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1 Introduction

The HELM1 (Hypertextual Electronic Library of Mathematics) project is a long-

term effort, taken by prof. Andrea Asperti and his research group at the University

of Bologna, with the aim of integrating the existing tools for formal reasoning to

create, manage and exploit a large hypertextual library of formal mathematics.

One of the key components of HELM is its interactive theorem prover, called

Matita, which allows the definition of new theorems and axioms that can then be

added to the library. Such proof assistant is based on a quite expressive higher-

order logical framework called CIC [14], an extension of the typed λ-calculus with

a rich set of functional and inductive types.

In order to prove a theorem (a goal), a user applies to it one or more tactics,

which replace it with some new subgoals, to which other tactics can be applied,

and so on until there are no more open goals left. The role of the proof assistant is

then that of ensuring the correctness of the various steps, but the whole procedure

requires a continuous interaction with the user, who has to decide at each step

which tactic to apply.

It seems clear that, on the one hand, having to follow the system step-by-step

even to prove “trivial” subgoals can be quite boring and time-consuming, and on

the other hand that there might be some goals for which the right strategy is

not immediately clear, and so would require trying a lot of different sequences of

tactics before finding the correct one.

To address this issues, Matita provides an auto tactic [16] that, given a goal,

tries to find a proof for it automatically, by a repeated application of the hypothe-

ses of the goal and the theorems and axioms in the HELM library, without the

intervention of the user.

1http://helm.cs.unibo.it
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However, auto has a problem: in the presence of equality predicates, it becomes

rather inefficient. And, since equalities are so common and important, this is a

serious limitation to its usefulness. This is due to the way equality is defined as a

set of congruence axioms, whose applications generate owerwhelmingly many new

subgoals.

The same issue has been faced and solved in the context of resolution-based au-

tomated theorem proving for first-order logic, [2], where the solution adopted was

to treat equality not as an ordinary predicate, but rather as part of the language,

with dedicated inference rules the most important of which is called paramodula-

tion [10].

The aim of our work is then to investigate the possibility of applying the same

technique in the context of HELM and its higher-order calculus CIC, to actu-

ally implement a new auto tactic which deals more efficiently with the equality

predicate.

2 Preliminaries

This Section contains the basic notions about HELM, CIC and Matita that are

needed to describe our work. It is not meant to be complete or even detailed, but

only to give the minimum amount of information to understand the rest of the

paper without prior knowledge of the topic. For a full treatment, we refer to [14].

2.1 The Matita proof assistant

With the term proof-assistant we generally indicate those programs that in some

way “guide” a user through the demonstration of a theorem, checking and assuring

the correctness of the single proof steps, and as a consequence that of the whole

proof. However, this definition says nothing about how the theorems and their

proofs are represented and/or manipulated, nor how the verification of correctness

is performed, and in fact historically there have been many different approaches.

That followed by Matita can be summarized in the following points:

• Both the theorems (goals) to be proved and their proofs are represented by

well typed CIC terms (λ-terms from now on);

• The proofs are constructed applying to the goal a sequence of tactics, that

intuitively stand for the various steps of the corresponding “traditional”

demonstration of the theorem made with pencil and paper;
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• The verification of correctness is based on the Curry-Howard isomorphism [4]

(Chapter 3), according to which the theorem to prove is seen as a type of a

CIC term, and demonstrating it amounts to construct a CIC term whose type

is the theorem itself: the correctness is therefore stated by a proof-checker

that is in fact a type-checker for CIC terms.

2.2 Metavariables

Traditionally, logic systems deal with completely specified terms and completed

proofs. The inference rules of a logic system state what is derivable, and not what

might be under some additionaly hyphotheses. Analogously, typing rules of a type

system say what is well-typed and not what might be derivable with additional hy-

photheses or instantiations. However, proof-assistants have the purpose of leading

the user in the construction of a proof, and this obviously implies that they must

be able to deal with terms and proofs that are incomplete. To this end, the logic

system CIC has been extended with the addition of metavariables, which stand for

conjectures not yet demonstrated. They are a particular kind of CIC term that

have a type, but not yet a body. Completing a proof means to find a term of the

right type for each metavariable present in the proof term itself.

