
Leveraging Contracts for Failure Monitoring and

Identi�cation in Automated Driving Systems?

Srajan Goyal1,2[0009−0005−2189−7026] sgoyal@fbk.eu, Alberto
Griggio1[0000−0002−3311−0893] griggio@fbk.eu, and Stefano

Tonetta1[0000−0001−9091−7899] tonettas@fbk.eu

1 Fondazione Bruno Kessler, Trento, Italy
2 University of Trento, Trento, Italy

Abstract. As the deployment of AI agents in Automated Driving Sys-
tems (ADS) becomes increasingly prevalent, ensuring their safety and
reliability is of paramount importance. This paper presents a novel ap-
proach to enhance the safety assurance of automated driving systems by
employing formal contracts to specify and re�ne system-level properties.
The proposed framework leverages formal methods to specify contracts
that capture the expected behavior of perception and control components
in ADS. These contracts serve as a basis for systematically validating
system behavior against safety requirements during design and testing
phases. We demonstrate the e�cacy of our approach using the CARLA
simulator and an o�-the-shelf AI agent. By monitoring the components
contracts on the ADS simulation, we could identify not only the cause
of system failures, but also the situations which could lead to a system
failure, facilitating the debugging and maintenance of the AI agents.

Keywords: Formal properties · Runtime veri�cation · Test case gener-
ation · Autonomous systems · Assume-guarantee reasoning

1 Introduction

Automated Driving Systems (ADS) represent a technological innovation that is
revolutionizing traditional transportation, potentially improving the tra�c �ow
and increasing overall road safety. A central role in the success of ADS is played
by AI agents, which may be responsible for various perception and control tasks.
However, as ADS deployment accelerates, ensuring the safety and reliability of
these AI agents becomes increasingly challenging.

Various formal veri�cation techniques have been proposed to prove properties
of AI-based autonomous systems. Much work in the literature [11,19,13,27,15]
focuses on system-level simulation-based testing using formal methods to specify

? This work has been supported by: the �AI@TN� project funded by the Autonomous
Province of Trento; the PNRR project FAIR - Future AI Research (PE00000013),
under the NRRP MUR program funded by the NextGenerationEU; and the PNRR
MUR project VITALITY (ECS00000041), Spoke 2 ASTRA - Advanced Space Tech-
nologies and Research Alliance.

2 Goyal, Griggio, and Tonetta

formal properties and coverage criteria, and to generate automatically test cases.
In this line of work, AI agents can be seen as black-boxes integrated into the
simulator of the autonomous system, while formal properties can rely on the
simulation data of the environment that is considered the ground truth and can
be used to compare it with the agents' knowledge.

The VIVAS project [12], funded by ESA, developed a generic framework for
system-level simulation-based Veri�cation and Validation (V&V) of autonomous
systems. This approach uses a simulation model, an abstract model to symbol-
ically describe the system behavior, and formal methods to generate scenarios
and verify simulation executions. It permits the speci�cation of diverse coverage
criteria, thereby guiding automated scenario creation and veri�cation of formal
properties. The framework has been evaluated on space and automotive applica-
tions [15]. For the latter, the simulation uses CARLA [10], a popular platform for
simulating complex driving scenarios. Various AI-based solutions (e.g., [25,28,4])
for car perception and control components are validated with CARLA, which
also hosts a competition to rank such solutions [2]. In [15], we demonstrated
the integration of the VIVAS framework with CARLA to e�ectively generate
interesting highway scenarios and evaluate AI-based agents in ADS.

However, one of the issues with these approaches is that the system-level ver-
i�cation focuses on system-level properties, mainly car crashes in the automotive
case study. This has the limit of not being able, �rst, to identify the component
that is failing in case of a crash and, second, to monitor component failures that
may lead to a crash without an actual occurrence of a crash.

In this paper, we propose to integrate the simulation-based V&V framework
with a contract-based design of the perception and control components of the
autonomous system. The design-level veri�cation ensures that the assumptions
formalized on the environment model, used to generate the test cases, are suf-
�cient to provide the system-level guarantees. Component properties are then
monitored on the simulation traces. These two phases are iterated to tune the
property speci�cations, as they may end up being either too strong, failing in the
runtime monitoring, or too weak, failing in the contract re�nement veri�cation.

We evaluated the approach on the ADS case study using the CARLA simula-
tor and the InterFuser AI agent [25], operating on a highway. The iterations led
us to �ne-tune challenging formal properties, for example, to formalize the safety
conditions on the bounding boxes generated by the perception, and formalizing
the safe states for AI-based planner. Through the evaluation, we were able to
localize the faults in case of a crash, and monitor the component failures that
could have led to a crash, but did not. Moreover, we could pinpoint interesting
cases in which the ADS could have avoided the crash, if it acted in time.

2 Related work and Contributions

There has been much recent work on compositional veri�cation approaches using
contract reasoning to achieve design-time assurance guarantees for autonomous
systems [24,26,18]. These approaches leverage the robustness properties of DNNs

Leveraging Contracts ... in Automated Driving Systems 3

to verify closed-loop systems. However, reducing the closed-loop safety properties
into I/O properties for DNN is often quite challenging. Other methods approxi-
mate sensor models to prove safety properties based on low-dimensional sensor
data [16]. However, when applied to systems dependent on rich sensors generat-
ing high-dimensional inputs, these methods become impractical.

Recent work has also focused on automatically synthesizing perception con-
tracts to ensure closed-loop safety, using symbolic learning algorithms [1], and
on bottom-up approaches such as [23] to generate weak assumptions for DNNs.
However, these methodologies lack consideration for dynamic environments and
face signi�cant scalability challenges when dealing with multiple DNNs (e.g.,
both camera and lidar inputs). At some level, all this work relies on the internal
structure of DNNs to specify or synthesize the contracts. In contrast, we focus
on functional contracts for perception and control components, and their inter-
action with the environment contracts which specify the assumptions about the
dynamic behaviors of objects.

A considerable body of work also addresses the repair of components' spec-
i�cations when system-level properties are violated. For example, [14] proposes
algorithms that synthesize model predictive controllers for ADS by identifying
reasons for system-level contract infeasibility and suggesting repairs to the con-
troller speci�cation. [20] automatically searches and repairs contracts based on
re�nements from a contract library (and implementations) to formalize robotic
mission planning speci�cations when new requirements or inconsistencies arise.
[9] presents a simulation-based falsi�cation framework that iteratively constructs
contracts as constraints to synthesize safe controllers. However, none of this
work considers ML components in their closed-loop analysis or validates the
approaches in high-�delity simulators. In our approach, we manually write the
contracts, which could, in principle, be complemented by these methods to re-
pair component contracts when system-level properties are violated. Neverthe-
less, due to the black-box nature of ML components, repairing their contracts
without an implementation remains a signi�cant challenge.

