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Abstract. In this paper we present a novel “modular” approach for (weighted
partial) MaxSAT Modulo Theories. The main idea is to combinea lazy SMT
solver with a purely-propositional (weighted partial) MaxSAT solver, by making
them exchange information iteratively: the former produces an increasing set of
theory lemmas which are used by the latter to progressively refine an approxima-
tion of the final subset of the soft clauses, which is eventually returned as output.
The approach has several practical features. First, it is independent from the the-
ories addressed. Second, it is simple to implement and to update, since both SMT
and MaxSAT solvers can be used as blackboxes. Third, it can beinterfaced with
external MaxSAT and SMT solvers in a plug-and-play manner, so that to benefit
for free of tools which are or will be made available.
We have implemented our approach on top of the MATHSAT5 SMT solver and
of a selection of external MaxSAT solvers, and we have evaluated it by means
of an extensive empirical test on SMT-LIB benchmarks. The results confirm the
validity and potential of this approach.

1 Introduction

MaxSAT [19] is the problem of determining the maximum numberof clauses, of a given
Boolean formula, that can be satisfied by some assignment. Its weightedandpartial
variants allow to associate fixed weights to clauses, and to search only for solutions
that satisfy a given subset of the clauses. (In this paper, unless otherwise specified,
by “MaxSAT” we always consider the general case of weighted partial MaxSAT; thus,
we often omit the adjectives “weighted” and “partial”.) In recent years, the solvers for
MaxSAT have demonstrated substantial improvements [20, 6,17, 18, 21, 3], and have
now important practical applications (e.g. Formal Verification, Automatic Test Pattern
Generation, Field Programmable Gate Array routing).

The MaxSAT problems can be generalized from the Boolean caseto the case of
Satisfiability Modulo Theories (SMT) [8], where first order formulas are interpreted
with respect to some (combinations of) background theories. Theories of interest are,
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e.g., those of bit vectors (BV), of arrays (AR), of linear arithmetic (LA) on the rationals
(LA(Q)) or on the integers (LA(Z)).

Because of the increase in expressiveness of SMT, the MaxSATModulo Theory
problem (MaxSMT hereafter) has many important applications (e.g., formal verifica-
tion of timed & hybrid systems and of parametric systems, planning with resources,
radio frequency assignment problems.) However, MaxSMT—and, more generally, the
optimization problems in SMT— have received relatively little attention in the litera-
ture. To some extent, this can be explained with the technical difficulties associated with
the combination of two non-trivial components, namely an SMT engine (that requires
the integration of constraints into SAT) and a MaxSAT optimization procedure.

In this paper, we propose a novel and comprehensive approachto (weighted partial)
MaxSMT. The approach is highly modular, in that it combines,as black boxes, two
components: (i) a lazy SMT solver, and (ii) a purely-propositional (weighted partial)
MaxSAT solver. During the search, these two components exchange information itera-
tively: the SMT solver produces an increasing set of theory lemmas, which are used by
the MaxSAT solver to progressively refine an approximation of the final subset of the
soft clauses, which is eventually returned as output.

Basically, the SMT solver is used to dynamically lift the suitable amount of theory
information to the Boolean level, where the MaxSAT solver performs the optimization
process. We call the approachLemma-Lifting (LL), similarly to the LL approach for the
extraction of unsatisfiable cores in SMT [13].

The approach has several interesting features. First, it isindependent from the theo-
ries addressed: the lemmas returned by the SMT solver duringthe search are abstracted
into Boolean formulas before being passed to the MaxSAT solver. Second, the LL al-
gorithm is general and simple to implement: it imposes no restriction on the MaxSAT
solver, while the only requirement on the SMT solver is that it is able to return the lem-
mas constructed during search. Third, the LL algorithm can be realized by interfacing
external MaxSAT and SMT solvers in a plug-and-play manner. In this way, we can use
all the available approaches and tools, and benefit of futureadvances in lazy SMT and
MaxSAT technology.

We have proved the formal properties of the LL MaxSMT algorithm. We imple-
mented LL on top of the MATHSAT5 SMT solver [12], and of a selection of exter-
nal MaxSAT tools. We have evaluated and compared the performances of the various
LL configurations, and of every MaxSMT or MaxSMT-like solverwe are aware of, by
means of an extensive empirical test on MaxSMT-modified SMT-LIB benchmarks. The
results confirm the validity and potential of this approach.

Content. The paper is organized as follows. After having provided some background
knowledge on SMT, MaxSAT and MaxSMT in§2, we present and discuss our new
approach and algorithm in§3. We proceed with a discussion of related work in§4.
In §5 we present and comment empirical tests. We conclude and suggest some future
developments in§6.



2 Background

Terminology and notation. We consider some decidable first-order theoryT (or a
combination

⋃

i Ti of theories). We callT -atom (resp. -literal, -clause, -formula) a
ground atomic formula (resp. literal, clause, formula) inT . (Notice that a Boolean atom
can be seen as a subcase ofT -atom, etc.) We distinguish the space ofT -formulas (T )
from that of plain Boolean formulas (B) by denoting them with the “T ” and the “B” su-
perscripts respectively; we use no superscript when we makeno such distinction. Given
aT -formula (-clause, -literal, -assignment etc.)ϕT , we callBoolean abstractionof ϕT

the formulaϕB def
= T 2B(ϕT ) obtained by rewriting each non-BooleanT -atom inϕT

into a fresh Boolean atom; vice versa,ϕT def
= B2T (ϕB)

def
= T 2B−1(ϕB) is therefine-

mentof ϕB. (To this extent, if not otherwise specified, when some symbol 〈sym〉 is
used with both the ‘T ” and the “B” superscripts, then〈sym〉B denotes the Boolean ab-
straction of〈sym〉T , and vice versa.) We say that a truth assignmentµT propositionally
satisfiesϕT , writtenµT |=p ϕ

T , iff µB |= ϕB.
In both theT - andB- spaces, we assume all formulas are in CNF, and we represent

them as sets of clauses; we represent truth assignments as sets of literals. The symbols
ϕ...
..., ψ

...