2.3 Tactics

We have already said that a tactic is a procedure that represents a single proof step,

that takes the current goal and replaces it with some new (and “simpler”) subgoals,

to which in turn other tactics can be applied, and so on until the demonstration

is completed. More formally, a tactic implements a backward reasoning : if the

current goal is the conclusion of a deduction rule, the application of a tactic to

it replaces it with its premises (i.e. it generates a new subgoal for each premise),

according to the following intuition: “if the goal G depends on (has as premises)

G′
1, . . . , G

′
n, to get a proof for G we first need to have the proofs for G′

1, . . . , G
′
n”.

Even more formally, a tactic can be defined in the following way, in agreement

with [14]:

Definition 2.1 (Tactic) A tactic is a function that, given a goal G (a local con-

text and a type to inhabit) that satisfies a list of assumptions (hyphotheses) P ,

returns a pair (L, t) where L = L1, . . . , Ln is a list (possibly empty) of subgoals and

t is a function that, given a list l = l1, . . . , ln of terms such that each li inhabits

Li, returns a term t(l) inhabiting G.
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The λ-term that, at the end of the proof, will inhabit the thesis, is built step-

by-step by the tactics: this definition underlines the fact that a tactic, in addition

to modify the current status of the proof, performs also the task of generating

a “piece” of the final λ-term, i.e. the function t that transforms the λ-terms

inhabiting the subgoals in the one inhabiting the goal to which the tactic has been

applied.

3 Theoretical background

Here we give an overview of paramodulation and related techniques in the context

of resolution theorem proving. The presentation is obviously incomplete and very

informal. Also, we are assuming that the resolution method for first-order logic is

known.

3.1 Basic paramodulation theory

The usual way of defining equality is by a set of axioms that can be summarized

as follows:

→ x = x (reflexivity)

x = y → y = x (simmerty)

x = y ∧ y = z → x = z (transitivity)

x1 = y1 ∧ . . . ∧ xn = yn → f(x1, . . . , xn) = f(y1, . . . , yn) (monotonicity)

As mentioned in the Introduction, however, the use of these axioms in an

automatic tactic leads to an explosion of subgoals generated, and so making the

approach not feasible in practice.

Example 3.1 Suppose we want to prove the goal

(app (app (app S K) K) z) = z

with context:

A : Set

app : A → (A → A)

S : A

K : A

H : ∀x, y, z : A.(app (app (app S x) y) z) = (app (app x z) (app y z))

H1 : ∀x, y : A.(app (app K x) y) = x

H2 : ∀x, y : A.(app (app K y) (app S x)) = x.

We can obtain a proof by transitivity in the following way:
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- Apply transitivity to the goal, obtaining two new subgoals

(app (app (app S K) K) z) = ?1 and ?1 = z;

- Applying H to K, K and z, we can demonstrate the first subgoal, and so

instantiate ?1 with

(app (app K z) (app K z));

- Applying the substitution {?1 7→ (app (app K z) (app K z))}, the second

subgoal becomes

(app (app K z) (app K z)) = z,

which can be demostrated with an application of H1 to z and (app K z).

However, the search of the proof could have been quite different: for instance, we

could have proved the second subgoal applying H2 to z and a new metavariable ?2,

instantiating ?1 with

(app (app K ?2) (app S z)).

Now we could have proceeded trying to prove the first subgoal, which would have

now become

(app (app (app S K) K) z) = (app (app K ?2) (app S z)),

only to discover later (in fact, maybe after having applied various symmetry, re-

flexivity, monotonicity or other transitivities) that it can not be demonstrated.

