
Towards Safe Autonomous Driving: Model

Checking a Behavior Planner during Development

Lukas König1(B) , Christian Heinzemann1 , Alberto Griggio2 ,
Michaela Klauck1 , Alessandro Cimatti2 , Franziska Henze3 ,

Stefano Tonetta2 , Stefan Küperkoch1 , Dennis Fassbender3 , and
Michael Hanselmann1

1 Robert Bosch GmbH, 70465 Stuttgart, Germany
firstname.lastname@de.bosch.com

2 Fondazione Bruno Kessler, 38122 Trento, Italy
griggio,tonettas,cimatti@fbk.eu

3 CARIAD SE, 38440 Wolfsburg, Germany
firstname.lastname@cariad.technology

Abstract. Automated driving functions are among the most critical
software components to develop. Before deployment in series vehicles, it
has to be shown that the functions drive safely and in compliance with
tra�c rules. Despite the coverage that can be reached with very large
amounts of test drives, corner cases remain possible. Furthermore, the
development is subject to time-to-delivery constraints due to the highly
competitive market, and potential logical errors must be found as early
as possible. We describe an approach to improve the development of an
actual industrial behavior planner for the Automated Driving Alliance

between Bosch and Cariad. The original process landscape for veri�ca-
tion and validation is extended with model checking techniques. The idea
is to integrate automated extraction mechanisms that, starting from the
C++ code of the planner, generate a higher-level model of the underlying
logic. This model, composed in closed loop with expressive environment
descriptions, can be exhaustively analyzed with model checking. This re-
sults, in case of violations, in traces that can be re-executed in system
simulators to guide the search for errors. The approach was exemplarily
deployed in series development, and successfully found relevant issues in
intermediate versions of the planner at development time.

Keywords: Autonom. Driving · Model Checking · Industry Application

1 Introduction

Automated Driving (AD) is an ever-growing research �eld with the potential
to make tra�c safer and more e�cient. Recently, ISO 21448 on Road Vehi-
cles � Safety of the Intended Functionality (SOTIF) speci�ed that the number
of unsafe, both known and unknown, scenarios should be minimized [30] and
the political goal �Vision Zero� aims to practically eliminate tra�c fatalities by
2050 [58]. This demonstrates that there is a high interest in and pressure on
research to make automated vehicles (AV) safe. AD in the sense of a (future)
product has to comply with a vast variety of safety requirements originating from

https://orcid.org/0000-0002-7840-1459
https://orcid.org/0000-0003-2144-6215
https://orcid.org/0000-0002-3311-0893
https://orcid.org/0000-0002-6353-227X
https://orcid.org/0000-0002-1315-6990
https://orcid.org/0000-0003-1398-9287
https://orcid.org/0000-0001-9091-7899
https://orcid.org/0009-0003-9200-3224
https://orcid.org/0009-0003-5256-2478
https://orcid.org/0009-0009-6471-4049

2 L. König et al.

domains as diverse as physics, law and ethics [4, 21,37, 40,58]. Improving safety
up to human driving level is already a challenging problem [51]. However, it is
assumed that AD needs to vastly exceed the �human� safety benchmark since
even very few fatalities caused by automated vehicles are hardly acceptable to
the public [2, 49, 61]. The de facto standard today is that tremendous amounts
of test drives are supposed to account for the safety of AVs. However, statistical
considerations show that deriving con�dence in the safety of an AV solely via
test drives might indeed require ludicrous amounts of driving [34,44,62].

In this paper, we describe an approach to improve the development of AD
software, adopted within the Automated Driving Alliance (Alliance)1 between
Bosch and Cariad. Speci�cally, we consider a behavior planner (BP; also, tactical
BP), that controls the high-level actions of an AV (e. g., accelerating, braking,
lane changes) based on the perceived state of the environment (e. g., �ow of the
surrounding tra�c). It is part of a system called Highway Pilot which realizes
automated driving on highways or highway-like roads. The BP is implemented
in C++, and is under active development, undergoing repeated updates, with the
addition of new features and improvements. Due to time-to-delivery constraints,
the veri�cation and validation (V&V) activities are supposed to proceed in par-
allel to the development, preferably in an �observe only� manner.

We enhance the V&V process by integrating automated formal veri�cation
techniques, in particular model checking (MC) of in�nite-state transition sys-
tems [10], within the original development environment. The primary purpose is
not (yet) to provide arguments for absolute correctness, but to increase the cover-
age of known unsafe scenarios, currently provided by test drives and simulation.
By exhaustively analyzing a huge range of scenarios, MC is largely insusceptible
to human bias and can discover corner cases that may be overlooked otherwise.

We face the challenge that MC must become part of the continuous inte-
gration (CI) process, hence it must be directly connected to the consecutive
versions of the BP. This means that manual modeling is to be avoided, in order
to enable a seamless connection between development and V&V. Therefore, we
integrate suitable mechanisms for the extraction of the BP logic directly into the
development environment. Starting from the C++ code of a BP, we automatically
derive a model of the underlying logic including the interface to the surround-
ing software stack. This model is converted into K2, a low-level imperative-style
language of the Kratos2 software model checker [23], which is, in turn, converted
into SMV, the input language of the symbolic model checker nuXmv [8].

The scenarios for validation are obtained by composing the model of the BP
in closed-loop with an environment model (EM). The EM contains rules about
the succession of a highway-like tra�c scene in terms of the possible behavior
of a set of free cars which drive in scope of a distinguished BP-controlled car
(ego), cf. Fig. 1 2. EM and BP are integrated such that the BP receives perception

1 The Alliance has set out to �[build] a state-of-the-art ADAS software platform for
use in all Volkswagen Group brand vehicles � and therefore in one of the world's

biggest vehicle �eets�. More information on BOSCH and CARIAD websites.
2 The graphic was auto-generated by our explainability toolchain, cf. Sec. 3.1.

https://www.bosch-mobility.com/en/about-us/current-news/bosch-and-cariad-develop-automated-driving-functions/
https://cariad.technology/de/en/news/stories/collecting-data-to-improve-self-driving-functions.html

Towards Safe Autonomous Driving: Model Checking a Behavior Planner 3

112

8

40m120121112 8
40m

12
0

12
111

2

8

|. . . |-60 |-40 |-20 |0 |20 |. . . distance to ego (m)

lane_b3
lane_b2 & lane_b3 driving

direction →lane_b2
lane_b1 & lane_b2

lane_b1 ego

Figure 1: Highway scene illustrating the base scenario. We model three
straight lanes unrestricted in longitudinal direction, non-ego positions are calcu-
lated relative to ego. Laterally, cars are either on a single lane or between two
lanes (during a lane change). Blue numbers: car IDs, black numbers: velocities
in m/s. Grey arrows: movement from current to next EM iteration.

inputs from the EM and returns an actuation output, which is translated into the
movement of the ego. The EM is also written in SMV and can be parametrized to
further specify the scenario (e. g., number of non-ego cars, physical features of the
cars, driving behavior). The composed model of EM/BP is exhaustively analyzed
with nuXmv, which results in a counterexample (CEX) in case of the violation
of a property, e. g., a collision. The CEX can be re-executed in simulators to
guide the search for errors. The approach was exemplarily deployed in series
development, resulting in a fully automatic toolchain usable, e. g., in a CI system.
The deployment was very successful in that actually relevant issues could be
found in intermediate versions of the BP at development time.

Since the full BP code is restricted from publication, we use a mock BP in
this publication to illustrate details about the process. Nonetheless, all presented
results have been originally obtained with the actual BP used in the Alliance by
tracking its development with CI techniques. Though being much simpler, the
mock BP is designed to resemble the actual BP in some essential aspects, such
that two major bugs found in the actual BP can be reproduced with it. Runtime
and performance analyses are performed on data from the actual BP. Using the
mock BP, we provide possible �xes to the found bugs in this simpler setup, and
show that the model checker then e�ciently supplies proof for the now correct
functioning of the model of the mock BP, within the simulation by the EM.

Our contributions are:
〈
1
〉
a self-consistent toolchain, involving automatic

processing of the C++ code of a BP, integration with plausible physics and sur-
rounding tra�c behavior, MC with nuXmv, as well as, extracting tra�c scenes
from CEXs for debugging;

〈
2
〉
presentation and discussion of two safety-relevant

issues found in an industrial BP;
〈
3
〉
by means of re-simulation ensuring that

the model soundly captures the real-world system;
〈
4
〉
analysis of the feasibility

of the approach for an actual industrial context, including e�ciency.

