
A Practical Approach to SMT(LA(Z))

Alberto Griggio

FBK-IRST, Trento, Italy. griggio@fbk.eu

Abstract

We present a detailed description of a theory solver for Linear Integer
Arithmetic (LA(Z)) in a lazy SMT context. Rather than focusing on a sin-
gle technique that guarantees theoretical completeness, the solver makes ex-
tensive use of layering and heuristics for combining different techniques in
order to achieve good performance in practice. The viability of our approach
is demonstrated by an empirical evaluation on a wide range of benchmarks,
showing significant performance improvements over current state-of-the-art
solvers.

1 Introduction

Due to its many important applications, Linear Arithmetic is one of the most well-
studied theories in SMT. In particular, current state-of-the-art SMT solvers are very
effective in dealing with quantifier-free formulas over Linear Rational Arithmetic
(LA(Q)), incorporating very efficient decision procedures for it [6, 8]. However,
support for Linear Integer Arithmetic (LA(Z)) is not as mature yet. Although sev-
eral SMT solvers support LA(Z), experiments show that they are not very good at
handling LA(Z)-formulas which require a significant amount of integer reasoning
(that is, formulas for which a LA(Q)-model with non-integer values can be easily
found), and that they can easily get lost in searching for a solution of small and
apparently-simple problems. In our opinion, as recently observed also in [5], this
indicates that the theory solvers for LA(Z) currently used (e.g. [7, 11]), although
theoretically complete, are not very robust in practice.

In this paper, we present a new theory solver for LA(Z) which explicitly fo-
cuses on achieving good performance on practical examples. They key feature of
our solver is an extensive use of layering and heuristics for combining different
known techniques, in order to exploit the strengths and overcome the limitations
of each of them. Such approach was inspired by the work on (Mixed) Integer Lin-
ear Programming solvers, in which heuristics play a crucial role for performance
[1]. We give a detailed description of the main techniques that we have imple-
mented, and discuss issues and choices for an efficient integration of the solver in
a lazy SMT system based on the DPLL(T) architecture. Finally, we demonstrate

1

the viability of our approach by evaluating our implementation on a wide range of
benchmarks, showing significant performance improvements over current state-of-
the-art solvers.

The rest of the paper is organized as follows. In §2 we describe the general
architecture of our LA(Z)-solver and the relationships among its different mod-
ules. Details about the two main modules are then given in §3 and §4. In §5 we
describe the experimental evaluation, and in §6 we conclude. Due to the scope of
the workshop and to lack of space, we shall assume familiarity with the DPLL(T)
architecture and the concepts and terminology commonly used in lazy SMT, which
can be found e.g. in [13].

2 General Architecture

Figure 1 shows an outline of the general architecture of the LA(Z)-solver.

Internal
Branch and Bound

Branch and Bound
lemmas generator

LA(Z)-solver

3

DPLL

21

2LA(Q)-solver

3no conflict
trail simplifications

4 conflict
5

5

timeout

Branch and Bound-lemma

1
Diophantine

equations handler

4

1

conflict

LA(Z)-conflict

no conflict
equality elimination

no conflict

LA(Z) model

conflict

LA(Z) model

sat

Figure 1: Architecture of the LA(Z)-solver.

The solver is or-
ganized as a layered
hierarchy of submod-
ules, with cheaper (but
less powerful) ones
invoked earlier and
more often. The
general strategy used
for checking the con-
sistency of a set of
LA(Z)-constraints is
as follows.

First, the real re-
laxation of the prob-
lem is checked, us-
ing a Simplex-based
LA(Q)-solver similar to that described in [6]. If no conflict is detected, the model
returned by the LA(Q)-solver is examined to check whether all integer variables
are assigned to an integer value. If this happens, the LA(Q)-model is also a
LA(Z)-model, and the solver can return sat.

Otherwise, the specialized module for handling linear Diophantine equations
is invoked. This module is similar to the first part of the Omega test described in
[11]: it takes all the equations in the input problem, and tries to eliminate them by
computing a parametric solution of the system and then substituting each variable
in the inequalities with its parametric expression. If the system of equations is
infeasible in itself, this module is also able to detect the inconsistency.

