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Abstract. One approach for SMT solvers to improve efficiency is to del-
egate reasoning to abstract domains. Solvers using abstract domains do
not support interpolation and cannot be used for interpolation-based ver-
ification. We extend Abstract Conflict Driven Clause Learning (ACDCL)
solvers with proof generation and interpolation. Our results lead to the
first interpolation procedure for floating-point logic and subsequently,
the first interpolation-based verifiers for programs with floating-point
variables. We demonstrate the potential of this approach by verifying a
number of programs which are challenging for current verification tools.

1 Introduction

Numeric software that manipulates floating-point variables is ubiquitous in auto-
motive, avionic, medical, public transportation and other safety critical systems.
The IEEE 754 standard defines the format of, operations on, and exceptions
concerning floating-point computations. To alleviate the complexity of floating-
point reasoning, some solvers use abstract domains to manipulate and approxi-
mate the semantics of formulae [2, 14, 22, 24].

In this paper, we study solvers that implement the Abstract Conflict Driven
Clause Learning (AcDCL) algorithm [9]. ACDCL solvers lift the Conflict Driven
Clause Learning (CDCL) algorithm in SAT solvers to operate on abstract domain
elements instead of propositional formulae. To enable the use of ACDCL solvers
in interpolation-based verification, we extend ACDCL with proof generation and
interpolant construction. We apply our theoretical results to derive verifiers for
programs with floating-point variables.
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** Supported by Provincia Autonoma di Trento and the European Community’s
FP7/2007-2013 under grant agreement Marie Curie FP7 — PCOFUND-GA-2008-
226070 “progetto Trentino”, project ADAPTATION.



The intuition behind our work stems from the construction of propositional
interpolants. Clause learning SAT solvers can generate resolution proofs [25]
and interpolants can be constructed in time linear in the size of a proof [18].
We introduce ACDCL proofs, which extend propositional resolution with reason-
ing about abstract domain elements. Under certain conditions, discussed later,
ACDCL proofs can be rewritten to obtain proofs with the structure generated
by DPLL(T) solvers. Existing techniques can be used to construct interpolants
from such proof [19]. The major difference between our work and existing work
is not in the interpolation procedure we use but in the solver algorithm used to
generate proofs. Extending ACDCL to generate proofs with the same structure
as DPLL(T) solvers is useful because there are cases where DPLL(T) solvers time
out out but an ACDCL solver does not [1].

Contributions and Contents In this paper, we present and evaluate the
first interpolation-based verification procedures for programs with floating-point
variables. Our work makes the following contributions.

1. Generation of proofs for ACDCL based on the notion of abstract resolution.
Abstract resolution generalises resolution to accommodate formula manipu-
lation in an abstract domain.

2. Sufficient conditions for computing interpolants from ACDCL proofs, and for
linear-time interpolation in a theory.

3. The first interpolation-based verifiers for floating-point logic. We implement
both the Bounded Model Checking-based interpolation algorithm of [18],
and two variants of lazy abstraction with interpolants [20, 3].

4. Our implementations perform better than existing state-of-the-art verifica-
tion tools on a set of small but challenging floating-point programs.

The paper is organised as follows: Section 2 contains a recap of ACDCL, and
Section 3 presents our extension of resolution and of ACDCL to generate proofs.
Our results on interpolation appear in Section 4, which includes a treatment of
the issues arising in the floating point context. We present our empirical results
in Section 5, followed by related work in Section 6.

2 Abstract Conflict Driven Clause Learning

We recall the abstract satisfaction framework, which allows us to study satisfia-
bility problems in terms of lattices and transformers and is the basis for ACDCL.
We refer the reader to [9] for a deeper treatment of ACDCL, and to [14] for an
instantiation of ACDCL for floating-point reasoning.

2.1 The Abstract Satisfaction Framework

Logic We work with standard first-order notions of predicates, functions and
terms. An atomic predicate is a predicate symbol composed with terms. A literal
is an atomic predicate or its negation. A clause is a disjunction of literals, and a



cube is a conjunction of literals. A ¢NF formula is a conjunction of clauses, and
one in DNF is a disjunction of cubes.

We assume a satisfaction relation = between structures in a set Structs and
formulae. A structure o is a model of ¢ if o |= ¢, otherwise, o is a countermodel.
A formula is satisfiable if it has a model and is unsatisfiable otherwise. The
satisfiability problem is to determine whether a given formula is satisfiable. We
write SAT for the satisfiability problem for propositional logic.

Lattices A lattice (L,C,U, M) is a partially ordered set with a meet and a join.
The powerset lattice over a set X, written (p(5), C,U,N), contains subsets of S
order by inclusion. Two functions f,g: @ — L from a set Q) to L can be ordered
pointwise, denoted f C g, if f(x) C g(x) holds for all z in Q. Functions on L
also lift pointwise to @@ — L. The least and greatest fixed points of a monotone
function f on a complete lattice will be denoted Ifp(f) and gfp(f), respectively.

Let idg be the identity function on a set S. A Galois connection between
posets (C,C) and (4, <), written (C,C) % (A, <), is a pair of monotone
functions a : ¢ — A and v : A — C satisfying the pointwise constraints
aoy=xids and ide C yoa.

Concrete Semantics of Formulae We recall a fixed point characterisation
of satisfiability [9].The concrete domain of structures is (p(Structs), C,U,N).
A formula ¢ defines two structure transformers. The name structure transformers
is used by analogy to state transformers and predicate transformers. Let X be a
set of structures. The model transformer mods, removes all countermodels of ¢
from X, and the conflict transformer confs, adds all countermodels of ¢ to X.

mods,(X)={oc € X | 0 = ¢} confs,(X)={o € Structs | o = p or 0 € X}

Properties of a formula can be expressed with transformers. The set of models
of ¢ is mods,(Structs) and the set of countermodels of ¢ is confs,(().

