a counter every time ¬q holds, in which the properties to check are of the form
counter ≤ k, for increasing values of k.

All the algorithms mentioned above exploit properties that hold for finite-
state systems, but which are not true in general in the infinite-state case: in
infinite-state systems a violated property is not guaranteed to have a lasso-
shaped counterexample, and conversely, even if a liveness property FGq holds,
there might exist no concrete upper bound k on the number of times ¬q is
true in any trace of the system (for example, such bound may be a value that
depends on a, possibly infinite-valued, variable of the transition system, such
as an uninitialized parameter). As a consequence, a näıve lifting of liveness to
safety and Fair to the infinite-state case could not be used for proving that a
property FGq holds, but only to find counterexamples (but only in cases in
which a lasso-shaped counterexample exists), whereas k-liveness is still sound
but becomes incomplete. In order to tackle such problems, various extensions to
the SAT-based algorithms have been proposed, combining liveness to safety with
predicate abstraction and ranking function synthesis [37], extending k-liveness
to handle symbolic bounds in transition systems where the value of a variable
diverges along all traces [26], and addressing the problem of finding non-looping
counterexamples [23].

3 LTL and LTLf modulo theories

3.1 Syntax

In this paper, we consider LTL [59] extended with past operators [56] as well
as first-order atomic formulas. The language LTL(T) is parametrized by a first-
order theory T . Given a set of variables V , the atomic formulas are built over
the predicate, function, and constant symbols of ΣT and the variables in V ∪V ′,
where V ′ represents the value of V in the “next state”, after an execution step,
as formalized below in the semantics subsection.

Definition 1. Given a first-order theory T and a set of variables V , LTL(T)
formulas φ are defined by the following syntax:

φ :=⊤ | ⊥ | p | ¬φ | φ ∧ φ | Xφ | φUφ | Y φ | φSφ

where p is a first-order formula over the variables V ∪ V ′

LTLf (T) has the same syntax as LTL(T).
When ΣT is empty and V is a set of Boolean variables, the logic coincides

with the usual propositional case, and we denote it by simply LTL (or LTLf).
We use the following standard abbreviations: φ1 ∨ φ2 := ¬(¬φ1 ∧ ¬φ2),

φ1Rφ2 := ¬(¬φ1U¬φ2) (φ1 releases φ2), Fφ := ⊤Uφ (sometime in the future
φ), Gφ := ¬F¬φ (always in the future φ), φ1Tφ2 := ¬(¬φ1S¬φ2) (φ1 is trig-
gered by φ), Oφ := ⊤Sφ (once in the past φ), Hφ := ¬O¬φ (historically in the
past φ), Zφ := ¬Y ¬φ (weak yesterday, i.e., yesterday φ or at initial state), and
Nφ := ¬X¬φ (weak next, i.e., next φ or at final state).

3.2 Semantics

LTL(T) and LTLf (T) formulas are evaluated by a structure M ∈ MT and
respectively infinite and finite traces. To avoid repetitions, we give a uniform
definition of the semantics of LTL and LTLf given a trace in ΠM (V)∪ΠM

f (V).
To do so, we introduce the following notation. Given i + 1 < |π| (πi is not the
last state), we define π+

[i] as the assignment π[i] · π′
[i+1]. If i+ 1 = |π| (π[i] is the

last state), we define π+
[i] as the assignment that assigns every variable v ∈ V to

π[i](v) and every variable v′ ∈ V ′ to a default value d in the domain of M .

Definition 2. Given a structure M and a trace π ∈ ΠM (V) ∪ ΠM
f (V), the

semantics of a formula φ is defined as follows:

– π,M, i |= ⊤
– π,M, i ⊭ ⊥
– π,M, i |= p iff ⟨π+

[i],M⟩ |= p

– π,M, i |= φ1 ∧ φ2 iff π,M, i |= φ1 and π,M, i |= φ2

– π,M, i |= ¬φ iff π,M, i ̸|= φ
– π,M, i |= φ1Uφ2 iff there exists k, i ≤ k < |π|, such that π,M, k |= φ2 and for all l, i ≤
l < k, π,M, l |= φ1

– π,M, i |= φ1Sφ2 iff there exists k, 0 ≤ k ≤ i, such that π,M, k |= φ2 and for all l, k <
l ≤ i, π,M, l |= φ1

– π,M, i |= Xφ iff i < |π| and π,M, i+ 1 |= φ
– π,M, i |= Y φ iff i > 0 and π,M, i− 1 |= φ

Finally, we have that π,M |= φ iff π,M, 0 |= φ.

We introduce now a couple of normalizations of formulas. A formula is in
Negative Normal Form (NNF) if the negation occurs only in front of the atomic
formulas. We define two rewritings, nnf for LTL(T) and nnff for LTLf (T).
Although the resulting formulas are equivalent in LTL(T) and we could have
just used nnff , we avoid using N in LTL(T) for clarity.

If we consider the operators ∨, R, T, Z defined by the abbreviations intro-
duced above as primitive, every LTL(T) formula can be converted into an equiv-
alent one in NNF. In particular, nnf(φ) is obtained by applying the following
rewriting to every occurrence of negations in φ:

nnf(¬(φ1 ∨ φ2)) := nnf(¬φ1) ∧ nnf(¬φ2), nnf(¬(φ1 ∧ φ2)) := nnf(¬φ1) ∨ nnf(¬φ2),
nnf(¬(φ1Rφ2)) := nnf(¬φ1)Unnf(¬φ2), nnf(¬(φ1Uφ2)) := ¬nnf(¬φ1)Rnnf(¬φ2),
nnf(¬(φ1Tφ2)) := nnf(¬φ1)Snnf(¬φ2), nnf(¬(φ1Sφ2)) := nnf(¬φ1)Tnnf(¬φ2),

nnf(¬(Zφ)) := Y nnf(¬φ), nnf(¬(Y φ)) := Znnf(¬φ),
nnf(¬(Xφ)) := Xnnf(¬φ).

If we also consider N as a primitive operator, then every LTLf (T) formula
can be converted into an equivalent one in NNF. The corresponding rewriting
nnff (φ) is defined similarly to nnf, with the exception of the last case that is
replaced by nnff (¬(Xφ)) := Nnnff (¬φ) and nnff (¬(Nφ)) := Xnnff (¬φ).

We remark that the choice of evaluating the next value of a variable on the
last state of a trace to a default value is arbitrary, and any other choice has pros
and cons. To avoid ambiguity, it is better to guard the use of next variables with
X⊤ so as to enforce the existence of the next state (e.g., G(X⊤ → v′ = c)).
In the next sections, we will use the following rewriting to ensure that the next
variables occur in this form. Let norm(φ) be the formula obtained from φ by
substituting every atomic formula p with (X⊤ ∧ p) ∨ (¬X⊤ ∧ p[V ′/d]), where
p[V ′/d] means that every occurrence of v′ ∈ V in p is replaced by the default
value d.

Theorem 1. φ and norm(φ) are equivalent.

Proof. Let π be a trace ∈ ΠM (V) ∪ΠM
f (V) where M is a structure.

for all 0 ≤ i < |π| : π, i |= ϕ⇔ π, i |= norm(ϕ).
The statement easily entails the theorem. We prove it by induction on the

structure of the formula. We ignore the cases with infinite trace because they
trivially holds (X⊤ is always true for infinite traces).