Otherwise, the inequalities obtained by substituting the variables with their
parametric expressions are normalized, tightened and then sent to the LA(Q)-
solver, in order to check the LA(Q)-consistency of the new set of constraints.

2

If no conflict is detected, the branch and bound module is invoked, which tries
to find a LA(Z)-solution via branch and bound [12]. This module is itself di-
vided into two submodules operating in sequence. First, the “internal” branch and
bound module is activated, which performs case splits directly within the LA(Z)-
solver. The internal search is performed only for a bounded (and small) number
of branches, after which the “external” branch and bound module is called. This
works in cooperation with the DPLL engine, using the “splitting on-demand” ap-
proach of [2]. Splitting on-demand is also used for handling disequalities, by gen-
erating a lemma (t1 6= t2) → (t1 < t2) ∨ (t1 > t2) for each disequality (t1 6= t2)
sent to the LA(Z)-solver.

3 Equality Elimination

The module for handling systems of LA(Z) equations (commonly called Diophan-
tine equations) implements a procedure that closely resembles the equality elimi-
nation step of the Omega test [11].

Given a system E
def
= {

∑n
i=1 ajixi + cj = 0}mj=1 of m equations over n vari-

ables, it tries to solve it by performing a sequence of variable elimination steps
using the procedure described in Algorithm 1. The algorithm runs in polynomial
time [11], and can be easily made incremental.

If Algorithm 1 returns unsat, the LA(Z)-solver can return unsat. If it returns
sat, instead, S can be used to eliminate all the equalities from the problem, using
each equation ej of S as a substitution xj 7→

∑
i 6=j aijxi + cj .

This elimination might make possible to tighten some of the new inequalities
generated. Given an inequality such that the GCD g of the ai’s does not divide
the constant c, a tightening step [11] consists in rewriting it into

∑
i
ai
g xi ≤ b c

g c.
Tightening is important because it might allow the LA(Q)-solver to detect more
conflicts.

From the point of view of the implementation, the communication between the
Diophantine equation handler and the LA(Q)-solver is made possible by the fact
that, differently from what is described in [6], our LA(Q)-solver does not assume
that only elementary bounds of the form (x ≤ c) are asserted and retracted during
search, but rather it supports the addition and deletion of arbitrary constraints. 1

Generating explanations for conflicts and substitutions. An important capabil-
ity of the Diophantine equations handler is its ability to produce explanations for
conflicts, expressed in terms of a subset of the input equations. This is needed not
only when an inconsistency is detected by Algorithm 1 directly (in order to return
to DPLL the corresponding LA(Z)-conflict clause), but also when an inconsis-
tency is detected by the LA(Q)-solver after the elimination of the equalities and

1The distinction between tableau equations and elementary bounds introduced in [6] is still used,
but such transformation is performed internally in the LA(Q)-solver rather than at preprocessing
time [9].

3

Algorithm 1: Solving a system of linear Diophantine equations
Input: a system of Diophantine equations E.
Output: a parametric solution S for E, or unsat if E is inconsistent.

1. Let F = E,S = ∅.

2. If F is empty, the system is consistent; return sat with S as a solution.

3. Rewrite all equations eh
def
=

∑
i ahixi + ch = 0 in F such that the GCD g of

ah1, . . . , ahn, ch is greater than 1 into e′h
def
=

∑
i
ahi

g xi +
ch
g = 0.

4. If there exists an equation eh
def
=

∑
i ahixi + ch = 0 in F such that the GCD of the

ahi’s does not divide ch, then F is inconsistent (see, e.g., [11]); return unsat.

5. Otherwise, let eh
def
=

∑
i ahixi + ch = 0 be an equation, and let ahk be the non-zero

coefficient with the smallest absolute value in eh.