Contributions: Although the proposed methodology contains various elements
studied in the literature as summarized above, it integrates them in a unique
�ow that presents various novel aspects:

� the contract-based design of autonomous systems is supported with con-
tract reasoning that formally ensures speci�cation correctness, while many
previous works monitor properties without verifying contract re�nement.

� the contracts are monitored on o�-the-shelf AI solutions interfacing with
perception and control components, while in the many previous works the
monitors were applied at the system level.

� formalization of contracts on concrete perception and control components
by specifying safety conditions on bounding box representations of cars.

� to the best of our knowledge, this is the �rst end-to-end methodology for the
simulation-based veri�cation of autonomous systems that starts from the
design of the components to their monitoring.

4 Goyal, Griggio, and Tonetta

3 Background

Transition Systems. Given a �nite set V of variables with a (potentially in�-
nite) domain D, we denote with Σ(V) the set of assignments to V , i.e. mapping
from V to D. Let V ′ denote a copy of the variables V , which are used to repre-
sent the values of V after a transition. A Transition System (TS), S is a tuple
S = 〈V, I, T 〉, where V is a set of (state) variables, I is a formula over V repre-
senting the set of initial states, and T is a formula over V ∪ V ′ representing the
set of transitions. A state s ∈ Σ(V) of S is an assignment to the variables V .

A trace σ of S is an in�nite sequence of states σ = s0, s1, · · · , where each si
is an assignment to V , such that s0 satis�es I and for all i ≥ 0, the pair 〈si, si+1〉
satis�es T , i.e., T (V, V ′) holds when V is assigned according to si and V

′ accord-
ing to si+1. Given two transition systems S1 = 〈V1, I1, T1〉 and S2 = 〈V2, I2, T2〉,
we de�ne the synchronous product S1 × S2 as 〈V1 ∪ V2, I1 ∧ I2, T1 ∧ T2〉. Since
the product is commutative and associative, it can be generalized to a set of
transitions systems.

LTL. Given a set of variables V , we assume to be given a set Expr(V) of Boolean
expressions over V as in [21]. In particular, in this paper, we consider standard
arithmetic predicates (<,≤, >,≥, . . .) and functions (+,−, . . .) over integer and
real variables. We de�ne the set of LTL formulas over the variables V with the
following grammar rule:

φ := p | φ ∧ φ | φ ∨ φ | ¬φ | Xφ | φUφ

where p ranges over Expr(V). We use the following standard abbreviations:
> := p ∨ ¬p, ⊥ := ¬>, φ→ ψ := (¬φ) ∨ ψ, Fφ := >Uφ, Gφ := ¬F¬φ.

LTL formulas are interpreted over traces over V , which are in�nite sequences
of assignments to V . We refer the reader to [8] for a formal de�nition of the
semantics.

Given a transition system S = 〈V, I, T 〉 and an LTL formula φ over V , S |= φ
if and only if for all traces σ of S, σ |= φ. Note that we are considering in general
in�nite-state transition systems for which the problem is undecidable. Our meth-
ods are based on SMT-based algorithms as those implemented in nuXmv [3].

At runtime, we evaluate a formula over the pre�x of an in�nite execution
trace using the standard semantics of runtime veri�cation [17]. In particular, a
�nite trace π violates a formula φ i�, for any su�x π′, the concatenation of π
and π′ violates φ.

Contract Re�nement. To simplify the presentation, in this paper, we de�ne
a contract re�nement independently from the component interfaces. In practice,
in OCRA [6], contracts are speci�ed in terms of component input/output ports
and the re�nement has to take into account the connections among ports in
component decomposition.

A contract C over the variables V is a pair 〈A,G〉 of LTL formulas over V
representing respectively an assumption and a guarantee. We also denote A by

Leveraging Contracts ... in Automated Driving Systems 5

A(C), G by G(C), and ¬A ∨ G by nf(C). Let C = 〈A,G〉 be a contract over V .
Let J and E be the two TSs over V . We say that J is a correct implementation
of C i� J |= A→ G. We say that E is a correct environment of C i� E |= A. We
denote by I(C) and E(C), respectively, the set of correct implementations and
the set of correct environments of C. Given two contracts C and C ′ over V , we
say that C re�nes C ′ (denoted by C � C ′) i� I(C ′) ⊆ I(C) and E(C) ⊆ E(C ′).

Given a contract C and a set of contracts Sub = {C1, . . . , Cn}, we say that
Sub is a re�nement of C, written Sub � C, i� the following conditions hold:

1. the correct implementations of the sub-contracts form a correct implementa-
tion of C: let V be the variables of C, {S1 × . . .× Sn | S1 ∈ I(C1), . . . , Sn ∈
I(Cn)} ⊆ I(C);

2. for every Ci ∈ Sub, the correct implementation of the other sub-contracts
and a correct environment of C form a correct environment of Ci: let Vi be
the variables of Ci, {E×S1× . . .×Sj 6=i× . . .×Sn | E ∈ E(C), for all j, 1 ≤
j ≤ n, j 6= i, Sj ∈ I(Cj)} ⊆ E(Ci).

In [7,5], it was proved that the re�nement is correct if and only if the following
proof obligations (PO(Sub,C)) are valid temporal formulas:

nf(C1) ∧ . . . ∧ nf(Cn)→ nf(C)

A ∧
∧

1≤j≤n,j 6=i

nf(Cj)→ Ai (for every i, 1 ≤ i ≤ n)

4 Contract-Based Methodology

4.1 VIVAS methodology

VIVAS is a V&V framework for generating test cases for autonomous systems
(possibly using AI/ML components) via a combination of system-level simula-
tion and symbolic model checking. VIVAS makes use of a symbolic model of the
system under veri�cation. This is inherently a transition system, written in the
SMV language, which de�nes an abstract representation of the system behav-
ior. On top of such model, the coverage criteria for the tests and the properties
to verify are speci�ed. The approach follows the �ow depicted in Fig. 1 (right
part): abstract test scenarios are generated from the symbolic model with model
checking techniques based on the coverage criteria; the abstract test scenarios
are then instantiated by the concretization of the abstract parameters to pro-
vide concrete scenarios to be executed on a system-level simulator encompassing
AI/ML models; the simulation traces are in turn analyzed to check the prop-
erties de�ned on the symbolic model. The output of the framework is a V&V
result consisting of coverage statistics of the executed traces with respect to the
symbolic models, and quantitative and qualitative information for each use case.