A paramodulation-based approach, instead, treats equality as a built-in con-

struct of the language, thus avoiding the need of specifying it with the above

axioms, which are replaced by some new inference rules2, the main of which is the

paramodulation rule:

C ∨ s = t D

(C ∨D[t]p)σ
if σ = mgu(s,D|p),

where mgu(a, b) is the function that computes the most general unifier of the

terms a and b, D|p is the subterm of D at position p, and D[t]p is the result of the

replacement in D of this subterm with t.

However, basic paramodulation is not enough to solve the original problem

of efficiency, because its unrestricted application can lead to the generation of

2Beside the usual resolution and factoring rules of the resolution calculus, which is the setting
we are considering now.
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a large amount of new clauses. To overcome this difficulty, application of the

paramodulation rule should be restricted in order to avoid redundant inferences.

This can be done by imposing the constraint that paramodulation can be used only

to replace big terms by smaller ones, with respect to a special ordering relation

Â among terms, that satisfies certain properties, called reduction ordering. This

restriction of the paramodulation rule is called superposition.

The use of superposition instead of paramodulation is quite important for effi-

ciency because it reduces the search space of the solution by reducing the number

of inferences that can be applied. But there is another technique that can be

- and in fact is - applied to further reduce the number of clauses, and it is the

elimination of redundancy. The criteria used for this purpose are essentially two:

subsumpion and demodulation [19]. The former is used to discard clauses that are

instances of more general ones, while the latter uses some equality clause s = t to

replace a complex clause containing s, C[sσ], with a “simpler” clause C[tσ] (where

σ = mgu(s, t)), provided that sσ is bigger than tσ with respect to the reduction

ordering.

In [10], it is shown that resolution combined with superposition and redundancy

elimination is still refutation complete.

3.2 Inference system

Here are the inference and simplification rules used by our tactic. In the exposition,

we will use the following notation: an equation t1 = t2 will be denoted with

t1 = t2 → if it is a goal, and with → t1 = t2 if it is a theorem or hyphothesis. Such

notation derives from the more general one for clauses Γ → ∆, in which Γ is the

set of premises and ∆ that of conclusions: a theorem (or hyphothesis) is then a

clause without premises, while a goal is a clause that leads to a contradiction. For

simplification rules, we will use this syntax: S → S ′, where S is the current set of

clauses, and S ′ is the result of the simplification.

Inference rules

superposition left
→ l = r t1 = t2 →

(t1[r]p = t2 →)σ

if σ = mgu(l, t1|p), t1|p is not a variable, lσ 6¹ rσ and t1σ 6¹ t2σ;
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superposition right
→ l = r → t1 = t2

(→ t1[r]p = t2)σ

if σ = mgu(l, t1|p), t1|p is not a variable, lσ 6¹ rσ and t1σ 6¹ t2σ;

equality resolution
t1 = t2 →

¤
if there exists σ = mgu(t1, t2).

Simplification rules

tautology elimination

S ∪ {→ t = t} → S.

subsumption

S ∪ {C, D} → S ∪ {C}
if C subsumes D, i.e. if there exists a substitution σ such that Dσ ≡ C.

demodulation [19]

S ∪ {→ l = r, C} → S ∪ {→ l = r, C[rσ]p},

where:

(i) lσ ≡ C|p;
(ii) lσ Â rσ.

4 Implementation

Here we describe our implementation of the paramodulation technique described

above. So far, we are restricting ourselves to a subset of CIC that is essentially a

first-order calculus, so that we can use the algorithms used by the state-of-the-art

first-order provers. The code is written in Objective Caml3, as this is the language

in which HELM is implemented.