The remainder of the paper is structured as follows. Sec. 2 provides the
basic AD context, as well as the theoretical background required for MC. Sec. 3

4 L. König et al.

describes the methodology underlying the experimental setup. Sec. 4 describes
and discusses the experimental results. Sec. 5 lists and assesses literature related
to our approach. Sec. 6 provides a conclusion and an outlook to future work.

Additionally, we provide an appendix which is available in an extended ver-
sion of the paper published as supplementary material. It is intended to facilitate
reproducibility, but is not required to follow the presented results. The supple-
mentary material also contains the mock BP and two versions of the EM, as used
for the experiments. In an artifact associated to this paper, we provide the full
functioning toolchain, i. e., all code and software (except for the Alliance BP) in
a state as used for the experiments.

2 Background

The task of driving automatically can typically be segmented according to the
classic �sense � plan � act� paradigm [7, 38]. The sense part comprises percep-
tion of the environment using sensors like camera, lidar or radar, and fusing
their measurements into a model of the environment (e. g., [41]).This model con-
tains all available information of the AV's surroundings, e. g., lanes to drive
on, the state of other tra�c participants (e. g., position, velocity, acceleration)
and predictions of their motion. This is the basis for planning the motion of
the controlled AV. The plan part can be divided into three steps [3]: First, a
strategic planner decides about the global navigation, i. e., the route to follow.
Then, the tactical BP decides between available maneuvers, e. g., lane following
or lane change. Finally, the trajectory planner calculates a desired trajectory
which eventually results in a sequence of desired accelerations and curvatures.
In the act part, these signals are forwarded to the actuators, thus accomplishing
the actual driving on the road. We focus on the tactical BP which, for MC, is
decoupled from the other software modules in the sense � plan � act pipeline.

Model Checking of In�nite-State Symbolic Transition Systems. The
system under analysis is derived in several steps from the BP and the EM code,
cf. Sec. 3, and �nally represented as a symbolic transition system expressed using
quanti�er-free formulæ in �rst-order logic modulo theories (for further reading,
refer to, e. g., [5]). We work in the setting of many-sorted �rst-order logic, and
we assume the usual �rst-order notions of interpretation, satis�ability, validity,
logical consequence, and theory, as given, e.g., in [17]. Unless otherwise stated,
when we talk about a logical formula ϕ(X), we mean that ϕ is a quanti�er-free
�rst-order formula whose free variables are included in the set X, and using
symbols from the theory of (linear) arithmetic (with their usual interpretation).
For example, ϕ({x1, x2}) := (3x1 > 0) ∧ (x2 + x1 < −5). A symbolic transition
system S = 〈X, I, T 〉 is a tuple, where X is a set of (state) variables, I(X) is a
formula representing the initial states, and T (X,X ′) is a formula representing
the transitions, where X ′ is the set of variables representing the next state of the
system. A state s of a transition system S is an assignment to the state variables
X; a path (trace) π of S is a possibly in�nite sequence π := (s0, s1, . . . , si, . . .)

https://doi.org/10.5281/zenodo.10001800
https://doi.org/10.5281/zenodo.10001764

Towards Safe Autonomous Driving: Model Checking a Behavior Planner 5

of states si such that I(X) is true under the assignment s0, and T (X,X ′) is
true under the assignment si−1, s

′
i for all i > 0 in π, where s′ is the assignment

obtained by replacing each x ∈ X with the corresponding x′ ∈ X ′. We say that a
state s is reachable in S if and only if there exists a path π of S such that s ∈ π.
Given a formula P (X) over the variables X, the invariant veri�cation problem
for S and P is the problem of checking if all the reachable states of S satisfy the
formula P . In that case, we say that S satis�es P , written as S |= P .

Tools. For solving the core MC problem we use nuXmv [8], a state-of-the-art
symbolic model checker for both �nite- and in�nite-state transition systems. It
supports the veri�cation of invariant and LTL properties using a combination
of e�cient algorithms based on Boolean satis�ability (SAT) and Satis�ability
Modulo Theories (SMT) [11, 13, 24]. Each veri�cation engine can be used un-
bounded or bounded (in which case only disproving is possible). For details see
the documentation [8]. The transition system for nuXmv is de�ned using an ex-
tension of the standard SMV language for �nite-state systems (simply SMV in
the following). An example of the syntax is reported in Alg. 2 of the appendix.

To automatically derive a nuXmv transition system out of imperative C++

code, Kratos2 can be used as an intermediate step. Kratos2 [23] is a tool for
the automatic veri�cation of imperative programs, using nuXmv as its main
veri�cation engine. The native language of Kratos2 is a veri�cation language
called K2 (similar to Boogie and Why3 [43]) that provides a well-de�ned and
unambiguous formal semantics suitable for veri�cation. An example program
in K2 is shown in Alg. 3 of the appendix. The resulting K2 program is then
transformed by Kratos2 into SMV and veri�ed with nuXmv.

Parsing C++ code and creating the K2 model out of it is done by a prototyp-
ical software called vfm which was developed within the Alliance (cf. artifact).

3 Methodology

This section describes the proposed work�ow and justi�es how the respective
components were chosen to establish an industry-ready setup.

3.1 Overview

Our toolchain consists of several components centered around a BP under analy-
sis, cf. Fig. 2. We impose MC on top of a functioning software and in scope of
an established development process. Therefore, the BP's source code, (1) in the
�gure, is considered largely immutable, meaning that we cannot change it to our
likings, but developers can change it at any time outside of our control.

The BP cannot be checked on its own, since its behavior within a tra�c sit-
uation is of major interest. The entity responsible for providing an initial tra�c
scene, and keeping track of how it evolves according to the BP's actions, is the
EM (3). It is given in SMV language, i. e., we can directly identify it with a
transition system SE := 〈XE , IE , TE〉. In a �rst processing step, the BP and

https://doi.org/10.5281/zenodo.10001800
https://doi.org/10.5281/zenodo.10001800
https://doi.org/10.5281/zenodo.10001764

6 L. König et al.

the EM are parsed separately to create an intermediate representation (4) which
contains an internal description of the BP logic including its interface towards
the EM. The respective mapping between EM and BP is provided by the type
abstraction layer (TAL) (2), which is embedded into the C++ code of the BP via
comments (see below). The intermediate representation is translated into a K2
version of the BP logic (6) which, in turn, is translated by Kratos2 into an SMV
representation (7; cf. discussion in Sec. 4.3 about making this detour instead
of directly translating from C++ to SMV); we identify the SMV representation
with the transition system SP := 〈XP , IP , TP 〉; additionally, the interface infor-
mation is used to generate the full integrated transition system, called SEtP . On
SMV level, it is constructed to include and connect SE and SP as two separate
modules within a main module (5); it is also the place to add speci�cations to
check. This �le is then handed to the nuXmv model checker for the actual MC
task. Depending on the result, we either terminate the process after MC, if the
speci�cations are ful�lled (�OK�), or otherwise (�FINDING�) trigger the creation
of a CEX (8), which is a witness of the speci�cation being violated. It provides
a trace within the checked transition system SEtP in the course of which the
speci�cation does not hold. In our case, the sequence of variable values along
this trace provides information about

〈
1
〉
the tra�c situation in which the vio-

lation occurred and
〈
2
〉
the BP actions in this situation.

〈
1
〉
is used to generate

visualizations of the tra�c scene in question, and to further process the resulting
scenarios of interest, by using the Open Scenario 2 (OSC2) format [1] as under-
lying representation (9). Figs. 1, 4 and 5 were created using this functionality.〈
2
〉
could, in principle, be used for a deep analysis of the error, such as tracking

back which lines in the original C++ code are involved in the violation. This is
planned to be done in future, but is not possible yet.

The retrieval of the transition system to check needs to be �exible enough
to adapt to future changes of the BP, which are expected to happen frequently
during development. Therefore, the EM should not be customized towards a
speci�c BP, but rather provide a generic interface which works with a variety of
BP instances. The toolchain then runs fully automatically by attaching �exibly
to di�erent BPs, as long as the EM is �suitable� for them, i. e., all required data
is available in the EM's generic interface, agnostic of naming. For example, the
BP might require as input its own velocity in a variable called agent.v which
the EM provides as ego.v. The TAL connection can be established by adding an
�aka� tag as comment to the BP variable agent.v (for details cf. the appendix).