An important observation is that the simulation traces can be instrumented
to contain information on the autonomous system internal state as well as the

6 Goyal, Griggio, and Tonetta

Fig. 1. V&V framework.

environment state. Thus, the properties that are evaluated on such traces can
compare the internal representation of the autonomous system with the ground
truth provided by the simulator.

4.2 Contract-based extension

We extend the VIVAS framework with contract-based design of an autonomous
system. We start from an OCRA speci�cation of the system, as depicted in the
left part of Fig. 1. The autonomous system (AS) is decomposed into an envi-
ronment (Env) and an agent (Agent) component. The environment represents
the physical world, including external and internal parts of the autonomous sys-
tem (e.g., road structure, autonomous car, and other cars) and their dynamics.
It models the evolution of the actual physical system states, henceforth called
the ground truth, in response to control signals it receives from the agent. The
agent receives the ground truth data from the environment (e.g., positions of
other cars) and provides commands (e.g., steering and acceleration data).

The agent is in turn decomposed into a perception and a control component.
The interfaces of such components are detailed based on the speci�c application
and depend on the actual internal representation that the control has of the
environment (e.g., position of the objects). They can also be further decomposed
based on the internal structure of the agent.

Speci�c requirements of the autonomous system are formalized as LTL prop-
erties and structured into contracts. Each component in the hierarchy is as-
sociated with a set of contracts (depicted in green), specifying the acceptable
behaviors for the component and its environment. Both the environment and
the agent have a high-level description of their behavior, modeled as transition
systems in SMV (depicted in purple), which can be composed to generate the
system's behavior. This is veri�ed compositionally against the top-level con-

Leveraging Contracts ... in Automated Driving Systems 7

tracts. Given the above contract-based design, the veri�cation is enhanced with
the following checks:

� The contract re�nement is proved correct for each decomposition level.
� The SMV implementations of Env and Agent are proved correct with respect
to the local contracts.

� The contracts are checked at runtime on the �nite simulation traces.

The veri�cation of the last point can fail for various reasons, leading to the
changes in the contract speci�cation or to actual bugs in the Agent code as
discussed in the following section.

4.3 Analyses of monitoring failures

We �rst focus on the Env component. If one or more Env contracts fail regardless
of the system level contracts result, either of the following reasons would apply:

� e.1: the contracts are too strong and a realistic behavior in the simulation
violates them; thus, we need to weaken them to allow such behavior.

� e.2: the contracts are violated by a behavior that we indeed discarded with
the contracts because we excluded that from that veri�cation (e.g., dangerous
situations created by other agents); in this case, the result is accepted.

� e.3: the contracts are violated because of some constants used in the model of
the dynamics; in this case, the model must be �xed adjusting such constants.

Focusing on the Autonomous system, agent and other subcomponents, the
following outcomes are possible for each decomposition level:

� a.1: the parent contract is satis�ed, but a child contract violated; in this
case, we may have di�erent causes:
• a.1.1: the child component is indeed buggy, but the fault did not lead to
the failure of parent component; we report this as a problem.

• a.1.2: the contract of the child components are too strong and the behav-
ior seen in the simulation could be actually accepted; thus, the contract
must be weakened to allow such behavior.

• a.1.3: the contracts are violated because of some constants used in the
contracts (e.g., to specify safety margins); in this case, the model must
be �xed adjusting such constants.

� a.2: the parent contract is violated as well as one or more child contracts; in
this case, we identi�ed the faulty components, and we report it as a problem.

� a.3: the parent contract is violated and all child contracts are satis�ed; this
must not happen, else there is a mistake in the framework, in the symbolic
model (e.g., some connections), or in the concretization.

� a.4: �nally, orthogonally to previous points, if a leaf component is failing
in several simulation traces, we may want to decompose further to have a
better localization of the fault; in this case, we may analyze the Agent's code
to identify subcomponents and their contracts.

8 Goyal, Griggio, and Tonetta

Fig. 2. Contract-based system architecture of Automated Driving System.

5 Automated Driving Use Case

In this section, we present a case study that applies our compositional approach,
outlined in the previous section, to an automated driving system (ADS) using
the CARLA simulation platform.

5.1 Contract based design

We use OCRA [6], an extension of nuXmv for contract-based speci�cation and
reasoning, to partition our symbolic model into components equipped with assume-
guarantee contracts. Fig. 2 shows the decomposition of ADS into di�erent com-
ponents and subcomponents. These components communicate through input and
output ports, depicted in red. For simplicity, we have combined the x and y coor-
dinate ports into a single port. In the following, we describe such decomposition,
providing the main details of the contracts for each component. For the contract
speci�cations, here we only show the guarantees provided by the contracts. All
assumptions are considered True unless stated otherwise.

ADS. The top level system component has an interface with no inputs and
six output ports, which are mapped from its Env component. These ports pro-
vide the x, y (longitudinal and lateral) positions of the two non-ego vehicles
and an ego at the ground truth level, with all vehicles represented point-wise.
The top-level system contract no_crash (Eq. (1)) guarantees the absence of
crashes, and is further re�ned by the contracts of Env and Ego (Env.env_safety,
Env.safety_danger, Env.safety_crash, Ego.collision_avoidance). The pred-
icate crash (Eq. (2)) is True only when the ego vehicle collides with any non-ego
vehicle in front.

Leveraging Contracts ... in Automated Driving Systems 9

no_crash : G(¬crash); (1)

crash :=
∨

i=1,2

(car[i].x > ego.x) ∧ (car[i].y = ego.y)

∧ (ego.velocity.x > 0) ∧ (car[i].y = X(car[i].y))

∧ (ego.y = X(ego.y)) ∧ (X(car[i].x ≤ ego.x ∧ car[i].y = ego.y))

(2)

Ego. This component models the key properties for the autonomous vehicle to
navigate safely in the environment. It takes as inputs from Env the current posi-
tions of non-ego and ego vehicles along with ego's speed, and produces a boolean
brake command as output. The collision_avoidance contract (Eq. (3)) guar-
antees the brake application whenever ego is in a dangerous condition (Eq. (4)).

collision_avoidance : G(danger_gt→ ego.brake); (3)

danger_gt := ((car_ahead_gt) ∧ (ego.velocity.x > 0) ∧
(dmin ≤ (braking_distance+ danger_threshold)))

(4)

car_ahead_gt :=
∨

i=1,2

(car[i].x > ego.x ∧ car[i].y = ego.y) (5)

braking_distance := (ego.velocity.x)2/(2 ∗Max_Braking) (6)

where dmin is the distance to the closest car ahead of ego in its lane, braking_dis-
tance is the distance covered by ego while braking with Max_Braking3 from
its current position, computed using Newtonian physics in Eq. (6). The Ego is
further decomposed into perception and control components, and its contract is
therefore re�ned by the corresponding contracts of these subcomponents.