Theorem 1. The following statements are equivalent.

1. A formula ¢ is unsatisfiable.
2. The greatest fized point gfp(mods,) contains no structures.
3. The least fized point Ifp(confs,) contains all structures.

Applying the transformers above amounts to solving the ALL-SAT problem
and is at least as hard as satisfiability. For efficiency, we use abstraction.

Abstract Satisfaction We overapproximate models and underapproximate
countermodels. Let (O, T, L, M) be an overapproximation of the domain of struc-
tures and (U, <, Y, A) be an underapproximation. The approximation is for-
malised by the Galois connections below. The orders C and < both refine set
inclusion on structures. That is, a C b implies y(a) C v(b), and = < y implies

y(z) S (y).

(p(Structs), C) % (0,5) (p(Structs), 2) —= (U, »)



An abstract model transformer amods, : O — O, and an abstract conflict trans-
Jormer aconfs, : U — U satisty the pointwise constraints below.

mods, o Yo € Yo © amods, confs, oyu 2 Yu © aconfs,

The basic soundness result of abstract interpretation can be used to derive sound
but incomplete satisfiability solvers.

Theorem 2. A formula ¢ is unsatisfiable over a set of structures Structs if at
least one of the conditions below hold.

1. The set yo(gfp(amodsy)) is empty.
2. The set vy (Ifp(aconfs,,)) contains all structures.

If gfp(amods,) concretises to the empty set, ¢ must be unsatisfiable. Due to
imprecision in the abstraction, yo(gfp(amods,)) may not be empty even if ¢ is
unsatisfiable. Similar intuition applies to reasoning with aconfs,,.

2.2 A Recap of ACDCL

Recent work has given an abstract interpretation characterisation of the clause
learning algorithm in SAT solvers [9]. This characterisation builds upon the ob-
servation that the data structures and operations in propositional SAT solvers
are defined entirely by the notion of a literal. Propositional literals are the gen-
erators of CNF formulae, partial assignments (the data structure for deduction)
and clauses (used in learning). The unit rule, decisions, and conflict analysis, can
all be formulated in terms of literals. If we can generalise the notion of a literal,
all else follows. The work in [9] shows that complementable meet irreducibles are
a mathematical generalisation of literals to abstract domains. We review this
characterisation next.

Irreducible Elements Irreducible elements in a lattice cannot be derived from
other elements using meets and joins. A lattice element x is completely meet
irreducible if for all X C L, the equality = [| X implies  is in X. The set of
meet irreducibles of L is denoted Irrn(L). A meet decomposition is a function
mdc : L — o(Irrn(L)) satistying @ = [ | mdc(z) for all z. We shorten ‘completely
meet irreducible’ to ‘meet irreducible’ in this paper. A meet irreducible m of
an abstract domain is complementable if there is an element 7 satisfying that
—y(m) = y(m). A domain has complementable meet irreducibles if every element
is the meet of meet irreducibles, and every meet irreducible is complementable.

Domains to Logic ACDCL uses both abstract domain elements and formulae.
We use lower case letters such as p, g, r for logical literals, ¢, v for formulae, and
m,n for domain elements. Our work applies to abstract domains that satisfy
the requirements below. The first two conditions enforce that the semantics of
logical formulae and abstract domain elements are both given in terms of a set
of structures. The fourth condition ensure that meet irreducibles of the abstract
domain can be represented by logical formulae. The formula representation is
required to generate proofs. In Section 4.3 we show that choosing a representation
is non-trivial.



Assumption 1 Let L be set of formulae in the logic we consider and O be an
abstract domain. We make the following assumptions.
1. Formulae in L are interpreted over structures in a set Structs.
2. The concretisation function 7y is in O — p(Structs).
8. The abstract domain O has complementable meet irreducibles.
4. There exists a function (-) : Irrq(O) — L which maps every meet irreducible
m to a formula (m) such that v(m) is the set of models of {m).

We write P,Q, M, N for objects that are formulae or logical representations
of meet irreducibles, and P denotes =P if P is a formula, or (m), if P is the
representation of the meet irreducible m. Assumption 1 allows us to represent
logical negations of abstract domain elements as clauses. We adopt the standard
convention of writing clauses as sets of literals. Even if an abstract domain is
not complemented, we can exploit meet irreducibles to represent the negation
of a lattice element as a clause. The clausal negation of an abstract element a is
the set neg(a) ={(m) | m € mdc(a)}.

Learning as Transformer Refinement ACDCL discovers regions of the search
space that do not contain models of a formula and uses learning to navigate
subsequent search away from such regions. An abstract element a is a conflict
if mods,(v(a)) is the empty set. The best learning transformer for a conflict a,
defined below, prunes abstract elements using conflicts.

Learng, : O = O Learn, =z — a(y(x) N —y(a))

A learning transformer is one that overapproximates the best learning trans-
former. A learning transformer removes countermodels from an abstract element,
but may not remove all. ACDCL discovers conflicts, synthesises learning trans-
formers, and uses these transformers to refine the analysis. We now elaborate on
the details of conflict discovery and learning transformer synthesis.

The propositional unit rule asserts that if a region of the search space contains
no model for all but one literal in a clause, every model of the clause must be
a model of the remaining literal. The abstract unit rule lifts this intuition to
abstract domains. Let 6 be the clausal negation neg(c) of some conflict c.

i if y(pMa)=0forall pin 6
aTq otherwise, if there exists ¢ in

and for all p#£ ¢ in 0,y(aMp) =0
a otherwise

Unitg(a) =

(1)

Learning corresponds to synthesising abstract unit rules from conflicts. ACDCL
can be understood as generating a sequence of transformers, as below.