Therefore, the remaining manual e�ort consists of adding or adapting the
TAL information when the BP changes. This is expected to be mostly a one-
time e�ort, since once the connection to EM variables is established, it only
needs to be changed if new data is added to the interface (not on mere re-usage
or renaming). This happens occasionally, but is not very common in practice.
Only if the EM becomes unsuitable for a developed BP, i. e., when a non-existent
signal is requested, this implicates the fairly high e�ort of adapting the EM.

https://doi.org/10.5281/zenodo.10001800

Towards Safe Autonomous Driving: Model Checking a Behavior Planner 7

Environment Model (3)
SMV

Behavior Planner (1)
+ Type Abstraction Layer (2)

C++

Intermediate representation
enriched with mapping

information (4)

Integration file
SMV (5)

INPUT

Model of BP
K2 (6)

C++ parser

K2 generatorSMV generator

SMV datatype
parser

nuXmv Model of BP
SMV (7) Kratos 2

OK
CEX trace

(8)

FINDING

OSC 2 file
(9)

Fix bugs

OSC2 generator
Replay and recompute

in simulation

Image-based
explanations

OUTPUT

Figure 2: Overview of the presented toolchain. The BP to check (1) is
the main input. The EM is given as transition system in native SMV language
(3). nuXmv (center) is run on an integration of BP/EM created in several steps
(3/5/7). Visualizations and simulations are derived from CEXs (9).

3.2 Environment Model

Since we cannot model-check the full software stack the BP is part of, with per-
ception on one side and actuation on the other, the BP needs to be directly fed
with mock data from a simulated environment, and its output needs to be prop-
agated back into this environment in a closed-loop manner. This is accomplished
by the EM, which creates an initial state of the environment, and then progresses
by supplying the current state as perception input to the BP and deriving the
next state based on its output. Therefore, the EM maintains physical states of
all agents, and applies laws of physics and possible driving behavior to them.

We assume a perfect environment, i. e., perfect knowledge without any sen-
sor uncertainties and perfect behavior without actuatory imprecision. We use a
highway-like road model with 3 lanes, allowing tra�c only in one direction, as
illustrated in Fig. 1. We support an arbitrary number of non-ego vehicles3, each
of which has physical properties such as relative position to ego, velocity and
lane association. A vehicle is associated to either a single lane or, during a lane
change, to both its source and its target lane (cf. veh[1] and veh[2] in Fig. 1).

In each veri�cation step, corresponding to 1s, all non-ego vehicles may choose
a new acceleration a ∈ {−8,−7, . . . , 6} m/s2, which is used to update the veloc-
ity and relative position simultaneously. In addition, each non-ego vehicle may

3 A generator is used to create an EM with an adjustable number of non-ego cars for
each MC run (cf. artifact).

8 L. König et al.

choose to perform a lane change. A lane change is executed in two stages. In
the �rst stage, the non-ego vehicle signals the lane change via turn indicators
but is still located on its source lane. The second stage is the transition from
source to target lane, i. e., it starts when the lane marking is initially touched
until the non-ego vehicle is contained entirely in the target lane. During both
stages, the non-ego vehicle may non-deterministically decide to abort the lane
change. If the decision to abort is made while being in the second stage, the
non-ego vehicle moves back to the source lane. The durations of both stages of
the lane change and of the return to the source lane when aborting are chosen
non-deterministically from intervals of possible values (cf. section marked �Begin
of lc parameterization� in the published version of the EM). Thereby, we en-
able to verify a high variety of lane changes in the MC process, including much
tougher ones than expected to usually happen on real roads, with the goal to
over-estimate (rather than under-estimate) violations by the planner in the sense
discussed in Sec. 4.3. On the other hand, we do prohibit excessively malicious
behavior by ensuring that ego is able to prevent a collision by staying in its lane
and reacting instantaneously with a deceleration of up to −8m/s2.

The ego vehicle tracks objects in its proximity via so-called gaps, de�ned by
a front and a rear vehicle on its own and its neighboring lanes, cf. Fig. 3. This
data needs to be provided by the EM, as well. Depending on lane availability,
there can be up to three gaps, one is always in the ego lane, the other two can be
in the left or right lane next to ego, respectively, if available. For each car in the
gaps, information such as relative distance to ego, velocity and acceleration are
stored which can be used by the BP for decision making. If one of the positions
is not �lled, e. g., if the next car is out of perception range, this is indicated
by a special value. The full SMV code of the EM, as well as a more in-depth
description are published as supplementary material.

8
gaps[ActionDir::CENTER]

gaps[ActionDir::LEFT]

gaps[ActionDir::RIGHT]

s_dist_front
= rel_pos

s_dist_rear
= -rel_pos

rel_pos < 0 rel_pos = 0 rel_pos > 0

ego

Figure 3: Illustration of gaps tracked for ego. The gap data structure pro-
vides information about the free space which ego drives in on its own lane or
could dive into when performing a lane change, in terms of the two cars limiting
this space to the front and rear. A gap contains the IDs, distances, velocities,
accelerations etc. of the closest cars to the front and rear on the respective lane.

https://doi.org/10.5281/zenodo.10001800

Towards Safe Autonomous Driving: Model Checking a Behavior Planner 9

3.3 The Original and Mock BPs

We consider two BPs,
〈
1
〉
the actual BP currently under development for the

Alliance project, and
〈
2
〉
the mock BP which is a simpli�ed version of

〈
1
〉
. The

code considered for
〈
1
〉
is an excerpt of the project BP containing the logic for a

lane change decision towards the �fast� lane (LCfast) (left assumed; as opposed
to LCslow). It consists of more than 1000 lines of C++ code. The mock planner〈
2
〉
is much smaller (about 100 lines) and can be inspected in its entirety as

supplementary material. It contains a simple version of the logic for LCfast,
logic for LCslow and a simple longitudinal control.

The interface towards the EM is equal for
〈
1
〉
and

〈
2
〉
regarding LCfast. It

uses the gap structure as input and returns as output the decision whether or not
to initiate a lane change towards the fast lane. The mock BP requires additional
data for the longitudinal control, as well as some signals used to �x the found
issues; we mostly disregard these di�erences in the following, for simplicity. The
exact interfaces are given in the appendix.

4 Experiments

Our goal is to demonstrate that the proposed approach can practically guide
development processes of a BP in industry. Therefore, we need to show that〈
1
〉
our setup derives valuable insights for

〈
a
〉
development and/or

〈
b
〉
release;〈

2
〉
it does this in acceptable runtime,

〈
3
〉
it does not overly disturb every-day

development, and
〈
4
〉
its results are self-explanatory to developers and V&V

experts. In Sec. 4.1 we analyze two major issues found early during development
in the Alliance BP

〈
1a
〉
. We also comment on the implications of proofs of error-

freeness on the model level, which may be of high relevance for possible future
release argumentation

〈
1b

〉
. E�ciency of bounded and unbounded MC

〈
2
〉
is

analyzed in Sec. 4.2. Sec. 4.3 discusses the results and elaborates qualitatively
on the topics

〈
3
〉
and

〈
4
〉
.

4.1 Disproven Speci�cations with Counterexamples

The two issues we describe were found by checking for the invariant property
!blamable_crash. It is true if ego's bounding box never overlaps with the bound-
ing box of any car in front of ego. nuXmv showed in both cases that it does not
hold true, which led to the generation of CEXs. They reveal violations of the BP
in typical highway-tra�c, which we named Lead Vehicle Occlusion and Double
Merge4. The CEXs have been further processed to show the succession of the
tra�c scenes that lead to the violations (Figs. 4 and 5), and to con�rm the issues
in simulation by using the full underlying software stack (cf. Sec. 4.3).

4 Note that these issues certainly could have been detected with regular V&V tech-
niques, as well, however, with considerably greater e�ort.

https://doi.org/10.5281/zenodo.10001800
https://doi.org/10.5281/zenodo.10001800

10 L. König et al.

19

35
0

35
1

35
2

35
3

35
4

35
5

35
6

21

35
0

35
1

35
2

35
3

35
4

35
5

35
6

23

27
0

27
1

31
2

27
3

27
4

41
5

31
6

25
21
0

19
1

37
2

27
3

26
4

35
5

23
6

17
17
0

18
1

40
2

19
3

29
4

32
5

16
6 9

13
11
1

34
2

11
3

35
4

32
5

0
6
8

11

19
0

13
1 26

2
17
3

27
4

29
5

0
6

driving
direction →

Figure 4: Full CEX trace of crash caused by ego overlooking hard

brake ahead due to another car �cutting out�. The highlighted portion of
the second-to-last image shows how the car in the lead position (0) pulls away
(�cuts out�) while another car ahead (6) brakes hard, unnoticeable by ego due to
the way lead vehicles are tracked. Instead of braking, ego even accelerates, since
car 0 also accelerates and departs.

