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Abstract—IC3 is one of the most successful algorithms for
hardware model checking. Since its invention in 2010, several
variants of the original algorithm have been published, propos-
ing optimizations and/or alternative procedures for the many
different steps of the algorithm. In this paper, we present a
thorough empirical comparison of a large set of optimizations
and procedures for the steps of IC3, considering “high-level”
variants/extensions to the basic algorithm, as well as “low-level”
optimizations/configuration settings. We implemented each of
them in the same tool, optimizing the implementations to the best
of our knowledge. This enabled for a flexible experimentation in
a controlled environment, and to gain new insights about their
most important differences and commonalities, as well as about
their performance characteristics. We conducted the experiments
using as benchmarks the problems used in the last four editions
of the hardware model checking competition. The analysis helped
us to identify several settings leading to significant improvements
wrt. a basic implementation of IC3.

I. INTRODUCTION

THE results of the last four Hardware Model Checking
Competitions (HWMCC) [1] clearly show that IC3 [2],

a bit-level SAT-based symbolic model checking algorithm
invented by Bradley in 2010, is very efficient on analyzing
(both satisfiable and unsatisfiable) problems of industrial size.

IC3 is a sophisticated algorithm, and its performance can
be significantly affected by a number of parameters and
implementation choices for its main components. Because
of this, since its introduction in [2], several variants of its
different main components have been proposed, implemented
and integrated independently in the many available model
checkers (e.g. ABC [3], [4], IIMC [5], PDTRAV [6]).

Each implementation differs from the others by the possible
use of different SAT solvers, different programming languages,
different low-level algorithms and different data structures.
The majority of these differences may seem insignificant at
a first sight. However, they may spoil some insights about the
efficiency of the variants, and make the comparison among the
different variants difficult.

This paper provides the first systematic independent com-
parison of the different variants of the IC3 algorithm, consider-
ing many possible configurations that may affect its efficiency,
including some that have not been thoroughly analyzed before.

A preliminary version of this paper was presented at the DIFTS’14
workshop (http://fmgroup.polito.it/cabodi/difts2014/).
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The expectation is to better understand the impact of each
variant and thus to gather further insights about the algorithm.

We implemented the most important variants of the main
components of IC3 within the NUXMV verification plat-
form [7]. Our implementation allows to control the various
configuration parameters by making it possible to enable
or disable the considered variants and optimizations without
causing any overhead.

We performed a thorough experimental evaluation using as
benchmarks for the comparison all the single track benchmarks
of the last four editions of the HWMCC [1]. As baseline for
conceptually identifying the differences and the impact of the
different variants we have chosen a configuration close to the
description of the algorithm given in [3].

The experimental evaluation produced several outcomes.
First, our results provide an independent and publicly available
confirmation of the results discussed in the papers where the
considered variants were first introduced. Second, the analysis
of the results identified several unexpected impacts, like e.g.
the surprising importance of the CNF conversion. Third, we
identified a set of best candidate configurations that lead
to solve the largest number of problems in the considered
resource constraints. Finally, the results show that quite often
there is not a clear winner among the different configurations.
Indeed, enabling one configuration may result in differences
in the number of solved instances wrt. the baseline, as well
as in differences in the number of instances gained (i.e.
solved by the given configuration but not by the baseline)
and lost. Moreover, our analysis shows that the effectiveness
of many of the considered parameters varies significantly
across the different families of instances in our benchmark set.
Considering the virtual best, it becomes evident that a portfolio
approach is the one that leads to the best performances in terms
of number of problems solved in the given resource bounds.

Finally, we compared the identified best candidate con-
figurations against our baseline, against the “reference” IC3
implementation available at [8], and against the version of
IC3 implemented within ABC [3], [4]. The results show that
each of our best candidate configurations results in substantial
improvements over the “basic” version of the algorithm.

A. Related Work

The work closest to the work presented in this paper
is [3], where different configurations are compared for the PDR
variants of IC3 implemented within ABC [3], [4]. This paper,
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besides providing an independent evaluation of the findings
presented in [9] and in other papers introducing variants to the
basic IC3 algorithm, extends the scope of the evaluation along
two main directions. First, we consider a larger benchmark
suite, including all the single track instances used for the
2011, 2012, 2013 and 2014 editions of the HWMCC. Second,
we consider a larger set of configurations, including some
not considered before (e.g. different SAT solvers and CNF
conversion algorithms, or use of approximated SAT checks).