6. If |ahk| = 1, then eh can be rewritten as

−xk +
∑
i 6=k

−sign(ahk)ahixi − sign(ahk)ch = 0,

where sign(ahk)
def
=

ahk
|ahk|

. Then, remove eh from F , add it to S, and replace xh

with
∑

i 6=k −sign(ahk)ahixi − sign(ahk)ch in all the other equations of F .

7. If |ahk| > 1, then rewrite eh as

ahkxk +
∑
i 6=k

(ahka
q
hi + arhi)xi + (ahkc

q
h + crh) = 0 ≡

ahk · (xk +
∑
i 6=k

aqhixi + cqh) + (
∑
i 6=k

arhixi + crh) = 0.

where aqhi and arhi are respectively the quotient and the remainder of the division of
ahi by ahk (and similarly for cqh and crh). Create a fresh variable xt, and add to S
the equation

−xk +
∑
i 6=k

−aqhixi − cqh + xt = 0.

Then, replace xk with
∑

i 6=k −aqhixi − cqh + xt in all the equations of F .

8. Go to Step 2.

the tightening of the inequalities, in order to express the conflict clause in terms of
constraints that are known to the DPLL engine.

In order to generate explanations, we introduce a special label variable lj for
each input equation ej , which we use to keep track of the operations performed in
the various steps of Algorithm 1. Each input equation ej

def
= (

∑
i aijxi + cj = 0)

becomes (lj +
∑

i aijxi + cj = 0). Each equation generated during a run of
Algorithm 1 (in Steps 3, 6 and 7) is then of the form (

∑
k bkjlk +

∑
i aijxi + cj =

4

0). When inconsistency is detected (Step 4), an explanation can be generated by
simply taking each input equation ej whose lable variable lj occurs with non-zero
coefficient in the conflicting equation. In fact, the expression

∑
k bkjlk constitutes

a proof of unsatisfiability of the system of equations, which tells us exactly how to
combine the input equations in order to obtain an inconsistency. Explanations for
the equations ej in the solution S returned when no inconsistency is detected are
generated in the same way.

For lack of space, we can not provide the details of how to extend the Steps of
Algorithm 1 in order to take into account label variables. For this, we refer to [9],
where the procedure is formally described and proved correct.

4 Branch and Bound

When the equality elimination and tightening step does not lead to an inconsis-
tency, the branch and bound module is activated. This module works by scanning
the model produced by the LA(Q)-solver in order to find integer variables that
were assigned to a rational non-integer constant. If no such variable is found, then
the LA(Q)-model is also a LA(Z)-model, and the solver returns sat. Otherwise,
let xk be an integer variable to which the LA(Q)-solver has assigned a non-integer
value qk. Then, the branch and bound module (recursively) divides the problem in
two subproblems obtained by adding respectively the constraints (xk ≤ bqkc) and
(xk ≥ dqke) to the original formula, until either a LA(Z)-model is found by the
LA(Q)-solver, or all the subproblems are proved unsatisfiable.

A popular approach for implementing this is to apply the “splitting on-demand”
technique introduced in [2], by generating the LA(Z)-lemma (xk ≤ bqkc)∨(xk ≥
dqke), and sending it back to the DPLL engine. The idea is that of exploiting the
DPLL engine for the exploration of the branches introduced by branch and bound,
rather than handling the case splits within the LA(Z)-solver. This not only sim-
plifies the implementation, since there is no need of implementing support for dis-
junctive reasoning within the LA(Z)-solver, but it also allows to take advantage for
free of all the advanced techniques (like conflict-driven backjumping and learning)
for search-space pruning implemented in modern DPLL engines.

However, using splitting on-demand has also some drawbacks. The first is that
it does not easily allow to fully exploit the equality elimination and tightening step
described in the previous section. Eliminating equalities introduces new integer
variables and generates new inequalities which are local to the current LA(Z)-
solver call, and unknown to the DPLL engine. If we generate branch-and-bound
lemmas from such internal state of the LA(Q)-solver, there is a high risk that the
generated lemmas will be only locally useful, since in our current implementation
the tightened inequalities and the variables generated by the Diophantine equation
handler are discarded upon backtracking. In fact, this is a more general problem of
the splitting on-demand approach, even if no equality elimination is involved: the
generation of all branch-and-bound lemmas is aimed at finding a LA(Z)-model for

5

the set of constraints in the current DPLL branch, and the lemmas might cease to
be useful after backtracking.