... , φ
...
... denote formulas, andµ...

..., η
...
... denote truth assignments, regardless their

subscripts or superscripts. Aweighted clauseis a clauseC which is augmented with
a valuew ∈ N ∪ {+∞}, which is called theweightof C, denoted byWeight(C); a
weighted clause is calledhard, iff its weight is+∞, soft, otherwise. Sets of hard and
soft clauses are denoted with the subscript.h and.s respectively.Weight(ψs) denotes
the sum of the weights of the clauses inψs.

2.1 Satisfiability Modulo Theories

We call atheory solver forT , T -Solver, a tool able to decide theT -satisfiability of a
conjunction/setµT of T -literals. IfµT isT -unsatisfiable, thenT -Solver returnsUNSAT

and the subsetη of T -literals inµT which was foundT -unsatisfiable; (η is hereafter
called aT -conflict set, and¬η a T -conflict clause.) if µT is T -satisfiable, thenT -
Solver returnsSAT; it may also be able to return some unassignedT -literal l 6∈ µT s.t.
{l1, ..., ln} |=T l, where{l1, ..., ln} ⊆ µT . We call this processT -deductionand
(
∨n

i=1
¬li ∨ l) a T -deduction clause. Notice thatT -conflict andT -deduction clauses

are valid inT . We call themT -lemmas.
In a lazy SMT(T ) solver, the Boolean abstractionϕB of the input formulaϕ is given

as input to a CDCL SAT solver, and whenever a satisfying assignmentµB is found s.t.
µB |= ϕB, the corresponding set ofT -literalsµT is fed to theT -Solver; if µT is found
T -consistent, thenϕ is T -consistent; otherwise,T -Solver returns theT -conflict setη
causing the inconsistency, so that the clause¬ηB (the Boolean abstraction of¬η) is
used to drive the backjumping and learning mechanism of the SAT solver.

Important optimizations areearly pruningandT -propagation: theT -Solver is in-
voked also on an intermediate assignmentµT : if it is T -unsatisfiable, then the pro-
cedure can backtrack; if not, and if theT -Solver is able to perform aT -deduction
{l1, ..., ln} |=T l, thenl can be unit-propagated,and theT -deduction clause(

∨n

i=1
¬li∨

l) can be used in backjumping and learning. Another technique isstatic learning, where



T -lemmas expressing “obvious” constraints onT -atoms occurring in the input formula
(e.g. mutual-exclusion, transitivity constraints) are learned a priori.

The above schema is a coarse abstraction of the procedures underlying all the state-
of-the-art lazy SMT tools. The interested reader is pointedto, e.g., [23, 8] for details
and further references.

2.2 MaxSAT

A (weighted partial)1 MaxSAT formulais a set of weighted clauses in the formϕB def
=

ϕB
h ∪ ϕB

s , s.t.ϕB
h andϕB

s are sets of hard and soft clauses respectively. AMaxSAT
problemconsists in finding a maximum-weight clause setψB

s s.t.ψB
s ⊆ ϕB

s andϕB
h∪ψ

B
s

is satisfiable. (Notice that suchψB
s is not unique in general.)MaxSAT(ϕB

h , ϕ
B
s ) denotes

a function computing one suchψB
s , andMaxWeight(ϕB

h , ϕ
B
s ) denotesWeight(ψB

s ).
Notice thatWeight(CB) can be considered as the “cost” of non-satisfying the soft

clauseCB, and MaxSAT can be seen as the problem of minimizing such costover all
the soft clauses. To this extent, aMaxSAT Solveris a function s.t.MaxSAT(ϕB

h , ϕ
B
s )

returns a maximum-weight clause setψB
s s.t.ψB

s ⊆ ϕB
s andϕB

h ∪ ψB
s is satisfiable.

The MaxSAT problem can be generalized to the case in whichϕB
h andϕB

s are sets of
arbitrary formulas rather than sets of single clauses.2 Let λs

def
= {Si}i be a set of fresh

selection variables, one for each constraintφBi in ϕB
s , letϕ

′
B
s

def
= {¬Si∨φBi | φBi ∈ ϕB

s },
and letψB

h be the set of clauses resulting from conversion ofϕB
h∪ϕ

′
B
s into CNF. Thus the

generalized MaxSAT problem(ϕB
h , ϕ

B
s ) can be reduced to a standard MaxSAT problem

on the sets of clauses(ψB
h , λs), in which all soft clauses are unit clauses.

Current state-of-the-art MaxSAT solvers can be roughly divided into 3 categories.
Solvers based on branch & bound, such as [20, 17], employ specialized inference rules
while performing a standard branch and bound search forMaxWeight(ϕB

h , ϕ
B
s ). Itera-

tive solvers, like e.g. [6], work by adding to each soft clauseCB
j ∈ ϕB

s a fresh literalRj

(called arelaxation literal), and by imposing bounds on the number of relaxation liter-
als that can be assigned to true, using cardinality constraints. The space of such bounds
is typically explored using binary search. Finally, core-guided solvers, such as e.g. [18,
21], improve upon iterative solvers by exploiting unsatisfiable cores to decide if/when
to add a relaxation literal to a soft clause, and to minimize the number of cardinality
constraints needed.