Lead Vehicle Occlusion. Since ego bases all decisions on the gap structure,
it cannot �see� possible cars in front of the one it �nds as front car in one of the
gaps. On the other hand, the surrounding tra�c is allowed to behave arbitrarily
rudely, as long as ego has, upon immediate action, a chance to avoid a crash (cf.
Sec. 3.2). Considering this, nuXmv reported the situation illustrated in Fig. 4 as
a CEX5 . The seven snapshots correspond to the full path given in the CEX (i. e.,
it takes at least 7 steps from an initial to a violating state). The actual crash
occurs in the last step, but the underlying wrong decision is made already in
the sixth step. Here, car 0 is partially on ego's lane, and is, therefore, considered
the lead car in the CENTER gap (indicated by a green frame). On the other hand,
car 6 is farther ahead, and, at this point invisible to ego (in a logical, not a
perception sense). The problem arises from car 6 performing a hard brake, while
car 0 budges towards the middle lane (�cuts out�). Considering car 0 as lead car,
which actually departs to the front, ego misinterprets the scene to clearing up,
and accelerates rather than braking, which leads to the crash. The CEX points
to a fundamental problem caused by considering only a single lead vehicle per
gap. (Indeed any constant number n of lead vehicles won't �x the underlying
problem, assuming unrestricted velocities and/or restricted braking capabilities.
Imagine a row of n+ 1 cars in front of ego, with the furthest one standing still
while the other n cut out. In practice, safety distance needs to be adjusted such
that braking in time is possible even in the worst case scenarios.)

Double Merge. This issue is caused by ego observing only cars on neighboring
lanes, which can lead to con�icts if cars from two lanes apart change towards

5 The CEX can be produced with any number of non-ego cars ≥ 2. We choose to show
non-minimal examples here to give intuitive insight into the functioning of the EM.

Towards Safe Autonomous Driving: Model Checking a Behavior Planner 11

a neighboring lane while ego itself is changing towards this lane. This issue is
related to the gap structure, too, but points to the lateral, rather than longitu-
dinal limit of the structure. Fig. 5 shows how the violation unfolds in the course
of 6 steps. The actual problematic decision already occurs in step 2 where ego
decides to change the lane towards the middle, as displayed by the indicators
turned on6. At this point, ego waits for two steps before actually starting the
lane change. During this whole period, the middle lane appears to be free (al-
though all three non-egos indicate at some point to be starting a lane change,
which is actually performed by cars 1 and 2, but aborted by car 0). When ego
actually does the lane change, car 1 happens to �nish its own and ends up col-
liding with ego. While it could be argued that the other car could have avoided
this situation, too, ego is at least partially to blame for the crash.

As opposed to the Lead Vehicle Occlusion issue, which was more fundamental
in nature, this issue is strongly connected to the exact way the BP performs a
lane change. Having a more �exible cancellation mechanism, or including cars
between a neighboring lane and the one next to that into the gaps, could, for
example, easily avoid this type of issues.

0

35
0

35
1

35
2

2

35
0

35
1

35
2

4

27
0

27
1

27
2

6

19
0

20
1

20
2

8

11
0

12
1

12
2

10

17
0

4
1

8
2driving

direction →

Figure 5: Full CEX trace of crash caused by ego not noticing a car

merging towards the middle lane while itself merges there. The issue
is caused by ego not looking further than one lane to the left when deciding to
change a lane, and delaying the actual lane change after the decision for 2 steps.

Comment on Speci�cations Proven to Hold. We used unbounded MC
for validating the EM by proving many of its desired properties to hold; for
example, �ego is never 'forced' into a collision by a non-ego vehicle�, and �the
vehicles in the gaps are always the ones closest to ego on the respective lane�.
Also, when �xing the two issues described above, the mock BP can be shown
to ful�ll the !blamable_crash speci�cation, cf. the artifact published with this
paper. However, it is currently unclear what such proofs of absence of errors on
the model level mean for the real system, see discussion in Sec. 4.3.

6 The actual Alliance BP, whose behavior is shown here, supports lane changes upon
driver request, while the mock planner performs lane changes towards the fast lane
only to overtake a slower vehicle. Thus, the issue can, for the Alliance BP, be pro-
duced with at least one, for the mock BP with at least two non-ego vehicles.

https://doi.org/10.5281/zenodo.10001764

12 L. König et al.

4.2 Runtime Analysis

For the runtime analysis we are particularly interested if the model checker ter-
minates within a time limit �acceptable� for typical aspects of the V&V work�ow
utilized in the Alliance (and probably similarly in other AD projects). We agreed
that for the following standard situations the respective approximate runtimes
would be acceptable. For runs performed on each pull request (PR), e. g., as
gatekeepers: / 2 min. For runs performed during each nightly job (NI): / 4 h.
For runs performed for a release (RE): 5 d and more, may be acceptable.

Assuming an ever-changing development setting, it seems misguided to com-
pare rigorously clocked runs of speci�c software versions to �nd the best EM/BP
setup. To present a broader picture, we rather list the average runtimes of all
runs made during a fairly mature phase of the study with somewhat changing
BP and EM versions. This mature phase is de�ned as starting at the point from
which no major �xes to the EM occurred anymore. We do not analyze the dif-
ferences in implementations, but deliberately provide by this means a general
impression of practicability, in a setting close to how it is expected to emerge in
real industrial contexts.

We focus on the checked property !blamable_crash, using the Alliance BP
(i. e., the expected result is a CEX for all runs; its creation time is included in the
listed times) and do not restrict the behavior in any way. Tab. 1 summarizes the
runtimes obtained for up to 10 non-ego vehicles with bounded or unbounded MC.
We estimate many of the numbers in the table for the sake of a comprehensive,
rather than overly exact, image, as they re�ect our experience very well. Note,
however, that the results only include runs that terminated at all (as opposed to
runs that needed to be aborted, usually due to excessively long runtime). This
particularly distorts the rows with three and four non-ego cars and unbounded
MC, which � especially with earlier versions of the EM � frequently ran for days
and weeks without �nishing. Considering future changes to the BP, these rows
need to be taken cautiously, although we also expect further improvements to
the EM, which, in the past, greatly reduced runtime (cf. Sec. 4.3).

The general takeaway is that the overall setup is su�ciently e�cient to be
used in an industrial context, largely even at PR level. For future release ar-
gumentation, using unbounded MC seems to be possible with up to 4 non-ego
cars. Note that adding non-ego cars beyond two did not gain any new insight
into issues of the BP in all runs so far. Discussions are ongoing which number
of non-ego cars is su�cient to re�ect all relevant situations on a straight 3-lane
highway, in terms of BP logic, with 4�5 being among the highest estimates.

Considering further improvements, the setup seems to be extendable towards
more complex road topologies. However, we experienced the runtimes to be fairly
volatile. It may well happen that marginal changes to the BP and/or the EM
yield a factor of 2 � 3 in runtime (cf., e. g., the high variance for the �2-car
unbounded� case). While this is still acceptable for our context in many regards,
it needs to be considered for each individual case, cf. also discussion in Sec. 4.3.

Towards Safe Autonomous Driving: Model Checking a Behavior Planner 13

Table 1: Runtimes for MC runs clustered along number of non-ego

cars and bounded vs. unbounded MC. The �bounded� rows comprise runs
that were not all tracked and analyzed exactly, but overall yield a fairly clear
picture (runtimes estimated here; as well as for the 2-car unbounded row). The
�Suitable for� row is a best guess based on the given numbers.

Non-egos MC type # Finished Runs Average runtime Suitable for

1 bounded > 50 / 1min PR/NI/RE
2 bounded > 30 / 1min PR/NI/RE
3 bounded ≈ 10 / 2min PR/NI/RE
4 bounded ≈ 10 / 2min PR/NI/RE
5 bounded ≈ 10 / 5min (PR)/NI/RE
10 bounded 2 19.6 min NI/RE
1 unbounded 6 30 s PR/NI/RE
2 unbounded > 50 ≈ 1�7h (NI)/RE
3 unbounded 2 16.6 h RE
4 unbounded 1 5.7 d (RE)

4.3 Discussion

The presented results indicate that MC can be used in a real industrial context
to guide the iterative development of a BP. The approach is overall suitable to be
used on top of the regular development processes for AD without considerably
interfering with them, and to guide this development by detecting safety-relevant
issues earlier than with plain testing, thus reducing futile testing time. It is im-
portant to recognize the complete lack of human bias in this process. Particularly,
the type of scenario is not provided in any way, but all scenarios producible by
the respective EM/BP combination are inspected. The toolchain works mostly
self-governed by automatically extracting the BP logic from C++, and creating
self-explanatory visualizations and test cases out of CEXs.