3http://caml.inria.fr

7



4.1 Paramodulation in CIC

More formally, the set of terms accepted by our tactic (auto paramodulation) is

given by the following definition:

Definition 4.1 (CIC terms accepted by auto paramodulation)

Theorms and hyphotheses:

1. non dependent product, i.e. Πx : A.t in which A has type Set and t

does not depend on x. In this case, we will use the notation → instead

of Π: for example, Πdummy : A.A will be written as A → A; or

2. application of the inductive type cic:/Coq/Init/Logic/eq.ind, of

type ΠA : Type.A → A → Prop, with arguments a term A of type Set

and two terms of type A that do not contain abstractions: such terms

correspond to ground equations. For example, (eq A t1 t2) corresponds

to a t1 =A t2, in which =A indicates equality for terms of type A; or

3. term in the form

Πx1 : A.(Πx2 : A.(. . . (Πxn : A.(eq A t1 t2)))),

in which A if of type Set and t1 and t2 depend on x1, . . . , xn but do not

contain abstractions. Such terms correspond to equations t1 =A t2 in

which t1 and t2 contain variables x1, . . . , xn.

Goal:

application of cic:/Coq/Init/Logic/eq.ind to a termA of type Set and

two terms of type A that do not contain abstractions (i.e. as point 2 above).

Example 4.1 For example, some allowed terms are:

1. A : Set

x : A

n : nat (inductive type cic:/Coq/Init/Datatypes/nat.ind)

f1 : A → A → A (function with two arguments of type A)

f2 : nat → nat → nat

g : nat → nat

2. (eq nat (plus (S 0) n) (S n))

3. λx1 : nat.(λx2 : nat.(eq nat (f2 x1 x2) (g n))).
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Let us now suppose that we want to translate into CIC the problem of demon-

strating the goal f(a, b) = g(a), having the hyphothesis f(x1, x2) = g(x1), and in

which F = {f, g, a, b} is the set of function and constant symbols and X = {x1, x2}
is the set of variables. The first step is to assign a type to each object involved:

therefore we define a term A of type Set, that will be the type of constants and

variables; then we define the types of the functions f and g according to their

arities. In this way we get the following set of terms:

A : Set

a : A

b : A

f : A → A → A

g : A → A

Now, we have to translate the hyphothesis f(x1, x2) = g(x1). According to point 2

of Definition 4.1, we get

H : Πx1 : A.(Πx2 : A.(eq A (f x1 x2) (g x1))),

Finally, the goal has type

(eq A (f a b) (g a))

Variables and metavariables

In this translation from a first-order calculus to CIC, variables X are mapped

into identifiers introduced by the λ operator. To get a ground instance of a term

that contains variables, therefore, it is enough to apply the term to the proper

arguments. For example, referring to Example 4.1, applying H to a and b, (H a b),

we get a term of type (eq A (f a b) (g a)), that is a proof for the goal.

However, using the inference rules of Section 3.2, the proof is obtained in a

different way: first by an application of a superposition left to rewrite f(a, b) = g(a)

into g(a) = g(a) using f(x1, x2) ⇒ g(x1), with mgu σ = {x1 7→ a, x2 7→ b}, and

then applying equality resolution to the new goal. To do the same in CIC, we

would need to unify the terms Πx1 : A.(Πx2 : A.(f x1 x2)) and (f a b) in order to

be able to apply the superposition left rule. For this to be possible, however, we

first have to transform variables in metavariables, in order to make the two terms

unifiable:

Πx1 : A.(Πx2 : A.(f x1 x2) becomes then (f ?1 ?2).

Now it is possible to unify the two terms, obtaining the substitution

σ = {?1 7→ x1 : A, ?2 7→ x1 : A}.
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More precisely, every type 3 (with respect to Definition 4.1) equation is trans-

formed into a type 2 one, in which identifiers x1, . . . , xn are replaced by metavari-

ables (§2.2).