B. Structure of the paper

This paper is structured as follows. In Sect. II we provide
some background concepts. In Sect. III we describe the space
of IC3 variants. In Sect. IV we briefly describe our param-
eterized implementation of the IC3 variants. In Sect. V we
describe the evaluation methodology we adopted. In Sect. VI
we discuss the results of the analysis and we discuss the
lessons learned. Finally, in Sect. VII we draw conclusions and
we outline possible future directions.

II. BACKGROUND

A. Notation

Our setting is standard propositional logic. We denote
Boolean formulas with ϕ,ψ, I, T, P , Boolean variables with
x, y, and sets of Boolean variables with X , Y . A literal is a
variable or its negation. A clause is a disjunction of literals,
whereas a cube is a conjunction of literals. If s is a cube
l1 ∧ . . . ∧ ln, with ¬s we denote the clause ¬l1 ∨ . . . ∨ ¬ln,
and vice versa. With a little abuse of notation, we sometimes
interpret both cubes and clauses as sets of literals (and vice
versa). If l is a literal, we denote its corresponding variable
with var(l). If X1, . . . , Xn are sets of variables and ϕ is
a formula, we might write ϕ(X1, . . . , Xn) to indicate that
all the variables occurring in ϕ are elements of

⋃
iXi. For

each variable x, we assume that there exists a corresponding
variable x′ (the primed version of x). If X is a set of variables,
X ′ is the set obtained by replacing each element x with
its primed version. Given a formula ϕ, ϕ′ is the formula
obtained by replacing each variable occurring in ϕ with
the corresponding primed variable, whereas ϕ〈i〉 denotes the
formula obtained by i consecutive applications of priming(that
is, ϕ〈0〉 ≡ ϕ and ϕ〈i〉 ≡ (ϕ〈i−1〉)′). A model µ for a formula
ϕ is an assignment to (possibly a subset of) the variables of ϕ
that makes the formula true. Given two formulas ϕ and ψ, we
denote entailment with ϕ |= ψ, meaning that all the models
of ϕ are also models of ψ.

B. Symbolic transition systems

Given a set X of state variables and a set Y of primary
input variables, a transition system S over X can be de-
scribed symbolically with two formulas: I(X), representing
the initial states of the system, and T (Y,X,X ′), representing
its transition relation. In this paper, unless otherwise speci-
fied, we assume that the transition relation T is written as∧
xj∈X(x′j = τj(Y,X)), as is typically the case for hardware

designs.1 A state of S is a cube over X . A path of S
is a sequence of states s0, . . . , sn such that s0 |= I and
∃Y. si−1(X)∧T (Y,X,X ′) |= si(X

′) for all i in 1 . . . n. That
is, s0 is an initial state of S, and si is the result of performing
one transition step in S starting from si−1 (for some values
of the primary inputs Y ).

C. SAT solving
A SAT solver is a procedure that can decide the satisfiability

of a propositional formula ϕ (typically assumed to be in
Conjunctive Normal Form – CNF), i.e. it returns true iff ϕ
has at least one model. Modern SAT solver implementations
typically follow the CDCL (Conflict-Driven-Clause-Learning)
architecture [11]. In the following, we abstract from the
implementation details of the SAT solver, and we only assume
to have the following API2:
• is sat(ϕ) checks the satisfiability of the input formula ϕ;
• get model() retrieves the model computed by the previous

is sat call (only if the result of the last call was true);
• is sat assuming(ϕ, assumptions) checks the satisfiability

of ϕ under the given additional assumptions (a list of
literals) [13]. Semantically, this is equivalent to is sat(ϕ∧
assumptions), but the implementation is typically more
efficient. Moreover, this function also allows to compute
an unsatisfiable core of the assumptions, i.e. a subset of
the assumption literals that is enough to determine the
unsatisfiability of the input;

• get unsat assumptions() retrieves an unsatisfiable core of
the assumption literals of the previous is sat assuming
call (only if the result of the last call was false).

III. REVIEW OF IC3 TECHNIQUES

A. High-level description of IC3
We follow the formulation of IC3 given in [3], which is

known as PDR. Let S be a given transition system described
symbolically by I(X) and T (Y,X,X ′). Let P (X) describe
a set of good states. The objective is to prove that all the
reachable states of S are good. The IC3 algorithm tries to
prove that S satisfies P by finding an inductive invariant F (X)
such that:

(i) I(X) |= F (X);
(ii) F (X) ∧ T (Y,X,X ′) |= F (X ′); and

(iii) F (X) |= P (X).
To construct F IC3 maintains a sequence of formulas (called

trace, following [3]) F0(X), . . . , Fk(X) such that:
• F0 = I;
• for all i > 0, Fi is a set of clauses;
• Fi+1 ⊆ Fi (thus, Fi |= Fi+1);
• Fi(X) ∧ T (Y,X,X ′) |= Fi+1(X

′);
• for all i < k, Fi |= P .