Perception. The perception component represents the ego's knowledge of the
environment. It takes as input the ground truth positions of the non-ego ve-
hicles, and provides as output their estimated positions. It has two contracts,
car_pos_est and car_pos_ahead_est in Eq. (7) and (8) respectively, pro-
viding bounds on the estimate errors.4

car_pos_est : G(
∧

i=1,2

(car[i].x− car[i].x_est ≤ ε) ∧ (car[i].y = car[i].y_est)) (7)

car_pos_ahead_est : G(
∧

i=1,2

((car[i].x ≥ ego.x)→ (car[i].x_est ≥ ego.x))) (8)

3 Max_Braking = 4.6 m/s2, averaged (eyeballed) from literature.
4 the ε parameter in (7) is the estimation error (in meters), which is set to 2 in the
actual implementation when using InterFuser.

10 Goyal, Griggio, and Tonetta

Control. The control component takes as input the current estimated positions
of the non-ego vehicles from the perception, and the current position and speed of
ego vehicle from the environment at the ground truth level. Its contract (Eq. (9))
guarantees the application of brake whenever a dangerous situation is detected.

collision_avoidance_act : G(danger_est→ ego.brake) (9)

danger_est :=(car_ahead_est ∧ (ego.velocity.x > 0) ∧
(dmin_est ≤ (braking_distance+ danger_threshold)))

(10)

car_ahead_est :=
∨

i=1,2

(car[i].x_est > ego.x ∧ car[i].y_est = ego.y) (11)

where dmin_est = mini=1,2{(car[i].x_est− ego.x− ε)}.

Env. This component represents the physical world, providing as output the
ground truth positions and speeds of all the vehicles in the environment. The
component has one input port, ego.brake, which is an output of the Ego com-
ponent. We de�ne three contracts for Env. The �rst, env_safety (Eq. (12)),
ensures that if the ego starts in a safe condition and applies the brake, it cannot
reach an unsafe condition:

env_safety : safe_condition ∧
G(((safe_condition) ∧ (ego.brake > 0))→ X(safe_condition))

(12)

safe_condition := (car_ahead_gt→ (dmin > braking_distance)) (13)

Fig. 3. Safe and dangerous conditions.

Fig. 3 shows the di�erence be-
tween safe_condition, danger_gt and
braking_distance. In Ego's contract
reasoning, ego.brake = > when
danger_gt = >. Due to the pres-
ence of danger_treshold (set to 1m),
the model checker produces a coun-
terexample of the system level con-
tract in which there is a transition
from safe_condition ∧ ¬danger_gt
to ¬safe_condition. To avoid this sit-
uation, we formulate another con-
tract for the Env, safety_danger in
Eq. (14) which guarantees that the above situation does not occur. The last Env
contract, safety_crash in Eq. (15), connects safe_condition with the crash
predicate, guaranteeing that if the ego is in a safe condition, it is not involved
in a crash.

safety_danger : G((safe_condition ∧ ¬danger_gt)→ X(env_safety)) (14)

Leveraging Contracts ... in Automated Driving Systems 11

safety_crash : G(safe_condition→ ¬crash) (15)

5.2 Implementation in SMV

We specify the abstract model of the ADS as a synchronous symbolic transition
system, written in the language of the nuXmv [3] model checker. The system con-
sists of two key components: the environment (Env) and the ego vehicle (Ego),
as shown in Fig. 2. For abstract scenario generation, the Env implementation
consists of 3 vehicles (one �ego� car, representing the autonomous agent under
test, and two other cars) moving on a highway with 3 lanes, in which all the
vehicles drive in the same direction. The two �non-ego� cars can move freely on
the highway, with arbitrary accelerations, braking, and lane change maneuvers
(subject to physical constraints about min/max acceleration rates and speed
limits), but are not allowed to crash into each other or the ego. The Ego, on the
other hand, always drives in the middle lane, aiming to maintain a set cruise
speed. It brakes when necessary to avoid collisions with other vehicles and may
accelerate when needed to reach the target speed. We are interested in generat-
ing test cases to check whether the ego can reach a given destination without
crashing into other vehicles.

We use a discrete model of time, where each transition of the system cor-
responds to a time-lapse of 1 second. A shorter time step would improve the
precision of generated abstract scenarios, however, at the cost of computational
overhead. We found the choice of 1 second time step to be adequate enough for an
e�ective concretization of the abstract scenarios on the real system. We use the
theory of real arithmetic to encode the transition relation of the system, using
mostly linear constraints to compute the updates to the speed and locations of
the vehicles (thanks to the discretization of time). The concrete implementation
of the AI-based vehicle under test in CARLA, instead, is based on the InterFuser
agent [25], taken from CARLA autonomous driving leaderboard database [2].

5.3 Concretizing the contracts on the real system

When checking the contracts de�ned above on the simulation traces produced by
CARLA, we must take into account the fact that the symbolic model provides an
abstract view of the system, in which several details have been omitted. From the
point of view of contract satisfaction, one key di�erence between our symbolic
model and the ground truth is that CARLA gives as output the positions and
dimensions of the bounding boxes of all the agents in the environment at every
time instant in x-y coordinate plane (the vehicle navigation plane), with the
ego always centered at the origin. In contrast, our symbolic model represents
the agents' positions as single points in an absolute coordinate system (with the
origin at the beginning of the road). If we compare only the center of estimated
bounding boxes with the ground truth ones, the contract satisfaction may be
dubious in some cases, e.g. when one or more vertices of the car are in ego's lane
and the center lies in another lane.

12 Goyal, Griggio, and Tonetta

In the following, we describe how the high-level contracts are mapped to
those veri�ed on concrete executions. First, the crash is evaluated by using the
crash sensor mounted on the ego vehicle in CARLA for detecting collisions,
considering only the instances where the ego vehicle collides with a non-ego
vehicle in front. We opt for this method over de�ning collisions using ground-
truth bounding boxes, as the latter caused many false positives due to simulator
inaccuracies. Furthermore, we modify the de�nitions of car_ahead_gt (Eq. (5)),
car_ahead_est (Eq. (11)) and the variables dmin and dmin_est introduced in
�5.1 to account for the change of coordinates and the use of bounding boxes.