0~ . i1~ i ‘ :
amods , = |_| Unity  amods, ™ = amods, M Unit g (), for some conflict ¢
Ocyp

ACDCL begins with unit rules for clauses in the formula, and alternates between
two phases, model search, where conflicts are discovered, and conflict analysis,



where the conflicts are generalised. Eventually, a satisfying assignment is found,
or the formula is shown to be unsatisfiable, or the precision limit of the abstract
domain is reached with an inconclusive result, or, in certain cases, the procedure
may not terminate. Algorithmic details of ACDCL relevant for proof generation
are discussed in the next section.

3 Proofs from ACDCL

The contribution of this section is to generalise resolution to encode abstract
domain reasoning, and extend ACDCL with proof generation.

3.1 Abstract Resolution

The resolution rule asserts that if the conjunction of Vp with —pV1 is satisfiable,
the clause 0 V¢ must also be satisfiable. The rule is formulated entirely in terms
of literals, and can be lifted to complementable meet irreducibles. We generalise
resolution in two directions illustrated below.

FEzample 1. We consider a variable x interpreted as an interval, and write a
constraint = € [0,00] as > 0 for convenience. Of the three inferences below,
standard resolution permits the first one.

OV{<0) —{(z<0)Vvy OV{x<0) <0)Vy OVE<0) (zr>1)Vy
oV b oV oV

The second inference uses complementable meet irreducibles for Boolean reason-
ing about certain abstract domain elements. The third inference requires theory
reasoning, namely that (x <0)M(x >1)is L.

We formalise the inferences above with an extension of the resolution rule
that eliminates pairs of meet irreducibles. We encode theory reasoning by a
semantic resolution rule that applies if a pair of elements reduce to bottom in
an abstract domain

Definition 1 (Abstract Resolution). Let 6 and ¢ be clauses. Abstract resolu-
tion consists of three rules. The literal resolution rule IRES is standard resolution,
and mRES extends the standard rule to complementable meet irreducibles.

OVp —pVY OV (m) (m)Vi

T IRES T MRES

The semantic resolution rule sSRES below uses the meet in the abstract domain
to eliminate elements.
oV {m) (n)Vy
VAVEY)

SRES, ifmMn= 1,



After applying resolution, a literal may occur multiple times in a resolvent if it
occurs in both antecedents. When dealing with a theory, a resolvent may be of
the form (m) V (n), where m and n are meet irreducibles satisfying m C n. Such
a clause can be semantically folded to the equivalent clause (n). More generally,
the semantic folding of a clause

Definition 2 (Folding). The semantic folding of a clause 0 is the clause
sFOLD(0) = {(m) € ¢ | A(n) € ¢ such that m C n}
containing syntactic representations of the maximal elements of 6.

In addition to the abstract resolution rules, ACDCL solvers reason using con-
flicts. A conflict is a region of the space with no models, so its negation, when
viewed as a formula is a tautology. The standard proof-theoretic treatment of
conflicts in the SMT literature is to treat them as theory lemmas. We adopt the
same convention.

Definition 3. A theory lemma is a clause 8 \V v satisfying that 6 is the clausal
negation neg(c) of an element satisfying c C aconfs_,,(L).

Intuitively, ¢ contains only countermodels of =), so ¢ “implies” i, and the con-
trapositive of this statement is a tautology that we encode as a clause.

Definition 4 (ACDCL proof). Consider a CNF formula ¢. The hypothesis
rule HYP and lemma rule LEMMA are given below.

0V P is a theory lemma,
LEMMA, if and P is a literal of ¢
or P is a meet irreducible

—— HYP, if0 €

0 0V P

A clause 0 is derived from a CNF formula ¢ by ACDCL if 0 is introduced by HYP
or LEMMA, or if 0 is derived by applying either the abstract resolution rules or
semantic folding to clauses derived from @ by ACDCL. An ACDCL refutation is
an ACDCL derivation of L.

Theorem 3 extends the soundness of resolution to ACDCL proofs.

Theorem 3. If there exists an ACDCL deriwvation of a clause 0 from a formula
@ then ¢ = 0.

Proof. The proof is by induction on the structure of an ACDCL derivation. For
the base case, consider the hypothesis and lemma rules.

1. Clauses introduced by HYP belong to ¢.

2. A clause 0V P with 6 = neg(c) is derived from an element ¢ C aconfs_p(L),
so by the soundness of abstract transformers, v(c) C confs_p(0}), and by
negation —y(¢) 2 —confs_p(0), and by negation of the formula, —y(c) U
mods p(Structs) = Structs, so neg(c) V P is valid.



For the induction step, we assume that the theorem holds for clauses derived by
ACDCL. The case for [RES is standard, and the reasoning for mRES and sRES are
similar, so we only consider mRES. Let o be a model of ¢; V (1) and of ¢z V (I2).
There are three cases. If o does not satisfy (I;) or (l2), it satisfies ¢ V co. If o
does not satisfy [y, it must satisfy c¢;, hence satisfies ¢ V ¢o. The case for not
satisfying [y is identical. Note o cannot satisfy both l; and Iy because they are
logical representations of a complemented pair. a

Corollary 1 (Soundness). If there exists an ACDCL refutation for ¢, then ¢
s unsatisfiable.

3.2 Proofs from runs of ACDCL

We now discuss the algorithmic details of ACDCL and show how the algorithm
can be extended with proof generation. The algorithm operates on a sequence
of meet-irreducibles called an abstract trail.