For i > 0, each element Fi of a trace (called frame) represents
an over-approximation of the states of S reachable in i
transition steps or less.

1This is e.g. how transition systems are represented in the Aiger [10]
standard format, used in the hardware model checking competitions [1].

2Notice that, this API is the one typically provided by state-of-the-art SAT
solvers such as MINISAT [12].
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bool IC3(I , T , P ):
1. if is sat(I ∧ ¬P ): return False
2. F [0] = I # first elem of trace is init formula
3. k = 1, F [k] = > # add a new frame to the trace
4. while True:

# blocking phase
5. while is sat(F [k] ∧ ¬P ):
6. c = get state(F [k] ∧ ¬P ) # c |= F [k] ∧ ¬P
7. if not rec block(c, k):
8. return False # counterexample found

# propagation phase
9. k = k + 1, F [k] = >
10. for i = 1 to k − 1:
11. for each clause c ∈ F [i]:
12. if not is sat(F [i] ∧ c ∧ T ∧ ¬c′):
13. add c to F [i+ 1]
14. if F [i] == F [i+ 1]: return True # property proved

# simplified recursive description (see §III-D)
bool rec block(s, i):
1. if i == 0: return False # reached initial states
2. while is sat(F [i− 1] ∧ ¬s ∧ T ∧ s′):
3. c = get predecessor(i− 1, s′) # see §III-C
4. if not rec block(c, i− 1): return False
5. g = generalize(¬s, i) # see §III-B
6. add g to F [1] . . . F [i]

7. return True

Fig. 1. High-level description of IC3 (following [3] but using a stack-based
cube blocking procedure as opposed to a priority-queue-based one).

The algorithm proceeds incrementally, by alternating two
phases: a blocking phase, and a propagation phase. In the
blocking phase, the trace is analyzed to prove that no inter-
section between Fk and ¬P is possible. If such intersection
cannot be disproved on the current trace, the property is
violated and a counterexample can be reconstructed. During
the blocking phase, the trace is enriched with additional
clauses, that can be seen as strengthening the approximation
of the reachable state space. At the end of the blocking phase,
if no violation is found, Fk |= P .

The propagation phase tries to extend the trace with a new
formula Fk+1, moving forward the clauses from preceding
Fi. If, during this process, two consecutive frames become
identical (i.e. Fi = Fi+1), then a fix-point is reached, and IC3
terminates with Fi being an inductive invariant proving the
property.

Let us now consider the lower level details of IC3. The
distinguishing feature of IC3 is that the sets of clauses Fi
are constructed incrementally, starting from cubes representing
sets of states that can reach a bad state in zero or more
transition steps. More specifically, in the blocking phase, IC3
maintains a set of proof obligations (s, i), where s is a coun-
terexample to induction (CTI), i.e. a cube representing a set of
states that can lead to a bad state, and i > 0 is a position in the
current trace. New clauses to be added to (some of the frames
in) the current trace are derived by (recursively) proving that
the set s of a pair (s, i) is unreachable starting from the
formula Fi−1. This is done by checking the satisfiability of
the formula:

Fi−1 ∧ ¬s ∧ T ∧ s′. (1)

void generalize-MIC(ref clause c, int i):
1. required = {}, fail = 0
2. for each l in c:
3. cand = c \ {l}
4. if down(cand, i, required):
5. if size(cand) > min up size: c = up(cand, i) # see [14]
6. else: c = cand
7. fail = 0
8. else:
9. if ++fail > max fail: break
10. required = required ∪ {l}

bool down(ref clause c, int i, set required):
1. while True:
2. if is sat(I ∧ ¬c): return False # I 6|= c
3. if not is sat assuming(F [i] ∧ T ∧ c, ¬c′):
4. cc = {l | l′ ∈ get unsat assumptions()}
5. while is sat(cc ∧ I): pick l ∈ c \ cc, set cc = cc ∪ {l}
6. c = cc
7. return True
8. else:
9. s = get predecessor(i,¬c′)
10. if (c \ ¬s) ∩ required 6= ∅: return False
11. c = c ∩ ¬s

Fig. 2. MIC-based inductive generalization [14] (max fail and min up size
are configuration parameters).