Closest distance. The center of the ego vehicle is taken at origin of the
2D plane, with ego being oriented longitudinally towards positive x-axis. Let
vi(j) = (xi,j , yi,j) denote the jth bounding-box vertex of the ith non-ego vehi-
cle; the closest distance dmin of the ego vehicle from the non-ego vehicles is
de�ned as:

(−lane_width/2 ≤ yi,j ≤ lane_width/2) ∧ (xi,j ≥ 0) (16)

dmin = min{xi,j | (xi,j , yi,j) satisfies (16)} (17)

Car ahead of ego. Let nc be the nearest car to ego, de�ned by:

∀i(i = nc) =⇒ ((∃j(xi,j , yi,j) satisfies (16) ∧
∀i, j′ (xi,j′ , yi,j′) satisfies (16)) =⇒ xi,j ≤ xi,j′)

(18)

then the distance to the closest vertex is given by dvmin = d(nc), where the
distance d(i) for the i-th car is de�ned as:

∀i, j . xi,j = d(i) =⇒ ∃j′(xi,j′ , yi,j′) satisfies (16) ∧
xi,j ≥ 0 ∧ ∀j′′ (xi,j′′ ≥ 0→ xi,j ≤ xi,j′′)

(19)

We then de�ne the predicate car_ahead_gt as follows:

(0 ≤ dvmin ≤ δ)←→ car_ahead_gt (20)

where δ is the look-ahead distance of the AI-based perception module, beyond
which it does not detect anything in the environment. 5

5 For InterFuser, this distance is 20 meters, so δ = 20 .

Leveraging Contracts ... in Automated Driving Systems 13

Closest estimated distance. The de�nition of dmin_est is similar to the one
of dmin (Eq. (17)), except that we use the coordinates of the estimated bounding
boxes (xesti,j , yesti,j) and take into account the estimation error ε:

(−lane_width/2 ≤ yesti,j ≤ lane_width/2) ∧ (0 ≤ xesti,j ≤ dvmin + ε) (21)

dmin_est = min{xesti,j | (xesti,j , yesti,j) satisfies (21)} (22)

Car estimate ahead of ego. For all the bounding boxes estimated by the per-
ception module, if there exists a vertex satisfying Eq. (21), while 0 ≤ dvmin ≤ δ,
then the predicate car_ahead_est = >.

6 Experimental Evaluation

In this section, we evaluate our methodology on the ADS application, lever-
aging the VIVAS framework within the CARLA simulator, as detailed in [15].
We have expanded this framework with contract models, re�nement checks, and
monitoring, as discussed earlier. Contract re�nement is checked using OCRA,
employing nuXmv for LTL model checking. Re�nement checks for the speci�ed
contracts and implementations of the Env and Ego components are conducted
using the ic3 algorithm, taking only a few seconds. For abstract scenario gen-
eration, we use Bounded Model Checking (BMC) algorithm of the nuXmv [3]
symbolic model checker. Due to the presence of non-linear constraints in our
symbolic model, speci�cally in computing ego's braking distance, we leverage
the z3 SMT solver [22] for checking the satis�ability of the BMC queries.

Experimentation was carried out on an Intel i7 with NVIDIA GeForce RTX
2080 8GB GPU, meeting the minimum requirements for running CARLA sim-
ulations with AI models. All experiments required approximately 22 hours to
complete. Model checking completed in under 25 seconds on average per abstract
scenario instance, with a timeout of 200 seconds being never reached during our
experiments. However, the main performance bottleneck arose from concrete sce-
nario instantiation in CARLA and subsequent simulations, averaging 4.5 minutes
per scenario. The code and data necessary for reproducing our experiments are
available at https://es-static.fbk.eu/people/sgoyal/sefm24.

6.1 Scenario generation

In order to enumerate abstract scenarios, we followed the same speci�cation
de�ned in [15], which we report here for completeness. We de�ne for each non-
ego car a set of predicates specifying its position relative to the ego, in terms
of occupation of cells of an abstract 3x3 �grid� centered on the ego. We then
de�ne an abstract scenario as a combination of constraints about the di�erent
positions of the non-ego cars on the grid at di�erent points in time (ref. Fig. 3

https://es-static.fbk.eu/people/sgoyal/sefm24

14 Goyal, Griggio, and Tonetta

in [15]). More speci�cally, each abstract scenario is speci�ed as an LTL property
of the following form:

¬F(car1_grid_pos = CELL_A1 ∧ car2_grid_pos = CELL_A2∧
X(F(car1_grid_pos = CELL_B1 ∧ car2_grid_pos = CELL_B2)))

(23)

where cari_grid_pos encodes the position of the i-th non-ego car in the grid
corresponding its cell number. We de�ne our coverage criterion by selecting a
subset of abstract scenarios of interest, consisting of various combinations of
the tra�c situations that can be modeled by positioning the non-ego cars in the
grid around the ego. In total, for the experiments, we de�ned 144 such scenarios,
concretizing them on two weather conditions.

In order to generate a concrete tra�c scenario for the simulator, the abstract
counterexample trace generated by the model checker is parsed for relevant in-
formation to be fed as input to the simulator. As an interface to the CARLA
simulator, we used the CARLA module ScenarioRunner. It takes as input the
route that needs to be followed by AI-based ego and a tra�c scenario composed
of non-egos' behaviors. Every state of the abstract scenario trace is concretized
into the corresponding behavior of every non-ego agent. We do not need to ex-
tract ego's behavior from the abstract trace, since it is expected to make decisions
autonomously in the simulator. Only its initial spawn position and destination
need to be extracted to follow the route. For more details on the experimental
setup for the scenario generation, please refer Sec. 5.1 of [15].

6.2 Evaluating contracts at runtime

The number of contract violations are reported in Table 1, column �Contract
Violations�. In total, we evaluate 288 simulation traces. In case of a crash, the
results are saved only up to its �rst occurrence while rest of the trace is discarded.
We will refer to the methodology in �4.3 to analyze the results from here on.

ADS. The system level contract, i.e., no_crash is violated 62 times. In 3 of these
cases, ego's and all its subcomponents' contracts are true. These cases belong
to the analyses class a.3, implying a mistake in our framework. These scenarios
involve a non-ego unexpectedly rear-ending the ego while attempting to change
lanes, then dragging ego forward from the side. This leads to car_ahead_gt = ⊥
since none of the non-ego's vertices are in front of ego, yet its center moves ahead
of ego (which is not aligned with the driving direction), triggering crash detec-
tion. The issue stems from an incorrect concretization of the crash condition in
the simulator, unaccounted for in our symbolic framework. We should only con-
sider the cases where the ego crashes from the front without any prior collisions.