2.3 MaxSAT Modulo Theories and SMT with Cost Optimization

The MaxSAT problem generalizes straightforwardly to SMT level. Given a background
theoryT as before, a(weighted partial) MaxSAT Modulo Theories (MaxSMT) formula
is a set of weightedT -clauses in the formϕT def

= ϕT
h ∪ϕT

s . A MaxSAT Modulo Theories

1 A MaxSAT formula is not “weighted” iffWeight(CB
j ) = 1 for everyCB

j ∈ ϕ
B
s , and it is not

“partial” iff ϕB
h is empty. Hereafter, unless otherwise specified, we consider the general case

ignoring this distinction, hence dropping the adjectives “weighted” and “partial”.
2 This includes also the so-calledBlock MaxSATproblem, where each (weighted) soft constraint

is itself a conjunctions of clauses, representing a “block”of clauses subject to the same weight,
s.t. it suffices to violate one such clause to pay the cost of the constraint.



(MaxSMT) problemconsists in finding a maximum-weight clause setψT
s s.t.ψT

s ⊆ ϕT
s

andϕT
h ∪ ψT

s is T -satisfiable. As with the Boolean case,MaxSMT(ϕT
h , ϕ

T
s ) denotes

a function computing one suchψT
s , andMaxWeight(ϕT

h , ϕ
T
s ) denotesWeight(ψT

s ).
(The same considerations and conventions on “weighted”, “partial”, and “generalized”
MaxSAT in §2.2 hereafter apply for MaxSMT.)

Importantly, a MaxSMT problem can be encoded into an SMT problem with cost
minimization〈ϕT

′

, cost〉, either with Pseudo-Boolean (PB) cost functions [22, 10]:

ϕT
′

= ϕT
h ∪

⋃

CT
j
∈ϕT

s

{(Aj ∨ C
T
j )}; cost

def
=

∑

CT
j
∈ϕT

s

wj ·Aj (1)

wherewj
def
= Weight(CT

j ) and theAj ’s are fresh Boolean atoms, or withLA cost
functions [22, 24]:

ϕT
′

= ϕT
h ∪

⋃

CT
j
∈ϕT

s

({(Aj ∨ C
T
j ), (¬Aj ∨ xj = wj), (Aj ∨ xj = 0)});

cost
def
=

∑

CT
j
∈ϕT

s

xj . (2)

where thexj ’s areLA variables.

3 A Novel Modular MaxSMT Algorithm

In what follows, we consider a MaxSMT problemϕT def
= ϕT

h ∪ ϕT
s , andwmax denotes

MaxWeight(ϕT
h , ϕ

T
s ). The symbolsΘT andΘT

i denote sets ofT -lemmas onT -atoms
occurring inϕT

h ∪ ϕT
s , whilstΘT

∗ denotes the set ofall suchT -lemmas.
Observe thatΘT

∗ is a finite set, sinceΘT , ΘT
i andΘT

∗ are defined to be sets of
T -lemmas containing only atoms in the input formula. In general, modern SMT solvers
might introduce new atoms during search, which can thus appear in someT -lemmas.
This scenario is not considered here to keep the presentation simple. However, it can be
covered under the additional assumption thatT -lemmas are generated from a finite set
of atoms, which is typically the case for modern SMT solvers (see e.g. [9, 7]).

3.1 The Basic Algorithm

Algorithm 1 reports a “modular” procedure for MaxSMT. Intuitively, an SMT and
a MaxSAT solver are used as guided enumerators of, respectively: 3

– a finite sequence ofT -lemma setsΘT
0 , Θ

T
1 , ..., Θ

T
n s.t.ΘT

0 = ∅,

ΘT
0 ⊆ ΘT

1 ⊂ ΘT
2 ⊂ ... ⊂ ΘT

n , (3)

ΘT
n ⊆ ΘT

∗ , (4)

3 When referring to Algorithm 1, the index “.i” in ΘT
i , ψT

s,i etc. refers to the values ofΘT , ψT
s

etc. at the end of thei-th cycle in the while loop.



Algorithm 1 A Lemma-Lifting procedure forMaxSMT(ϕT
h , ϕ

T
s )

Input:
ϕT

h : a set of hardT -clauses;
ϕT

s : a set of (weighted) softT -clauses;
Output:

a maximum-weight set of softT -clausesψT
s s.t.ψT

s ⊆ ϕ
T
s andϕT

h ∪ ψ
T
s is T -satisfiable

1: 〈ϕB
h , ϕ

B
s 〉 ← T 2B (〈ϕT

h , ϕ
T
s 〉);

2: ΘT ← ∅;
3: ψT

s ← ϕT
s ;

4: while (SMT.Solve (ϕT
h ∪ ψ

T
s ∪Θ

T ) = UNSAT) do
5: ΘT ← ΘT ∪ SMT.GetTLemmas ();
6: ΘB ← T 2B (ΘT );
7: ψB

s ←MaxSAT(ϕB
h ∪ Θ

B, ϕB
s );

8: ψT
s ←B2T (ψB

s );
9: end while

10: return ψT
s ;

11:
12: SMT.Solve (ϕT ) checks whetherϕT is T -satisfiable
13: SMT.GetTLemmas () returns theT -lemmas computed by the latest call toSMT.Solve

which progressively rule out all theT -unsatisfiable truth assignments which propo-
sitionally satisfyϕT

h and some subsetψT
s,i of ϕT

s s.t.Weight(ψT
s,i) > w;

– (the Boolean abstraction of) a finite sequence of soft-clause setsψT
s,0, ..., ψ

T
s,i, ...ψ

T
s,n

whereψT
s,0 = ϕT

s , ψT
s,i ⊆ ϕT

s for everyi, ψT
s,n = MaxSMT(ϕT

h , ϕ
T
s ), and

Weight(ψT
s,n) ≤ ... ≤ Weight(ψT

s,i+1) ≤ Weight(ψT
s,i) ≤ ... . (5)

MaxWeight(ϕT
h ∪ ϕT

s ) = Weight(ψT
s,n). (6)

Notice that neitherψT
s,i+1 ⊆ ψT

s,i norWeight(ψT
s,i+1) <Weight(ψT

s,i) hold in general.