Base case: ψ = p.
π,M, i |= norm(p) ⇔ π,M, i |= (X⊤ ∧ p) ∨ (¬X⊤ ∧ p[V ′, d]). We consider

two cases: if i = |π| − 1 and i < |π| − 1. In the first case π,M, i |= norm(p) ⇔
π,M, i |= p[V ′, d]. Since i is the last point of the trace, the assignment of the

dotted variable is provided using the default d value for each variable; therefore,
π,M, i |= norm(p) ⇔ π,M, i |= p.

If i is not the last state then π,M, i |= X⊤ which simplifies the formula to p
itself completing the proof.

Inductive case: all the inductive case follows from trivial application of in-
duction.

3.3 Satisfiability and Model checking modulo theories

The problem of LTL [resp., LTLf] satisfiability modulo theory is the problem
of deciding if, given a formula φ, there exists a structure M and an infinite
[resp., finite] trace π such that ⟨π,M⟩ |= φ. As usual, the dual validity problem
is the problem of deciding if, given a formula φ, for every structure M and
infinite/finite trace π, ⟨π,M⟩ |= φ.

In model checking, a temporal property φ of S = ⟨V, I, T ⟩ is specified over a
set Vφ ⊆ V of variables. A finite or infinite trace π of S defines a corresponding
trace π|Vφ over Vφ given by the projection of the assignments of π on the subset
of variables Vφ.

Given an LTL [resp., LTLf] formula φ, the LTL model checking problem is
the problem to check if S |= φ [resp., S |=fin φ], i.e., if, for every structure M
and every infinite [resp., finite] trace π of S, ⟨π,M⟩ |= φ.

The validity and model checking problems are equivalent in the sense that
one can be reduced to the other and vice versa:

Theorem 2. If φ is an LTL formula over the variables V , φ is valid in LTL(T)
[resp., in LTLf (T)] iff SU |= φ [resp., SU |=fin φ], where SU is the universal
model defined as SU = ⟨V,⊤,⊤⟩; vice versa, given an STS S = ⟨V, I, T ⟩ and an
LTL formula φ over V , S |= φ [resp., S |=fin φ] iff (I ∧ G(X⊤ → T)) → φ is
valid in LTL(T) [resp., in LTLf (T)].

Note that (I ∧ (X⊤ → GT) → φ can be simplified to (I ∧GT) → φ in the case
of infinite traces.

Another important relation exists between the propositional and SMT case.
Let Pφ be the set of atomic predicates that occur in the formula norm(φ). Let

us consider a set V̂φ containing one fresh Boolean variable vp for each predicate
p in Pφ. Let φ̂ be the propositional formula obtained from φ by substituting
every predicate p with vp.

Given a trace π over the variables V , we define the trace π̂ over the Boolean
variables V̂φ as follows: for all i, 0 ≤ i < |π|, π̂[i](vp) = ⊤ iff π, i |= p. Let
πe = π · π̂ be the composition of π and π̂.

Theorem 3. φ and φ̂ ∧ (
∧
p∈Pφ vp ↔ p) are equisatisfiable LTL(T). φ and

norm(φ) ∧ (
∧
p∈Pφ vp ↔ p) are equisatisfiable LTLf (T). More specifically, for

every infinite trace π, π |= φ iff πe |= φ̂ ∧ (
∧
p∈Pφ vp ↔ p); and for every finite

trace π, π |= φ iff πe |= norm(φ) ∧ (
∧
p∈Pφ vp ↔ p).

Proof (sketch). The proof follows straightforwardly the recursive definition of
formulas. The only interesting case is the case in which π is finite and φ = p is
atomic. For all i, 0 ≤ i < |π|, π, i |= p iff πe |= (X⊤ ∧ p) ∨ (¬X⊤ ∧ p[V ′/d]),
which follows directly from the semantics of LTLf (T).

Moreover, if the atomic formulas do not contain the “next” variables, the sat-
isfiability problem can be trivially reduced to the propositional case, by creating
an equisatisfiable propositional LTL/LTLf formula with quantifier elimination
applied to ∃V.

∧
p∈Pφ(vp ↔ p). In particular, this can be computed with the

ALLSMT procedure [54].
In the propositional case, the satisfiability and model checking problems of

both LTL and LTLf are PSPACE-complete [65,45]. In the general case, the
satisfiability and model checking problems are undecidable. It is easy in fact
to encode two counters by considering for example the theory of integers. The
decidability of fragments has been studied for example in [44] for LTL(T) and
most of the results can be ported to the LTLf (T) case.

3.4 Safety fragments of LTL

In this section, we adapt the definition of safety [53] to the LTL(T) case.
Informally, a formula is safety if it specifies that nothing bad happens dur-

ing an execution. If something bad happens, it occurs in a finite prefix of the
execution. This is formalized as follows.

Definition 3. Let φ be an LTL formula over variables V . The formula φ is
safety iff for all structures M , for all π ∈ ΠM (V), if π ̸|= φ, then there exists
πf ∈ Pref (π) such that for all πω ∈ ΠM (V), πfπ

ω ̸|= φ. Furthermore, we denote
πf as a bad prefix of P .

We then define two complete syntactic fragments, which therefore can express
all and only the safety formulas of LTL. SafetyLTL is a fragment of LTL which
disallows positive occurrence of until.

Definition 4. The syntax of SafetyLTL is defined as follows:

φ :=⊤ | ⊥ | p | ¬β | φ ∧ φ | Xφ | Y φ | φSφ
β :=⊤ | ⊥ | p | ¬φ | β ∧ β | Xβ | βUβ | Y β | βSβ

Note that we include also past operators in SafetyLTL although this is typi-
cally defined only with the future ones.

Another safe fragment of LTL is full-past LTL. Although the syntax of the
fragment is far stricter than SafetyLTL, the two logics have the same expressive
power.

Definition 5. The syntax of full-past LTL is of the form φ := Gβ where β is
as follows:

β :=β ∧ β | ¬β | Y β | βSβ | p

It was proved in [21] that both fragments, SafetyLTL (even without past
operators) and full-past LTL express all and only the safety properties of LTL.

4 Symbolic automata-theoretic approach

4.1 Reduction to liveness and invariant checking

The automata-theoretic approach [68] to LTL model checking is to transform
an LTL formula φ over V into a Büchi automaton, which is here represented
symbolically by an STS Sl¬φ with a fairness condition f l¬φ such that, for every

infinite trace σ, σ |= ¬φ iff there exists an infinite trace π of Sl¬φ with π|V = σ

visiting f l¬φ infinitely often. Thus, S |= φ iff S × Sl¬φ |= FG¬f l¬φ.
Similarly, for LTLf , the automata-theoretic approach [45] transforms a for-

mula φ over V into an automaton on finite traces, which is here represented by
an STS Ss¬φ with a final condition fs¬φ such that, for every finite trace σ, σ |= ¬φ
iff there exists a finite π of Ss¬φ with π|V = σ reaching fs¬φ. Thus, Sfin |= φ iff
S × Ss¬φ |=fin G¬fs¬φ.

Finally, for SafetyLTL, the automata-theoretic approach [53] transforms a
SafetyLTL formula φ into an automaton over finite traces, here represented by
an STS Sb¬φ with a final condition f b¬φ such that, for every infinite trace σ,

σ |= ¬φ iff there exists a finite trace π of Sb¬φ with π|V = σ and with a bad

prefix reaching f b¬φ. Thus, if S is deadlock free, S |= φ iff S×Sb¬φ |=fin G¬f b¬φ.
Note that the above construction where the safety fragment of LTL can be

reduced to invariant checking over finite traces can be extended also beyond
the safety fragment, in particular considering the notion of relative safety, first
introduced in [46]. In fact, in [14], it was shown that under specific assumptions,
the reduction can be extended to formulas of the form α→ φ, where φ is safety.

