A Modular Approach to MaxSAT Modulo Theories *

Alessandro Cimatti Alberto Griggid,
Bastiaan Joost Schaafshtaand Roberto Sebastiani

! FBK-IRST, Trento, ltaly
2 DISI, University of Trento, Italy

Abstract. In this paper we present a novel “modular” approach for (g
partial) MaxSAT Modulo Theories. The main idea is to combinéazy SMT
solver with a purely-propositional (weighted partial) MBXT solver, by making
them exchange information iteratively: the former produaa increasing set of
theory lemmas which are used by the latter to progressiedige an approxima-
tion of the final subset of the soft clauses, which is evefhtuaturned as output.
The approach has several practical features. First, itisgandent from the the-
ories addressed. Second, it is simple to implement and tatapsince both SMT
and MaxSAT solvers can be used as blackboxes. Third, it cantédaced with
external MaxSAT and SMT solvers in a plug-and-play manreethat to benefit
for free of tools which are or will be made available.

We have implemented our approach on top of theTMSATS5 SMT solver and
of a selection of external MaxSAT solvers, and we have etetlid by means
of an extensive empirical test on SMT-LIB benchmarks. Ttseiite confirm the
validity and potential of this approach.

1 Introduction

MaxSAT [19] is the problem of determining the maximum numtifezlauses, of a given
Boolean formula, that can be satisfied by some assignmentieightedand patrtial
variants allow to associate fixed weights to clauses, an@é#och only for solutions
that satisfy a given subset of the clauses. (In this papdessrotherwise specified,
by “MaxSAT” we always consider the general case of weightadial MaxSAT; thus,
we often omit the adjectives “weighted” and “partial”.) kecent years, the solvers for
MaxSAT have demonstrated substantial improvements [2(7,8,8, 21, 3], and have
now important practical applications (e.g. Formal Verifica, Automatic Test Pattern
Generation, Field Programmable Gate Array routing).

The MaxSAT problems can be generalized from the Boolean tatiee case of
Satisfiability Modulo Theories (SMT) [8], where first orderimulas are interpreted
with respect to some (combinations of) background theoflibeories of interest are,

* We are very grateful to Carlos Ansotegui, Bruno Dutertrd Bronardo de Moura for pro-
viding to us precious information about their respectivevess. Alberto Griggio is sup-
ported by Provincia Autonoma di Trento and the European Conityis FP7/2007-2013 un-
der grant agreement Marie Curie FP7 - PCOFUND-GA-2008-226®rogetto Trentino”,
project ADAPTATION; Bas Schaafsma and Roberto Sebasti@éapported in part by Semi-
conductor Research Corporation under GRC Research PRgjg2tTJ-2266 WOLF.

e.g., those of bit vector®(), of arrays AR), of linear arithmetic.C.A) on the rationals
(LA(Q)) or on the integersQ.A(Z)).

Because of the increase in expressiveness of SMT, the Max&@#dulo Theory
problem (MaxSMT hereafter) has many important applicaifmg., formal verifica-
tion of timed & hybrid systems and of parametric systemsnipiag with resources,
radio frequency assignment problems.) However, MaxSMTes-arore generally, the
optimization problems in SMT— have received relativelylditattention in the litera-
ture. To some extent, this can be explained with the techdif@ulties associated with
the combination of two non-trivial components, namely anTSdmgine (that requires
the integration of constraints into SAT) and a MaxSAT opfiation procedure.

In this paper, we propose a novel and comprehensive apptoéesieighted partial)
MaxSMT. The approach is highly modular, in that it combinas black boxes, two
components: (i) a lazy SMT solver, and (ii) a purely-profiosial (weighted partial)
MaxSAT solver. During the search, these two componentsangdinformation itera-
tively: the SMT solver produces an increasing set of theemyrhas, which are used by
the MaxSAT solver to progressively refine an approximatibthe final subset of the
soft clauses, which is eventually returned as output.

Basically, the SMT solver is used to dynamically lift thetabie amount of theory
information to the Boolean level, where the MaxSAT solverfgens the optimization
process. We call the approacmma-Lifting (LL) similarly to the LL approach for the
extraction of unsatisfiable cores in SMT [13].

The approach has several interesting features. Firsinidependent from the theo-
ries addressed: the lemmas returned by the SMT solver dilméngearch are abstracted
into Boolean formulas before being passed to the MaxSATesofecond, the LL al-
gorithm is general and simple to implement: it imposes ntric®n on the MaxSAT
solver, while the only requirement on the SMT solver is that able to return the lem-
mas constructed during search. Third, the LL algorithm camndalized by interfacing
external MaxSAT and SMT solvers in a plug-and-play manmethis way, we can use
all the available approaches and tools, and benefit of fetdvances in lazy SMT and
MaxSAT technology.

We have proved the formal properties of the LL MaxSMT aldorit We imple-
mented LL on top of the MTHSAT5 SMT solver [12], and of a selection of exter-
nal MaxSAT tools. We have evaluated and compared the pedgfoces of the various
LL configurations, and of every MaxSMT or MaxSMT-like solwege are aware of, by
means of an extensive empirical test on MaxSMT-modified SMBbenchmarks. The
results confirm the validity and potential of this approach.

Content. The paper is organized as follows. After having provided esdrackground
knowledge on SMT, MaxSAT and MaxSMT i§2, we present and discuss our new
approach and algorithm i§3. We proceed with a discussion of related workg#

In §5 we present and comment empirical tests. We conclude argkéstugome future
developments 6.