EachΘT
i+1 results from adding toΘT

i theT -lemmas computed by an SMT solver
to prove theT -unsatisfiability ofϕT

h ∪ ψT
s,i ∪ Θ

T
i . EachψT

s,i is obtained by invoking
a MaxSAT solver on the Boolean abstraction ofϕT

h ∪ ΘT
i andϕT

s as hard and soft
component respectively.

The termination, correctness, and completeness of Algorithm 1 is formally proved
in [11]. Intuitively, at every loopi > 0 s.t.ϕT

h ∪ ψT
s,i ∪Θ

T
i is foundT -unsatisfiable by

SMT.Solve, since its Boolean abstractionϕB
h ∪ψB

s,i ∪Θ
B
i is satisfiable by construction

of ψB
s,i, thenSMT.GetTLemmas returns at least one newT -lemma; thus (3) holds, (4)

holds by definition ofΘT
∗ , hence (5) holds by construction ofψB

s,. By (3), (4), and since
ΘT

∗ is finite and it contains all the possible theory informationrelated toϕT
h ∪ ϕT

s , we
have that, for some loop indexn, ΘT

n ⊆ ΘT
∗ andΘT

n contains allT -lemmas which
rule out allT -inconsistent truth assignments propositionally satisfyingϕB

h ∪ψ
B
s,n. Then

ϕT
h ∪ψT

s,n ∪Θ
T
n is T -satisfiable, becauseϕB

h ∪ψB
s,n ∪Θ

B
n is satisfiable by construction

of ψB
s,n, so that the procedure terminates. From this, it is easy to show that (6) holds.



Notice that, in general, in the callSMT.Solve (ϕT
h ∪ψT

s ∪ΘT ) the “∪ΘT ” element
is not necessary from the logic viewpoint, but it prevents the SMT solver to re-generate
from scratch previously-computedT -lemmas inΘT .

Example 1.LetϕT
h , ϕT

s be as follows (values[v] denote clause weights):

ϕT
h

def
= ∅ ϕB

h

def
= ∅

ϕT
s

def
=















C0 : ((x ≤ 0)) [4]
C1 : ((x ≤ 1)) [3]
C2 : ((x ≥ 2)) [2]
C3 : ((x ≥ 3)) [6]















ϕB
s

def
=















(A0) [4]
(A1) [3]
(A2) [2]
(A3) [6]















where :

A0

def
= (x ≤ 0),

A1

def
= (x ≤ 1),

A2

def
= (x ≥ 2),

A3

def
= (x ≥ 3).

Notice that the set of all possibleT -lemmas on theT -atoms ofϕT
h ∪ ϕT

s is:

ΘT
∗ =































θ1 : (¬(x ≤ 0) ∨ (x ≤ 1))
θ2 : (¬(x ≥ 3) ∨ (x ≥ 2))
θ3 : (¬(x ≤ 0) ∨ ¬(x ≥ 2))
θ4 : (¬(x ≤ 0) ∨ ¬(x ≥ 3))
θ5 : (¬(x ≤ 1) ∨ ¬(x ≥ 2))
θ6 : (¬(x ≤ 1) ∨ ¬(x ≥ 3))































ΘB
∗ =































(¬A0 ∨ A1)
(¬A3 ∨ A2)
(¬A0 ∨ ¬A2)
(¬A0 ∨ ¬A3)
(¬A1 ∨ ¬A2)
(¬A1 ∨ ¬A3)































Then, one possible execution of the algorithm is:

i ΘT
i ψT

s,i Weight(ψT
s,i) SMT (ϕT

h ∪ ψT
s,i ∪Θ

T
i )

0 {} {C0, C1, C2, C3} 15 UNSAT

1 {θ4} {C1, C2, C3} 11 UNSAT

2 {θ4, θ6} {C0, C1, C2} 9 UNSAT

3 {θ4, θ6, θ3} {C2, C3} 8 SAT

from whichψT
s = {C2, C3} andWeight(ψT

s ) = 8. A faster execution (which may be
obtained, e.g., by enforcing the generation of extraT -lemmas in the SMT solver) is:

i ΘT
i ψT

s,i Weight(ψT
s,i) SMT (ϕT

h ∪ ψT
s,i ∪Θ

T
i )

0 {} {C0, C1, C2, C3} 15 UNSAT

1 {θ1, θ2, θ5} {C2, C3} 8 SAT

⋄

3.2 Optimizations

Algorithm 1 is very simple in principle, and it can be implemented using an SMT solver
and a MaxSAT solver as black boxes in a plug-and-play manner.4 Moreover, this allows
for benefiting for free of any advanced tool available from the shelf, or for choosing the
most suitable tools for a given problem.

Under the hypothesis of using the two solvers as black boxes,we consider some
implementation issues which may further improve its efficiency.

4 Provided that the SMT solver, like MATHSAT5, offers a way of retrieving the set ofT -lemmas
which it used to prove theT -inconsistency of the input formula, or, like most lazy SMT
solvers, it can provide an SMT resolution proof, from which the latter set can be extracted.