4.2 The main algorithm

The high level description of the procedure is the following: we have two sets of

clauses, called active and passive. At the beginning, active is empty and passive

contains all the initial clauses, i.e. the hypotheses and the negated goal. At

each iteration of the loop that constitutes the heart of the algorithm, a clause

(called current) is selected from passive and activated (i.e. added to active). After

being activated, current is submitted to an inference function that builds the set

(called new) of all the clauses that can be inferred from current and any other

active clause. After this step, new, active and passive are subject to redundancy

elimination (by the simplify function). This phase is made of two interleaving

steps: forward simplification, when active and passive are used to demodulate

and check for subsumption the clauses in new ; and backward simplification, when

conversely new is used to simplify active and passive: in this second case, however,

if some active or passive clause is demodulated, it is removed from its set and added

to new. Then phase one is performed again, and so on until the three sets don’t

change anymore. At this point new is examined to see if it contains the empty

clause: if so, a refutation of the goal has been found and the procedure terminates.

Otherwise, all the clauses in new are added to passive and the main loop starts

again.

That just described is called the given-clause algorithm (figure 1), and it is the

procedure used (with some variations) by all modern theorem provers.

4.3 Implementation details

The description just given is detailed enough to have an idea of how the system

works and what the operations select, infer and simplify do, but it obviously says

nothing about how they are performed efficiently. In fact, it turns out that at least

three aspects are crucial for the efficiency of the algorithm.

Selection strategies

The first is the way of selecting current from passive. Our experiments have

shown that this is the factor that affects most the performances: a poor selection

policy can in fact cause a slowdown of the algorithm by a factor of ten or even
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var new, passive, active: sets of clauses

var current: clause

active := ∅
passive := set of input clauses

while passive 6= ∅ do

current := select(passive)

passive := passive \ {current}
active := active ∪ {current}
new := infer(current, active)

new, active, passive := simplify(new, active, passive)

if new contains empty clause

then return “success”

passive := passive ∪ new

end

return “failure”

Figure 1: Given-clause algorithm

more. Unfortunately however, there is no optimal strategy, but what might be

quite effective for a particular goal can be very inefficient for another one. That’s

why we have implemented three different “basic” strategies, that can be combined

in various ways according to some parameters settable by the user. Such basic

strategies are:

age selection. It is the simplest way of selecting a clause: we keep the clauses in

a queue, in which new clauses are added at the bottom of the queue and the

selected one is always the top of the queue. The only interesting property of

this strategy is fairness, which means that every non-redundant clause will

eventually be selected;

weight selection. The idea here is that of associating to each clause a weight,

that is a positive integer that in some way denotes the “complexity” of the

clause, and is usually tightly related to the number of symbols in the clause.

Clauses are then kept in a priority queue, and select always picks the clause

with smallest weight.

goal similarity selection. The third basic strategy is to select the clause that

is the “most similar” to the current goal. To do this, we define a similarity

function that is related to the ratio of symbols that are in common between

the clause and the goal and those that appear only in one of them.
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The implemented strategy is a combination of the three basic ones just de-

scribed: it is governed by two parameters (integers), kwa and ksw, both settable

by the user, that indicate respectively the ratio between the number of clauses

selected by weight and those selected by age and the ratio between similarity and

weight selection.

Example 4.2 For example, kwa = 4 e ksw = 3 mean that every five clauses, one

is selected by its age and the other four with one of the two other strategies, and

precisely three by similarity and one by weight.

Simplification procedures

The description of the simplify procedure given above presents just one of the

various redundancy elimination strategies possible. In fact, it is the so-called full-

reduction strategy : its idea is to keep the search space as small as possible, by

eliminating the redundancy in all the sets of clauses, i.e. new, active and passive.

However, this operation is quite expensive from a computational point of view (in

fact, it is the most expensive step of the algorithm): this is because the set of

passive clauses grows quite quickly, and from a certain point on in the execution

the time needed to simplify passive dominates that spent to infer new clauses and

to simplify active and new.

This observation is at the basis of another simplification procedure, called lazy-

reduction strategy, which differs from the previous one because the clauses in pas-

sive are neiher simplified nor used to simplify those in new and active: this allows

to generate many more new clauses in the same amount of time with respect to

the full-reduction strategy, however the price to pay is a potentially much higher

degree of redundancy in the search space. As in the case of the selection strategy,

again there is no best choice here: for some goals full-reduction might be bet-

ter, whereas for others lazy-reduction could be more efficient. That’s why auto

paramodulation implements both, giving the user the choice to select which one

to use.