2 Background

Terminology and notation. We consider some decidable first-order the@ryor a
combinationl J, 7; of theories). We callT-atom (resp. -literal, -clause, -formula) a
ground atomic formula (resp. literal, clause, formula)in(Notice that a Boolean atom
can be seen as a subcasé&eatom, etc.) We distinguish the spacejofformulas ()
from that of plain Boolean formulags) by denoting them with the™ and the 3" su-
perscripts respectively; we use no superscript when we makech distinction. Given
aT-formula (-clause, -literal, -assignment etg’), we callBoolean abstractionf ¢
the formulap? = T28(,7) obtained by rewriting each non-Boolednatom iny”
into a fresh Boolean atom; vice versal, = B27 (o?) £ T2B~(£P) is therefine-
mentof 5. (To this extent, if not otherwise specified, when some syinibgm) is
used with both the™” and the ©” superscripts, thersym)? denotes the Boolean ab-
straction of(sym)7, and vice versa.) We say that a truth assignmérgropositionally
satisfiesp”, written 7 |=,, 7, iff 1B | 5.

In both theT - andB- spaces, we assume all formulas are in CNF, and we represent
them as sets of clauses; we represent truth assignments ag berals. The symbols
v, Y, ¢ denote formulas, and -, - denote truth assignments, regardless their
subscripts or superscripts. Weighted clausés a clause” which is augmented with
a valuew € N U {+oo}, which is called theveightof C, denoted byWeight(C); a
weighted clause is callddard, iff its weight is +o0, soft, otherwise. Sets of hard and
soft clauses are denoted with the subscripand., respectivelyWeight(1)s) denotes
the sum of the weights of the clauses/in

2.1 Satisfiability Modulo Theories

We call atheory solver for7, T-Solver, a tool able to decide th&-satisfiability of a
conjunction/set” of T-literals. If 47 is T-unsatisfiable, thef-Solver returnsUNSAT
and the subsej of 7-literals in 7 which was foundr -unsatisfiable;s{ is hereafter
called a7 -conflict sef and—7 a 7-conflict clause if ;7 is T-satisfiable, therV -
Solver returnssaAT; it may also be able to return some unassigfieliteral I ¢ ;7 s.t.
{Iy,....,1,} =7 1, where{ly,...,1,} € u”. We call this proces§ -deductionand
(Vi_, —l; V1) aT-deduction clauseNotice that7-conflict and7-deduction clauses
are valid in7. We call themT -lemmas

Inalazy SMTT) solver, the Boolean abstractig of the input formulap is given
as input to a CDCL SAT solver, and whenever a satisfying assant;.” is found s.t.
uB = B, the corresponding set Gf-literals . is fed to theT-Solver; if 17 is found
T-consistent, thew is T-consistent; otherwisé,-Solver returns they -conflict setn
causing the inconsistency, so that the claug€ (the Boolean abstraction 6fn) is
used to drive the backjumping and learning mechanism of &lesBlver.

Important optimizations arearly pruningand7 -propagation the 7-Solver is in-
voked also on an intermediate assignmght if it is 7-unsatisfiable, then the pro-
cedure can backtrack; if not, and if the-Solver is able to perform & -deduction
{l1,....1,} =7 1, thenl can be unit-propagated, and thededuction claus€\/"_, —l;V
[) can be used in backjumping and learning. Another technggtaiic learning where

T-lemmas expressing “obvious” constraintsbratoms occurring in the input formula
(e.g. mutual-exclusion, transitivity constraints) ararteed a priori.

The above schema is a coarse abstraction of the procedutesying all the state-
of-the-art lazy SMT tools. The interested reader is poittece.g., [23, 8] for details
and further references.

2.2 MaxSAT

def

A (weighted partial)t MaxSAT formulas a set of weighted clauses in the fogfi =
OB U B, st of and B are sets of hard and soft clauses respectivelj@SAT
problemconsists in finding a maximum-weight clauseggts.t../8 C 8 andp? Uy’
is satisfiable. (Notice that suekf is not unique in generalflaxSAT (o5, ©5) denotes
a function computing one suahf, andMaxWeight(¢%, ©%) denotedVeight(¢)5).

Notice thatWeight(C?) can be considered as the “cost” of non-satisfying the soft
clauseC®, and MaxSAT can be seen as the problem of minimizing suchaastall
the soft clauses. To this extentMaxSAT Solveis a function s.tMaxSAT (5, ©5)
returns a maximum-weight clause gt s.t.y)% C x5 andp? U ¢ is satisfiable.

The MaxSAT problem can be generalized to the case in whitand,? are sets of

def

arbitrary formulas rather than sets of single clausé®t \; = {5, }; be a set of fresh
selection variables, one for each constraifiin 7, leto.? = {5,V ¢F | ¢F € OB},
and let)? be the set of clauses resulting from conversiopftiy.? into CNF. Thus the
generalized MaxSAT problefip?, ©¥) can be reduced to a standard MaxSAT problem
on the sets of clausé®?, \;), in which all soft clauses are unit clauses.

Current state-of-the-art MaxSAT solvers can be roughlydgigt into 3 categories.
Solvers based on branch & bound, such as [20, 17], employajzed inference rules
while performing a standard branch and bound searcMioiWeight (%, ©5). Itera-
tive solvers, like e.g. [6], work by adding to each soft Ch’ﬂG§ € 8 afresh literalR;
(called arelaxation literal), and by imposing bounds on the number of relaxation liter-
als that can be assigned to true, using cardinality comésrai he space of such bounds
is typically explored using binary search. Finally, corgetgd solvers, such as e.g. [18,
21], improve upon iterative solvers by exploiting unsagisfe cores to decide iffwhen
to add a relaxation literal to a soft clause, and to minimieenumber of cardinality
constraints needed.