Incrementality of MaxSAT. SinceMaxSAT is invoked sequentially on incremental
sets of hard clauses and on the same set of soft ones, it is natural to conjecture
that having an incremental implementation ofMaxSAT, which “remembers” the
status of the search from call to call, should improve the efficiency of the overall
procedure.

Reuse of SMT calls.SMT.Solve is not invoked incrementally in the classic “push-
and-pop” sense because —apart from the fact thatψT

s,i ⊆ ϕT
s for everyi— there

is no set-theoretic relation between theψT
s,i’s. However, it is possible to use SMT

solvingunder assumptions: each soft clauseCT
j in ϕT

s is augmented with a fresh

selection Boolean variableSj (i.e.,ϕT
s is rewritten intoϕ

′
T
s

def
= {(¬Sj∨CT

j ) |CT
j ∈ ϕT

s })

and the proper set of selection variablesλs
def
= {Sj | CT

j ∈ ψT
s } is assumed at each

call. This allows for “remembering” and reusing learned clauses from call to call.
(Notice that, as long as theT -lemmas are remembered from call to call, it is possi-
ble to drop the “∪ ΘT ” in the callSMT.Solve (ϕT

h ∪ ψT
s ∪ΘT ).)

In a “white-box” integration scenario, in which it is possible to modify either or both
the solvers involved, the following considerations may be of interest.

Generation of extraT -lemmas. As illustrated in the second execution of Example 1,
generating and storing extraT -lemmas inside the SMT-solving phase —not only
these explicitly involved in the conflict analysis— enlarges theT -lemma pool and
may possibly reduce the number of cycles. This can be obtained by means of SMT
techniques like static learning and by storingall theT -deduction clauses inferred
by T -propagation5 (see [23, 8]). Notice that, to avoid introducing overhead for the
underlying SAT solver, it suffices tostoresuchT -lemmas, withoutlearningthem.

4 Related work

Maximum satisfiability in SMT was first studied in [22], in thecontext of a general
framework for optimization in SMT using “progressively stronger theories”. An imple-
mentation for MaxSMT of this framework is described, but it is not publicly available.

An explicit reference to MaxSMT is found in [4], which describes the evaluation of
an implementation of the WPM procedure [6] based on the YICES [2] SMT solver. This
implementation is not publicly available. Another reference is in [5], where weighted
Constraint Satisfaction Problems are translated into weighted MaxSMT instances.

The YICES solver provides also native support for MaxSMT. The approach used
is based on incrementally invoking the solver in a mixed linear/binary-search fashion
onto an SMT encoding of the MaxSMT problem, similar to that described in§2.1. The
algorithm is not described in any publication, but we could obtain such information
from personal communications with the authors.

The source distribution of the Z3 [15] solver provides an example implementation
of an SMT version of the core-guided MaxSAT algorithm of [16], using the Z3 API.
The algorithm is based on enumerating and counting unsatisfiable subformulas.

5 In many SMT solvers implementingT -propagation,T -deduction clauses are generated on
demand, only if they are needed by the underlying CDCL SAT solver for conflict analysis.



Also related are the works on optimization in SMT [10, 24], that can be used to en-
code the various MaxSMT problems. The work in [10] introduces the notion of “Theory
of Costs”C to handle Pseudo-Boolean (PB) cost functions and constraints by an ad-hoc
and independent “C-solver” in the standard lazy SMT schema. MaxSMT can be han-
dled by encoding it straightforwardly into a PB optimization problem (see§2.1). The
implementation is available. The work in [24] introduced a wider notion of optimiza-
tion in SMT, OMT(LA(Q) ∪ T ), with cost functions on variables on thereals, which
allows for encoding also MaxSMT and SMT with PB cost functions (see§2.1). Some
OMT(LA(Q) ∪ T ) procedures combining lazy SMT and standard LP minimization
techniques are presented. The implementation, done on top of the MATHSAT5 [12]
SMT solver, is available.

Davies and Bacchus [14] proposed a MaxSAT algorithm (hereafter “DB”) which,
similarly to LL, works by iteratively ruling out subsets of the soft clauses of the input
problem. In particular, DB builds iteratively a setK of unsat cores forϕB

h ∪ ϕB
s , i.e., at

each loop iteration: (i) computes a new subset of soft clauses hs to drop asminimum-
cost hitting setof K; (ii) computes a new unsat coreκ of ϕB

h ∪ ϕB
s \ hs; this is repeated

as long asϕB
h ∪ ϕB

s \ hs is unsatisfiable.
Although [14] does not mention SMT, in principle this algorithm could be leveraged

to SMT level (hereafter “DB-SMT”), by substituting SAT-level solving and unsat-core
extraction with SMT-level ones. (Notice, however, that unlike with the SAT domain, ef-
ficiently finding minimal or nearly-minimal unsat cores in SMT is still an open research
problem, see [13].) If so, LL and DB-SMT would be based on similar principles:6

– both algorithms would be based on constraint generation, producing constraints at
every loop iteration which rule out subsets of the soft clauses;

– both would decouple solving and minimizing into two different subroutines.

The technical differences, however, would be manifold:

– Unlike with DB-SMT, LL is not a generalization of DB to SMT: unlike with DB,
if it is fed a pair of purely-Boolean formulas, then it terminates in one iteration.

– DB-SMT would be driven by the combinatorics of the unsat cores to rule out,
whilst LL is driven by the theory-information to be provided.

– TheT -lemma setsΘT
i in LL are not the SMT counterpart of the unsat coresκi in

DB-SMT: the former contain onlynovelclauses, the latter do not; there is not one-
to-one correspondence between the generated sets ofT -lemmas and unsat cores.7

– MaxSAT is not the SMT counterpart of minimum-cost hitting set extraction: the
latter starts from more fine-grained information, in the form of sets of unsat cores.