4.2 From propositional to modulo theory

The above automata-theoretic approach can be lifted naturally to the “modulo
theory” case, by considering the Boolean abstraction of the property and adding
constraints to the system. More specifically, let Pφ, V̂φ, and φ̂ be defined as

above. Let Slift
φ = ⟨V ∪ V̂φ,⊤,

∧
p∈Pφ vp ↔ p⟩. Then, we can prove the following

theorems that lift the previous one to the SMT case.

Theorem 4. S |= φ iff S × Sl¬φ̂ × Slift
φ |= FG¬f¬φ̂.

Theorem 5. S |= φ iff S × Ss¬φ̂n × Slift
φn |=fin G¬f¬φ̂n , where φn = norm(φ).

Theorem 6. If φ is in SafetyLTL and S is deadlock free, S |= φ iff S × Sb¬φ̂ ×
Slift
φ |=fin G¬f¬φ̂.

Proof of Theorem 4 Let π be a trace of S violating φ. By Theorem 3, π̂ |= ¬φ̂.
Thus there exists a trace πl of Sl¬φ̂ with πl|V̂φ

= π̂ satisfying ¬f¬φ̂ infinitely many

times. Let π× be the trace of S × Sl¬φ̂ × Sliftφ obtained by composing π, π̂, and

πl. Then π× |= ¬FG¬f¬φ̂.

Let π× be a trace of S×Sl¬φ̂×Sliftφ satisfying ¬FG¬f¬φ̂. Let π̂ be π×
|V̂φ

and

π be π×
|V . Then π

×
|Vφ |= ¬φ̂. For all i ≥ 0 π̂, i |= vp iff π, i |= p. By Theorem 3,

π |= ¬φ.
The proof of the other two theorems is similar.

4.3 Symbolic Compilation of Full LTL

The above lifting works with any automaton construction that preserves lan-
guage of the properties. In symbolic model checking, there are various compila-
tion approaches [35,51,33]. The one proposed back in [35] is still used in tools
such as nuXmv. With small variants, this produces an STS that works for all
the cases mentioned above.

Definition 6. Given an LTL formula ϕ, the STS ltl2sts(ϕ) = ⟨Vϕ, Iϕ, Tϕ⟩ is
defined as follows:

– Vϕ = V ∪ {vXβ | Xβ ∈ Sub(ϕ)} ∪ {vX(β1Uβ2) | β1Uβ2 ∈ Sub(ϕ)} ∪ {vY β |
Y β ∈ Sub(ϕ)} ∪ {vY β1Sβ2

| β1Sβ2 ∈ Sub(ϕ)}
– Iϕ = Enc(ϕ) ∧

∧
vY β∈V¬ϕ

¬vY β
– Tϕ =

∧
vXβ∈Vϕ vXβ ↔ Enc(β)′ ∧

∧
vY β∈V¬ϕ

Enc(β) ↔ v′Y β

where Sub is a function that maps a formula ϕ to the set of its subformulas, and
Enc is defined recursively as:

– Enc(⊤) = ⊤
– Enc(v) = v
– Enc(ϕ1 ∧ ϕ2) = Enc(ϕ1) ∧ Enc(ϕ2)
– Enc(¬ϕ1) = ¬Enc(ϕ1)
– Enc(Xϕ1) = vXϕ1

– Enc(ϕ1Uϕ2) = Enc(ϕ2) ∨ (Enc(ϕ1) ∧ vX(ϕ1Uϕ2))
– Enc(Y ϕ1) = vY ϕ1

– Enc(ϕ1Sϕ2) = Enc(ϕ2) ∨ (Enc(ϕ1) ∧ vY (ϕ1Sϕ2))

Intuitively, the variables in Vϕ are proof obligations for the future states in
the trace that must satisfy ϕ; they are initially set to a value according to Enc(ϕ)
so that ϕ is satisfied in the initial state and are propagated by the transition
relation if needed.

Let Fϕ = {Enc(β1Uβ2 → β2) | β1Uβ2 ∈ Sub(ϕ)}2.

Definition 7. Given a set of formulas F over the variables V , we can build an
STS Sdeg(F) = ⟨V ∪ Vdeg, Ideg, Tdeg⟩ called degeneralization of F , which is built
as follows:

– Vdeg = {vf | f ∈ F} is a set of Boolean variables
– Ideg =

∧
vf∈Vdeg ¬vf

2 It should be noted that it is possible to restrict the amount of fairness constraint
considering only β1Uβ2 ∈ Sub(ϕ) occurring positively in ϕ.

– Tdeg = (
∧
vf∈Vdeg ((¬vf ∧ f) → v′f)) ∧ ((

∧
vf∈Vdeg vf) → (

∧
vf∈Vdeg ¬v

′
f)) ∧

((¬
∧
vf∈Vdeg vf) → (

∧
vf∈Vdeg (vf → v′f)))

We can finally define Sf¬φ = ltl2sts(¬φ)×Sdeg(F¬φ). Let f
l
¬φ =

∧
vf∈Vdeg ¬v

′
f .

Theorem 7. For any infinite trace σ, σ |= ¬φ iff there exists an infinite trace
π of Sl¬φ over σ visiting f l¬φ infinitely many times.

In case of LTLf , the construction is applied to a formula in NNF and the
STS is built with a modification on the transition condition, where the double
implication is replaced by a single implication.

Definition 8. Given an LTL formula ϕ, the STS ltlf2sts(ϕ) = ⟨Vϕ, Iϕ, Tϕ⟩ is
defined as follows:

– Vϕ = V ∪ {vXβ | Xβ ∈ Sub(ϕ)} ∪ {vX(β1Uβ2) | β1Uβ2 ∈ Sub(ϕ)} ∪ {vY β |
Y β ∈ Sub(ϕ)} ∪ {vY β1Sβ2

| β1Sβ2 ∈ Sub(ϕ)} ∪ {vNβ | Nβ ∈ Sub(ϕ)} ∪
{vX(β1Rβ2) | β1Rβ2 ∈ Sub(ϕ)} ∪ {vZβ | Zβ ∈ Sub(ϕ)} ∪ {vZβ1Tβ2

| β1Tβ2 ∈
Sub(ϕ)}

– Iϕ = Enc(ϕ) ∧
∧
vY β∈V¬ϕ

¬vY β ∧
∧
vZβ∈V¬ϕ

vZβ

– Tϕ =
∧
vXβ∈Vϕ vXβ → Enc(β)′∧

∧
vY β∈V¬ϕ

Enc(β) → v′Y β ∧
∧
vNβ∈Vϕ vNβ →

Enc(β)′ ∧
∧
vZβ∈V¬ϕ

Enc(β) → v′Zβ

where Sub is a function that maps a formula ϕ to the set of its subformulas, and
Enc extends the previous definition as follows:

– Enc(ϕ1 ∨ ϕ2) = Enc(ϕ1) ∨ Enc(ϕ2)
– Enc(Nϕ1) = vNϕ1

– Enc(ϕ1Rϕ2) = Enc(ϕ2) ∧ (Enc(ϕ1) ∨ vN(ϕ1Rϕ2))

– Enc(Zϕ1) = vZϕ1

– Enc(ϕ1Tϕ2) = Enc(ϕ2) ∧ (Enc(ϕ1) ∨ vZ(ϕ1Tϕ2))

Let us define ψ = nnff (¬φ) and Ss¬φ = ltlf2sts(ψ). The condition fs¬φ is
then defined as

∧
vXβ∈Vψ ¬vXβ .

Theorem 8. For every finite trace σ, σ |= ¬φ iff there exists a finite trace π of
Ss¬φ with π|V = σ reaching fs¬φ.