Term indexing

The third aspect to consider is the constant growth of the sets active and passive.

Both infer and simplify require in fact to search the two sets for clauses that satisfy

certain conditions, as unifiability, subsumption or matching with a particular (or a

set of) clause(s). If the searches are performed linearly, then, the constant growth

of the two sets leads to a rapid and monotonic drop in performance of the system.

Therefore, some form of indexing [15] of such sets had to be implemented: both
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path indexing and discrimination trees were tried, and experiments conducted have

shown that the latter are slightly better.

5 Construction of the proof terms

In the theorem provers for first-order logic based on resolution and paramodulation

(like Otter [8], Spass [18] or Vampire [13]), the proof of a goal is usually just

a list of the generated clauses terminating with the empty clause. For each clause

typically some information on how it was obtained is reported, for example if it

was an initial clause or if it was generated by an inference rule, and in this case

from which clauses, and so on.

In our case, however, this solution is not acceptable: as we said earlier (§2.1),

Matita is based on the Curry-Howard isomorphism, which means that a proof for

a goal must be a CIC term that inhabits the type that is the goal itself. This

Section is therefore devoted to illustrate how such a term is constructed.

5.1 Demonstration of a single rewrite step

The proof of a goal is built incrementally, starting from the hyphotheses and

theorems in the HELM library and proving each inference or semplification step.

The “building blocks” with which the proofs are built are the proof terms for the

single rewrite steps: the terms which prove, in other words, T (a) = u starting from

T (b) = u and a = b, in which T (a) indicates a generic term T which contains a

subterm a.

They are built applying the theorem cic:/Coq/Init/Logic/eq_ind.con, of

type

∀A : Type.∀x : A.∀P : (A → Prop).(P x) → ∀y : A.x = y → (P y)

that says exactly that we can obtain a proof that the predicate P holds for y from

the proofs that P holds for x and that x = y.

5.2 Proof of a goal

When auto paramodulation is invoked, the demonstration of the goal is a metavari-

able, which actually represents the proof not yet completed (§2.2). The proof term

is built combining the proofs of the single rewrite steps in the following way: let us

suppose that we have an equation a = c (of type A), whose proof is P1, and a goal

T1(a) = T1(c), whose proof is a metavariable ?n. If we apply a superposition left or
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a demodulation, we can obtain T1(c) = T1(c), which is a tautology whose proof can

be obtained by reflexivity (i.e. applying cic:/Coq/Init/Logic/eq.ind#xpointer(1/1/1),

that is refl equal):

(refl equal T1(c)).

Observing that the tautology T1(c) = T1(c) is equivalent to ((λx : A.T1(x) =

T1(c)) c), which therefore has the same proof, we can demonstrate the initial

equation T1(a) = T1(c) instantiating the metavariable ?n with an application of

eq_ind in the following way:

?n 7→ (eq ind A c λx : A.T1(x) = T1(c) (refl equal T1(c)) a P1),

Generalizing this procedure, every time that we rewrite a goal G1(l) with proof

?n1 using an equation l = r with proof P , we create a new metavariable ?n2 which

represents the proof of the new goal G1(r), and instantiate ?n1 with

(eq ind A r λx : A.G1(x) ?n2 l P ).

When we rewrite the current goal into a tautology t = t, the last metavariable

created, ?nm, will be instantiated with (refl equal t).

5.3 Proofs of non-goal clauses

The last point to consider for the construction of the proof is how to get the

demonstration of a clause→ T (generated by superposition right or demodulation).

The procedure is similar to that for goals: proofs are compositions of single rewrite

steps and of applications of theorems and hyphotheses.