– It is easy to see that it would take at leastN cycles to DB-SMT to rule outN
clauses fromψB

s . With LL the number of soft clauses discharged at each loop de-
pends only on the quantity and quality of theT -lemmas generated: in many cases
(see Fig. 1) one iteration is enough to generate all the necessaryT -lemmas.7

6 We are grateful to an anonymous reviewer who pointed out an analogy between DB and LL.
7 For example, consider the second execution in Example 1: with DB-SMT there would be no

unsat coreκ1 “equivalent” toΘT
1

def
= {θ1, θ2, θ5}, allowing to directly pass from step 0 to step

1, since one needs 2 cores (and hence 2 loops) to generate a minimum-cosths of size 2.



– the LL schema requires no SMT unsat-core extraction, nor minimum-cost hitting-
set computation. (TheMaxSAT subroutine is not committed to any MaxSAT schema.)

Finally, and importantly, DB/DB-SMT and LL radically differ in thecontextthey
were conceived (MaxSAT vs. MaxSMT), in theirusability(the two schemas would pose
very different constraints to a MaxSMT implementer) andgoals(DB was conceived to
address some efficiency issues in MaxSAT solvers [14], whilst LL is proposed as a
modular approach to build MaxSMT solvers).

5 Experimental Evaluation

We have implemented our LL MaxSMT approach on top of our MATHSAT5 SMT
solver [12] and of a selection of external MaxSAT tools. We have evaluated and com-
pared the performances of the various LL instances and of every MaxSMT or MaxSMT-
like solver available we are aware of, by means of an extensive empirical test on MaxSMT-
modified SMT-LIB benchmarks.8 In this section we present such evaluation.

5.1 Test Description

Benchmarks. As benchmark problems, we took the unsatisfiable SMT instances in
the LA(Q) andLA(Z) categories ofSMT-COMP[1], and we converted them into
two groups of MaxSMT problems —partial MaxSMT and weighted partial MaxSMT
respectively— by a random partition into hard and (weighted) soft clauses. In order
to handle both CNF and non-CNF formulas, for each instance, we created the set of
soft constraints by randomly selecting 20% assigning them aweight of1 for the partial
MaxSMT experiments, and a weight uniformly selected in the range1 . . . 100 for the
weighted partial MaxSMT ones, and then applied the process described in§2.2.

Competing MaxSMT solvers. Before starting our evaluation, we have asked to the
main scientists of the MaxSAT community about the existenceof incrementalMaxSAT
procedures, obtaining a negative answer. Thus, we decided to produce ourselves an
implementation of the WPM MaxSAT algorithm [6] on top of MINI SAT, and we also
tried to enhance it with some degree of incrementality. Recently, Carlos Ansótegui
has kindly sent us the code of a modified version of the WPM, which he had also
adapted to get some incrementality, which invokes theYICES-1.0.36 as an external
solver. Moreover, to guarantee a more interesting comparison, we have implemented on
top of MATHSAT5 the same MaxSMT extension of the core-guided algorithmof [16]
implemented in Z3. Finally, since the original implementation of SMT with PB cost
functions and constraints of [10] was implemented on top of MATHSAT4, and in order
to have a more significant comparison, we have recently ported it into MATHSAT5.

Thus, in this evaluation the first competitors were four instances of our Lemma-
Lifting (LL) implementation, each using a different external MaxSAT solver:

8 We also asked the authors of the related MaxSMT papers of§4 for other benchmarks, but none
provided any meaningful benchmark.



LL WPM, which uses the publicly-available WPM [6] implementationused in the 2012
MaxSAT-evaluation (which uses PICOSAT);

LL Y ICES-WPM, which uses the above-mentioned non-public implementation of WPM
provided to us by Carlos Ansótegui;

LL OWPM, which uses our own incremental WPM implementation;
LL NI-OWPM , as before, non-incremental version.

Other competitors were the following MaxSMT solvers:

Y ICES, the MaxSMT extension of YICES (see§4);
Z3, the MaxSMT extension of Z3 (see§4);
MATHSAT5-MAX , our own implementation on top of MATHSAT5 of the core-guided

algorithm of [16], as with Z3.

Notice that the last two solvers handle only unweighted partial MaxSMT problems.
The final competitors were the following solvers based on SMTwith cost optimization
(see§4), using the encodings described in§2.3:

MATHSAT4+C(L), the tool from [10], using linear-search mode;
MATHSAT5+C(L), the porting of the above procedure into MATHSAT5, using linear-

search mode;
MATHSAT5+C(B), as before, using binary-search mode;
OPTIMATHSAT, the OMT(LA(Q)∪T ) tool of [24] described in§4, using its adaptive

binary/linear search heuristics.

Notice that, if T is the LA(Z) theory, it is not possible to encode MaxSMT into
OMT(LA(Q)∪T ) because the current implementation of OPTIMATHSAT cannot han-
dleLA(Q) ∪ LA(Z).9

The Experiments. The experiments we performed can be divided into two groups.
In the first group, we tested and compared the performances ofall the eleven MaxSMT
solvers on the benchmarks described above. This was performed onIntel(R) Xeon(R)
CPU E5650 2.67GHz platform, with a 4GB memory limit and a 20 minute time
limit for each run. In the second group, we made some more accurate analysis of the
behaviour of the LL implementations. This was performed on aIntel(R) Xeon(R)
CPU E5520 2.27GHz platform, using the same memory and time limits.