A second issue is that of non-chronological backtracking. While this feature
is crucial for the performance of modern DPLL-based SAT solvers as it in gen-
eral allows to significantly prune the search space, as already observed in [13] in
an SMT context it might sometimes hurt performance, in particular for satisfiable
problems. Suppose that the conjunction of constraints µ corresponding to the cur-
rent branch is LA(Z)-satisfiable, but the current LA(Q)-model value qk for the
integer variable xk is not an integer, and suppose that adding (xk ≥ dqke) al-
lows the LA(Q)-solver to find a LA(Z)-model, but adding (xk ≤ bqkc) results
in a LA(Q)-inconsistency. Then, if DPLL branches on (xk ≤ bqkc) first, non-
chronological backtracking might undo the assignments of a (potentially large)
subset of the literals in µ, which would then have to be re-assigned and re-sent to
the LA(Q)-solver. In the worst case, after backjumping DPLL might flip the truth
value of some of the literals in µ, possibly resulting in more conflicts before finding
the LA(Z)-consistent truth-assignment µ again.

Finally, the use of splitting on-demand makes it more complex to use dedicated
heuristics for exploring the branch-and-bound search tree. It is well-known in the
Integer Programming community that a careful selection of the variables on which
to perform case splits, based on information provided by the LA(Q)-solver, can
have a significant impact on performance (see e.g. [1]). With splitting on-demand,
such heuristics would need to be integrated with those commonly used in DPLL,
which might not be straightforward.

In order to address the above issues, we have implemented a mechanism to
handle the branch-and-bound search within the LA(Z)-solver itself, without the
intervention of the DPLL engine. This “internal” branch and bound submodule is
invoked only for a bounded (and small) number of case splits, and does not per-
form any non-chronological backtracking. In our experiments, we have seen that
for many satisfiable problems only a few branch-and-bound case splits are enough
to find a LA(Z)-model, especially if the “right” variables are selected. Perform-
ing such case splits internally makes it much easier to implement different heuris-
tics for variable selection. In our current implementation, we use a history-based
greedy strategy, which selects the variable that resulted in the minimum number
of violations of integrality constraints in the previous branches, inspired by the
“pseudocost branching” rule described in [1]. More specifically, let nl

k and nr
k be

respectively the number of left and right branches on the variable xk in the the
branch and bound search, 2 and let (glk)i and (grk)i be respectively the number of
integer variables with non-integer value after having performed the i-th left (resp.
right) branch on xk. Then, the score of xk is defined as the minimum between

(
∑nl

k
i=1(g

l
k)i)/n

l
k and (

∑nr
k

i=1(g
r
k)i)/n

r
k, and our heuristic always selects the vari-

able with the smallest score.
Finally, another advantage of using an internal branch and bound search is

2Here, we call left branch the branch on (xk ≤ bqkc), and right branch that on (xk ≥ dqke).

6

that it also allows to perform some simplifications of the current set of constraints
(before starting the internal branching) which can significantly help in finding a
LA(Z)-model. In particular, we currently try to detect and remove redundant con-
straints from the LA(Q)-solver before starting the branch-and-bound search.

If the “internal” branch and bound finds a conflict, an explanation can be easily
generated by resolution. If the limit on the number of case splits is reached, then
the splitting on-demand approach is used, generating a branch-and-bound lemma
and sending it to the DPLL engine. This allows us to keep the good features of the
splitting on-demand approach for problems that cannot be easily solved with a few
branch-and-bound case splits.