If (1) is unsatisfiable, and s does not intersect the initial states
I of the system, then ¬s is inductive relative to Fi−1, and it
can be used to strengthen Fi in order to block the bad state
s at i. This is done by first generalizing ¬s to a stronger
clause g such that g |= ¬s and g is still inductive relative to
Fi−1, and then by adding g to Fi, thus blocking s at i. If,
instead, (1) is satisfiable, then the over-approximation Fi−1

is not strong enough to show that s is unreachable. In this
case, let p be a cube representing a subset of the states in
Fi−1 ∧ ¬s such that all the states in p lead to a state in s′

in one transition step, for some values of the inputs Y (i.e.
∃Y. p(X) ∧ T (Y,X,X ′) |= s(X ′)). Then, IC3 continues by
trying to show that p is not reachable in one step from Fi−2

(that is, it tries to block the pair (p, i − 1)). This procedure
continues recursively, possibly generating other pairs to block
at earlier points in the trace, until either IC3 generates a pair
(q, 0), meaning that the system does not satisfy the property,
or the trace is eventually strengthened so that the original
pair (s, i) can be blocked. Fig. 1 reports the pseudo-code for
IC3. In the rest of the section, we describe in more detail the
most important components of the algorithm, illustrating the
different variants proposed in the literature.

B. Inductive clause generalization

Inductive generalization is a central step of IC3, that is
crucial for the performance of the algorithm. Given a suc-
cessfully blocked cube s at step i, inductive generalization
tries to compute a subset c of s such that ¬c is still inductive
relative to Fi−1. Adding ¬c to Fi blocks not only the bad
cube s, but possibly also many others, thus allowing for a
faster convergence of the algorithm.

At a high level, the algorithm for performing inductive
generalization works by dropping some literals from the input
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void generalize-iter(ref clause c, int i):
1. done = False
2. for iter = 1 to max iter:
3. if done: break
4. done = True
5. for each l in c:
6. g = c \ {l}
7. if not is sat(I ∧ ¬g) and

not is sat assuming(F [i] ∧ T ∧ g, ¬g′):
8. cc = {l | l′ ∈ get unsat assumptions()}
9. while is sat(cc ∧ I): pick l ∈ g \ cc, set cc = cc ∪ {l}
10. c = cc
11. done = False
12. break

Fig. 3. Iterative inductive generalization algorithm (max iter is a configura-
tion parameter).

void generalize-CTG(ref clause c, int i, int rec lvl=1):
1. required = {}, fail = 0
2. for each l in c:
3. cand = c \ {l}
4. if down-CTG(cand, i, rec lvl, required):
5. c = cand, fail = 0
6. else:
7. if ++fail > max fail: break
8. required = required ∪ {l}

bool down-CTG(ref clause c, int i, int rec lvl, set required):
1. ctgs = 0
2. while True:
3. if is sat(I ∧ ¬c): return False
4. if not is sat assuming(F [i] ∧ T ∧ c, ¬c′):
5. cc = {l | l′ ∈ get unsat assumptions()}
6. while is sat(cc ∧ I): pick l ∈ c \ cc, set cc = cc ∪ {l}
7. c = cc
8. return True
9. else if rec lvl > max lvl: return False
10. else:
11. s = get predecessor(i,¬c′)
12. if ctgs < max ctg and i > 0 and not is sat(I ∧ s) and

not is sat(F [i− 1] ∧ T ∧ ¬s ∧ s′):
13. ++ctgs
14. j = i
15. while not is sat(F [j] ∧ T ∧ ¬s ∧ s′): ++j
16. generalize-CTG(¬s, j-1, rec lvl+1)
17. add ¬s to F [j]

18. else:
19. ctgs = 0
20. if (c \ ¬s) ∩ required 6= ∅: return False
21. c = c ∩ ¬s

Fig. 4. CTG-based inductive generalization [9] (max fail, max ctg and
max lvl are configuration parameters).

clause ¬s and testing whether the result is still inductive (by
checking the satisfiability of (1)), until a stopping criterion is
reached (e.g. a fix-point or a resource bound). In the literature,
several variants of this basic approach have been proposed. An
effective algorithm for computing a minimal inductive sub-
clause of a given clause was originally proposed in [14]. The
algorithm is based on a smart exploration of the lattice of sub-
clauses of the input clause. The original IC3 implementation
[2] uses an approximated version of such procedure, trading
effectiveness for computational efficiency. The pseudo-code of

cube get predecessor(int i, cube s):
1. assert is sat(F [i− 1] ∧ T ∧ ¬s ∧ s′)
2. µ = get model()
3. inputs = {l ∈ µ | var(l) ∈ Y } # primary inputs
4. p = {l ∈ µ | var(l) ∈ X} # state variables
5. for iter = 1 to max iter:
6. b = is sat assuming(T ∧ inputs ∧ ¬s′, p)
7. assert not b
8. s = get unsat assumptions()
9. if s == p: break
10. else: p = s

11. return p

Fig. 5. SAT-based algorithm for generalization of predecessors (i.e. CTIs)
[16] (max iter is a configuration parameter).

this algorithm is shown in Fig. 2.3

An even cheaper (and conceptually simpler) variant of the
procedure was proposed in [3] and is used e.g. by the PDR
implementation in ABC [4] and in TIP [15]. The pseudo-code
is shown in Fig. 3.