The base case is the direct application of a theorem or hyphothesis: the proof

term in this case is just the application of the theorem/hyphothesis to the appro-

priate arguments. A simple example explains what just stated:

Example 5.1 If we have a hyphothesis H : Πx : A.Πy : A.(f x y), the CIC term

that demonstrates (f a b) (where f : A → A → Prop, a : A and b : A), is simply

(H a b ).

Having the proof terms for the theorems and hyphotheses, we can build the

proofs for the generated equations inductively, applying directly eq ind: if l = r

is the equation used to rewrite T (l) into T (r), the CIC term that demonstrates

T (r) is

(eq ind A l λx : A.T (x) PT (l) r Pl=r),

where A is the type of equality, and PT (l) and Pl=r are the proof terms for T (l)

and l = r respectively.
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6 Using the Matita library

One of the aims of Matita (and HELM more in general) is to reuse as much as

possible all the already formalized knowledge present in its extensive library of

theorems (and axioms, and definitions); moreover, among the very reasons for

developing an automatic tactic there is that of preventing the user from having

to search the library for theorems useful to prove a given goal. For these reasons,

auto paramodulation needs to have access to the Matita library, and the access

method has to take into account two different (and contrasting) requirements:

1. first, if a goal g can be proved by auto paramodulation without using the

library, but having the hyphotheses H1, . . . , Hn, g should be equally provable

with the use of the library, when H1, . . . , Hn are in it and with no additional

hyphotheses;

2. moreover, if in the proof of a goal g the theorem T present in the library

is not used, for efficiency concerns it should never be considered by auto

paramodulation when looking for a proof of g.

These are obviously ideal requirements: satisfying both of them would mean

in fact knowing in advance all and only the theorems necessary to prove the goal,

which is equivalent to know a proof for it. It is also obvious that, taken in isolation,

these two requirements are trivially satisfiable: for the first it would be sufficient

to use the entire library - that contains more than 30.000 elements! - for all the

proofs, while for the second we could simply ignore the library completely. But

clearly these two solutions are not very interesting: what we were looking for was

a compromise between completeness (point 1) and efficiency (point 2).

The solution we have adopted is similar to that used by the original auto tactic

[16]. It uses the metadata associated to every item in the library to identify those

that are “compatible” with a certain goal. More precisely, the only items that are

considered by auto paramodulation when constructing a proof for a goal g are

those which satisfy all the following points:

• are equations, that is they have cic:/Coq/Init/Logic/eq.ind#xpointer(1/1)

as constant in position MainConclusion;

• satisfy the exactly constraint [16] for the set of constants in the goal, in the

local context (i.e. the set of hyphotheses) and in the types and constructors

of inductive types of the goal and the objects in the context. If we call S

such set of constants, an item t in the library satisfies an exactly constraint

on S if

∃S ′ ∈ ℘(S) t.c. constants of(t) = S ′,
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where ℘(S) is the powerset of S, and constants of(t) is the set of constants

appearing in t.

7 Results obtained

So far, we have only considered a subset of CIC that corresponds to a first-order

logic, and we have limited our scope only to equational theories, i.e. we considered

only problems in which both the goal and all the hypotheses contain only one literal

which is an equality. This might seem quite limited, but this is the heart of the

paramodulation technique, and we believe that extensions to this basic technique

will require much less effort than that made so far. Moreover, the performance

gain w.r.t. auto is impressive (two orders of magnitude and more), and this alone

should be enough to consider the approach successful, even in the case that the

extensions of it should reveal harder to implement.

As regards the performance w.r.t the state-of-the-art provers, we mainly com-

pared with Spass: the results vary from problem to problem, but on average we

are about an order of magnitude slower (the results heavily depend on the clause-

selection strategy, as already discussed at the end of the previous Section), which

is not bad at all if we consider that:

- we are reusing as much of the existing HELM code as possible, and this

code wasn’t designed with theorem-proving in mind, so many of its data

structures and functions are not optimized for efficiency but rather for easy

manipulation, maintainability, extensibility, modularity;

- OCaml, although quite fast when compiled to native code, is still slower than

C;

- we are comparing with a state-of-the-art implementation, with many years

of development behind it, while our code is less than four months old;

- although we are currently using only a subset of it, CIC is still much more

complex than an untyped first-order calculus, and so the algorithms that

operate on terms are intrinsically more complex in our case.