2.3 MaxSAT Modulo Theories and SMT with Cost Optimization

The MaxSAT problem generalizes straightforwardly to SMeleGiven a background
theory7T as before, §weighted partial) MaxSAT Modulo Theories (MaxSMT) foranul
is a set of weighte@ -clauses in the form” = o7 UpT . A MaxSAT Modulo Theories

! A MaxSAT formula is not “weighted” if\Weight(CF) = 1 for everyC¥ € %, and it is not
“partial” iff ¥ is empty. Hereafter, unless otherwise specified, we consiigegeneral case
ignoring this distinction, hence dropping the adjective®ighted” and “partial”.

2 This includes also the so-call@ock MaxSAPproblem, where each (weighted) soft constraint
is itself a conjunctions of clauses, representing a “blaficlauses subject to the same weight,
s.t. it suffices to violate one such clause to pay the costeoftimstraint.

(MaxSMT) probleneonsists in finding a maximum-weight clauseggéts.t.)7 C ¢!
andy] U] is T-satisfiable. As with the Boolean casdaxSMT (4], »7) denotes
a function computing one such!, andMaxWeight(/ , ©7) denotesWeight(y]).
(The same considerations and conventions on “weighteditigd”, and “generalized”
MaxSAT in §2.2 hereafter apply for MaxSMT.)

Importantly, a MaxSMT problem can be encoded into an SMT lerobwith cost
minimization(wT/, cost), either with Pseudo-Boolean (PB) cost functions [22, 10]:

T =ph U | {4 vEN}; cost® Y w4y @)

CTepT CcTepT

wherew; = Weight(CT') and theA;’s are fresh Boolean atoms, or witiA cost
functions [22, 24]:

o7 =el U | {4 vC]), (45 v =w)), (4; Vo =0)});

Cfewj

= > (2)

cTeel

a

cost

where thex;’s are LA variables.

3 A Novel Modular MaxSMT Algorithm

In what follows, we consider a MaxSMT problep? = ¢7 U 7, andw,,,, denotes
MaxWeight(] , 7). The symbol$9”7 and®] denote sets of -lemmas orf/ -atoms
occurring inp/ U 7, whilst©7 denotes the set @fil suchT-lemmas.

Observe thaB] is a finite set, sinc®”, ©7 andO] are defined to be sets of
T -lemmas containing only atoms in the input formula. In gahenodern SMT solvers
might introduce new atoms during search, which can thusagpesome7 -lemmas.
This scenario is not considered here to keep the presemtatiple. However, it can be
covered under the additional assumption thademmas are generated from a finite set
of atoms, which is typically the case for modern SMT solvees(e.g. [9, 7]).

3.1 The Basic Algorithm
Algorithm 1 reports a “modular” procedure for MaxSMT. Irtiuely, an SMT and
a MaxSAT solver are used as guided enumerators of, resplcfiv
— afinite sequence of -lemmaset®©], 07 ,....07 st.0] =0,
el co] co] c.ceol, (3)
ol cerl, 4)

® When referring to Algorithm 1, the index;” in ©;, 17, etc. refers to the values 6i7, 7
etc. at the end of theth cycle in the while loop.

Algorithm 1 A Lemma-Lifting procedure foMaxSMT (o], ¢7)
Input:
o7 : a set of hard/ -clauses;
o!: aset of (weighted) soff -clauses;
Output:
a maximum-weight set of soff-clauses)! s.t.4)] C o] andy] U is T-satisfiable

{oh08) « T2B (o, o1));

0T

cl ol

: while (SMT.Solve (] U, UOT) = UNSAT) do
07 «+ ©7 USMT.GetTLemmas ();
08 «— T2B (O7);
B MaxSAT (o8 U 08, ©5);
vl B2T (5);

end while

10: return o7 ;

NGO ®ONE

12: SMT.Solve (¢7) checks whethep” is T-satisfiable
13: SMT.GetTLemmas () returns the7 -lemmas computed by the latest callS®T.Solve

which progressively rule out all tHE-unsatisfiable truth assignments which propo-
sitionally satisfy,] and some subset!; of o7 s.t. Weight(¢)7 ;) > w;
— (the Boolean abstraction of) a finite sequence of soft-elaesa)7, ..., v 7, .47,

whereypT, = T, oI, C T for everyi, T, = MaxSMT(p] , 7), and

Weight(7) < ... < Weight(¢)] 1) < Weight(y)],) < ... (5)
MaxWeight(¢] U ¢!) = Weight(v]). (6)

Notice that neithe)”, ; C o7, norWeight(¢7,,) < Weight(¢7 ;) hold in general.

Each@Zr1 results from adding t®] the 7-lemmas computed by an SMT solver
to prove theT-unsatisfiability ofp] U ¢, U ©7 . Eachy; is obtained by invoking
a MaxSAT solver on the Boolean abstractiongf U ©7 andy! as hard and soft
component respectively.

The termination, correctness, and completeness of Alyarit is formally proved
in [11]. Intuitively, at every loop > 0 s.t.¢o] Uy7; U O] is foundT-unsatisfiable by
SMT Solve, since its Boolean abstractigrff U ¢, U ©F is satisfiable by construction
of wfi, thenSMT.GetTLemmas returns at least one neWw-lemma; thus (3) holds, (4)
holds by definition o7, hence (5) holds by constructiomzjff. By (3), (4), and since
O is finite and it contains all the possible theory informatietated top] U 7, we
have that, for some loop index, ©7 C 67 and®] contains allT-lemmas which
rule out all7-inconsistent truth assignments propositionally saitigfy? Uwfn. Then
or UyT, ue] is T-satisfiable, because Uy, UGS is satisfiable by construction
of z/zfn, so that the procedure terminates. From this, it is easydw $hat (6) holds.

Notice that, in general, in the c8MT .Solve (¢] U] UOT) the “U ©7 " element
is not necessary from the logic viewpoint, but it prevenes®MT solver to re-generate
from scratch previously-computé§d-lemmas in97 .