Check of the Results. We have checked the correctness of the results of all our own
tools (i.e., those based on MATHSAT4 or MATHSAT5) by checking the models re-
turned and by independently proving the unsatisfiability ofthe formulaϕT

′

∪ {cost <
k}, whereϕT

′

andcost are defined as in (2) andk is the value of the cost returned by
the tool. All results agreed with one another and were found correct by the above test.



Table 1.Results of the eleven MaxSMT solvers on partialMaxSMT instances

Solver
LA(Z) LA(Q) Total

#Solvedtime (sec)#Solvedtime (sec) #Solvedtime (sec)

MATHSAT5-MAX 95 / 106 6575.60 88 / 93 2274.69 183 / 199 8850.29
LL OWPM 92 / 106 5942.20 88 / 93 1785.48 180 / 199 7727.68
Y ICES 92 / 106 14478.43 87 / 93 5537.47 179 / 199 20015.9
LL NI-OWPM 89 / 106 4439.98 88 / 93 1780.97 177 / 199 6220.95
LL Y ICES−WPM 89 / 106 4937.91 87 / 93 1855.45 176 / 199 6793.36
LL WPM 88 / 106 7154.19 88 / 93 2071.27 176 / 199 9225.46
MATHSAT5+C(L) 84 / 106 7112.43 87 / 93 2175.34 171 / 199 9287.77
MATHSAT4+C(L) 83 / 106 5220.14 85 / 93 1944.48 168 / 199 7164.62
Z3 89 / 106 4066.92 76 / 93 2427.59 165 / 199 6494.51
MATHSAT5+C(B) 78 / 106 5030.85 87 / 93 2545.69 165 / 199 7576.54

OPTIMATHSAT — — 89 / 93 1360.05 — —

Table 2.Results of the eleven MaxSMT solvers on partial weightedMaxSMT instances

Solver
LA(Z) LA(Q) Total

#Solvedtime (sec)#Solvedtime (sec) #Solvedtime (sec)

LL WPM 90 / 106 5194.73 87 / 93 3033.66 177 / 199 8228.39
LL NI-OWPM 86 / 106 1672.41 88 / 93 2062.35 174 / 199 3734.76
MATHSAT5+C(L) 89 / 106 5501.38 84 / 93 2359.61 173 / 199 7860.99
LL OWPM 85 / 106 1304.13 87 / 93 1836.53 172 / 199 3140.66
MATHSAT4+C(L) 87 / 106 3105.01 85 / 93 2541.83 172 / 199 5646.84
LL Y ICES−WPM 82 / 106 1423.53 87 / 93 2350.02 169 / 199 3773.55
Y ICES 83 / 106 12305.88 80 / 93 9804.16 163 / 199 22110.04
MATHSAT5+C(B) 79 / 106 9482.61 83 / 93 2627.35 162 / 199 12109.96

OPTIMATHSAT — — 88 / 93 1947.06 88 / 93 1947.06
Z3 — — — — — —
MATHSAT5-MAX — — — — — —

5.2 Results

The results of the evaluation of the eleven MaxSMT solvers are presented in Tables 1
and 2, reporting for each solver the number of instances solved within the timeout and
the total runtime taken to solve them. (Rows are sorted according to total (LA(Q) +
LA(Z)) performance, best performances for each category are inbold.) Note that, for
the reasons highlighted above, Z3 and MATHSAT5-MAX were not run on weighted
instances, and OPTIMATHSAT was not ran on theLA(Z) instances (this is marked
with a “—”).

Looking at the data in Tables 1 and 2 some considerations are in order.

9 This is due to the fact that the OMT(LA(Q) ∪ T ) framework requires thatLA(Q) andT are
signature-disjoint theories [24], which is not the case ifT isLA(Z).
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Fig. 1. Number of while-cycles wrt. runtime for LLOWPM (left) and LLNI-OWPM (right).

(i) M ATHSAT5-MAX is the overall best performer on the unweighted group, whilst
LL WPM is the overall best performer on the weighted one. If we restrict to LA(Q)
theory, OPTIMATHSAT is the winner in both unweighted and weighted groups.
However, there is no hands-down winner, and the performancegaps among the
eleven solvers are not dramatic.

(ii) Overall, theLL tools behave quite well, all being in the highest part of the ranking.
Among them, there is not an absolute winner: LLOWPM is the best performer on the
unweighted group, whilst LLWPM is the best performer on the weighted one.

(iii) There is no definite winner between LLOWPM and LLNI-OWPM : the former is better
on unweighted test, the latter on weighted ones, and the performance gaps are very
limited. Thus, incrementality does not seem to pay as much asone could expect.
Similarly, there is no definite winner between LLY ICES-WPM and LLWPM. (Notice,
however, that these two call two different backend solvers,Y ICES and PICOSAT.)

Overall, the results are too limited and heterogeneous to infer the superiority of one
approach wrt. another. However, we can safely conclude that, despite its simplicity, the
LL approach is competitive wrt state-of-the-art ones.

In Figure 1 and Table 3 we analyze the behaviour of the LL solvers on all tests
(weighted/unweighted,LA(Q)/LA(Z)).