In case of SafetyLTL, we still use ltlf2sts but it is applied to a formula in
NNF using nnf , which does not introduce the weak next operator. Thus, let us
define ψ = nnf(¬φ) and Sb¬φ = ltlf2sts(ψ). The condition f b¬φ is defined as∧
vXβ∈V¬φ

¬vXβ .

Theorem 9. For every infinite trace σ, σ |= ¬φ iff there exists a finite trace π
of Sbψ with π|V = σ and with a bad prefix reaching f bψ.

4.4 Running example

We showcase the various parts of our construction with a couple of small exam-
ples. Let a STS S = ⟨V, I, T ⟩ with V := {i, o, n}, I := ⊤ and T := n′ = n ∧ o′ =
i + 1. The STS S has an input variable i, an output variable o and a frozen
variable n; each transition replicates the value of i incremented by one in the
next state.

A liveness example: We now consider the response property φf := G(i = n →
F (o = n+ 1)). It is easy to see that this liveness property holds; the transition
relation satisfies the sub-formula F (o = n + 1) in one step every time that i is
equal to n. We now apply the construction defined in the previous subsections.
First, we define a propositional formula and a “lift” transition system mapping
the original property to the propositional one. Subsequently, we construct the
symbolic compilation for the negation of the property.

We can easily construct φ̂f by replacing each predicates with fresh Boolean
variables as φ̂f := G(vp0 → Fvp1). Moreover, we define the “lift” transition sys-

tem as Sliftφf
:= ⟨V ∪ V̂φf ,⊤, T̂φf ⟩ where V̂φf := {vp0 , vp1} and T̂φf := (vp0 ↔ i =

n) ∧ (vp1 ↔ o = n+ 1). With this mapping between the propositional LTL for-
mula and the LTL(T) formula we just need to construct the STS corresponding
to the propositional formula to prove the property.

We now take the negation of φ̂f without abbreviations. The resulting ¬φ̂f
formula is as follows. ¬φ̂f := ⊤U(vp0 ∧ ¬(⊤Uvp1)). Since our formula con-
tains 2 until temporal operator, V¬φ̂f := {vX(⊤U(vp0∧¬(⊤Uvp1))), vX(⊤Uvp1)}. The
initial condition of STS¬φ̂f is then encoded as I¬φ̂f := vp0 ∧ ¬vX(⊤Uvp1) ∨
vX(⊤U(vp0∧¬(⊤Uvp1)). Either the right side of the outer until holds in the initial
state, or it will hold eventually in the future thanks to the prophecy variable.
The transition relates the next value of the subformulae with their correspond-
ing prophecy variables. T¬φ̂f := (vX(⊤U(vp0∧¬(⊤Uvp1)) ↔ v′p0 ∧ ¬v′X(⊤Uvp1)

∨
v′X(⊤U(vp0∧¬(⊤Uvp1))

) ∧ (vX(⊤Uvp1) ↔ v′p1 ∨ vX(⊤Uvp1)). Finally, we add the

fairness condition forcing either the until prophecy to be false or to witness
its right side. F¬φ̂f := {vX(⊤U(vp0∧¬(⊤Uvp1)) ∨ (vp0 ∧ ¬(vp1 ∨ vX(⊤Uvp1)) →
(¬(vp1 ∨ vX(⊤Uvp1)), vp1 ∨ vX(⊤Uvp1) → vp1}.

An LTLf example: We now consider a bounded response property (with bound
1) φb := G(i = n → X(o = n+ 1)). Although with infinite semantics we would
expect this property to hold, in finite semantics any finite trace terminating with
i = n is a valid counter-example of the property.

As before, we apply the construction defined in the previous subsections
tailored for LTLf . Since no primed variable occurs in φb, norm(φb) is equivalent
to φb. Thus, we simply use directly φb as our target formula. For brevity we skip
the generation of the lift STS since it is identical to the one of φf .

We now take the negation of φ̂b in negative normal form. The resulting
φ̂b

′ := nnff (¬φ̂b) formula is as follows. φ̂b
′ := ⊤U(vp0 ∧N(¬vp1)). Since our for-

mula contains an until and a weak next, Vφ̂b′ := {vX(⊤U(vp0∧N(¬vp1))), vN(¬vp1)}.
The initial condition of STSφ̂b′ is then encoded as Isφ̂b′ := vp0 ∧ vN(¬vp1) ∨

vX(⊤U(vp0∧N(¬vp1))). The transition relates the next value of the subformulae
with their corresponding prophecy variables. Since our formula is in nnf, we
do not need double implication. The resulting transition is encoded as T sφ̂b :=
(vX(⊤U(vp0∧N(¬vp1))) → v′p0∧v

′
N¬vp1

∨v′X(⊤U(vp0∧¬(⊤Uvp1)))
)∧(vN¬vp1) → ¬v′p1).

Finally, we construct the reachability condition fsφ̂b′ with the prophecy as fsφ̂b′ :=
¬vX(⊤U(vp0∧¬(⊤Uvp1))). It should be noted that, with such reachability condition,
any finite trace terminating terminating with vp0 has a corresponding path with
the prophecy variable assigned to false.

5 Benchmarks

The need for establishing a collection of benchmark problems, ideally written in
a simple yet expressive language widely supported by different tools, has long
been recognized in several communities in formal verification and automated
reasoning. The success of initiatives such as TPTP [66] and SMT-LIB [3] in
automated reasoning, or Aiger [9], Btor [58] and SV-COMP [6] in formal veri-
fication has been a key factor for the significant practical advancements of the
state of the art in their respective fields over the last decades.

Recently, we have proposed VMT-LIB [28], an extension of the standard
SMT-LIB language for SMT solvers, as a language for the representation of in-
variant checking and liveness checking problems on infinite-state symbolic tran-
sition systems. VMT-LIB has a flexible format and clear semantics based on
SMT-LIB, and supports the specification of LTL and LTLf properties with the
(extended) syntax introduced in §3. More specifically, VMT-LIB has metadata
tags :ltl-property and :ltlf-property, with which LTL and LTLf specifi-
cations can be annotated.

A benchmark set for LTL satisfiability and verification. As a first contribution
to the creation of a standard benchmark library for LTL model checking and sat-
isfiability, we have collected various benchmark sets from different sources from
the literature [55,40,63,15,11], and converted them to VMT-LIB. The resulting
benchmark library consists of about 3000 instances. We make the benchmarks
available at http://www.vmt-lib.org.

Tool support. As mentioned above, an important feature of the VMT-LIB format
is that it is possible to precisely represent LTL and LTLf properties using the full
syntax defined in §3. This ensures that the LTL benchmarks we collected can be
kept at their original/intended level of abstraction, rather than being reduced to
simpler invariant or liveness properties via reductions similar to those described
in §4. This is important in order to make the benchmark set useful for evaluating
techniques that might exploit alternative reductions and/or specialised encodings
for particular patterns or kinds of properties. At the same time, however, we
have developed a set of algorithms implementing the reductions of §4 in order to
convert arbitrary LTL or LTLf properties into simpler liveness or invariant ones,
so that the benchmarks can be used also in the evaluation of core verification

http://www.vmt-lib.org

algorithms/tools that only target such special kinds of properties. In particular,
we have integrated our implementations in pyVMT [60], an open-source Python-
based programmatic framework for interacting with model checkers developed
as an extension of the pySMT [42] library for SMT solvers.