Env. All the Env's contracts are violated in multiple executions. Since the Env
contracts guarantee the physical laws, we need further analyses: all the violations

Leveraging Contracts ... in Automated Driving Systems 15

Table 1. Analysis of contract violations.

Composite
component

Sub
component

Contracts
Contract
count
(⊥)

Crash
Sequence

(⊥)
ADS no-crash 62 62

ADS
Env

env_safety 10 0
safety_danger 146 0
safety_crash 2 0

Ego collision_avoidance 151 57

ADS.Ego
Perception (7)∧(8) 169 58
Control collision_avoidance_act 127 52

Sequence leading to Crash (Total crashes = 62)

Analysis class (�4.3) Perception Control Perception ∧ Control

a.1 (Ego ∧ ¬Child) 2 0 0

a.2 (¬Ego ∧ ¬Child) 56 52 51

a.3 (¬Ego ∧
∧
Child) - - 0

Avoidable Crashes 1

Fig. 4. Sequence leading to a crash. Fig. 5. Avoidable crash; (left): Bird's-
eye view in CARLA; (right) AI-based
ego's perception component's output.

belong to the class e.2, where, (a) non-egos cut in front of ego in unsafe con-
ditions, violating env_safety and safety_danger, (b) they �rst hit ego from
behind, violating safety_crash. One could add the predicate, car_ahead_gt
in the assumption of former two Env contracts (following e.1), however, that will
weaken the environment guarantees. We leave the contracts of the environment
as they are (without the car_ahead_gt assumption), as they require non-ego
cars to not cut in violating the safety conditions; this can happen in the ground
truth and the monitoring tells us if we are in these violations.

Each simulation trace is at least 30 seconds long. As our formulations ne-
cessitate contract satisfaction throughout execution (using the "Globally" LTL
operator), one single violation would signify a contract violation. Given that a
scenario encompasses various tra�c con�gurations around the ego vehicle, mon-
itoring child components across the entire simulation trace becomes impractical,
especially in crash scenarios. Our focus lies in identifying the speci�c situations
leading to a crash and attributing failure to the responsible component(s).

16 Goyal, Griggio, and Tonetta

Evaluating contracts violated in the sequence leading up to crash.

Many component violations are not linked to crash situations. In order to better
localize the cause of crashes, we consider the contract violations only during the
last sequence of time instances before the crash where danger_gt = > consecu-
tively. To be more precise, we consider the conditions inside the G operator of
contracts and check their violation on the time sequence from tk−n to tk , where
tk is the crash state and tk−n is the �rst danger state in the sequence (see Fig.
4). The results are reported in column �Crash Sequence� of Table 1. None of
the Env contracts are violated during this sequence, implying that our assump-
tions on the environment are correct. Note that two global contract violations
of safety_crash are not taken in account since danger_gt = ⊥ in those cases.

Ego. We further analyze contract violations of Ego and its subcomponents ac-
cording to our classes, shown in Table 1. Class a.1 : two cases of perception failure,
not resulting in ego's violation; a.2 : pinpoints the bug in both the perception
and control subcomponents; a.3 : implies no fault in the framework.

Avoidable Crashes. If safe_condition = > (Eq. (13)) at any time instant in any
sequence leading to a crash, ego vehicle has the possibility to brake and avoid
the crash. Out of 62 crashes, we found 1 case where ego had this possibility.
Fig. 5 shows snapshot of crash from Carla simulator, with wrongly estimated
non-ego's location and safe trajectory by InterFuser on the right.

6.3 Updating re�nements

In Table 1, the control contract is violated in the majority of situations, though
not at the same time instants as the perception's violations, since danger sit-
uation is a conjunction of the correct detection of non-egos in front and their
closest distance from the ego. We need to further analyze such erratic behavior
of the controller, since it bases its decision on the AI module's state estimations.

Further analysis of the AI module revealed its role in predicting the ego's
next 10 waypoints based on a coarse input route, estimating a collision-free dis-
tance (called �safe distance� by its designers) for the ego to drive forward. This
distance guides the ego's collision avoidance maneuvers. However, the AI may
predict a collision-free trajectory in situations where, for example, a non-ego
is between two lanes. Despite this conservative approach, we argue that an au-
tonomous vehicle should still apply the brakes in such scenarios. While violations
of the Ego's contract may not always result in a system-level crash, if they do, we
can identify the failure source. To formalize this, we decompose the ego's con-
trol component into planner and decision subcomponents (Fig. 6). Therefore,
the contract collision_avoidance_act is further re�ned by the contracts of
planner and decision (Planner.plan and Decision.brake, respectively).

Planner: The role of the planner is to mimic the black-box of AI-based ego's
module which computes the �safe distance�, dmin_AI . At the symbolic level, this

Leveraging Contracts ... in Automated Driving Systems 17

Fig. 6. Re�nement of Control component.

distance is computed by the model checker in such a way that its value satis�es
the contract plan in Eq. (25), always guaranteeing the detection of a dangerous
situation, danger_AI , if danger_est = >.

danger_AI := dmin_AI <= (braking_distance+ 1)

danger_est := ((car_ahead_est) ∧ (ego.velocity.x > 0) ∧
(dmin_est <= (braking_distance+ 1)))

(24)

plan : G(danger_est→ danger_AI) (25)

brake : G(danger_AI → ego.brake) (26)

Decision: Input to this component is dmin_AI computed by the planner com-
ponent. The output is ego.brake which is subsequently propagated upstream
to its composite component, control, and then further up to the level of Ego
and Env. This contract (Eq. (26)) always guarantees that the braking occurs
whenever danger_AI = >.

6.4 Pinpointing Failure

Table 2 shows the violations of control contract's re�nements, across all exe-
cutions and crash sequences. Analyzing these based on our classi�cation, a.1 :
no violations (empty set); a.2 : pinpoints the source of failure to (a) the deci-
sion component, which failed to apply brakes despite the AI module detecting a
dangerous situation, and (b) the planner component, implying incorrect compu-
tation of dmin_AI by the AI module, despite correctly estimating the objects
ahead in the ego vehicle's lane. These errors occur when the lateral positions
and/or orientations of non-egos are not estimated correctly, particularly when
only part of the non-ego vehicle is within the ego's lane.

18 Goyal, Griggio, and Tonetta

Table 2. Analysis of Control contract violations.