Example 1.Let], »7 be as follows (valuef] denote clause weights):

ol =0 B =0
Co: ((z < 0)) [4] (Ao) [4] Ag = (2 <0),
pr e] Cri(@ <) BIL e) (A)BIL 0 A = (x < 1),
s Co:((x=2)[2] (7 (A2) 2] S A E (1> 2),
Cs: ((z = 3)) [6] (45) [6] Ay ™ (2> 3).

61: (m(z<0)V(z<1)) (mAg V Al)
05 : (ﬁ(l’ > 3) \Y (ac > 2)) (ﬁAg V Ag)
or _)0 G0 Va@=2) | gs_ | (FAgvdy)
" Os: (~(z <0)V(z >3)) " (Ao V —A;3)
05 : (m(z <1)V=(z>2) (mA; VvV —A)
b : (~(x <1)V (x> 3)) (~A1 V ~43)
Then, one possible execution of the algorithm is:
ile] [vT, |Weight(v],)|SMT (o] UyT,u0])
0 {} {00701,02,03} 15 UNSAT
1 {94} {01702,03} 11 UNSAT
21{04,06} |{Co,C1,Co} 9 UNSAT
3 {94,96,93} {02703} 8 SAT

from whichy7 = {C», C3} andWeight(y)]) = 8. A faster execution (which may be
obtained, e.g., by enforcing the generation of effrlemmas in the SMT solver) is:

i |@Z— |¢Zz |Weight(1/)Z_—i)|SMT(g0[U 7/’2—1 U @Z—)
0l{} {Co, C1,Ca, C} 15 UNSAT
11{61,02,05}|{C2, C3} 8 SAT

3.2 Optimizations

Algorithm 1 is very simple in principle, and it can be implemted using an SMT solver
and a MaxSAT solver as black boxes in a plug-and-play mahiuwreover, this allows
for benefiting for free of any advanced tool available from shelf, or for choosing the
most suitable tools for a given problem.

Under the hypothesis of using the two solvers as black baxes;onsider some
implementation issues which may further improve its efficie

4 Provided that the SMT solver, like NtHSAT5, offers a way of retrieving the set®tlemmas
which it used to prove th@ -inconsistency of the input formula, or, like most lazy SMT
solvers, it can provide an SMT resolution proof, from whibh tatter set can be extracted.

Incrementality of MaxSAT. Since MaxSAT is invoked sequentially on incremental
sets of hard clauses and on the same set of soft ones, it imhtdwonjecture
that having an incremental implementationMéxSAT, which “remembers” the
status of the search from call to call, should improve theiefficy of the overall
procedure.

Reuse of SMT calls.SMT.Solve is not invoked incrementally in the classic “push-
and-pop” sense because —apart from the factzﬂijtg @l for everyi— there
is no set-theoretic relation between hhgi’s. However, it is possible to use SMT
solvingunder assumptiongach soft clausé‘jT in 7 is augmented with a fresh
selection Boolean variablg; (i.e.,] is rewrittenintop,” = {(=S;vCT) [CT € T}
and the proper set of selection variables= {S;] C’]T € 7'} is assumed at each
call. This allows for “remembering” and reusing learneduskes from call to call.
(Notice that, as long as thE-lemmas are remembered from call to call, it is possi-
ble to drop the) ©7 in the callSMT.Solve (¢} UyT UOT)))

In a “white-box” integration scenario, in which it is postio modify either or both
the solvers involved, the following considerations may bmterest.

Generation of extra7-lemmas. As illustrated in the second execution of Example 1,
generating and storing extfe-lemmas inside the SMT-solving phase —not only
these explicitly involved in the conflict analysis— enlasdgke7 -lemma pool and
may possibly reduce the number of cycles. This can be olztdipeneans of SMT
techniques like static learning and by storalfjthe 7-deduction clauses inferred
by T -propagatior? (see [23, 8]). Notice that, to avoid introducing overheadfie
underlying SAT solver, it suffices tstoresuch7-lemmas, withoutearningthem.

4 Related work

Maximum satisfiability in SMT was first studied in [22], in tl®ntext of a general
framework for optimization in SMT using “progressivelyatiger theories”. An imple-
mentation for MaxSMT of this framework is described, busitibt publicly available.

An explicit reference to MaxSMT is found in [4], which dedwes the evaluation of
an implementation of the WPM procedure [6] based on thee¥[2] SMT solver. This
implementation is not publicly available. Another refezens in [5], where weighted
Constraint Satisfaction Problems are translated into mteyMaxSMT instances.

The YICES solver provides also native support for MaxSMT. The appinoased
is based on incrementally invoking the solver in a mixeddiiginary-search fashion
onto an SMT encoding of the MaxSMT problem, similar to thatat#ed in§2.1. The
algorithm is not described in any publication, but we coubdain such information
from personal communications with the authors.

The source distribution of the Z3 [15] solver provides annegke implementation
of an SMT version of the core-guided MaxSAT algorithm of [16$ing the Z3 API.
The algorithm is based on enumerating and counting unsdtisfsubformulas.

5 In many SMT solvers implementing@ -propagation,7-deduction clauses are generated on
demand, only if they are needed by the underlying CDCL SAVesdor conflict analysis.

Also related are the works on optimization in SMT [10, 244tthan be used to en-
code the various MaxSMT problems. The work in [10] introdsitte notion of “Theory
of Costs”C to handle Pseudo-Boolean (PB) cost functions and contriayran ad-hoc
and independentC-solver” in the standard lazy SMT schema. MaxSMT can be han-
dled by encoding it straightforwardly into a PB optimizatiproblem (se€2.1). The
implementation is available. The work in [24] introduced @lev notion of optimiza-
tion in SMT, OMT(LA(Q) U T), with cost functions on variables on theals which
allows for encoding also MaxSMT and SMT with PB cost funcideees2.1). Some
OMT(LA(Q) U T) procedures combining lazy SMT and standard LP minimization
techniques are presented. The implementation, done onfttpe AMATHSATS [12]
SMT solver, is available.