6 Conclusions

In this paper we presented a general framework for a symbolic automata-theoretic
approach for satisfiability and model checking of linear temporal logics. The ap-
proach covers LTL modulo theories, and can deal with properties interpreted
over finite and infinite traces. We have shown how to leverage symbolic liveness
checkers for the general case, and identified conditions (e.g. safety fragments)
to resort to less expensive invariant checkers. Furthermore, the techniques pre-
sented can be extended to handle more expressive logics, such as RELTL, that
includes suffix implication and conjunction [19,30], or to logics with real time
aspects and continuous signals, using e.g. the methods of [24].

In this paper we disregarded the important problem of reactive synthesis,
i.e. automatically constructing a system satisfying the given specifications [13].
The problem is very well studied in the finite state case. Recently, very inter-
esting works have proposed synthesis modulo theories where the role of boolean
abstraction is prominent [61,62].

References

1. A. Artale, L. Geatti, N. Gigante, A. Mazzullo, and A. Montanari. Complexity of
safety and cosafety fragments of linear temporal logic. In AAAI, pages 6236–6244.
AAAI Press, 2023.

2. C. Baier and J. Katoen. Principles of model checking. MIT Press, 2008.

3. C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Ver-
sion 2.6. Technical report, 2021. https://smtlib.cs.uiowa.edu/papers/

smt-lib-reference-v2.6-r2021-05-12.pdf.

4. C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability Mod-
ulo Theories. In Handbook of Satisfiability, volume 336 of Frontiers in Artificial
Intelligence and Applications, pages 1267–1329. IOS Press, 2021.

5. A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol., 20(4):14:1–14:64, 2011.

6. D. Beyer. Competition on software verification - (SV-COMP). In TACAS, volume
7214 of Lecture Notes in Computer Science, pages 504–524. Springer, 2012.

7. A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety checking. Elec-
tronic Notes in Theoretical Computer Science, 66(2):160–177, 2002.

8. A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. Adv. Comput., 58:117–148, 2003.

9. A. Biere, K. Heljanko, and S. Wieringa. AIGER 1.9 and beyond. Technical Report
11/2, Institute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria, 2011.

https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf

10. N. S. Bjørner, A. Gurfinkel, K. L. McMillan, and A. Rybalchenko. Horn clause
solvers for program verification. In Fields of Logic and Computation II, volume
9300 of Lecture Notes in Computer Science, pages 24–51. Springer, 2015.

11. S. Bliudze, A. Cimatti, M. Jaber, S. Mover, M. Roveri, W. Saab, and Q. Wang.
Formal Verification of Infinite-State BIP Models. In ATVA, volume 9364 of LNCS,
pages 326–343. Springer, 2015.

12. R. Bloem, A. Cimatti, K. Greimel, G. Hofferek, R. Könighofer, M. Roveri,
V. Schuppan, and R. Seeber. RATSY - A new requirements analysis tool with
synthesis. In CAV, volume 6174 of Lecture Notes in Computer Science, pages
425–429. Springer, 2010.

13. R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of
reactive(1) designs. J. Comput. Syst. Sci., 78(3):911–938, 2012.

14. A. Bombardelli, A. Cimatti, S. Tonetta, and M. Zamboni. Symbolic model check-
ing of relative safety LTL properties. In iFM, volume 14300 of Lecture Notes in
Computer Science, pages 302–320. Springer, 2023.

15. M. Bozzano, A. Cimatti, A. F. Pires, D. Jones, G. Kimberly, T. Petri, R. Robinson,
and S. Tonetta. Formal design and safety analysis of AIR6110 wheel brake system.
In CAV (1), volume 9206 of Lecture Notes in Computer Science, pages 518–535.
Springer, 2015.

16. A. R. Bradley. SAT-Based Model Checking without Unrolling. In VMCAI, volume
6538 of LNCS, pages 70–87. Springer, 2011.

17. A. R. Bradley, F. Somenzi, Z. Hassan, and Y. Zhang. An incremental approach
to model checking progress properties. In FMCAD, pages 144–153. FMCAD Inc.,
2011.

18. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 10ˆ20 states and beyond. In LICS, pages 428–439. IEEE Computer
Society, 1990.

19. D. Bustan, A. Flaisher, O. Grumberg, O. Kupferman, and M. Y. Vardi. Regular
Vacuity. In CHARME, volume 3725 of Lecture Notes in Computer Science, pages
191–206. Springer, 2005.

20. A. Camacho, E. Triantafillou, C. J. Muise, J. A. Baier, and S. A. McIlraith. Non-
deterministic planning with temporally extended goals: LTL over finite and infinite
traces. In AAAI, pages 3716–3724. AAAI Press, 2017.

21. E. Y. Chang, Z. Manna, and A. Pnueli. Characterization of Temporal Property
Classes. In ICALP, volume 623 of Lecture Notes in Computer Science, pages 474–
486. Springer, 1992.

22. A. Cimatti, L. Geatti, N. Gigante, A. Montanari, and S. Tonetta. Fairness, assump-
tions, and guarantees for extended bounded response LTL+P synthesis. Softw.
Syst. Model., 23(2):427–453, 2024.

23. A. Cimatti, A. Griggio, and E. Magnago. LTL falsification in infinite-state systems.
Inf. Comput., 289(Part):104977, 2022.

24. A. Cimatti, A. Griggio, E. Magnago, M. Roveri, and S. Tonetta. SMT-based
satisfiability of first-order LTL with event freezing functions and metric operators.
Inf. Comput., 272:104502, 2020.

25. A. Cimatti, A. Griggio, S. Mover, M. Roveri, and S. Tonetta. Verification modulo
theories. Formal Methods Syst. Des., 60(3):452–481, 2022.

26. A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. Verifying LTL Properties of Hy-
brid Systems with K-Liveness. In CAV, volume 8559 of Lecture Notes in Computer
Science, pages 424–440. Springer, 2014.

27. A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. Infinite-state invariant checking
with IC3 and predicate abstraction. volume 49, pages 190–218, 2016.

28. A. Cimatti, A. Griggio, and S. Tonetta. The VMT-LIB language and tools. In
SMT, volume 3185 of CEUR Workshop Proceedings, pages 80–89. CEUR-WS.org,
2022.

29. A. Cimatti, M. Roveri, A. Susi, and S. Tonetta. Validation of requirements for hy-
brid systems: A formal approach. ACM Trans. Softw. Eng. Methodol., 21(4):22:1–
22:34, 2012.

30. A. Cimatti, M. Roveri, and S. Tonetta. Symbolic compilation of PSL. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., 27(10):1737–1750, 2008.

31. A. Cimatti, C. Tian, and S. Tonetta. Assumption-based runtime verification. For-
mal Methods Syst. Des., 60(2):277–324, 2022.

32. A. Cimatti and S. Tonetta. Contracts-refinement proof system for component-
based embedded systems. Sci. Comput. Program., 97:333–348, 2015.

33. K. Claessen, N. Eén, and B. Sterin. A circuit approach to ltl model checking. 2013
Formal Methods in Computer-Aided Design, pages 53–60, 2013.

34. K. Claessen and N. Sörensson. A liveness checking algorithm that counts. 2012
Formal Methods in Computer-Aided Design (FMCAD), pages 52–59, 2012.

35. E. M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at ltl model checking.
Formal Methods in System Design, 10:47–71, 1994.

36. C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient
algorithms for the verification of temporal properties. Formal Methods Syst. Des.,
1(2/3):275–288, 1992.

37. J. Daniel, A. Cimatti, A. Griggio, S. Tonetta, and S. Mover. Infinite-state liveness-
to-safety via implicit abstraction and well-founded relations. In CAV (1), volume
9779 of Lecture Notes in Computer Science, pages 271–291. Springer, 2016.