Adding cuts from proofs. An important point to highlight is that branch and
bound might fail to terminate (continuing to generate new branch-and-bound lem-
mas) if the input problem contains some unbounded variable. Although theoreti-
cally it is possible to statically determine bounds for all unbounded variables and
thus to make branch and bound complete [12], such theoretical bounds would be
so large to have no practical value [7].

A common approach for overcoming this limitation is that of complementing
branch and bound with the generation of cutting planes [1, 12], which are inequal-
ities that exclude some LA(Q)-models of the current set of constraints without
losing any of its LA(Z)-models. In particular, Gomory’s cutting planes (Gomory
cuts) are very often used in practice [7, 1].

In our LA(Z)-solver, instead, we follow a different approach, which has been
recently proposed in [5] and shown to outperform SMT solvers based on branch
and bound with Gomory cuts. The idea of the algorithm is that of extending the
branch and bound approach to split cases not only on individual variables, but
also on more general linear combinations of variables, thus generating lemmas like
(
∑

k akxk ≤ bqkc) ∨ (
∑

k akxk ≥ dqke). Such “extended” branches are com-
puted from proofs of unsatisfiability of particular systems of Diophantine equa-
tions, which in [5] are generated by computing Hermite Normal Forms [12]. In
our solver, instead, we can reuse the module for handling Diophantine equations,
thanks to its proof-production capability. This makes the implementation very sim-
ple.

For lack of space, we can not provide the full details of the algorithm, and we
refer to [5] for more information. Here we only mention that, as already observed
in [5], we found that in practice it is a good idea to interleave the generation of
“extended” branches with that of “regular” branches on individual variables. Cur-
rently, we use a simple heuristic in which an extended branch is tried only after
two regular branches. The investigation of alternative strategies is part of ongoing
and future work.

Despite the fact that also this method is incomplete unless bounds for all vari-
ables are determined a priori, in [5] it was shown to be much more effective than
standard branch and bound in practice.

7

5 Experiments

We have implemented the LA(Z)-solver presented here within our new SMT solver
MATHSAT5. In this section, we experimentally evaluate its performance. We have
run the experiments on a machine with a 2.6 GHz Intel Xeon processor, 16 GB of
RAM and 6 MB of cache, running Debian GNU/Linux 5.0. We have used a time
limit of 600 seconds and a memory limit of 2 GB.

Description of the benchmark instances. The SMT-LIB 3 would have been
a natural source of benchmarks for our evaluation, since it contains over 3900
problems in the QF LIA (quantifier-free LA(Z)) logic. Unfortunately however,
from our experience almost all of those problems require virtually no reasoning
over the integers: the unsatisfiable ones are unsatisfiable also in LA(Q), and for
the satisfiable ones the first model found by the LA(Q)-solver is already a LA(Z)-
model. Notable exceptions are the instances in the rings family, which do require
integer reasoning. However, such instances can be greatly simplified by applying
some preprocessing techniques on term-level if-then-else constructs [10].

Therefore, we have decided to use the following families of benchmarks, not
(yet) included in the SMT-LIB:

BV have been obtained by encoding in SMT(LA(Z)) some bit-vector formulas
from the SMT-LIB, using the encoding of [3].4 Most of the instances are
satisfiable.

CAV09 are the randomly-generated conjunctions of LA(Z)-inequalities which
were used in [5]. Most of the instances are satisfiable.

CUT LEMMAS are crafted instances encoding the LA(Z)-validity of some cut-
ting planes. All the instances are unsatisfiable.

RINGS are preprocessed versions of the rings instances in the SMT-LIB, in
which all the term-level if-then-else constructs have been eliminated in a
simple way, 5 in order to prevent the application of the preprocessing tech-
nique of [10]. All the instances are unsatisfiable.