Model search Model search can be viewed as a way to guide conflict analysis.
The meet of elements in the trail, say a, represents the region considered for
model search. If the set v(a) contains a model, the fixed point gfp(amodsfa r
Az.a) will be non-empty. If this fixed point is strictly smaller than a, new meet
irreducibles are added to the trail. Elements added to the trail are deduced facts
and are associated with a reason. The reason is either a subformula of ¢, or a
formula representing the learned transformer Unit,eq(c)-

Ezxample 2. Consider the following ONF formula ¢ in linear integer arithmetic:
p=(x=3)A(r+y <5 A((x<0)V(y=6))

ACDCL over the interval abstract domain produces the following trail during
model search:

i trail; reason|i|

1:(x>3)« (xz>3)

2:(y<2) « (z+y<H)

3: 1L +(x<0)V(y=>6)

The meet irreducible (y < 2) is deduced in step 2 from the trail (x > 3) and the
reason (z +y < 5). A conflict is discovered in step 3.

If a conflict is not found, ACDCL makes decisions. A decision is a meet irreducible
that when conjoined with the current trail, yields a strictly smaller element. If
a does represent the empty set, ACDCL enters the conflict analysis phase.

Conflict Analysis The goal of conflict analysis is to generalise a conflict a to a
larger, still conflicting region. Proof generation only takes place during conflict
analysis phase, so we discuss it in greater detail. Conflict analysis is detailed by
the uncoloured lines in Algorithm 1 (see [14] for details). Given a reason r for a
conflict a the analysis uses an transformer aconfs, , satisfying two properties:



L. aconfs, , is sound in the sense that it underapproximates the transformer
Az. confs,.(z) U~y(a), and
2. aconfs, , generalises, meaning that aconfs, ,(b) J a for all elements b.

Conflict analysis steps backwards through the trail and generalises each meet
irreducible by applying the conflict transformer with respect to the associated
reason. The generalised result is stored in the marking array. An invariant of the
algorithm is that after each main loop iteration, the meet of elements in marking
is a conflict. This conflict is used to synthesise a learning transformer. If T is
not conflicting after the analysis, a backjump undoes part of the trail to return
to an earlier, non-conflicting state from which model search continues.

Proof generation Proof construction mirrors the construction of resolution
proofs from runs of a propositional SAT solver [25]. We walk backwards along
the trail and identify proofs steps encoding the reasoning that was performed.
The main difference to the propositional case is that an ACDCL proof has to
account for the reasoning performed by aconfs in the abstract domain.

The proof-producing extension of ACDCL conflict analysis is given by the
coloured lines of Algorithm 1. The algorithm uses an array called proof to map
clauses to proof fragments. We reuse the names of proof rules as functions that
construct proof steps. In the case of resolution rules, the second argument is
the resolved literal, and the other arguments are antecedents. We write RES for
IRES and mRES, because both encode Boolean reasoning, so the distinction is
not important for correctness of the algorithm.

The proof array is initialized by associating each clause in the input formula
with an HYP application. Lines 11-17 constructs a proof to justify that marking]i]
can be deduced from ¢ by applying the abstract unit rule to reason[i]. Line 18
constructs a proof for the propagation of marking[i] in the trail. The piecewise
proofs in the pl array are consolidated in lines 23-24 to derive a proof for the
learnt clause.

Ezxample 3. We revisit the formula ¢ and trail in Example 2 and illustrate both
conflict analysis and proof construction. In this example, we do distinguish be-
tween [RES and mRES. Abstract conflict analysis starts from index 3 in the trail.
Suppose that applying aconfs,c,son[z to L yields the set of meet irreducibles
q={(y <5), (x> 1)}. Then marking is updated as below.

marking[1] + (x > 1) marking[2] < (y < 5)

The element reason[3] is unit under ¢, with amods(,>¢)(q) = L. We obtain the
proof below

—_—  HYP —————— LEMMA
- (<0)V(y>6) (x>1) V{y<5)V-(y >6)
= IRES
@<0)V@E=DV D)

r

which we extend to Ps:

~ (e <0)Vi{ix>1)V <5 r
py = @<OVE=T)V{y<5) -




At the next iteration, we have marking[2] = (y < 5). Applying aconfs . .,son[2) t0
marking[2] returns ¢ ={(x > 0)}. Then marking(1] is set to (x > 1) M (z > 0) =
(x > 1), and the following proof Ps is generated:

LEMMA —F——  HYP
P2£ﬁ<x+yg5>v<xzo> PR (z+y<5)

IRES

Finally, at the last iteration, we have marking[l] = (x > 1), and applying
aconfs eqson1) to marking[1] returns T. The following proof Py is generated:

LEMMA
Plﬁ—\(azES)V@Zl) (x>3
@>1) IRES

HYP

The final refutation P, is obtained by combining P35, P, and P; as follows:

Ps P2
Pa = <5L’21>

SRES

T SRES,

where in the first sRES application we applied sFOLD to eliminate (x > 0).

We conclude the section with a correctness proof.

Theorem 4. Let learnt be the clause returned by the proof-producing abstract
conflict analysis algorithm of AcDCL (Algorithm 1). Then proof|learnt] is an
abstract resolution proof for learnt.

Proof. Assume by induction that proof[reason[i]] is an abstract resolution proof
for reasonli], for each non-decision position 7 in the trail.

First, we show that the LEMMA and RES applications at lines 14, 17 and
18 are correct. For the LEMMAs, the side conditions hold by the correctness of
amods and aconfs and by the definition of the abstract unit rule (1). For the
RES at line 17, [ € p by construction, and [ € p; by the inductive hypothesis.
Similarly, for the RES at line 18, u € p; because u € proof[reasonli]] by the
inductive hypothesis and u ¢ unitreason by construction. As a consequence of
the correctness of such LEMMA and RES applications, the proof p; generated at
line 18 is a correct abstract resolution proof for the clause marking[i] V g (since
all literals L € reason[i] \ ¢ are eliminated by the sequence of resolutions at
line 17). Moreover, ¢ C {c | 31 < j < ¢ such that marking[j] C c}. Because of
this, in the applications of sRES at line 24, [ € p and P contains a literal [,
such that Iy T . Therefore, the side conditions of sRES are satisfied. In order
to prove the theorem, it remains to show that the literals of P not involved
in the sequence of sRES applications of line 24 are exactly those in the set
{marking[i] | 1 < i < |trail| and marking[i]| # T}. Since the elements of marking
are meet irreducibles, after the update marking[r] <— marking[r] N c at line 10,



Algorithm 1: ACDCL proof generation during abstract conflict analysis.