Davies and Bacchus [14] proposed a MaxSAT algorithm (hezedDB”) which,
similarly to LL, works by iteratively ruling out subsets dfe soft clauses of the input
problem. In particular, DB builds iteratively a s€tof unsat cores fop? U 5, i.e., at
each loop iteration: (i) computes a hew subset of soft ckls¢o drop asminimum-
cost hitting sebf C; (ii) computes a new unsat cokeof ¢ U B \ hs; this is repeated
as long as? U B \ hs is unsatisfiable.

Although [14] does not mention SMT, in principle this algbrn could be leveraged
to SMT level (hereafter “DB-SMT?"), by substituting SAT-leksolving and unsat-core
extraction with SMT-level ones. (Notice, however, thatikewith the SAT domain, ef-
ficiently finding minimal or nearly-minimal unsat cores in $N4 still an open research
problem, see [13].) If so, LL and DB-SMT would be based on kinprinciples®

— both algorithms would be based on constraint generatiayming constraints at
every loop iteration which rule out subsets of the soft aatis
— both would decouple solving and minimizing into two diffatesubroutines.

The technical differences, however, would be manifold:

— Unlike with DB-SMT, LL is not a generalization of DB to SMT: like with DB,
if it is fed a pair of purely-Boolean formulas, then it terrates in one iteration.

— DB-SMT would be driven by the combinatorics of the unsat sdie rule out,
whilst LL is driven by the theory-information to be provided

— TheT-lemmaset®/ in LL are not the SMT counterpart of the unsat coxgsn
DB-SMT: the former contain onlgiovelclauses, the latter do not; there is not one-
to-one correspondence between the generated sgtdashmas and unsat cores.

— MaxSAT is not the SMT counterpart of minimum-cost hitting egtraction: the
latter starts from more fine-grained information, in theniiaof sets of unsat cores.

— It is easy to see that it would take at le@étcycles to DB-SMT to rule oufV
clauses fromy5. With LL the number of soft clauses discharged at each loep de
pends only on the quantity and quality of tfielemmas generated: in many cases
(see Fig. 1) one iteration is enough to generate all the sacgg-lemmas.’

& We are grateful to an anonymous reviewer who pointed out atogn between DB and LL.

" For example, consider the second execution in Example h:BB&-SMT there would be no

unsat corex; “equivalent” to©7 e {61, 62,05}, allowing to directly pass from step 0 to step

1, since one needs 2 cores (and hence 2 loops) to generaténaumirtosths of size 2.

— the LL schema requires no SMT unsat-core extraction, nommim-cost hitting-
set computation. (ThiglaxSAT subroutine is not committed to any MaxSAT schema.)

Finally, and importantly, DB/DB-SMT and LL radically diffén the contextthey
were conceived (MaxSAT vs. MaxSMT), in theisability (the two schemas would pose
very different constraints to a MaxSMT implementer) gudls(DB was conceived to
address some efficiency issues in MaxSAT solvers [14], whilsis proposed as a
modular approach to build MaxSMT solvers).

5 Experimental Evaluation

We have implemented our LL MaxSMT approach on top of olkTMSATS5 SMT
solver [12] and of a selection of external MaxSAT tools. Weéhavaluated and com-
pared the performances of the various LL instances and of &@xSMT or MaxSMT-
like solver available we are aware of, by means of an extergsivirical test on MaxSMT-
modified SMT-LIB benchmarks? In this section we present such evaluation.

5.1 Test Description

Benchmarks. As benchmark problems, we took the unsatisfiable SMT inssuit
the LA(Q) and LA(Z) categories ofSMT-COMH1], and we converted them into
two groups of MaxSMT problems —partial MaxSMT and weightedtial MaxSMT
respectively— by a random partition into hard and (weightgaft clauses. In order
to handle both CNF and non-CNF formulas, for each instaneecn@ated the set of
soft constraints by randomly selecting 20% assigning theveight of 1 for the partial
MaxSMT experiments, and a weight uniformly selected in @wegel . .. 100 for the
weighted partial MaxSMT ones, and then applied the procesesribed irg2.2.

Competing MaxSMT solvers. Before starting our evaluation, we have asked to the
main scientists of the MaxSAT community about the existexféacrementaMaxSAT
procedures, obtaining a negative answer. Thus, we deca@@doduce ourselves an
implementation of the WPM MaxSAT algorithm [6] on top ofiM SAT, and we also
tried to enhance it with some degree of incrementality. Rége Carlos Ansotegui
has kindly sent us the code of a modified version of the WPM clvtie had also
adapted to get some incrementality, which invokesthees-1.0.36 as an external
solver. Moreover, to guarantee a more interesting comprise have implemented on
top of MATHSATS5 the same MaxSMT extension of the core-guided algorithfi6]
implemented in Z3. Finally, since the original implemeittatof SMT with PB cost
functions and constraints of [10] was implemented on top aff MSAT4, and in order
to have a more significant comparison, we have recently garteto MATHSATS.

Thus, in this evaluation the first competitors were fouranses of our Lemma-
Lifting (LL) implementation, each using a different extatiMaxSAT solver:

8 We also asked the authors of the related MaxSMT pape}4 fafr other benchmarks, but none
provided any meaningful benchmark.