Current Limitations. Relevance for the real world: MC provides either〈
1
〉
a proof that the (extracted version of the) BP logic complies with a given

speci�cation (in relation to the EM), or
〈
2
〉
a proof that this is not the case,

which is complemented with a CEX. These proofs relate to statements about
the correctness of the BP behavior, i. e., the BP is supposed to be �correct�

〈
1
〉

or �incorrect�
〈
2
〉
w. r. t. to the checked speci�cation when steering an actual car

on the road. However, full con�dence in these statements requires not only to
prove that the EM itself as well as the extraction of the BP logic are correct,
but also that the EM re�ects real-world tra�c, physics and perception/actuation
�adequately�. Assuming any deviation from the real behavior of the system means
that the EM would need to over-estimate violations for

〈
1
〉
and under-estimate

them for
〈
2
〉
. Therefore, it is not possible to provide an EM which simpli�es the

actual system behavior in any way, and evidently entails only true statements
about both correctness and violations of the BP. It may be possible, though,

14 L. König et al.

to strengthen one direction up to a level where some notion of con�dence in
its validity can be derived. Then, it appears reasonable to let the EM over-
estimate, rather than under-estimate violations such that error-freeness

〈
1
〉
is

re�ected accurately. This is due to the additional information provided by CEXs
for

〈
2
〉
. While the proof of error-freeness is a somewhat �nal statement, false

positives of violations can be ruled out by re-simulating the CEXs with the actual
software stack. This additional check was performed for all the CEXs presented
in this paper. The EM is built with the intent to rather over-estimate than
under-estimate violations, cf. Sec. 3.2. However, at present we do not investigate
more profoundly to what extent this is actually accomplished and what exactly,
consequently, a proof of correctness implies on BP level.

Number of non-ego cars: According to the results presented in Sec. 4, a
natural measure of performance of the approach is the maximum number of non-
ego cars that can be processed in a time acceptable for one of the presented use
cases. For unbounded MC, this number is currently limited to about 4 non-ego
cars, if considering the �release� use case. Using bounded MC, up to 10 non-ego
cars can be processed quite e�ciently, i. e., easily suitable for a regular �nightly
job�. These limitations are relativized by

〈
1
〉
the potential to further improve

the EM, and
〈
2
〉
by arguing that on a straight highway most critical tra�c

situations involve only few directly involved participants.

Runtime volatility: Another limitation is the high sensitivity of nuXmv to
changes in the checked transitions systems, cf. Sec. 4.2. Small di�erences can
result in a factor of 2 � 3 in runtime. It needs to be considered for each indi-
vidual case if this is acceptable. A related issue, which can be problematic in an
industrial context, is not knowing the remaining time of a run (�will it �nish in
a minute or run for another two weeks?�). For bounded MC, this question inten-
si�es to whether the run will �nish at all, which it never can if the speci�cation
is ful�lled. In productive use, long-enduring runs probably need to be aborted
after some time. There is currently no general solution for this problem.

Force to �x bugs right away: The characteristic of nuXmv, to always produce
essentially the same CEX as long as an issue is not �xed, is somewhat problematic
for practical application. In theory, a discovered issue is supposed to be �xed
immediately, before going on discovering and �xing others. In practice, however,
it may well happen that an issue is not easily �xable in a solid and process-
abiding way while development still must go on in other directions. An �ignore�
option is desirable which lets users �skip� a CEX and trigger the generation of
�profoundly� new ones. In fact, we were able to present two di�ering CEXs with
the same version of the Alliance BP in Sec. 4.1 only due to the fact that in one
case lane changes were prohibited for ego. These sort of tricks can help to work
around this issue.

Range of applicable BP types: Technically, we only assume that the BP is
written in an imperative language, i. e., C++ for now. Our approach is not lim-
ited to deterministic BPs; the presented EM is already non-deterministic, e. g.,
in modeling the behavior of other cars. However, the presented toolchain is not
directly applicable to most AI-based approaches. This is not a structural limita-

Towards Safe Autonomous Driving: Model Checking a Behavior Planner 15

tion (a C++ implementation of a deep neural network could, in principle, be fed
into our toolchain), but seems infeasible, at today's state of research, due to well-
known issues regarding runtime and numerical instability of these approaches in
combination with non-probabilistic MC. An extension to probabilistic MC or
probability-based models like POMDPs is conceivable, but has so far not been
part of our investigations.

Lessons Learned. A hybrid solution is required: As pointed out before and
in Sec. 5, out-of-the-box solutions (e. g., C model checkers, as well as a pure
combination of Kratos2 + nuXmv) can deliver some aspects of the presented
toolchain. However, important features like the closed-loop integration of an EM,
and the CEX explainability functionality need to be customized for the problem
at hand. Particularly, this made it necessary to use a speci�c C++ parser for the
creation of the interface between EM and BP. In future, such a functionality
could become a native feature of a model checker.

�Detour� over Kratos2 and SMV is bene�cial: As shown in Fig. 2 (page 7),
the BP code is �rst translated from C++ into K2, and from there into SMV,
where it is connected to an EM in SMV. Here, two �shortcuts� are thinkable,〈
1
〉
the SMV representation of the BP could be generated directly from C++,

and
〈
2
〉
the explicit representation in SMV could be overall omitted by rather

implementing the EM in C++, as well. However, the presented path makes full
use of the imperative MC functionality provided by Kratos2 and the rich syntax
of SMV. Both shortcuts have been tried out in the beginning and abandoned
later, since the current setup outperformed them by far.

Explainability can be simple: We experienced our method of extracting tra�c
scenes from CEXs and further processing them towards visualization and testing
as highly e�ective for

〈
1
〉
quickly explaining bugs to both BP developers and,

during early phases, EM designers,
〈
2
〉
for re-simulation of the results with

the actual full software stack to con�rm the MC results, and
〈
3
〉
for further

processing the scenes, for example, for test case generation. Generally, there are
a number of further explainability methods to explore, such as translation to
natural language [9, 31�33], or, speci�c to this use case, a further investigation
of which code lines of the BP lead to a violation.

General scalability: The approach scaled well across the di�erent versions of
the Alliance BP, as well as the mock BP (i. e., runtime di�erences were insigni�-
cant). However, none of the BPs' logic so far contained loops or recursion, which
might signi�cantly increase complexity.

Granularity of abstraction is an open question: All presented results were
produced with a time scale rasterized to one iteration per second in the EM. This
shows that this granularity of abstraction can produce useful �ndings. Going
towards an argumentation of �error-freeness�, it needs to be more profoundly
inspected what granularity is actually required for which types of statements.

Every-day development is not impaired: In practice, for typical �every-day�
changes to the code adapting the tags was simple enough to be correctly done

16 L. König et al.

by non-MC-experienced developers. More complex changes were done by an MC
expert, or split into work packages. The additional e�ort was overall tolerable.

5 Related Work

In this section, we discuss related work on formal methods and how our work
complements them. In general, formal methods aim to prove safety properties
of algorithms theoretically. Red�eld et al. give a good overview of the challenges
within this �eld [50]. Formal methods include temporal logic encodings [63], mon-
itoring [45,47], theorem proving [46,52] (see also overview in [48]) and MC [5]. In
the following, we will focus on approaches that could be used for the safety as-
sessment of AV. Notably, only few works actually incorporate such methods into
industrial production or for the veri�cation of (parts of) products [16,18,29]. A
more extensive body of research focuses on theoretically adopting formal meth-
ods to the problem landscape given in the automotive industry, cf. overview
in [59,64].

A typical practical issue, preventing broader adoption, is the interface be-
tween the problem to solve and the theoretical tooling. The input languages for
MC are often quite low-level and lacking a lot of features of modern program-
ming languages like object-oriented features, dynamic data structures, etc. [6,
8, 15, 27, 42]. Therefore, many approaches embed MC into modeling approaches
based on domain speci�c languages and translate from such higher-level repre-
sentations to the model checkers [14, 22, 26, 56]. In our setting, such approaches
cannot be applied as the BP under veri�cation is only available in source code.
Other industrial MC applications involve a manual translation step of (part of)
the code under veri�cation into model checker language [20, 35]. However, dur-
ing the development process in a fast-changing environment this is not feasible.
Especially in early development stages, not only the code under analysis, but
also interfaces and data structures change rapidly.

For handling cases where the system under veri�cation is only available as
source code, several MC approaches taking source code as an input have been
developed. Existing MC approaches in this category mostly focus on (subsets) of
C code [12,55,60]. Similar to our strategy, most of these approaches translate the
model of the code into a suitable mathematical input language for the model
checkers [28, 36]. Checking C++ code requires more sophisticated approaches,
since object-orientation and other speci�c C++ concepts introduce additional
layers of complexity. One MC method checking C++ code is DIVINE, which also
includes, e. g., exceptions [54]. It could be used as an alternative backend for our
approach. The Bogor framework [53] provides means for creating software model
checkers for object-oriented languages, but is only available for Java.