1 abstract-conflict-analysis(¢rail, reason, proof)
2 i <+ |trail|; marking < {1— T,...,(i—=1)— T,i+— L};
3 pl < nil;
4 loop
5 if marking[i] # T then
6 a < [« trailljl;
7 q aconfsreasm[i]’a(marking []);
8 foreach c in mdc(q) do
9 r < smallest index r’ s.t. trail, C c;
10 marking[r] < marking[r] Mc ;
11 unitreason <— nil; u < T;
12 foreach [ in reason[i| do
13 if amods;(q) = () then
14 | if I € g then unitreason < unitreason : (I, LEMMA(L V q));
15 else u <« I;
16 pi < proof [reason|i]];
17 foreach (I, p) in unitreason do p; < RES(pi, [, p);
18 if u # T then p; < RES(p;, u, LEMMA(T V G V marking[i]));
19 pl < pl : (markingli], p;);
20 marking[i] < T; i+ i —1;
21 if stopping-criterion(trail, marking) then
22 confl + |_|1gig\tm¢z| marking[i]; learnt < confl;
23 (o, P) « pl[1];
24 foreach (I,p) in pl[2...|pl]] do P <« srRES(P,l,p);
25 proof [learnt] < P;
26 return learnt;

either marking[r] is set to ¢ € ¢, or marking[r] was already set to an element ¢’ of
the result ¢’ of amods of a previous iteration of the loop of Algorithm 1. In both
cases, the new value of marking[r] will occur in some proof in the list pl, and
hence in the root of P. Also the old value of marking[r] before the update at line
10 will occur in some proof in the list pl, if it was not T. However, such values
will not occur in the root of P thanks to the use of sFOLD in the applications of
SRES. O

Corollary 2. Let ¢ be a CNF formula. If ACDCL can prove the unsatisfiability
of p, then there exists an abstract resolution refutation for it.

4 Interpolation for ACDCL

The contribution of this section is sufficient conditions for deriving interpolants
from ACDCL proofs. We show how to reuse interpolant constructions for resolu-
tion proofs as well as proofs from DPLL(T) solvers to compute interpolants. This
allows us to take advantage of the large body of results about interpolation in



SAT and SMT, while still retaining the performance benefits that ACDCL might
have over DPLL(T) (see e.g. [1]).

4.1 ACDCL and DPLL(T) proofs

DPLL(T) solvers generate Boolean resolution proof with leaves that are input
clauses or theory lemmas [19]. We define such proofs in our setting below.

Definition 5. Given a CNF formula ¢ and a clause 6, a DPLL(T) proof of 6
from @ is an abstract resolution proof containing no sRES applications.

It should not come as a surprise that an abstract resolution proof can be
transformed into a DPLL(T) proof satisfying the definition above. The transfor-
mation can be achieved by replacing sRES steps by a combination of mRES and
LEMMA steps, as indicated below.

1. An sRES step involving (I;) and (1) can be replaced by an mRES step.
2. An sRES step involving (l1) and (l2) can be replaced by a combination of

two mRES and one LEMMA steps as below.

LEMMA

MRES
Cl\/<l1> Cz\/(lz) s Cl\/<l1> Cz\/<1>

c1Vca c1Vcer

3. An sFOLD step which removes an element (ls) because of an element ()
satisfying Iy C [y can be rewritten as follows:

— LEMMA
eV {l2) V(i) (l2) V()

cV <l1>

MRES

Ezxample 4. Consider again the formula ¢ and the refutation of Example 3. We
convert it into a DPLL(T) proof with the transformation below.

Ps T2 ipps
<1‘ >1 Py
1 SRES
P P MRES —————————— LEMMA
(x >0)V (x >1) z>0)Viz>1 o
MRE
(z>1)

1
MRES




4.2 Generation of interpolants

Constructing a DPLL(T) refutation from an abstract resolution refutation is
the first step towards using existing interpolation algorithms like e.g. [19] with
ACDCL. Such algorithms do not typically apply to arbitrary DPLL(T) proofs but
require proofs to satisfy a syntactic condition commonly called colourability.*.

Definition 6 (Colourability). Let X be a set of symbols, let t be a term in a
theory T, and let syms(t) be the set of symbols which occur in t and are uninter-
preted in T. Then t is X-colourable iff syms(t) C X'. Given two formulas A and
B in T, t is A-colourable if it is syms(A)-colourable, and B-colourable if it is
syms(B)-colourable. Ift is syms(A)Usyms(B)-colourable but neither A-colourable
nor B-colourable, t is AB-mixed.

Instantiating ACDCL to work on abstract domains that do not allow AB-
mixed terms enables interpolant generation for theories in which interpolation
exists for conjunctions of literals. A more interesting case is to wonder whether
it is possible to use ACDCL to compute interpolants for theories for which there is
no known efficient interpolation procedure. The lemma below provides sufficient
conditions on proof structure.