LLwpm, Which uses the publicly-available WPM [6] implementatised in the 2012
MaxSAT-evaluation (which usesS®SAT);

LL yiceswpm, Which uses the above-mentioned non-public implementaifoVPM
provided to us by Carlos Ansobtegui;

LL owpm, Which uses our own incremental WPM implementation;

LL ni-owpm, as before, non-incremental version.

Other competitors were the following MaxSMT solvers:

YICES, the MaxSMT extension of XES (seet4);

Z3, the MaxSMT extension of Z3 (s&€é);

MATHSAT5-MAX, our own implementation on top of MHSATS5 of the core-guided
algorithm of [16], as with Z3.

Notice that the last two solvers handle only unweightedalditaxSMT problems.
The final competitors were the following solvers based on S#ith cost optimization
(seet4), using the encodings described;h3:

MATHSAT4+C(L), the tool from [10], using linear-search mode;

MATHSAT5+C(L), the porting of the above procedure intoAWHSAT5, using linear-
search mode;

MATHSAT5+C(B), as before, using binary-search mode;

OPTIMATHSAT, the OMT LA(Q)UT) tool of [24] described i34, using its adaptive
binary/linear search heuristics.

Notice that, if 7 is the LA(Z) theory, it is not possible to encode MaxSMT into
OMT(LA(Q)UT) because the currentimplementation ¢gfldMATH SAT cannot han-
dle LA(Q)U LA(Z).S

The Experiments. The experiments we performed can be divided into two groups.
In the first group, we tested and compared the performancaktbe eleven MaxSMT
solvers on the benchmarks described above. This was pexttonintel(R) Xeon(R)

CPU E5650 2.67GHz platform, with a 4GB memory limit and a 20 minute time
limit for each run. In the second group, we made some moreratecanalysis of the
behaviour of the LL implementations. This was performed ont@(R) Xeon(R)

CPU E5520 2.27GHz platform, using the same memory and time limits.

Check of the Results. We have checked the correctness of the results of all our own
tools (i.e., those based onAIHSAT4 or MATHSATS5) by checking the models re-
turned and by independently proving the unsatisfiabilitshef formulay” U {cost <

k}, wherep” andcost are defined as in (2) anidis the value of the cost returned by
the tool. All results agreed with one another and were fouwrdect by the above test.

Table 1. Results of the eleven MaxSMT solvers on parki&xSMT instances

LA(Z) LAQ) Total
#Solvedtime (sec)#Solvedtime (sec) #Solvedtime (sec

MATHSAT5-MAX | 95/106| 6575.60| 88/93 2274.69 183/ 199| 8850.29

Solver

LL owpm 92/104 5942.20 88/93 1785.48 180/199 7727.69
YICES 92/106 14478.43 87 /93 5537.47 179/199 20015.9
LL ni-owpm 89/10§ 4439.98 88/93 1780.97 177/199 6220.95
LL vices—wpm 89/109 4937.91 87/93 1855.45 176/199 6793.36
LLwpm 88/106 7154.19 88/93 2071.27 176/199 9225.44

MATHSAT5+C(L)| 84/10§ 7112.43 87 /93 2175.34 171/199 9287.77
MATHSAT4+4C(L)| 83/106 5220.14 85/93 1944.48 168/199 7164.67

Z3 89/109 4066.92 76/93 2427.59 165/199 6494.51
MATHSAT5+C(B)| 78/106§ 5030.8% 87 /93 2545.69 165/199 7576.54
|[OPTIMATHSAT | —] —[89/93] 1360.05] —] —]

Table 2. Results of the eleven MaxSMT solvers on partial weighteckSMT instances

Solver EA(.Z) EA(Q) Tota!
#Solvedtime (sec}#Solvedtime (sec) #Solvedtime (sec
LLwpm 90/106| 5194.73| 87 /93 3033.66 177 / 199| 8228.39
LL ni-owpm 86/104 1672.41 88/93 2062.3% 174/199 3734.76
MATHSATS5+C(L)| 89/106 5501.38 84 /93 2359.61 173/199 7860.94
LL owpm 85/106 1304.13 87/93 1836.53 172/199 3140.66
MATHSAT4+C(L)| 87/106 3105.01 85/93 2541.83 172/199 5646.84
LLvices—wpm 82/106 1423.53 87/93 2350.02 169/199 3773.55
YICES 83/106 12305.88 80/93 9804.16 163/199 22110.04
MATHSAT5+C(B)| 79/106 9482.61 83/93 2627.33 162 /199 12109.9¢
OPTIMATHSAT — —| 88/93| 1947.06 88/93 1947.0
Z3 — — — — — —
MATHSAT5-MAX — — — — — —

5.2 Results

The results of the evaluation of the eleven MaxSMT solveespaiesented in Tables 1
and 2, reporting for each solver the number of instancesdokithin the timeout and
the total runtime taken to solve them. (Rows are sorted dawgito total C.A(Q) +
LA(Z)) performance, best performances for each category dreléh) Note that, for
the reasons highlighted above, Z3 andV SAT5-MAX were not run on weighted
instances, and rIMATHSAT was not ran on th&€.A(Z) instances (this is marked
with a “—").

Looking at the data in Tables 1 and 2 some considerationsianeler.

° This is due to the fact that the OMZ.A(Q) U 7)) framework requires thaf A(Q) and7 are
signature-disjoint theories [24], which is not the casg is LA(Z).

10°
10 & P
© © .
o] o]
B B
8 8
E E
= =
3 b .
510 ¢ - X107 b 4
. 4 L
= = .
° * °
2 2 *
]]
3 3
E E .
2 2 .
S0 S10 . .
5 ¢ B 0’ "0 *
g % & ¢ 3 . -
2 s o @ - . E e s o0 o -
5 oo os » o e o E Lo PR we o+ »
z W ee o N0 emes o o z * W ee wem weee o
10084 , 1004t -»)
10 g 107 0 10 10 3 r (0} 10

Runtime (seconds) Runtime (seconds)

Fig. 1. Number of while-cycles wrt. runtime for Ldwewm (left) and LLni-owem (right).