38. G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas. Temporal logic
motion planning for dynamic robots. Autom., 45(2):343–352, 2009.

39. B. Finkbeiner. Synthesis of reactive systems. In Dependable Software Systems
Engineering, volume 45 of NATO Science for Peace and Security Series - D: In-
formation and Communication Security, pages 72–98. IOS Press, 2016.

40. V. Fionda and G. Greco. The complexity of LTL on finite traces: Hard and easy
fragments. In AAAI, pages 971–977. AAAI Press, 2016.

41. M. Fisher and M. J. Wooldridge. Temporal reasoning in agent-based systems. In
Handbook of Temporal Reasoning in Artificial Intelligence, volume 1 of Foundations
of Artificial Intelligence, pages 469–495. Elsevier, 2005.

42. M. Gario and A. Micheli. PySMT: a solver-agnostic library for fast prototyping of
SMT-based algorithms. In SMT Workshop 2015, 2015.

43. R. Gerth, D. A. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In PSTV, volume 38 of IFIP Conference
Proceedings, pages 3–18. Chapman & Hall, 1995.

44. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Combination Methods for
Satisfiability and Model-Checking of Infinite-State Systems. In CADE, volume
4603 of Lecture Notes in Computer Science, pages 362–378. Springer, 2007.

45. G. D. Giacomo and M. Y. Vardi. Linear Temporal Logic and Linear Dynamic
Logic on Finite Traces. In IJCAI, pages 854–860. IJCAI/AAAI, 2013.

46. T. A. Henzinger. Sooner is safer than later. Inf. Process. Lett., 43:135–141, 1992.
47. K. Hoder and N. S. Bjørner. Generalized property directed reachability. In SAT,

volume 7317 of Lecture Notes in Computer Science, pages 157–171. Springer, 2012.
48. G. J. Holzmann, D. A. Peled, and M. Yannakakis. On nested depth first search.

In The Spin Verification System, volume 32 of DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, pages 23–31. DIMACS/AMS, 1996.

49. H. S. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporal logic based theory of test
coverage and generation. In TACAS, volume 2280 of Lecture Notes in Computer
Science, pages 327–341. Springer, 2002.

50. D. Jovanovic and B. Dutertre. Property-directed k-induction. In FMCAD, pages
85–92. IEEE, 2016.

51. Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic Verification of Linear Temporal
Logic Specifications. In ICALP, volume 1443 of Lecture Notes in Computer Science,
pages 1–16. Springer, 1998.

52. A. Komuravelli, A. Gurfinkel, and S. Chaki. SMT-based model checking for recur-
sive programs. Formal Methods Syst. Des., 48(3):175–205, 2016.

53. O. Kupferman and M. Y. Vardi. Model checking of safety properties. Formal
Methods Syst. Des., 19(3):291–314, 2001.

54. S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT techniques for fast predicate
abstraction. In CAV, volume 4144 of Lecture Notes in Computer Science, pages
424–437. Springer, 2006.

55. J. Li, G. Pu, Y. Zhang, M. Y. Vardi, and K. Y. Rozier. Sat-based explicit ltlf
satisfiability checking. Artif. Intell., 289:103369, 2020.

56. O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Workshop on
Logic of Programs, pages 196–218. Springer, 1985.

57. K. L. McMillan. Interpolation and sat-based model checking. In CAV, volume
2725 of Lecture Notes in Computer Science, pages 1–13. Springer, 2003.

58. A. Niemetz, M. Preiner, C. Wolf, and A. Biere. Btor2 , btormc and boolector 3.0.
In CAV (1), volume 10981 of Lecture Notes in Computer Science, pages 587–595.
Springer, 2018.

59. A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE Computer
Society, 1977.

60. Pyvmt. https://github.com/pyvmt/pyvmt, 2022.
61. A. Rodŕıguez and C. Sánchez. Boolean abstractions for realizability modulo the-

ories. In CAV (3), volume 13966 of Lecture Notes in Computer Science, pages
305–328. Springer, 2023.

62. A. Rodŕıguez and C. Sánchez. Adaptive reactive synthesis for LTL and ltlf modulo
theories. In AAAI, pages 10679–10686. AAAI Press, 2024.

63. V. Schuppan and L. Darmawan. Evaluating LTL satisfiability solvers. In ATVA,
volume 6996 of Lecture Notes in Computer Science, pages 397–413. Springer, 2011.

64. M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using induction
and a sat-solver. In FMCAD, volume 1954 of Lecture Notes in Computer Science,
pages 108–125. Springer, 2000.

65. A. P. Sistla and E. M. Clarke. The Complexity of Propositional Linear Temporal
Logics. J. ACM, 32(3):733–749, 1985.

66. G. Sutcliffe. The TPTP problem library and associated infrastructure - from CNF
to th0, TPTP v6.4.0. J. Autom. Reason., 59(4):483–502, 2017.

67. M. Y. Vardi. Branching vs. linear time: Final showdown. In TACAS, volume 2031
of Lecture Notes in Computer Science, pages 1–22. Springer, 2001.

68. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proceedings of the First Symposium on Logic in Computer Science,
pages 322–331. IEEE Computer Society, 1986.

69. Y. Xia, A. Cimatti, A. Griggio, and J. Li. Avoiding the shoals - a new approach
to liveness checking. In CAV, Lecture Notes in Computer Science. Springer, 2024.

70. S. Zhu, L. M. Tabajara, J. Li, G. Pu, and M. Y. Vardi. Symbolic LTLf synthesis.
In IJCAI, pages 1362–1369. ijcai.org, 2017.

https://github.com/pyvmt/pyvmt

A Proofs

A.1 Proofs of Section 3

Proof of Theorem 2

From validity to model checking:

Proof. To prove the equivalence between the model checking of universal model
SU and the validity, we show that the set of infinite (resp. finite) traces of SU is
equal to ΠM (V) (resp. ΠM

f (V)).
Let S = {π|πis a trace infinite trace of SU} and Sf = {π|πis a trace finite trace of SU}.

S = ΠM (V) and Sf = ΠM
f (V)

We split the proof in two parts using set inclusion: one direction is trivial
Q ⊆ ΠM (V) and Qf ⊆ ΠM

f (V) since the traces of SU are all traces over V .
We prove the other direction by w.o.c. considering an infinite (resp. finite)

trace π (π′) s.t. π ∈ ΠM (V) (π′ ∈ ΠM
f (V)) and π /∈ Q (π′ /∈ Qf). Since π (π′) is

not a trace of SU then either π(π′), 0 ̸|= IU or for all 0 ≤ i < |π|(|π′|)−1 π(π′) ̸|=
TU . Since IU = TU = ⊤ from the semantics we obtain that no trace violates
⊤ by definition contradicting the claim. Therefore, as expected the universal
model contains all the traces over V proving the mapping from validity to model
checking.

From model checking to validity:

Proof.(⇒) • We want to prove that: S |= φ ⇒ I ∧ GT → φ is valid over
LTL(T). By contradiction we say that S |= φ and I ∧ GT → φ is not
valid over LTL(T). Which means that there is an infinite trace π that
violates the formula i.e. π |= I ∧ GT ∧ ¬ϕ. However, by satisfaction we
derive that π, 0 |= I and forall i ≥ 0 : π, i |= T from which we derive
that π is a trace of S; however, by assumption the infinite traces of S
satisfy φ (contradiction).