Verifying the decisions of the BP in di�erent tra�c situations requires to
represent these in the EM. While we manually implemented the EM in our
approach, there exist approaches using ontologies for representing features of
an EM [19]. They represent abstract scenes of driving scenarios and use them

Towards Safe Autonomous Driving: Model Checking a Behavior Planner 17

in logic-based reasoning systems. Such approaches could be combined with our
approach in future works for automatically con�guring the EM.

Another approach is to directly include all safety constraints into the plan-
ning itself [25]. A popular example is to use reinforcement learning and integrate
safety constraints into the learned policy [39,57]. However, reinforcement learn-
ing approaches su�er from a strong dependency on the speci�c environment the
agents interact with. Thus, one can never ensure safety in all possible corner
cases.

6 Conclusion

In this paper we described the application of automated veri�cation to improve
the development of an actual industrial behavior planner (BP). Complementing
the regular validation process based on simulation and test drives, we developed
a mechanism to automatically extract from C++ code the model of the underlying
BP logic. This model can be integrated with a model of the environment (features
of the road and the other vehicles), in a closed-loop manner. This allows to
deal in a seamless way with multiple versions of the BP, as they occur during
development, and to exhaustively analyze a huge variety of scenarios. In case of
violations, the model checker is able to produce traces that can be re-executed in
simulators of the original system to guide the search for errors. The approach was
exemplarily deployed in series development, and successfully detected multiple
relevant issues of intermediate versions of the BP at development time.

There are several directions for future activity. First, we will broaden the
scope of the environment modeling to more general scenarios. Second, we will
investigate the gray area between the exhaustive exploration of a set of scenarios
and a general guarantee of correctness in the real world. Finally, we aim at the
application of the methodology to other software components. In fact, it is often
the case that the development and the validation teams proceed in parallel. In
this respect, the context of application of automated model extraction described
in this paper can be considered paradigmatic.

Acknowledgements. A. Cimatti, A. Griggio and S. Tonetta acknowledge the
support of the project �AI@TN� funded by the Autonomous Province of Trento
and of the PNRR project FAIR - Future AI Research (PE00000013), under the
NRRP MUR program funded by the NextGenerationEU.

References

1. Amid, G.: ASAM OpenSCENARIO V2.0.0. Tech. rep., Association for Standard-
ization of Automation and Measuring Systems (2022)

2. Aptiv, Audi, Baid, BMW, Continental, Daimler, Fca, Here, In�-
neon, Intel, Volswagen: Safety �rst for automated driving. Tech.
rep. (2019), https://www.aptiv.com/docs/default-source/white-papers/
safety-�rst-for-automated-driving-aptiv-white-paper.pdf, accessed: 25.09.2023

https://www.aptiv.com/docs/default-source/white-papers/safety-first-for-automated-driving-aptiv-white-paper.pdf
https://www.aptiv.com/docs/default-source/white-papers/safety-first-for-automated-driving-aptiv-white-paper.pdf

18 L. König et al.

3. Artuñedo, A., Godoy, J., Villagra, J.: A decision-making architecture for automated
driving without detailed prior maps. In: 2019 IEEE Intelligent Vehicles Symposium
(IV). pp. 1645�1652. Paris, France (2019)

4. Audi AG, Audi Kommunikation: Audi SocAlty Study (2022), https:
//www.audi.com/content/dam/gbp2/company/research/audi-beyond/2021/
AUDI_SocAITy_Study_dgtl_1201_English_small.pdf, accessed: 25.09.2023

5. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge, MA,
USA (2008)

6. Behrmann, G., David, A., Larsen, K.G., Pettersson, P., Yi, W., Hendriks, M.:
Uppaal 4.0. In: Proceedings of the 3rd International Conference on the Quantitative
Evaluation of Systems. pp. 125�126. QEST 2006, IEEE Computer Society, Los
Alamitos, CA, USA (Sep 2006). https://doi.org/10.1109/QEST.2006.59

7. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE Journal
on Robotics and Automation 2(1), 14�23 (1986)

8. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv Symbolic Model Checker. In: Com-
puter Aided Veri�cation. CAV 2014 (2014)

9. Cherukuri, H., Ferrari, A., Spoletini, P.: Towards Explainable Formal Methods:
From LTL to Natural Language with Neural Machine Translation. In: Gervasi, V.,
Vogelsang, A. (eds.) Requirements Engineering: Foundation for Software Quality.
pp. 79�86. Springer International Publishing, Cham (2022)

10. Cimatti, A., Griggio, A., Mover, S., Roveri, M., Tonetta, S.: Veri�cation mod-
ulo theories. Formal Methods in System Design (2023). https://doi.org/10.1007/
s10703-023-00434-x

11. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: In�nite-state invariant checking
with IC3 and predicate abstraction. Formal Methods in System Design 49(3), 190�
218 (2016)

12. Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
Jensen, K., Podelski, A. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems. TACAS 2004. Lecture Notes in Computer Science, vol. 2988,
pp. 168�176. Springer, Berlin, Heidelberg (2004)

13. Daniel, J., Cimatti, A., Griggio, A., Tonetta, S., Mover, S.: In�nite-State Liveness-
to-Safety via Implicit Abstraction and Well-Founded Relations. In: Chaudhuri,
S., Farzan, A. (eds.) Computer Aided Veri�cation. CAV 2016. Lecture Notes in
Computer Science, vol. 9779, pp. 271�291. Springer International Publishing, Cham
(2016). https://doi.org/10.1007/978-3-319-41528-4_15

14. Daw, Z., Cleaveland, R., Vetter, M.: Integrating model checking and uml based
model-driven development for embedded systems. In: Automated Veri�cation of
Critical Systems 2013. Electronic Communications of the EASST, vol. 66 (2013).
https://doi.org/10.14279/tuj.eceasst.66.888

15. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A storm is coming: A modern
probabilistic model checker. In: Majumdar, R., Kun£ak, V. (eds.) Computer Aided
Veri�cation. pp. 592�600. Springer International Publishing, Cham (2017)

16. Eberhart, C., Dubut, J., Haydon, J., Hasuo, I.: Formal veri�cation of safety ar-
chitectures for automated driving. In: 2023 IEEE Intelligent Vehicles Symposium
(IV). pp. 1�8 (2023). https://doi.org/10.1109/IV55152.2023.10186763

17. Enderton, H.B.: "A Mathematical Introduction to Logic". Academic Press, Boston,
MA, USA, 2. edn. (2001)

18. Farrell, M., Bradbury, M., Fisher, M., Dennis, L.A., Dixon, C., Yuan, H., Maple,
C.: Using threat analysis techniques to guide formal veri�cation: A case study

https://www.audi.com/content/dam/gbp2/company/research/audi-beyond/2021/AUDI_SocAITy_Study_dgtl_1201_English_small.pdf
https://www.audi.com/content/dam/gbp2/company/research/audi-beyond/2021/AUDI_SocAITy_Study_dgtl_1201_English_small.pdf
https://www.audi.com/content/dam/gbp2/company/research/audi-beyond/2021/AUDI_SocAITy_Study_dgtl_1201_English_small.pdf
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1007/s10703-023-00434-x
https://doi.org/10.1007/s10703-023-00434-x
https://doi.org/10.1007/s10703-023-00434-x
https://doi.org/10.1007/s10703-023-00434-x
https://doi.org/10.1007/978-3-319-41528-4_15
https://doi.org/10.1007/978-3-319-41528-4_15
https://doi.org/10.14279/tuj.eceasst.66.888
https://doi.org/10.14279/tuj.eceasst.66.888
https://doi.org/10.1109/IV55152.2023.10186763
https://doi.org/10.1109/IV55152.2023.10186763

Towards Safe Autonomous Driving: Model Checking a Behavior Planner 19

of cooperative awareness messages. In: Ölveczky, P.C., Salaün, G. (eds.) Software
Engineering and Formal Methods. pp. 471�490. Springer International Publishing,
Cham (2019)

19. Fuchs, S., Rass, S., Lamprecht, B., Kyamakya, K.: A Model for Ontology-Based
Scene Description for Context-Aware Driver Assistance Systems. In: 1st Interna-
tional ICST Conference on Ambient Media and Systems. Phoenix, AZ, USA (2010).
https://doi.org/10.4108/ICST.AMBISYS2008.2869

20. Gardner, R.W., Genin, D., McDowell, R., Rou�, C., Saksena, A., Schmidt, A.:
Probabilistic model checking of the next-generation airborne collision avoidance
system. In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC).
pp. 1�10 (2016). https://doi.org/10.1109/DASC.2016.7777963