Lemma 1. Let Pypi(r) be a DPLL(T) proof generated from an abstract resolu-
tion refutation for a formula wa A wp in a given theory T. If all the lemmas
occurring in Pppry(r) are either A-colourable or B-colourable, then it is possible
to compute an interpolant I for (04, 0B) from Pppyyir)-

Proof. Let
YaZ=pa A /\{c is an A-colorable lemma of Py (1)}
VB =pB A /\{c is a B-colorable lemma of Ppppyr)}
By the hypothesis, each lemma in Ppp () occurs in either 14 or 5. Therefore,

ta A g is propositionally unsatisfiable, and Pppr (1) is a Boolean resolution
refutation for 14 A ¥ p. Thus, we can compute an interpolant I for (¢ 4,%p) by
applying an off-the-shelf Boolean interpolation algorithm to Pppy(r). Since the
lemmas of Pppp(r) are by definition valid clauses in the theory T, 14 and ¢ p
are logically equivalent to w4 and ¢p in T. Therefore, I is an interpolant also
for (va,¢B). O

One candidate for satisfying the conditions of Lemma 1 is to use a Cartesian
abstract domain because every meet irreducible represents a predicate with one
variable and can be coloured. Domain structure alone is insufficient because the
conflict transformer must also respect the colorability requirement. We say a
conflict transformer aconfs is locality preserving with respect to a formula ¢4 A
g if for all colorable 8 and elements a, all elements in the meet decomposition
of aconfsy(a) are A-colorable or all are B-colorable.

* Preprocessing to enforce colourability in restricted cases is known [5]



Corollary 3. If ACDCL is instantiated over a Cartesian domain and it produces
an abstract resolution refutation P, for an unsatisfiable formula ¢4 N pp, then
an interpolant I for (pa,pp) can be computed from P,.

Proof. In a Cartesian domain, complementable elements contain only one vari-
able, and so they are always colorable. Therefore, P, does not contain AB-mixed
terms. Let Pphpy () be a DPLL(T) refutation corresponding to P,. By the side
conditions of LEMMA rule, lemmas in Ppp(r) consist of some complementable
elements and at most one literal occurring in either ¢4 or ¢p (or both). There-
fore, assuming the conflict transformer is locality preserving, all the lemmas in
Prpir(r) are colorable. By Lemma 1, then, we can compute an interpolant for

(¢a,pp) from Prprr(r)- O

Ezxample 5. We give an example showing that not all abstract resolution proofs
are amenable to interpolation with existing DPLL(T)-based algorithms. Consider
the following pair of formulas in linear arithmetic:

pa=(zs+y1 <z1+22) A (21 <3) A (22 <0)
pp=(z21 <y)AN(1 < 21)

An interpolant for (¢4, pp) is the formula (y; < 0).
Suppose that ACDCL is instantiated over the non-Cartesian abstract domain
of octagons.A run of ACDCL might produce the following trail:

i trail; reason|i|

1: <—£E1 + x3 ZO) — (:El <$3)

2: (—2120) « (21 <)

3: <LE2—Z1ZO> <—(:E3+y1<x1+x2)
4 (x2 > 1) +— (1< z)

5: 1 (.132 S )

A DPLL(T) proof for this trail is the following:
P P
<.’I,‘2 — Z1 2 0> P3
P=(—zi+23>0)V{y1 —21 > 0) P»

(—z1 + 23 >0) Py
1
where:
L (@2 > 1)V (z2 <0) (22 <0) P (@2 ) V(e -z 20 vV-a(1<z) (1<)
(w2 > 1) ! (x9 > 1) V (x5 — 21 > 0)

Az +23>20)V(yr — 21 2 0)Va(zz +y1r <z +@2) V(w2 —210 2 0) (23 +9y1 <21+ 22)
(=z1+23 > 0)V(y1 —21 > 0) V(2 — 21 > 0)

(y1—21>20)V=(z1 <wi) (21 < 1) C(mz1+ 23 20) V(21 < w3) (21 < w3)
Py = P =

(y1 — 21 > 0) (—z1 + 23 > 0)




Since some of the leaves of P contain both A-colorable and B-colorable atoms,
Boolean interpolation algorithms are not applicable to it. Moreover, P contains
also the AB-mixed atom (22 — z; > 0), which prevents also the use of off-the-
shelf DPLL(T)-based interpolation algorithms for linear arithmetic (e.g. [19]).

4.3 An interpolation procedure for Floating Point Arithmetic

Using Corollary 3, we build a complete interpolation procedure for floating-point
arithmetic (FPA), by instantiating ACDCL over the interval abstract domain for
floating-point variables [14].

Floating Point Arithmetic Floating-point numbers are approximate repre-
sentations of the reals that allow for fixed size bit-vector encoding. A floating-
point number represents a real number as a triple of positive integers (s, m,e),
consisting of a sign bit s taken from the set of Booleans {0, 1}, a significand m
and an exponent e. Its real interpretation is given by (—1)% - m - 2¢. A floating-
point format determines the number of bits used for encoding significand and
exponent. For a given format, we define F to be the set of all floating-point
numbers plus the special values positive infinity +o0o, negative infinity —oo,
and NaN, which represents an invalid arithmetic result. Terms in FPA are con-
structed from floating-point variables, constants, standard arithmetic operators
and special operators such as square roots and combined multiply-accumulate
operations. Most operations are parameterized by one of five rounding modes.
The result of floating-point operations is defined to be the real result (computed
with ‘infinite precision’) rounded to a floating-point number using the chosen
rounding mode. Formulas in FPA are Boolean combinations of predicates over
floating-point terms. In addition to the standard equality predicate =, FPA offers
a number of floating-point specific predicates including a special floating-point
equality =p, and floating-point specific arithmetic inequalities < and <. Since
these operators approximate real comparisons they have unusual properties. For
example, every comparison with the value NaN returns false, therefore =y is not
reflexive since NaN = NaN does not hold.