Evaluation. In the first part of our evaluation, we compare MATHSAT5 with
state-of-the-art SMT solvers for LA(Z), namely SATEEN [10] (winner of the 2009
SMT-COMP competition on QF LIA), Z3 [4] (winner of 2008 6) and YICES2
(the new version of the popular YICES solver [6]). 7 The results are collected
in Figure 2. The plots show the accumulated time (on the X axis) for solving

3http://smtlib.org
4The non-easily-linearizable operators have been replaced with fresh variables.
5Each ite(c, t, e) has been replaced by a fresh variable v, and the constraint (c → v = t)∧(¬c →

v = e) has been added to the formula.
6We have however used version 2.4 of Z3, which is newer than the one of SMT-COMP’08.
7We would have liked to compare also with the tool of [5], but it was not possible to obtain it.

8

 50
 100
 150
 200
 250
 300

 0.01 0.1 1 10 100 1000

of

 in
st

an
ce

s

time

BV benchmarks

mathsat5
yices2

z3
sateen

 0
 100
 200
 300
 400
 500

 0.01 0.1 1 10 100 1000 10000

of

 in
st

an
ce

s

time

CAV09 benchmarks

mathsat5
yices2

z3
sateen

 10
 20
 30
 40
 50
 60
 70
 80
 90

 0.01 0.1 1 10 100 1000

of

 in
st

an
ce

s

time

CUT_LEMMAS benchmarks

mathsat5
yices2

z3
sateen

 50
 100
 150
 200
 250

 0.01 0.1 1 10 100 1000

of

 in
st

an
ce

s

time

RINGS benchmarks

mathsat5
yices2

z3
sateen

 0
 200
 400
 600
 800

 1000
 1200

 0.01 0.1 1 10 100 1000 10000

of

 in
st

an
ce

s

time

ALL benchmarks

mathsat5
yices2

z3
sateen

Solver # solved total time
MATHSAT5 1281 / 1312 8677.80
YICES2 928 / 1312 25421.15
Z3 887 / 1312 8983.43
SATEEN 435 / 1312 1908.38

Figure 2: Comparison among different SMT solvers.

a given number of instances (on the Y axis) within the timeout, both for each
individual benchmark family as well as for all the benchmarks. They show that,
with the exception of the CUT LEMMAS family on which YICES2 has very good
performances, MATHSAT5 outperforms the other solvers: overall, MATHSAT5
can solve about 38% more problems than the closest competitor YICES2, with a
significantly shorter total execution time. We remark that MATHSAT5 implements
the same LA(Q)-procedure of [6] as Z3 and YICES2, and its performance on
SMT(LA(Q)) is comparable to that of these two solvers.

In the second part of our experiments, we compare different configurations of
MATHSAT5, in order to evaluate the effectiveness of our techniques and heuristics.
The results are shown in Figure 3. We ran MATHSAT5 with equality elimination
and tightening disabled (‘no eq.’), with the internal branch and bound disabled
(‘no int.’), with both disabled (‘baseline’), using the cuts from proofs technique
of [5] also in the internal branch and bound, and not only in splitting on-demand
(‘int.cuts’), and with an unlimited internal branch and bound (‘int. cuts unl.’, thus
effectively disabling splitting on-demand). The results show that all the techniques
and heuristics described in this paper contribute to the performance of the solver.
The default configuration is not the best one only for the CAV09 family, for which
applying the cuts from proofs technique of [5] more eagerly allows to solve 9 more
instances (out of 600). However, this worsens performance in general, especially

9

 50
 100
 150
 200
 250
 300

 0.01 0.1 1 10 100 1000 10000

of

 in
st

an
ce

s

time

BV benchmarks

default
int.cuts

int.cuts unl.
no eq.
no int.

baseline

 0
 100
 200
 300
 400
 500
 600

 0.01 0.1 1 10 100 1000 10000

of

 in
st

an
ce

s

time

CAV09 benchmarks

default
int.cuts

int.cuts unl.
no eq.
no int.

baseline

 10
 20
 30
 40
 50
 60
 70
 80

 0.01 0.1 1 10 100 1000

of

 in
st

an
ce

s

time

CUT_LEMMAS benchmarks

default
int.cuts

int.cuts unl.
no eq.
no int.