Composite
component

Sub
component

Contracts
Contract
count(⊥)

Crash
Sequence(⊥)

ADS.Ego.Control
Planner plan 123 50
Decision brake 105 45

Sequence leading to Crash (Total crashes = 62)

Analysis class (�4.3) Planner Decision Planner ∧ Decision

a.1: (Control ∧ ¬Child) 0 0 0

a.2: (¬Control ∧ ¬Child) 49 44 41

a.3: (¬Control ∧
∧
Child) - - 0

7 Conclusions and Future Work

In this paper, we have proposed an integration of contract-based design with test
case generation for the system-level simulation-based veri�cation of automated
driving systems. System-level properties of the automated cars are decomposed
into contracts of the ego components and assumptions on the environment. We
introduced a methodology that leverages formal methods for contract reasoning
to monitor the properties on the simulation executions to better diagnose issues
in the autonomous system, and iteratively re�ne the contracts speci�cation. Our
experiments, conducted using the CARLA simulator and o�-the-shelf AI agents,
have provided empirical evidence of the e�ectiveness of contract-based re�ne-
ment and runtime monitoring in enhancing the veri�cation of ADS components.

There are several directions for future research and development. For exam-
ple, we will explore the scalability and applicability of our approach to more
complex ADS architectures and scenarios. Moreover, we will explore ways to
incorporate uncertainty quanti�cation methods into the contracts speci�cation.

References

1. Astorga, A., Hsieh, C., Madhusudan, P., Mitra, S.: Perception Contracts for Safety
of ML-Enabled Systems. Proc. ACM Program. Lang. 7(OOPSLA2) (oct 2023).
https://doi.org/10.1145/3622875

2. CARLA Team: CARLA Autonomous Driving Leaderboard. https:

//leaderboard.carla.org/leaderboard/, accessed: 2023-08-30

3. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv Symbolic Model Checker. In:
CAV. LNCS, vol. 8559, pp. 334�342. Springer (2014). https://doi.org/10.1007/
978-3-319-08867-9_22

4. Chen, D., Krahenbuhl, P.: Learning from All Vehicles. In: CVPR. pp. 17201�17210.
IEEE (jun 2022). https://doi.org/10.1109/CVPR52688.2022.01671

5. Cimatti, A., Tonetta, S.: Contracts-re�nement Proof System for Component-based
Embedded Systems. Science of Computer Programming 97, 333�348 (Jan 2015).
https://doi.org/10.1016/j.scico.2014.06.011

https://doi.org/10.1145/3622875
https://doi.org/10.1145/3622875
https://leaderboard.carla.org/leaderboard/
https://leaderboard.carla.org/leaderboard/
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1109/CVPR52688.2022.01671
https://doi.org/10.1109/CVPR52688.2022.01671
https://doi.org/10.1016/j.scico.2014.06.011
https://doi.org/10.1016/j.scico.2014.06.011

Leveraging Contracts ... in Automated Driving Systems 19

6. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: A Tool for Checking the Re�nement
of Temporal Contracts. In: ASE. vol. 4144, pp. 702�705. IEEE/ACM (Nov 2013).
https://doi.org/10.1109/ase.2013.6693137

7. Cimatti, A., Tonetta, S.: A Property-Based Proof System for Contract-Based De-
sign. In: 2012 38th Euromicro Conference on Software Engineering and Advanced
Applications. pp. 21�28. IEEE (Sep 2012). https://doi.org/10.1109/seaa.2012.
68

8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge,
MA, USA (2000)

9. DeCastro, J.A., Liebenwein, L., Vasile, C.I., Tedrake, R., Karaman, S., Rus,
D.: Counterexample-Guided Safety Contracts for Autonomous Driving. In: Al-
gorithmic Foundations of Robotics XIII. p. 939�955. Springer (2020). https:

//doi.org/10.1007/978-3-030-44051-0_54

10. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An Open
Urban Driving Simulator. In: Levine, S., Vanhoucke, V., Goldberg, K. (eds.) Pro-
ceedings of the 1st Annual Conference on Robot Learning. PMLR, vol. 78, pp.
1�16 (13�15 Nov 2017). https://doi.org/10.48550/arXiv.1711.03938

11. Dreossi, T., Fremont, D.J., Ghosh, S., Kim, E., Ravanbakhsh, H., Vazquez-
Chanlatte, M., Seshia, S.A.: VerifAI: A Toolkit for the Formal Design and Analysis
of Arti�cial Intelligence-Based Systems. In: Dillig, I., Tasiran, S. (eds.) CAV. pp.
432�442. Springer (2019). https://doi.org/10.1007/978-3-030-25540-4_25

12. Fratini, S., Fleith, P., Policella, N., Griggio, A., Tonetta, S., Goyal, S., Le,
T.T.H., Kimblad, J., Tian, C., Kapellos, K., et al.: Veri�cation and Valida-
tion of Autonomous Systems with Embedded AI: The VIVAS Approach. In:
ASTRA. ESA (2023), https://az659834.vo.msecnd.net/eventsairwesteuprod/
production-atpi-public/070740b67e5b4a32a9be94228c9ac40d

13. Fremont, D.J., Kim, E., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli,
A.L., Seshia, S.A.: Scenic: A Language for Scenario Speci�cation and Data Gen-
eration. Machine Learning 112(10), 3805�3849 (feb 2022). https://doi.org/10.
1007/s10994-021-06120-5

14. Ghosh, S., Sadigh, D., Nuzzo, P., Raman, V., Donzé, A., Sangiovanni-Vincentelli,
A.L., Sastry, S.S., Seshia, S.A.: Diagnosis and repair for synthesis from signal
temporal logic speci�cations. In: HSCC. pp. 31�40. HSCC'16, ACM (Apr 2016).
https://doi.org/10.1145/2883817.2883847

15. Goyal, S., Griggio, A., Kimblad, J., Tonetta, S.: Automatic Generation of Scenarios
for System-level Simulation-based Veri�cation of Autonomous Driving Systems. In:
FMAS@iFM. EPTCS, vol. 395, pp. 113�129 (2023). https://doi.org/10.4204/
EPTCS.395.8

16. Ivanov, R., Jothimurugan, K., Hsu, S., Vaidya, S., Alur, R., Bastani, O.: Composi-
tional Learning and Veri�cation of Neural Network Controllers. ACM Trans. Em-
bed. Comput. Syst. 20(5s), 1�26 (sep 2021). https://doi.org/10.1145/3477023

17. Leucker, M., Schallhart, C.: A brief account of runtime veri�cation. The Journal of
Logic and Algebraic Programming 78(5), 293�303 (2009). https://doi.org/10.
1016/j.jlap.2008.08.004