8 Conclusions

The motivation of this work was the need to improve the efficiency of the auto

tactic of the Matita proof assistant. The first thing we did to achieve this goal was
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to experiment with some optimizations to the code of auto, basically to reduce

the size of the search space on which the tactic operates. These optimizations

were useful, but they were not effective enough: they caused an improvement of

the execution time only of a constant factor (in some cases even 3 or 4), but they

did not change its order of magnitude. In particular, compared to the modern

theorem provers for first-order logic (like Otter [8], Spass [18], Vampire [13],

Waldmeister [6]), auto was still at least 1.000 times slower, and so really not

usable for non trivial problems.

The main cause of this huge difference of performance is the treatment of the

equality predicate, that in the aforementioned tools is handled in a special way,

with dedicated inference rules, the main of which is called paramodulation [10].

This observation made us decide to implement a new automatic tactic from

scratch, following the architecture of a modern theorem prover. The result of

this work is the auto paramodulation tactic just described. Despite its limited

applicability (so far, only to pure equational problems), it turned out to be quite

effective, reducing the execution times at least of two orders of magnitude.

8.1 Related work

Despite its limitations, we can say that auto paramodulation is an effort to inte-

grate automatic and interactive theorem proving. A possible scenario for its use is,

in fact, the solution of complex problems, the search for the proof of which is guided

by the user, but in which some equational subgoals can be solved automatically

by auto paramodulation.

From this point of view, our work has many analogies with other efforts to com-

bine the interactive and automatic approach to theorem proving, as for example

[7], [9] and [1]. The difference between such works and auto paramodulation is

that in the former the integration is obtained with the development of an interme-

diate layer of communication between a pre-existing and substantially independent

proof assistant and theorem prover (HOL [5] and Gandalf [17] in the first case,

Isabelle [11] and Vampire in the second, and KIV [12] and 3TAP [3] in the third):

in these approaches, the problem is translated from the language (usually a higher

order one) of the proof assistant to that (first order) of the theorem prover, which

is then invoked on this translation of the problem; finally, in case of success, the

inverse translation has to be performed, in order to get a valid proof for the proof

assistant. On the contrary, auto paramodulation has an architecture which is

similar to that of a theorem prover, but is in fact a part of Matita, sharing with

it data structures and algorithms, and operating directly on CIC terms (although

at present it accepts only a subset of them).
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8.2 Future developments

We have already stressed the fact that auto paramodulation at present can be

used only for purely equational problems. A natural direction of development,

therefore, is its extension to the whole CIC, or at least to the whole first order

logic, with the standard connectives ¬, ∧ and ∨ (whose definitions in HELM are re-

spectively cic:/Coq/Init/Logic/not.con, cic:/Coq/Init/Logic/and.ind and

cic:/Coq/Init/Logic/or.ind).

In particular, an extension to the full first order logic could be realised putting

the goal and the theorems/hypotheses in conjunctive normal form, and then pro-

ceeding by resolution with paramodulation like the state-of-the-art theorem provers.

An extension to the whole CIC, instead, would require a different approach.

A possible solution would be the following: use a hybrid between the auto and

auto paramodulation tactics, in which rewrite and simplification steps, using

paramodulation and demodulation, are alternated to theorem application steps,

in the manner of auto.

In a different direction, another possible improvement could be the use of the

paramodulation technique to generate automatically al the “interesting” conse-

quences of an initial set of theorems and axioms, for some definition of “interest”.

For example, we could consider as interesting all the theorems that are used very

frequently - as rewrite rules - in the demonstration of a certain goal, and then

suggest the user to add them to the library for a future use.
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André Hirschowitz, Christine Paulin, and Laurent Théry, editors, Theorem
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