ACDCL-based interpolation for FPA We build our interpolation procedure
upon FP-ACDCL, a sound and complete ACDCL-based satisfiability algorithm for
FPA presented in [14]. More specifically, we instantiate ACDCL over the Cartesian
abstract domain of intervals of floating-point values. In order to to this, we define
a total order < over all floating-point values, including special values such as
NaN. In particular, < is such that NaN is the minimum element, —0 < 0, and
fi 2 fo <= fi1 < fo in all other cases. Meet irreducibles in this domain are
half-open intervals, which we denote with (z < f) or (x »= f) for a variable x
and a floating-point value f.

We extend FP-ACDCL with proof-generation capabilities, and compute the
interpolants using existing off-the-shelf proof-based interpolation algorithm for
propositional logic (such as e.g. [19]), as described in the previous sections. The
only thing to observe here is that, in general, the computed interpolants will
contain predicates corresponding to some meet irreducibles (x < f), which are



not part of the signature of FPA as defined above. However, we can eliminate
such predicates with a post-processing step on the generated interpolant, simply
by replacing them with equivalent formulas in FPA. Notice that, because of the
unusual properties of operations in FPA, in general a single meet irreducible
cannot be represented by a single atom in FPA, but non-atomic formulas are
needed. For example, the equivalent of (x < —0) in the syntax of FPA is the
formula (z = NaN) V ((z < 0) A =(x = +0)).

Ezample 6. Consider the following two formulas ¢4 and ¢ in FPA (where “.”
denotes an operation with a “round to nearest even” rounding mode):

wa=(x>10)A(x 4.y <1.1)
v =(2>02)A (2 <0.22) A (2 %,y > 0.05).

Suppose that FP-ACDCL generates the following DPLL(T) proof P for w4 A ¢p:

Ps Py
(x = 1.0) V(2= 0.2) V(2= 0.22) P3
P= (x = 1.0) V (z = 0.22) P,
(z = 1.0) Py
1
where:

R L@ty <1 V(@ =1.0)V(y = 0.100l~) (z+ey <11

(z = 1.0) vV (y = 0.1001~)
P, £ﬂ(z *xey > 0.05) V(2= 0.2) V (y = 0.1001~) V (z = 0.22) (2 *ey > 0.05)

(z=0.2) V (y = 0.1001~) V (z = 0.22)
Pgﬁﬁ(z >0.2)V(z>=0.2) (2>0.2)

(22 0.2)
P2 —(2 < 0.22) V(z = 0.22) (z<0.22) P ﬁﬂ(x >1.0) V(x> 1.0) (z>1.0)
(z = 0.22) (z = 1.0)

By applying the Boolean interpolation algorithm of [19] to Ppppy(r), We ob-
tain the interpolant I =(y > 1.001~), which is equivalent to the FPA formula
—(y > 1.001~).

5 Evaluation

In order to evaluate the utility of our interpolation procedure for FPA, we have
implemented several interpolation-based program verifiers, and performed ex-
periments on a number of small but challenging floating-point programs. In this
section, we present the results of our experimental evaluation.



5.1 Implementation

Interpolating Decision Procedure We have implemented our interpolating
decision procedure within the MATHSAT5 SMT solver [4]. Details of the ACDCL
solver for floating-point intervals are given in [14]. We have extended this solver
with proof generation and interpolation. The implementation allows to choose
among three different propositional interpolation algorithms for constructing
interpolants from ACDCL proofs, and it also provides the option to combine
ACDCL-based interpolation with the simple procedure based on inlining “defini-
tional equalities” described in [12], which was shown to be particularly effective
for formulas arising in software verification.

Program Verifiers We have implemented three different program verifiers
based on interpolants. The first one, called “Monolithic” here, is the procedure
proposed by McMillan in [18], which uses interpolants for computing overap-
proximations of postimages in symbolic transition systems for verifying circuits.
The two others are variants of the “lazy abstraction with interpolants” algo-
rithm of [20] for the verification of imperative sequential programs. We have
implemented the original algorithm as described in [20] (called “Impact”), as
well as the variant proposed in [3], which combines Impact with techniques in-
spired by the IC3 algorithm (called “TreeIC3+ITP” in [3], and simply “Impact
with IC3-like strenghtening” here).?

5.2 Experimental Results and Discussion

Benchmarks We use three sets of benchmarks to demonstrate the range of
application of floating-point interpolation. The first set of benchmarks, dcblock-
simple, is derived from a simple filter in the CSound audio processing system. The
programs contain infinite loops with a per-cycle input and non-linear arithmetic.
Assertions check the variable ranges for each iteration. Proving correctness re-
quires the verification system to be able to reason about the ‘eventual’ behaviour
of the code.

The second set of benchmarks, rangevMain, is based on a widely-used itera-
tive algorithm for computing square roots [21]. The main loop always terminates,
but the number of steps is determined by the input and the initial guess, which
are both non-deterministic. Proving properties of the result after the loop re-
quires finding consequences of the loop invariant and reasoning about non-linear
behaviour including division.

The final set of benchmarks, test, are synthetic tests, which require accurate
reasoning about floating-point semantics. These demonstrate the limitation of
using the ’standard model’ of floating point [21] to convert the analysis into a
non-linear real decision problem. Termination of loops and the reachability and

® Notice that in the TreeIC3+ITP algorithm of [3], interpolants are combined with
underapproximated preimage computations based on quantifier elimination. Here,
we only use interpolants, since we do not have an effective quantifier elimination
procedure for FPA.



truth of assertions in these benchmarks require precise reasoning about floating-
point arithmetic, including rounding and loss of precision.