21. Geisslinger, M., Poszler, F., Betz, J., Lütge, C., Lienkamp, M.: Autonomous Driv-
ing Ethics: from Trolley Problem to Ethics of Risk. Philosophy & Technology 34(4),
1033�1055 (2021)

22. Gerking, C., Dziwok, S., Heinzemann, C., Schäfer, W.: Domain-speci�c model
checking for cyber-physical systems. In: 12th Workshop on Model-Driven Engi-
neering, Veri�cation and Validation. pp. 18�27. MoDeVVa 2015, CEUR-WS.org
Vol-1514, Ottawa (Sep 2015)

23. Griggio, A., Joná², M.: Kratos2: an SMT-Based Model Checker for Imperative
Programs. In: Enea, C., Lal, A. (eds.) Computer Aided Veri�cation. pp. 423�436.
Springer Nature Switzerland, Cham (2023)

24. Griggio, A., Roveri, M.: Comparing Di�erent Variants of the IC3 Algorithm for
Hardware Model Checking. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits Systems 35(6), 1026�1039 (2016). https://doi.org/10.1109/TCAD.
2015.2481869

25. Halder, P., Altho�, M.: Minimum-Violation Velocity Planning with Temporal
Logic Constraints. In: 2022 IEEE 25th International Conference on Intelligent
Transportation Systems (ITSC). p. 2520�2527. IEEE Press, Macau, China (2022).
https://doi.org/10.1109/ITSC55140.2022.9922114

26. Heinzemann, C., Lange, R.: vTSL � a formally veri�able dsl for specifying robot
tasks. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). pp. 8308�8314. IROS'18, IEEE Computer Society, Madrid, Spain
(2018). https://doi.org/10.1109/IROS.2018.8593559

27. Holzmann, G.J.: The model checker spin. Software Engineering, IEEE Transactions
on 23(5), 279 �295 (may 1997). https://doi.org/10.1109/32.588521

28. Holzmann, G.J., H. Smith, M.: Software model checking: extracting veri�cation
models from source code�. Software Testing, Veri�cation and Reliability 11(2),
65�79 (2001). https://doi.org/10.1002/stvr.228

29. Ishigooka, T., Saissi, H., Piper, T., Winter, S., Suri, N.: Practical use of formal
veri�cation for safety critical cyber-physical systems: A case study. In: 2014 IEEE
International Conference on Cyber-Physical Systems, Networks, and Applications.
pp. 7�12 (2014). https://doi.org/10.1109/CPSNA.2014.20

30. ISO/TC 22/SC 32 Electrical and electronic components and general system as-
pects: ISO 21448:2022 Road vehicles � Safety of the intended functionality (2022),
https://www.iso.org/standard/77490.html, accessed: 25.09.2023

31. Kaleeswaran, A.P., Nordmann, A., Vogel, T., Grunske, L.: A user-study pro-
tocol for evaluation of formal veri�cation results and their explanation. arXiv
abs/2108.06376 (2021)

32. Kaleeswaran, A.P., Nordmann, A., Vogel, T., Grunske, L.: A systematic literature
review on counterexample explanation. Information and Software Technology 145,
1�20 (2022). https://doi.org/10.1016/j.infsof.2021.106800

https://doi.org/10.4108/ICST.AMBISYS2008.2869
https://doi.org/10.4108/ICST.AMBISYS2008.2869
https://doi.org/10.1109/DASC.2016.7777963
https://doi.org/10.1109/DASC.2016.7777963
https://doi.org/10.1109/TCAD.2015.2481869
https://doi.org/10.1109/TCAD.2015.2481869
https://doi.org/10.1109/TCAD.2015.2481869
https://doi.org/10.1109/TCAD.2015.2481869
https://doi.org/10.1109/ITSC55140.2022.9922114
https://doi.org/10.1109/ITSC55140.2022.9922114
https://doi.org/10.1109/IROS.2018.8593559
https://doi.org/10.1109/IROS.2018.8593559
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/32.588521
https://doi.org/10.1002/stvr.228
https://doi.org/10.1002/stvr.228
https://doi.org/10.1109/CPSNA.2014.20
https://doi.org/10.1109/CPSNA.2014.20
https://www.iso.org/standard/77490.html
https://doi.org/10.1016/j.infsof.2021.106800
https://doi.org/10.1016/j.infsof.2021.106800

20 L. König et al.

33. Kaleeswaran, A.P., Nordmann, A., Vogel, T., Grunske, L.: A user study for evalu-
ation of formal veri�cation results and their explanation at bosch. Empirical Soft-
ware Engineering 28(5) (2023)

34. Kalra, N., Paddock, S.M.: Driving to safety: How many miles of driving would it
take to demonstrate autonomous vehicle reliability? Transportation Research Part
A: Policy and Practice 94, 182�193 (2016)

35. Keating, D., McInnes, A., Hayes, M.: An industrial application of model checking
to a vessel control system. In: 2011 Sixth IEEE International Symposium on Elec-
tronic Design, Test and Application. pp. 83�88 (2011). https://doi.org/10.1109/
DELTA.2011.24

36. Keller, C.W., Saha, D., Basu, S., Smolka, S.A.: FocusCheck: A Tool for Model
Checking and Debugging Sequential C Programs. In: Halbwachs, N., Zuck,
L.D. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems. pp. 563�569. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/
978-3-540-31980-1_39

37. Kerner, B.S.: Physics of automated driving in framework of three-phase tra�c
theory. Physical Review E 97(4) (2018). https://doi.org/10.1103/PhysRevE.97.
042303

38. Kortenkamp, D., Simmons, R.: Robotic Systems Architectures and Programming.
In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics. pp. 187�206.
Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-30301-5_9

39. Krasowski, H., Zhang, Y., Altho�, M.: Safe Reinforcement Learning for Urban
Driving using Invariably Safe Braking Sets. In: 2022 IEEE 25th International
Conference on Intelligent Transportation Systems (ITSC). pp. 2407�2414. Macau,
China (2022)

40. Kriebitz, A., Max, R., Lütge, C.: The German Act on Autonomous Driving: Why
Ethics Still Matters. Philosophy & Technology 35(2), 29 (2022). https://doi.org/
10.1007/s13347-022-00526-2

41. Krämer, S., Stiller, C., Bouzouraa, M.E.: LiDAR-Based Object Tracking and Shape
Estimation Using Polylines and Free-Space Information. In: 2018 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS). pp. 4515�4522.
Madrid, Spanien (2018). https://doi.org/10.1109/IROS.2018.8593385

42. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Veri�cation of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proc. 23rd Interna-
tional Conference on Computer Aided Veri�cation (CAV'11). LNCS, vol. 6806, pp.
585�591. Springer (2011)

43. Leino, K., M., R.: Program Proving Using Intermediate Veri�cation Languages
(IVLs) like Boogie andWhy3. In: Proceedings of the 2012 ACM Conference on High
Integrity Language Technology. pp. 25�26. Association for Computing Machinery
(2012). https://doi.org/10.1145/2402676.2402689

44. Majzik, I., Semeráth, O., Hajdu, C., Marussy, K., Szatmári, Z., Micskei, Z., Vörös,
A., Babikian, A.A., Varró, D.: Towards System-Level Testing with Coverage Guar-
antees for Autonomous Vehicles. In: Kessentini, M., Yue, T., Pretschner, A.,
Voss, S., Burgueño, L. (eds.) 22nd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, MODELS 2019. pp. 89�94. IEEE,
Munich, Germany (2019). https://doi.org/10.1109/MODELS.2019.00-12

45. Mehdipour, N., Altho�, M., Tebbens, R.D., Belta, C.: Formal methods to comply
with rules of the road in autonomous driving: State of the art and grand challenges.
Automatica 152 (2023). https://doi.org/10.1016/j.automatica.2022.110692

https://doi.org/10.1109/DELTA.2011.24
https://doi.org/10.1109/DELTA.2011.24
https://doi.org/10.1109/DELTA.2011.24
https://doi.org/10.1109/DELTA.2011.24
https://doi.org/10.1007/978-3-540-31980-1_39
https://doi.org/10.1007/978-3-540-31980-1_39
https://doi.org/10.1007/978-3-540-31980-1_39
https://doi.org/10.1007/978-3-540-31980-1_39
https://doi.org/10.1103/PhysRevE.97.042303
https://doi.org/10.1103/PhysRevE.97.042303
https://doi.org/10.1103/PhysRevE.97.042303
https://doi.org/10.1103/PhysRevE.97.042303
https://doi.org/10.1007/978-3-540-30301-5_9
https://doi.org/10.1007/978-3-540-30301-5_9
https://doi.org/10.1007/s13347-022-00526-2
https://doi.org/10.1007/s13347-022-00526-2
https://doi.org/10.1007/s13347-022-00526-2
https://doi.org/10.1007/s13347-022-00526-2
https://doi.org/10.1109/IROS.2018.8593385
https://doi.org/10.1109/IROS.2018.8593385
https://doi.org/10.1145/2402676.2402689
https://doi.org/10.1145/2402676.2402689
https://doi.org/10.1109/MODELS.2019.00-12
https://doi.org/10.1109/MODELS.2019.00-12
https://doi.org/10.1016/j.automatica.2022.110692
https://doi.org/10.1016/j.automatica.2022.110692