• We want to prove that: S |=fin φ ⇒ I ∧G(X⊤ → T) → φ is valid over
LTLf (T).
By contradiction we say that S |=fin φ and I ∧ G(X⊤ → T) → φ
is not valid over LTLf (T). Which means that there is a finite trace π
that violates the formula i.e. π |= I ∧ G(X⊤ → T) ∧ ¬φ. However, by
satisfaction we obtain that π, 0 |= I and for all i ≤ |π|−1 : π, i |= X⊤ →
T . We can simplify the latter one as for all i < |π|−1: π, i |= T since X⊤
holds when i < |π|−1. As for the case with infinite traces we obtain that
π is a trace of S ending up with a contradiction. It should be note that
without X⊤ a finite trace π disproving the property could have existed;
indeed, the X⊤ guard is crucial for the correctness of the theorem.

(⇐) • We want to prove that: I ∧GT → φ is valid over LTL(T) ⇒ S |= φ. By
contradiction we say that I ∧ GT → φ is valid over LTL(T) and there
is an infinite trace of S violating φ. If immediately follows that being a
trace of S satisfies I in the initial state and T at each transition; thus
contradicting the claim.

• We want to prove that: I ∧ G(X⊤ → T) → φ is valid over LTLf (T)
⇒ S |=fin φ.
By contradiction we say that I ∧G(X⊤ → T) → φ is valid over LTL(T)
and there is a finite trace of S violating φ. If immediately follows that
being a trace of S satisfies I in the initial state and T at each transition
which formally means: π, 0 |=fin I and for all 0 ≤ i < |π| − 1 π, i |= T .
Since X⊤ is valid iff i < |π| − 1 then for all 0 ≤ i ≤ |π| − 1 : π, i |=
X⊤ → T . From which we show the contradiction.

A.2 Symbolic compilation correctness

Proof of Theorem 7

Definition 9. Let us define the function State taking an LTL formula and a
trace σ and returning a set of variables:

– Statesng(a, σ, i) = ∅
– Statesgn(¬ψ, σ, i) = Statesgn(ψ, σ, i)
– State−(ψ1 ∨ ψ2, σ, i) = State−(ψ1, σ, i) ∪ State−(ψ2, σ, i)

– State+(ψ1 ∨ ψ2, σ, i) =

{
State+(ψ1, σ, i) if σ, i |= ψ1

State+(ψ2, σ, i) else

– State+(ψ1Uψ2, σ, i) =

{
State+(ψ2, σ, i) if σ, i |= ψ2

State+(ψ1, σ, i) ∪ {vX(ψ1Uψ2)} else

– State+(Y ψ, σ, i) = {vY ψ}

– State+(ψ1Sψ2, σ, i) =

{
State+(ψ2, σ, i) if σ, i |= ψ2

State+(ψ1, σ, i) ∪ {vY (ψ1Sψ2)} else

– State−(OP1(ψ), σ, i) = ∅
– State−((ψ1)OP2(ψ2), σ, i) = ∅

where sgn ∈ {−,+}, sgn = − if sgn = +, sgn = + if sng = −, OP1 ∈ {X,Y }
and OP2 ∈ {U, S}

Proof.(⇐) ∃π of S¬φ × SdegF¬φ
visiting f l¬φ infinitely often ⇒ σ |= ¬φ.

Given a subformula ψ of ¬φ, we prove that for all i ≥ 0, (i) if ψ occurs
positively in ¬ϕ π, i |= Enc(ψ) implies π, i |= ψ; (ii)if ψ occurs negatively
in ¬ϕ: π, i |= ¬Enc(ψ) implies π, i |= ¬ψ From this the theorem follows
immediately, since the initial state π, 0 |= Enc(¬ϕ). We prove the claim by
induction on ψ:
• ψ = p: π, i |= ψ by construction
• ψ = ψ1 ∨ ψ2: trivially by induction
• ψ = ψ1 ∧ ψ2: Trivial induction
• ψ = ¬ψ′. Trivially holds by induction. (if ψ′ occurs negative the subfor-
mula occurs positively and vice versa).

• ψ = Xψ′: From the transition relation π, i |= vXψ′ iff π, i+1 |= Enc(ψ′);
thus, π, i+ 1 |= ψ′ by induction.

• ψ = ψ1 Uψ2: We split the two cases (positive, negative occurrence). In
the first case, either Enc(ψ2) holds or Enc(ψ1) holds and vX(ψ1Uψ2)

holds. The first case is managed by induction over ψ2. For the second
case we apply the induction for ψ1 and, since Enc(ψ) → Enc(ψ2) ∈ F¬ψ
then there is a point k ≥ i s.t. π, k |= Enc(ψ2) and (from prophecy
variable transition relation) for all i ≤ j < k : π, j |= Enc(ψ1); from
which we can apply induction and derive the result (for the positive
occurrence).
In the other case, π, i ̸|= Enc(ψ2) and either π, i ̸|= Enc(ψ1) or π, i ̸|=
vX(ψ1Uψ2). By the transition relation we know that vX(ψ1Uψ2) ↔ Enc(ψ2)

′∨
Enc(ψ1)

′ ∧ v′Xψ1Uψ2)
; therefore, since vX(ψ1Uψ2) is violated either there

is a point k in the future s.t. ψ1 is violated and all the points j between
i and j violates Enc(ψ2) as well or it is never true that Enc(ψ2) holds.
We can prove this claim by w.o.c. suppose that exists a k ≥ i s.t. π, k |=
Enc(ψ2) and for all i ≤ j < k : π, j |= Enc(ψ1). From the transition
relation definition we get that π, k− 1 |= vX(ψ1Uψ2). Since by hypothesis
in all the index i ≤ j < k : π, j |= Enc(ψ1) with a straightforward
inductive reasoning down to i we derive that π, i |= Enc(ψ1Uψ2) which
contradicts the statement.
Finally, we apply induction to Enc(ψ1) and Enc(ψ2) and we derive the
semantics of the negation of until.

• ψ = Y ψ′: π, i |= vY ψ iff i > 0 (from initial condition) and π, i − 1 |= ψ′

(from transition relation); thus, π, i |= vY ψ′ ⇔ i > 0 and π, i − 1 |=
Enc(ψ′). Finally from induction we obtain i > 0 and π, i − 1 |= ψ′

proving the case.
• ψ = ψ1 Sψ2: we prove this case by induction on i; for the base case, we
consider the index 0; in this case, all variables vY β are false in π, 0 and
the claim follows trivially; suppose the claim holds for i− 1, we prove it
for i: π, i |= vY (ψ1 Sψ2) iff i > 0 (initial condition) and either π, i−1 |= ψ2

and thus π, i − 1 |= ψ2 by induction, or that π, i − 1 |= ψ1 ∧ vY (ψ1 Sψ2)

and thus π, i− 1 |= ψ by induction.

⇒ σ |= ¬φ⇒ ∃π of S¬φ × SdegF¬φ
visiting f l¬φ infinitely often.

Given a trace σ and an LTL property φ such that σ |= ¬φ. Let us define
the sequence of states si as follows: s0 = State+(Enc(¬φ)); for all i > 0,
si = State+(

∧
vXβ∈si−1

β). The sequence π = s0, s1, . . . is a path of Sl¬φ
over the trace π. It is easy to see that in each point i if each subformula ψ
is satisfied by σ then π, i |= State+(ψ). Therefore, for untils vX(ψ1Uψ2) is
true iff in the future there is a point satisfying ψ2 which guarantees that the
degeneralized fairness holds infinitely often.