Figure 1 shows the number of while-cycles performed by the LLalgorithm with
LL OWPM (left) and LLNI-OWPM (right), plotted against runtime. We notice that a very
high percentage of instances is solved at the first loop, and the vast majority of instances
is solved in less than 10 loops. This induces us to conjecturethatSMT.Solve in many
cases is able to produce very soon all theT -lemmas which are necessary toMaxSAT

to rule out the wrong truth assignments.
Table 3 analyzes the percentage of CPU time spent inside MaxSAT calls for the four

LL tools. 10 We notice that for most solvers and most instances, the solver spends less
than 20% and this fact is particularly evident in the easiestproblems. Thus, the overall
CPU time is mostly dominated by the time spent insideSMT.Solve. In particular, in the

10 For instance (1st block, 3rd column): out of 116 instance problem for which LLOWPM took
less than one second to execute, with 81 instances MaxSAT calls required less than 20% 40%



Table 3.An overview of runtime spent onMaxSAT calls compared to total runtime for LL solvers

Runtime LLOWPM (in seconds)

% Time
MaxSAT

[0, 1[ [1, 10[ [10, 100[ [100, 1000[ ≥ 1000
0 ≤ p < 20 81 41 15 5 13
20 ≤ p < 40 19 12 9 17 27
40 ≤ p < 60 10 6 5 19 12
60 ≤ p < 80 1 0 6 15 3
80 ≤ p ≤ 100 5 15 0 9 0

Total 116 74 35 65 55
Runtime LLOWPM (in seconds)

% Time
MaxSAT

[0, 1[ [1, 10[ [10, 100[ [100, 1000[ ≥ 1000
0 ≤ p < 20 115 53 43 49 59
20 ≤ p < 40 5 6 1 1 9
40 ≤ p < 60 1 1 2 0 1
60 ≤ p < 80 0 1 0 0 0
80 ≤ p ≤ 100 0 1 4 0 0

Total 121 62 50 50 69
Runtime LLNI-OWPM (in seconds)

% Time
MaxSAT

[0, 1[ [1, 10[ [10, 100[ [100, 1000[ ≥ 1000
0 ≤ p < 20 95 49 32 48 53
20 ≤ p < 40 11 9 8 2 4
40 ≤ p < 60 4 0 5 0 0
60 ≤ p < 80 8 1 0 0 1
80 ≤ p ≤ 100 4 2 11 0 4

Total 122 61 56 50 62
Runtime LLWPM (in seconds)

% Time
MaxSAT

[0, 1[ [1, 10[ [10, 100[ [100, 1000[ ≥ 1000
0 ≤ p < 20 115 58 16 43 57
20 ≤ p < 40 1 1 11 8 1
40 ≤ p < 60 4 1 9 2 0
60 ≤ p < 80 8 0 2 1 1
80 ≤ p ≤ 100 1 0 6 3 4

Total 129 60 44 57 63

samples in which the solution is found in one loop, most time is taken bySMT.Solve

to enumerate the necessaryT -lemmas in one shot.

This also explains in part the low effect of incrementality in our experiments, since
the cost of MaxSAT calls does not seem to represent the actualbottleneck of the process.
Notice that, if we compare the data on LLOWPM and LLNI-OWPM in Table 3, we notice
that indeed in the incremental version the percentage of time spent inside MaxSAT is
smaller than in the non-incremental one. However, since thetotal cost is mostly domi-
nated bySMT.Solve, the benefits of this fact are not significant. (Also, we must recall
that, since we are not expert MaxSAT developers, our implementation of incrementality
is quite naive.)



6 Conclusions and Future Work

In this paper we have presented a novel “modular” Lemma-Lifting approach for MaxSMT,
which combines a lazy SMT solver with a purely-propositionalMaxSAT solver. Despite
its simplicitly, LL proves competitive with previous approaches.

Depending on one’s expertise on and access to SMT and MaxSAT technology, we
see different ways the LL approach can be implemented into a MaxSMT tool.

– Whoever cannot or does not want to put the hands on either solver’s code, can
take both an SMT and a MaxSAT solver off-the-shelf and implement our algorithm
on top of their API (or even interface with them via file exchange). In this case,
implementation is straightforward.

– MaxSAT-solver developers can leverage to SMT level the expressiveness of their
own tool by interfacing with one SMT solver, without implementing any SMT func-
tionality in-house. They can also customize their own MaxSAT tool to improve the
synergy of the two tools (in particular, by making it as incremental as possible).

– SMT-solver developers can extend their own tool with MaxSMTfunctionality by
interfacing with one or more MaxSAT solvers off-the-shelf,with no need of im-
plementing MaxSAT functionalities in-house. They can alsocustomize their own
solver (e.g., by maximizing the generation of theory lemmas).

– A person with access to, and enough expertise on, both SMT- and MaxSAT- solver
development can adopt our approach to produce a highly efficient MaxSMT tool,
with the possibility of customizing both tools. Notice that, in this case, our ap-
proach can also be combined with other SMT optimization techniques (e.g., those
described in [22, 10, 24, 4]).

We believe that this paper opens novel research avenues in MaxSMT. In particular,
we see many directions along which the LL approach can be improved and extended.

Customizing SMT and MaxSAT solvers. The LL approach would strongly benefit
from more effectiveT -lemma generators and incremental MaxSAT solvers.

Interleaving of SMT- and MaxSAT-solving steps. Algorithm 1 interleavescomplete
calls toSMT.Solve andMaxSAT. This can be generalized to more fine-grained
interleaving schemas, in whichstepsof such executions can be interleaved. For in-
stance, it is possible to interruptSMT.Solve as soon as some amount ofT -lemmas
has been generated, and invokeMaxSAT afterwords. Vice versa, it is possible to
interruptMaxSAT as soon as a non-optimalψB

s is generated, and feed it back to
SMT.Solve. (As an extreme case, one could feed toSMT.Solve only the assignment
µT produced byMaxSAT: if so, SMT.Solve would be simply used as aT -Solver.)

Combination with other approaches. The lemma-Lifting approach can be combined
with other approaches in various ways. For instance, one could enhance the use of
SMT by exploiting SMT with cost constraints [10] and extraction ofT -unsatisfiable
cores [13] to further prune the search.

Overall, novel strategies and heuristics can be investigated to extend and improve Al-
gorithm 1 along the above directions.
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