(i) MATHSAT5-MAX is the overall best performer on the unweighted group, whils
LLwpwm is the overall best performer on the weighted one. If we iesty £A(Q)
theory, QPTIMATHSAT is the winner in both unweighted and weighted groups.
However, there is no hands-down winner, and the performgaps among the
eleven solvers are not dramatic.

(ii) Overall, theL L tools behave quite well, all being in the highest part of gneking.
Among them, there is not an absolute winner:dylpy is the best performer on the
unweighted group, whilst L{ypy is the best performer on the weighted one.

(iii) There is no definite winner between lgwpm and LLy.owpwm: the former is better
on unweighted test, the latter on weighted ones, and theimeaihce gaps are very
limited. Thus, incrementality does not seem to pay as muainascould expect.
Similarly, there is no definite winner between {.tes wpm and LLywpwm. (Notice,
however, that these two call two different backend solVérses and RCOSAT.)

Overall, the results are too limited and heterogeneousfty the superiority of one
approach wrt. another. However, we can safely concludedleapite its simplicity, the
LL approach is competitive wrt state-of-the-art ones.

In Figure 1 and Table 3 we analyze the behaviour of the LL seloa all tests
(weighted/unweighted; A(Q)/L.A(Z)).

Figure 1 shows the number of while-cycles performed by thealdorithm with
LL owpwm (left) and LLyj-owpm (right), plotted against runtime. We notice that a very
high percentage of instances is solved at the first loop, fdast majority of instances
is solved in less than 10 loops. This induces us to conjethateSMT.Solve in many
cases is able to produce very soon all fidemmas which are necessaryNaxSAT
to rule out the wrong truth assignments.

Table 3 analyzes the percentage of CPU time spent inside Aag&lls for the four
LL tools. 1% We notice that for most solvers and most instances, the isspends less
than 20% and this fact is particularly evident in the eagiesblems. Thus, the overall
CPU time is mostly dominated by the time spent inG8&T .Solve. In particular, in the

10 For instance (1st block, 3rd column): out of 116 instanceblam for which LLowem took
less than one second to execute, with 81 instances MaxSAIreguired less than 20% 40%

Table 3.An overview of runtime spent oMaxSAT calls compared to total runtime for LL solvers

Runtime LLowewm (in seconds)
[0, 1[[[1, 10[[[10, 100[[[100, 1000[[> 1000

0<p<20|8L] 41 | 15 5 13

%Time | 20<p<40]| 19 | 12 9 17 27
MaxSAT| 0<p<60| 10 | 6 5 19 12
60<p<80| 1 | O 6 15 3
80<p<100] 5 | 15 0 9 0

Total 116] 74 | 35 65 55

Runtime LLowewm (in seconds)
[0, 1[[[1, 10[][10, 100[[[100, 1000[[> 1000

0<p<20 |115| 53 43 49 59

% Time | 20<p<40| 5 6 1 1 9
MaxSAT| 40 <p<60| 1 1 2 0 1
60<p<8| O 1 0 0 0

80 < p < 100| O 1 4 0 0

Total 121| 62 50 50 69

Runtime LLyi-owem (in seconds)
[0, 1[[[1, 10[[[10, 100[[[100, 1000[[> 1000

0<p<20| 95| 49 | 32 18 53

%Time|[20<p<40]| 11 | 9 8 2 4
MaxSAT| 0<p<60| 4 | O 5 0 0
60<p<80| 8 | 1 0 0 1
R0<p<100] 4 | 2 11 0 4

Total 122| 61 | 56 50 62

Runtime LLwpwm (in seconds)
[0, 1[[[1, 10[][10, 100[[[100, 1000[[> 1000

0<p<20 |115| 58 16 43 57

% Time | 20<p<40| 1 1 11 8 1
MaxSAT| 40 <p <60 | 4 1 9 2 0
60<p<8| 8 0 2 1 1

80 <p<100| 1 0 6 3 4

Total 129| 60 44 57 63

samples in which the solution is found in one loop, most timaken bySMT.Solve
to enumerate the necessgrylemmas in one shot.

This also explains in part the low effect of incrementalityour experiments, since
the cost of MaxSAT calls does not seem to represent the dmttidneck of the process.
Notice that, if we compare the data on glpm and LLyi-owpm in Table 3, we notice
that indeed in the incremental version the percentage & sipent inside MaxSAT is
smaller than in the non-incremental one. However, sincedta cost is mostly domi-
nated bySMT.Solve, the benefits of this fact are not significant. (Also, we mesti
that, since we are not expert MaxSAT developers, our imphation of incrementality
is quite naive.)

6 Conclusions and Future Work

In this paper we have presented a novel “modular” Lemmarlgfapproach for MaxSMT,
which combines a lazy SMT solver with a purely-propositiddaxSAT solver. Despite
its simplicitly, LL proves competitive with previous apfches.

Depending on one’s expertise on and access to SMT and Max&Ahology, we
see different ways the LL approach can be implemented inta&SWT tool.

— Whoever cannot or does not want to put the hands on eitheers®lvode, can
take both an SMT and a MaxSAT solver off-the-shelf and imgeatour algorithm
on top of their API (or even interface with them via file excgah In this case,
implementation is straightforward.

— MaxSAT-solver developers can leverage to SMT level the esgiveness of their
own tool by interfacing with one SMT solver, without implenimg any SMT func-
tionality in-house. They can also customize their own Mak$#ol to improve the
synergy of the two tools (in particular, by making it as imoental as possible).