Proof of Theorem 8

Definition 10. Let us define the function Statef taking an LTL formula and a
trace σ and returning a set of variables:

– Statef (a, σ, i) = ∅

– Statef (ψ1 ∧ ψ2, σ, i) = Statef (ψ1, σ, i) ∪ Statef (ψ2, σ, i)

– Statef (ψ1 ∨ ψ2, σ, i) =

{
Statef (ψ1, σ, i) if σ, i |= ψ1

Statef (ψ2, σ, i) else

– Statef (Xψ, σ, i) = {vXψ}
– Statef (Nψ, σ, i) = {vNψ}

– Statef (ψ1Uψ2, σ, i) =

{
Statef (ψ2, σ, i) if σ, i |= ψ2

Statef (ψ1, σ, i) ∪ {vX(ψ1Uψ2
} else

– Statef (ψ1Rψ2, σ, i) =

{
Statef (ψ2, σ, i) ∪ Statef (ψ1, σ, i) if σ, i |= ψ2 ∧ ψ1

Statef (ψ1, σ, i) ∪ {vX(ψ1Rψ2
} else

– Statef (Y ψ, σ, i) = {vY ψ}

– Statef (ψ1Sψ2, σ, i) =

{
Statef (ψ2, σ, i) if σ, i |= ψ2

Statef (ψ1, σ, i) ∪ {vY (ψ1Sψ2
} else

Proof.(⇐) Given a subformula ψ of ϕ, we prove that for all i ≥ 0, if π, i |=
Enc(ψ), then π, i |= ψ. From this the theorem follows immediately, since the
initial state π, 0 |= Enc(ϕ).
We prove the claim by induction on ψ:
• ψ = p: π, i |= ψ by construction
• ψ = ψ1 ∨ ψ2: Trivial induction
• ψ = ψ1 ∧ ψ2: Trivial induction
• ψ = Nψ′ : π, i |= vNψ′ by construction, then the transition requires, if
i < |π|−1, that π, i+1 |=fin Enc(ψ′); thus, π, i+1 |=fin ψ′ by induction;
if i = |π| − 1 then π, i |=fin Nψ′ vacuously.

• ψ = Xψ′: Identical to the previous if i < |π| − 1. We can show that
when vXψ′ is true i is not the final assignment. That follows from the
assumption that π reaches f b¬φ which is composed of the conjunction of
the negation of all the proof obligations including vXψ′

• ψ = ψ1 Uψ2: we prove this case by induction on i; for the base case, we
consider the index = |π| − 1 as base case; in this case, all the prophecy
variables of ϕ are false in π, i and the claim follows trivially; suppose the
claim holds for i+1 (which is guaranteed to stay in the path bounds), we
prove it for i: π, i |=fin vX(ψ1 Uψ2) by construction (ψ2 does not hold),
then the transition requires either that π, i + 1 |=fin Enc(ψ2) and thus
π, i+1 |=fin ψ2 by induction, or that πi+1 |=fin Enc(ψ1)∧ vX(ψ1 Uψ2))

and thus π, i+ 1 |=fin ψ by induction.
• ψ = ψ1Rψ2: The proof is similar to the previous case, the only difference
is that in this case in the last state you don’t need vN(ψ1Rψ2) to be false
to prove the property while the inductive case is more or less the same.

• ψ = Y ψ′: π, i |=fin vY ψ by construction, then if i > 0 the transition
requires that π, i− 1 |=fin ψ′; thus, π, i− 1 |=fin ψ′

• ψ = ψ1 Sψ2: we prove this case by induction on i; for the base case, we
consider the index 0; in this case, all variables vY β are false in π, 0 and the
claim follows trivially; suppose the claim holds for i−1, we prove it for i:
π, i |=fin vY (ψ1 Sψ2) by construction, then if i > 0 the transition require

either that π, i − 1 |=fin ψ2 and thus π, i − 1 |=fin ψ2 by induction, or
that π, i− 1 |=fin ψ1 ∧ vY (ψ1 Sψ2) and thus π, i− 1 |=fin ψ by induction.

• the other cases (Z, T) are similar to the previous ones.
(⇒) Given a trace σ and an LTLf property φ with ϕ = nnff (¬φ) such that σ |=

ϕ. Let us define the sequence of states si as follows: s0 = Statef (Enc(¬φ));
for all i > 0, si = State(

∧
vXβ∈si−1

β). The sequence π = s0, s1, . . . is a path

of Sb¬φ over the trace π. Let d be the size of σ, then π, d |=fin f b¬φ

Proof of Theorem 9

Definition 11. Let us define the function State taking an LTL formula and a
trace σ and returning a set of variables:

– State(a, σ, i) = ∅
– State(ψ1 ∧ ψ2, σ, i) = State(ψ1, σ, i) ∪ State(ψ2, σ, i)

– State(ψ1 ∨ ψ2, σ, i) =

{
State(ψ1, σ, i) if σ, i |= ψ1

State(ψ2, σ, i) else

– State(Xψ, σ, i) = {vXψ}

– State(ψ1Uψ2, σ, i) =

{
State(ψ2, σ, i) if σ, i |= ψ2

State(ψ1, σ, i) ∪ {vX(ψ1Uψ2
} else

– State(Y ψ, σ, i) = {vY ψ}

– State(ψ1Sψ2, σ, i) =

{
State(ψ2, σ, i) if σ, i |= ψ2

State(ψ1, σ, i) ∪ {vY (ψ1Sψ2
} else

Proof.(⇐) Given a subformula ψ of ϕ, we prove that for all i ≥ 0, if π, i |=
Enc(ψ), then π, i |= ψ. From this the theorem follows immediately, since the
initial state π, 0 |= Enc(ϕ′).
We prove the claim by induction on ψ:
• ψ = p: π, i |= ψ by construction
• ψ = ψ1 ∨ ψ2: Trivial induction
• ψ = Xψ′: π, i |= vXψ′ by construction, then the transition requires that
π, i+ 1 |= Enc(ψ′); thus, π, i+ 1 |= ψ′ by induction

• ψ = ψ1 Uψ2: we prove this case by induction on i; for the base case,
we consider the index i in which π, i reaches f b¬φ; in this case, all the
prophecy variables of ϕ are false in π, i and the claim follows trivially;
suppose the claim holds for i + 1, we prove it for i: π, i |= vX(ψ1 Uψ2)

by construction (ψ2 does not hold), then the transition requires either
that π(i + 1) |= Enc(ψ2) and thus π, i + 1 |= ψ2 by induction, or that
πi+ 1 |= E(ψ1 ∧X(ψ1 Uψ2)) and thus π, i+ 1 |= ψ by induction.

• ψ = Y ψ′: π, i |= vY ψ by construction, then if i > 0 the transition requires
that π, i− 1 |= ψ′; thus, π, i− 1 |= ψ′

• ψ = ψ1 Sψ2: we prove this case by induction on i; for the base case, we
consider the index 0; in this case, all variables vY β are false in π, 0 and
the claim follows trivially; suppose the claim holds for i − 1, we prove
it for i: π, i |= vY (ψ1 Sψ2) by construction, then if i > 0 the transition
require either that π, i− 1 |= ψ2 and thus π, i− 1 |= ψ2 by induction, or
that π, i− 1 |= ψ1 ∧ vY (ψ1 Sψ2) and thus π, i− 1 |= ψ by induction.

• the other cases (Z, T) are similar to the previous ones.
(⇒) Given a trace σ and a safety property φ such that σ ̸|= φ and ϕ := nnf(¬ϕ).

Let us define the sequence of states si as follows: s0 = State(Enc(ϕ)); for
all i > 0, si = State(

∧
vXβ∈si−1

β). The sequence π = s0, s1, . . . is a path of

Sb¬φ over the trace π. Let d be the size of the bad prefix of σ violating ϕ.

Then π, d |= f b¬φ

	Another Look at LTL Modulo Theoryover Finite and Infinite Traces