baseline
 50

 100
 150
 200
 250

 0.01 0.1 1 10 100 1000

of

 in
st

an
ce

s

time

RINGS benchmarks

default
int.cuts

int.cuts unl.
no eq.
no int.

baseline

 0
 200
 400
 600
 800

 1000
 1200

 0.01 0.1 1 10 100 1000 10000

of

 in
st

an
ce

s

time

ALL benchmarks

default
int.cuts

int.cuts unl.
no eq.
no int.

baseline

Config. # solved total time
default 1281 / 1312 8677.80
int.cuts 1239 / 1312 16670.56
no int. 1194 / 1312 29559.84
int.cuts unl. 1163 / 1312 9949.57
no eq. 1146 / 1312 16256.53
baseline 1122 / 1312 30110.24

Configurations:
‘default’: all heuristics enabled ‘int.cuts’: use cuts from proofs in the internal b.&b.
‘no int.’: disable internal b.&b. ‘int.cuts unl.’: internal b.&b. w/o timeout, with cuts
‘no eq.’: disable equality elim. ‘baseline’: disable equality elim. and internal b.&b.

Figure 3: Comparison among different LA(Z)-heuristics in MATHSAT5.

on the instances of the BV family.

6 Conclusions

We have presented a new theory solver for Linear Integer Arithmetic in a lazy SMT
context, whose distinguishing feature is an extensive use of layering and heuristics
for combining different techniques. Our experimental evaluation demonstrates the
potential of the approach, showing significant improvements on a variety of bench-
marks wrt. approaches used in current state-of-the-art SMT solvers.

References
[1] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität

Berlin, 2007.

[2] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on Demand in
SAT Modulo Theories. In M. Hermann and A. Voronkov, editors, Proceedings of
LPAR’06, volume 4246 of LNCS, pages 512–526. Springer, 2006.

10

[3] M. Bozzano, R. Bruttomesso, A. Cimatti, A. Franzén, Z. Hanna, Z. Khasidashvili,
A. Palti, and R. Sebastiani. Encoding RTL Constructs for MathSAT: a Preliminary
Report. Electr. Notes Theor. Comput. Sci., 144(2):3–14, 2006.

[4] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In C. R. Ramakrishnan
and J. Rehof, editors, Proceedings of TACAS’08, volume 4963 of LNCS, pages 337–
340. Springer, 2008.

[5] I. Dillig, T. Dillig, and A. Aiken. Cuts from Proofs: A Complete and Practical Tech-
nique for Solving Linear Inequalities over Integers. In A. Bouajjani and O. Maler,
editors, Proceedings of CAV’09, volume 5643 of LNCS. Springer, 2009.

[6] B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In
T. Ball and R. B. Jones, editors, Proceedings of CAV’06, volume 4144 of LNCS,
pages 81–94. Springer, 2006.

[7] B. Dutertre and L. de Moura. Integrating Simplex with DPLL(T). Technical Report
CSL-06-01, SRI, 2006.

[8] G. Faure, R. Nieuwenhuis, A. Oliveras, and E. R. Carbonell. SAT Modulo the Theory
of Linear Arithmetic: Exact, Inexact and Commercial Solvers. In H. K. Buning
and X. Zhao, editors, Proceedings of SAT’08, volume 4996 of LNCS, pages 77–90.
Springer, 2008.

[9] A. Griggio. An Effective SMT Engine for Formal Verification. PhD thesis, DISI,
University of Trento, 2009.

[10] H. Kim, F. Somenzi, and H. Jin. Efficient Term-ITE Conversion for Satisfiability
Modulo Theories. In O. Kullmann, editor, Proceedings of SAT’09, volume 5584 of
LNCS, pages 195–208. Springer, 2009.

[11] W. Pugh. The Omega test: a fast and practical integer programming algorithm for
dependence analysis. In Proceedings of SC, pages 4–13, 1991.

[12] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

[13] R. Sebastiani. Lazy Satisfiability Modulo Theories. Journal on Satisfiability, Boolean
Modeling and Computation, JSAT, 3(3-4):141–224, 2007.

11