Towards Safe Autonomous Driving: Model Checking a Behavior Planner 21

46. Mitsch, S., Ghorbal, K., Vogelbacher, D., Platzer, A.: Formal veri�cation of
obstacle avoidance and navigation of ground robots. The International Jour-
nal of Robotics Research 36(12), 1312�1340 (2017). https://doi.org/10.1177/
0278364917733549

47. Mitsch, S., Platzer, A.: ModelPlex: veri�ed runtime validation of veri�ed cyber-
physical system models. Formal Methods in System Design 49, 33�74 (2016). https:
//doi.org/10.1007/s10703-016-0241-z

48. Nawaz, M.S., Malik, M., Li, Y., Sun, M., Lali, M.I.U.: A survey on theorem provers
in formal methods (2019)

49. Nees, M.A.: Safer than the average human driver (who is less safe than me)? exam-
ining a popular safety benchmark for self-driving cars. Journal of Safety Research
69, 61�68 (2019)

50. Red�eld, S.A., Seto, M.L.: Veri�cation challenges for autonomous systems. In:
Lawless, W., Mittu, R., Sofge, D., Russell, S. (eds.) Autonomy and Arti�cial In-
telligence: A Threat or Savior?, pp. 103�127. Springer International Publishing,
Cham (2017). https://doi.org/10.1007/978-3-319-59719-5_5

51. Reid, T., Houts, S., Cammarata, R., Mills, G., Agarwal, S., Vora, A., Pandey,
G.: Localization requirements for autonomous vehicles. SAE International Journal
of Computer Aided Veri�cation 2(3), 173�190 (2019). https://doi.org/10.4271/
12-02-03-0012

52. Rizaldi, A., Keinholz, J., Huber, M., Feldle, J., Immler, F., Altho�, M., Hilgendorf,
E., Nipkow, T.: Formalising and Monitoring Tra�c Rules for Autonomous Vehi-
cles in Isabelle/HOL. In: Polikarpova, N., Schneider, S. (eds.) Integrated Formal
Methods: 13th International Conference, IFM 2017, Turin, Italy, pp. 50�66. No.
10510 in Lecture Notes in Computer Science, Springer International Publishing,
Cham (2017). https://doi.org/10.1007/978-3-319-66845-1_4

53. Robby, Dwyer, M.B., Hatcli�, J.: Bogor: A �exible framework for creating software
model checkers. In: Proceedings of Testing: Academic and Industrial Conference
- Practice And Research Techniques. pp. 3 �22. TAIC PART 2006 (aug 2006).
https://doi.org/10.1109/taic-part.2006.5

54. Ro£kai, P., Barnat, J., Brim, L.: Model checking C++ programs with exceptions.
Science of Computer Programming 128, 68�85 (2016). https://doi.org/10.1016/j.
scico.2016.05.007

55. Schlich, B., Kowalewski, S.: Model checking c source code for embedded systems.
International Journal on Software Tools for Technology Transfer 11(3), 187�202
(2009). https://doi.org/10.1007/s10009-009-0106-5

56. Schmidt, Á., Varró, D.: Checkvml: A tool for model checking visual modeling
languages. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003 - The Uni-
�ed Modeling Language. Modeling Languages and Applications, Lecture Notes in
Computer Science, vol. 2863, pp. 92�95. Springer Berlin Heidelberg (Oct 2003).
https://doi.org/10.1007/978-3-540-45221-8_8

57. Schmidt, L.M., Kontes, G., Plinge, A., Mutschler, C.: Can You Trust Your Au-
tonomous Car? Interpretable and Veri�ably Safe Reinforcement Learning. In: 2021
IEEE Intelligent Vehicles Symposium (IV). pp. 171�178. Nagoya, Japan (2021).
https://doi.org/10.1109/IV48863.2021.9575328

58. Schreurs, M., Steuwer, S.: Autonomous Driving - Political, Legal, Social,
and Sustainability Dimensions. Autonomes Fahren: Technische, rechtliche und
gesellschaftliche Aspekte pp. 151�173 (2015)

59. Selvaraj, Y., Ahrendt, W., Fabian, M.: Veri�cation of decision making software
in an autonomous vehicle: An industrial case study. In: Larsen, K.G., Willemse,

https://doi.org/10.1177/0278364917733549
https://doi.org/10.1177/0278364917733549
https://doi.org/10.1177/0278364917733549
https://doi.org/10.1177/0278364917733549
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/978-3-319-59719-5_5
https://doi.org/10.1007/978-3-319-59719-5_5
https://doi.org/10.4271/12-02-03-0012
https://doi.org/10.4271/12-02-03-0012
https://doi.org/10.4271/12-02-03-0012
https://doi.org/10.4271/12-02-03-0012
https://doi.org/10.1007/978-3-319-66845-1_4
https://doi.org/10.1007/978-3-319-66845-1_4
https://doi.org/10.1109/taic-part.2006.5
https://doi.org/10.1109/taic-part.2006.5
https://doi.org/10.1016/j.scico.2016.05.007
https://doi.org/10.1016/j.scico.2016.05.007
https://doi.org/10.1016/j.scico.2016.05.007
https://doi.org/10.1016/j.scico.2016.05.007
https://doi.org/10.1007/s10009-009-0106-5
https://doi.org/10.1007/s10009-009-0106-5
https://doi.org/10.1007/978-3-540-45221-8_8
https://doi.org/10.1007/978-3-540-45221-8_8
https://doi.org/10.1109/IV48863.2021.9575328
https://doi.org/10.1109/IV48863.2021.9575328

22 L. König et al.

T. (eds.) Formal Methods for Industrial Critical Systems. pp. 143�159. Springer
International Publishing, Cham (2019)

60. Shankar, S., Pajela, G.: A tool integrating model checking into a c veri�cation
toolset. In: Bo²na£ki, D., Wijs, A. (eds.) Model Checking Software, Lecture Notes
in Computer Science, vol. 9641, pp. 214�224. Springer International Publishing
(2016). https://doi.org/10.1007/978-3-319-32582-8_15

61. Shari�, A., Bonnefon, J.F., Rahwan, I.: How safe is safe enough? Psychological
mechanisms underlying extreme safety demands for self-driving cars. Transporta-
tion Research Part C: Emerging Technologies 126, 1�12 (2021). https://doi.org/
10.1016/j.trc.2021.103069

62. Wachenfeld, W., Winner, H.: The Release of Autonomous Vehicles, pp. 425�450.
Springer, Berlin, Heidelberg (2016). https://doi.org/10.1007/978-3-662-48847-8_
21

63. Zhao, T., Yurtsever, E., Paulson, J.A., Rizzoni, G.: Formal Certi�cation Meth-
ods for Automated Vehicle Safety Assessment. IEEE Transactions on Intelligent
Vehicles 8(1), 232�249 (2022). https://doi.org/10.1109/TIV.2022.3170517

64. Zhao, T., Yurtsever, E., Paulson, J.A., Rizzoni, G.: Formal certi�cation methods
for automated vehicle safety assessment. IEEE Transactions on Intelligent Vehicles
8(1), 232�249 (2023). https://doi.org/10.1109/TIV.2022.3170517

https://doi.org/10.1007/978-3-319-32582-8_15
https://doi.org/10.1007/978-3-319-32582-8_15
https://doi.org/10.1016/j.trc.2021.103069
https://doi.org/10.1016/j.trc.2021.103069
https://doi.org/10.1016/j.trc.2021.103069
https://doi.org/10.1016/j.trc.2021.103069
https://doi.org/10.1007/978-3-662-48847-8_21
https://doi.org/10.1007/978-3-662-48847-8_21
https://doi.org/10.1007/978-3-662-48847-8_21
https://doi.org/10.1007/978-3-662-48847-8_21
https://doi.org/10.1109/TIV.2022.3170517
https://doi.org/10.1109/TIV.2022.3170517
https://doi.org/10.1109/TIV.2022.3170517
https://doi.org/10.1109/TIV.2022.3170517

	Towards Safe Autonomous Driving: Model Checking a Behavior Planner during Development