18. Liu, S., Saoud, A., Jagtap, P., Dimarogonas, D.V., Zamani, M.: Compositional
Synthesis of Signal Temporal Logic Tasks via Assume-Guarantee Contracts. In:
CDC. IEEE (dec 2022). https://doi.org/10.1109/cdc51059.2022.9992715

19. Majumdar, R., Mathur, A., Pirron, M., Stegner, L., Zu�erey, D.: Paracosm: A test
framework for autonomous driving simulations. In: Guerra, E., Stoelinga, M. (eds.)
FASE. Springer (2021). https://doi.org/10.1007/978-3-030-71500-7_9

https://doi.org/10.1109/ase.2013.6693137
https://doi.org/10.1109/ase.2013.6693137
https://doi.org/10.1109/seaa.2012.68
https://doi.org/10.1109/seaa.2012.68
https://doi.org/10.1109/seaa.2012.68
https://doi.org/10.1109/seaa.2012.68
https://doi.org/10.1007/978-3-030-44051-0_54
https://doi.org/10.1007/978-3-030-44051-0_54
https://doi.org/10.1007/978-3-030-44051-0_54
https://doi.org/10.1007/978-3-030-44051-0_54
https://doi.org/10.48550/arXiv.1711.03938
https://doi.org/10.48550/arXiv.1711.03938
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-030-25540-4_25
https://az659834.vo.msecnd.net/eventsairwesteuprod/production-atpi-public/070740b67e5b4a32a9be94228c9ac40d
https://az659834.vo.msecnd.net/eventsairwesteuprod/production-atpi-public/070740b67e5b4a32a9be94228c9ac40d
https://doi.org/10.1007/s10994-021-06120-5
https://doi.org/10.1007/s10994-021-06120-5
https://doi.org/10.1007/s10994-021-06120-5
https://doi.org/10.1007/s10994-021-06120-5
https://doi.org/10.1145/2883817.2883847
https://doi.org/10.1145/2883817.2883847
https://doi.org/10.4204/EPTCS.395.8
https://doi.org/10.4204/EPTCS.395.8
https://doi.org/10.4204/EPTCS.395.8
https://doi.org/10.4204/EPTCS.395.8
https://doi.org/10.1145/3477023
https://doi.org/10.1145/3477023
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1109/cdc51059.2022.9992715
https://doi.org/10.1109/cdc51059.2022.9992715
https://doi.org/10.1007/978-3-030-71500-7_9
https://doi.org/10.1007/978-3-030-71500-7_9

20 Goyal, Griggio, and Tonetta

20. Mallozzi, P., Incer, I., Nuzzo, P., Sangiovanni-Vincentelli, A.: Contract-based Spec-
i�cation Re�nement and Repair for Mission Planning. In: FormaliSE. vol. 45,
pp. 29�38. IEEE (May 2023). https://doi.org/10.1109/formalise58978.2023.
00011

21. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag New York, Inc., New York, NY, USA (1992)

22. de Moura, L., Bjørner, N.: Z3: An E�cient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS. pp. 337�340. Springer (2008). https://doi.org/10.1007/
978-3-540-78800-3_24

23. P s reanu, C.S., Mangal, R., Gopinath, D., Getir Yaman, S., Imrie, C., Calinescu,
R., Yu, H.: Closed-Loop Analysis of Vision-Based Autonomous Systems: A Case
Study. In: Enea, C., Lal, A. (eds.) CAV. pp. 289�303. LNCS, Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-37706-8_15

24. Phan-Minh, T.: Contract-Based Design: Theories and Applications. Ph.D. thesis,
California Institute of Technology (2021)

25. Shao, H., Wang, L., Chen, R., Li, H., Liu, Y.: Safety-Enhanced Autonomous Driv-
ing Using Interpretable Sensor Fusion Transformer. In: Liu, K., Kulic, D., Ich-
nowski, J. (eds.) Proceedings of The 6th Conference on Robot Learning. PMLR,
vol. 205, pp. 726�737 (14�18 Dec 2023). https://doi.org/10.48550/arXiv.2207.
14024

26. Sharf, M., Besselink, B., Molin, A., Zhao, Q., Henrik Johansson, K.: Assume/Guar-
antee Contracts for Dynamical Systems: Theory and Computational Tools. IFAC-
PapersOnLine 54(5), 25�30 (2021). https://doi.org/10.1016/j.ifacol.2021.
08.469, 7th IFAC Conference on Analysis and Design of Hybrid Systems ADHS
2021

27. Vin, E., Kashiwa, S., Rhea, M., Fremont, D.J., Kim, E., Dreossi, T., Ghosh, S., Yue,
X., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: 3D Environment Modeling for Falsi-
�cation and Beyond with Scenic 3.0. In: Enea, C., Lal, A. (eds.) CAV. pp. 253�265.
LNCS, Springer, Cham (2023). https://doi.org/10.1007/978-3-031-37706-8_
13

28. Wu, P., Jia, X., Chen, L., Yan, J., Li, H., Qiao, Y.: Trajectory-guided Control
Prediction for End-to-end Autonomous Driving: A Simple yet Strong Baseline.
In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.)
Advances in NeurIPS. vol. 35, pp. 6119�6132. Curran Associates, Inc. (2022).
https://doi.org/10.48550/arXiv.2206.0812

https://doi.org/10.1109/formalise58978.2023.00011
https://doi.org/10.1109/formalise58978.2023.00011
https://doi.org/10.1109/formalise58978.2023.00011
https://doi.org/10.1109/formalise58978.2023.00011
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-031-37706-8_15
https://doi.org/10.1007/978-3-031-37706-8_15
https://doi.org/10.48550/arXiv.2207.14024
https://doi.org/10.48550/arXiv.2207.14024
https://doi.org/10.48550/arXiv.2207.14024
https://doi.org/10.48550/arXiv.2207.14024
https://doi.org/10.1016/j.ifacol.2021.08.469
https://doi.org/10.1016/j.ifacol.2021.08.469
https://doi.org/10.1016/j.ifacol.2021.08.469
https://doi.org/10.1016/j.ifacol.2021.08.469
https://doi.org/10.1007/978-3-031-37706-8_13
https://doi.org/10.1007/978-3-031-37706-8_13
https://doi.org/10.1007/978-3-031-37706-8_13
https://doi.org/10.1007/978-3-031-37706-8_13
https://doi.org/10.48550/arXiv.2206.0812
https://doi.org/10.48550/arXiv.2206.0812

	Leveraging Contracts for Failure Monitoring and Identification in Automated Driving Systems