Experimental Setup We present a comparison of interpolation-based verifi-
cation using our technique with model checking and conventional abstract in-
terpreters. We compare with SatAbs [6] (release 3.2 with Boom revision 201), a
model checker that implements predicate abstraction, and Wolverine [17] (revi-
sion 69), an interpolant-based model checker. To the authors’ knowledge, these
are the only model checking tools that support bit-precise reasoning about float-
ing point. In both cases, this is realized via ‘bit-blasting’, i.e., a translation to
bit-vectors. We also compare with the commercial abstract interpretation sys-
tems Fluctuat [8] (version 3.1228) and Astrée [7] (version 12.10). In all cases,
tools were run with their default options. We suspect that with expert assistance
in their configuration, particularly the abstract interpretation tools, results could
likely be improved.

The experiments were run on a 2.83 GHz Intel Core2 Q9550 using Fedora
Core 17. Each experiment was limited to 1200 seconds and 3 GB RAM and was
run sequentially to avoid inaccuracies due to cache and memory contention.

TreelC3+ITP Model Checking Abstract Interpretation
SatAbs | Wolverine | Fluctuat Astrée
dcblock-simple-1 117.25 TO UN 0.18
dcblock-simple-2 117.47 TO UN 0.19
dcblock-simple-3 2.31 TO UN 0.20
dcblock-simple-4 727.26 TO UN 0.15
rangevMainl 0.23 TO UN UN
rangevMain2 0.23 TO UN UN
rangevMain2b 0.17 TO UN UN
rangevMainb 0.28 TO UN UN
rangevMainl0 0.34 TO UN UN
testl 0.01 2.16 TO UN UN
test2 0.90 0.13 UN UN
test3 6.89 0.14 9.94 UN UN
test4 23.67 0.13 TO UN UN

Table 1. IMPACT with IC3-like strengthening vs. ACDCL and other tools.

Results and Discussion Table 1 compares Impact with IC3-like strengthen-
ing and equality inlining based on ACDCL with state-of-the-art research model
checkers and commercial abstract interpretation tools. Times are recorded in
seconds, where “TO” and “MO” denote experiments that reached the time and
memory limits, respectively. Here, “UN” denotes experiments where safety could
not be proven due to limitations of the abstraction. Further comparisons between
different interpolation-based verification algorithms and between different inter-
polation schemes may be found in the appendix.



From the results it is clear that interpolation-based verification using ACDCL
is a powerful technique that can verify a range of programs that are beyond the
reach of current tools. Further discussion may be found in the appendix.

The performance of SatAbs and Wolverine shows the limitations of ‘bit blast-
ing’ as an approach to deciding FPA theories. As they are bit precise, the test
benchmarks can be handled, but they are unable to generate sufficiently concise
invariants to allow other benchmarks to be verified. Conversely, the abstract
interpretation tools are very fast (there were no runs that took more than 1 sec-
ond) but in almost all cases they could not verify the assertions. The benchmarks
that Astrée verified were likely due to having explicit domains for digital filters.
Experimenting with the number of loop unrollings and the widening operators
used may yield positive results as in some cases the computed ranges were close
or were clearly converging before widening to the full interval.

6 Related Work

Our work resides in the context of interpolating SMT solvers. There is a per-
formance gap between solvers and their interpolating counterparts, as well as a
theoretical gap because proof generation is not well understood within all solver
architectures. Interpolating solvers for first-order theories with use-cases in ver-
ification were introduced by McMillan [19], who follows the DPLL(T) paradigm,
and supports linear rational arithmetic and integer difference arithmetic.

Interpolation frameworks have been developed for first-order theories by con-
trolling the structure of proofs in a superposition-based theorem prover [15].
Another framework for computing interpolants in extensions of a base theory
with additional symbols and axioms, by exploting interpolation algorithms for
the base theory appeared in [23]. This paper presents a framework for ACDCL
procedures, with an instantiation for the floating-point solver in [14].

The challenge addressed by our work is to study interpolation for a solver in
which the notion of a proof is not obvious. The same challenge was addressed
in [16] “lifting” propositional interpolants to equality logic in solvers that used
Boolean encoding of equality formulae, and in [12] to derive bit-vector inter-
polants from interpolants for propositional logic and linear integer arithmetic.
Our work differs from these by its focus on abstract interpretation-based solvers.
We believe that our work is the first to attempt interpolation and proof genera-
tion in an abstract interpretation-based solver.

We now summarize applications of interpolating solvers in program analysis.
The first application of an interpolating solver in software verification was for
predicate discovery in Blast [19]. Wolverine [17] and the analyser in Sec. 5 imple-
ment the Impact algorithm [20]. We use abstract interpretation as building-block
inside an interpolating solver. Conversely, interpolation is used in an abstract
interpreter in [13] for automatically refining abstract interpretations. ACDCL can
be applied directly to programs by extending the logic supported by the solver
with fixed-point operators [10].



Finally, the combination of abstract interpretation and decidable logics for
invariant generation has been recently explored by Garoche et al. [11]. In [22]
constraint programming techniques are used for refining abstract interpretations
of floating-point programs.

7 Conclusion

One approach to improving performance of decision procedures is to delegate
some reasoning to an abstract domain. However, solvers that use abstract do-
mains do not support interpolation and proof generation. We have presented
proof generation and interpolation techniques for the family of ACDCL solvers,
in which all reasoning is performed within an abstract domain. We have built
upon these techniques to implement the first interpolation-based verifiers for pro-
grams with floating-point variables, and demonstrated that our verifiers extend
the range of what can be automatically verified.

We observe a curious reversal of traditional roles in ours and related work.
Abstract interpretation has historically been applied to reason about programs,
while proofs and interpolation have been developed in a decision procedure con-
text. We have however used abstract interpretation to design our decision pro-
cedure and interpolation to design our program verifier. The broad question for
extending this line of work is to identify further techniques from abstract inter-
pretation that can improve decision procedures, and to import techniques from
decision procedures to develop program verifiers.
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