— SMT-solver developers can extend their own tool with MaxSMiictionality by
interfacing with one or more MaxSAT solvers off-the-shelfth no need of im-
plementing MaxSAT functionalities in-house. They can alastomize their own
solver (e.g., by maximizing the generation of theory lemmas

— A person with access to, and enough expertise on, both SMITM&xSAT- solver
development can adopt our approach to produce a highlyesffidlaxSMT tool,
with the possibility of customizing both tools. Notice that this case, our ap-
proach can also be combined with other SMT optimizationnagkes (e.g., those
described in [22, 10, 24, 4]).

We believe that this paper opens novel research avenuesi8MI&. In particular,
we see many directions along which the LL approach can bedwagrand extended.

Customizing SMT and MaxSAT solvers. The LL approach would strongly benefit
from more effective/ -lemma generators and incremental MaxSAT solvers.

Interleaving of SMT- and MaxSAT-solving steps. Algorithm 1 interleavesomplete
calls toSMT.Solve and MaxSAT. This can be generalized to more fine-grained
interleaving schemas, in whighepsof such executions can be interleaved. For in-
stance, it is possible to interrupM T.Solve as soon as some amountbflemmas
has been generated, and invdlaexSAT afterwords. Vice versa, it is possible to
interruptMaxSAT as soon as a non-optimaf is generated, and feed it back to
SMT .Solve. (As an extreme case, one could fee@kdT.Solve only the assignment
w7 produced byMaxSAT: if so, SMT.Solve would be simply used as7A-Solver.)

Combination with other approaches. The lemma-Lifting approach can be combined
with other approaches in various ways. For instance, onkl@nhance the use of
SMT by exploiting SMT with cost constraints [10] and extiantof 7 -unsatisfiable
cores [13] to further prune the search.

Overall, novel strategies and heuristics can be invegihet extend and improve Al-
gorithm 1 along the above directions.

References

A OWN PR

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.
24.

. SMT-COMP.http://www.smtcomp.org/2010/

. Yices.http:/lyices.csl.sri.com/

. Max-SAT 2013, Eighth Max-SAT Evaluatlon 2013xtp://maxsat.ia.udl.cat

. C. Ansotegui, M. Bofill, M. Palahi, J. Suy, and M. VillareSatisfiability Modulo Theorles

An Efficient Approach for the Resource-Constrained Prdgatteduling Problem. IBARA
2011.

. C. Ansbtegui, M. Bofill, M. Palahi, J. Suy, and M. VillareSolving weighted CSPs with

meta-constraints by reformulation into Satisfiability Mibal Theories. Constraints 18(2),
2013.

. C. Ansotegui, M. L. Bonet, and J. Levy. SAT-based MaxSAJodathms. Artif. Intell., 196,

2013.

. C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelfli§ing on Demand in SAT Modulo

Theories. ILPAR volume 4246 of.NAI. Springer, 2006.

. C. Barrett, R. Sebastiani, S. A. Seshia, and C. Ting#tisfiability Modulo Theoriezh. 26.

In Biere et al., editorsHandbook of SatisfiabilityOS Press, 2009.

. M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. JunttilaRa&nise, P. van Rossum, and R. Se-

bastiani. Efficient Theory Combination via Boolean Seataformation and Computatign
204(10), 2006.

A. Cimatti, A. Franzén, A. Griggio, R. Sebastiani, andStenico. Satisfiability modulo the
theory of costs: Foundations and applicationsTACAS volume 6015 oLNCS Springer,
2010.

A. Cimatti, A. Griggio, B. Schaafsma, and R. SebastiAnModular Approach to MaxSAT
Modulo Theories., 2013. Extended versidnttp://disi.unitn.it/ ~rseba/
satl3/extended.pdf

A. Cimatti, A. Griggio, B. J. Schaafsma, and R. SebagstiEme MathSAT 5 SMT Solver. In
TACAS volume 7795 oL NCS Springer, 2013.

A. Cimatti, A. Griggio, and R. Sebastiani. Computing Srbfmsatisfiable Cores in SAT
Modulo TheoriesJAIR 40, 2011.

J. Davies and F. Bacchus. Solving MaxSAT by solving asecg of simpler SAT instances.
In CP, volume 6876 oL NCS Springer, 2011.

L. M. de Moura and N. Bjgrner. Z3: An Efficient SMT Solven €. R. Ramakrishnan and
J. Rehof, editorsTACAS volume 4963 of NCS Springer, 2008.

Z. Fu and S. Malik. On solving the partial Max-SAT probledm SAT, volume 4121 of
LNCS Springer, 2006.

F. Heras, J. Larrosa, and A. Oliveras. Minimaxsat: Anciffit Weighted Max-SAT solver.
JAIR 31, 2008.

F. Heras, A. Morgado, and J. Marques-Silva. Core-guldledry search algorithms for
maximum satisfiability. IPAAAI 2011.

C. M. Li and F. ManyaMaxSAT, Hard and Soft Constraintsh. 19. In Biere et al., editors.
Handbook of SatisfiabilityOS Press, 2009.

C. M. Li, F. Manya, and J. Planes. New inference ruled/far-SAT. JAIR 30, 2007.

A. Morgado, F. Heras, and J. Marques-Silva. Improvemntore-guided binary search for
MaxSAT. InSAT, volume 7317 oL NCS Springer, 2012.

R. Nieuwenhuis and A. Oliveras. On SAT Modulo Theoried @ptimization Problems. In
SAT, volume 4121 of NCS Springer, 2006.

R. Sebastiani. Lazy Satisfiability Modulo Theori@SAT 3(3-4), 2007.

R. Sebastiani and S. Tomasi. Optimization in SMT with Q\Cost Functions. IWCAR
volume 7364 oLNAI. Springer, 2012.