A third variant has been recently proposed in [9]. In this
approach, relatively inductive sub-clauses are computed not
only from successfully blocked CTIs, but also from other
cubes, called counterexamples to generalization (CTGs), that
are generated from failed attempts at generalizing some CTIs.
The pseudo-code is shown in Fig. 4. In [9], CTG-based gener-
alization was shown to significantly improve the performance
of IC3 compared to both the original IC3 procedure and the
one of ABC.

C. Predecessors computation

When blocking of a bad cube c fails, a predecessor p of c
(wrt. the transition relation T ) must be computed. p can be
computed simply by taking the values of the state variables X
from the model produced by the SAT solver for formula (1). p
can then be generalized to represent a set of bad states, rather
than a single bad state. In the original IC3 implementation
[2], only a simple syntactic generalization based on cone
of influence is performed. A significant improvement was
proposed in [3], where ternary simulation is used to drop as
many literals as possible from p (by setting them to “don’t
cares”) as long as all the states encoded by p are predecessors
of c. An algorithm to obtain the same effect using a SAT
solver instead of ternary simulation was proposed in [16]. Its
pseudo-code is shown in Fig. 5.

D. Proof obligations handling

The pseudo-code of Fig. 1 describes a simple recursive
implementation of the management of proof obligations for
CTIs. In practice, however, it is more efficient to use a priority
queue, ordered by the depth i of proof obligations (s, i). When
a CTI (s, i) is successfully blocked, a new proof obligation
(s, i + 1) is inserted in the queue, so that IC3 attempts to
block s even at later positions in the trace. This not only

3A detailed description of the pseudo-code of this and other algorithms
shown later is outside the scope of this paper. We refer the reader to the
original publications for more information.
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allows IC3 to generate counterexamples longer than the length
of the trace when disproving properties, but it also generally
improves performance for proving properties [2], [3].

E. Target-enlargement of P

The IC3 invariants and pseudo-code described above follow
the PDR description of [3], which is slightly different from the
original IC3 of [2]. In particular, in [2], all the elements of
the trace (including the last one) always entail the property P ,
and the blocking phase continues as long as P is not inductive
relative to the last element of the trace. In [3], it is shown that
this behavior can be emulated by PDR by preprocessing the
input system using a one-step target-enlargement of P , and
that this leads to a (small) performance benefit. In principle,
the same target-enlargement idea can be generalized and
applied for any number k ≥ 1 of steps.

F. Combination with Lazy Abstraction

The work of [17] has investigated the combination of IC3
with a form of lazy abstraction, showing very positive results
on industrial hardware verification problems. The main idea
of the algorithm is to associate each frame Fi of the IC3
trace with a set Vi ⊆ X of visible state variables, such that
all the variables not in V (i.e. the invisible ones) are treated
as primary inputs. Given the transition relation T written as∧
xj∈X(x′j = τj(Y,X)), the algorithm considers a different

abstract transition relation Tαi
def
=

∧
xj∈Vi

(x′j = τj(Y,X))

(over-approximating T ) at each position i in the IC3 trace.4

When a counterexample trace (of length k) is found, it is
analyzed to to determine whether it is spurious (i.e. due to
the abstraction) or not. In the former case, a refinement step
is performed which increases the precision of the abstractions
Tαi by enlarging the sets Vi of visible variables, ensuring that
no spurious counterexamples of length k exist.

A high-level view of the algorithm of [17] is shown in
Fig. 6. In the pseudo-code, the function rec block abstract
is the same as the rec block function of IC3 (see Fig. 1 and
§III-D), except that the abstract transition relation Tαi is used
instead of T , and state variables not in Vi are considered
inputs, whereas IC3 concrete blocking phase is the blocking
phase of the concrete IC3 (see Fig. 1).

The counterexample analysis and refinement is based on a
variation of the blocking phase of IC3. When successful, the
function strengthens the current trace until all the counterex-
amples of length k are blocked. The sets of visible variables V
are then refined by identifying, for each position j in the trace,
the subset of conjuncts of T of the form x′i = τi(Y,X) that are
needed to ensure that Fj is an over-approximation of the image
of Fj−1 also in the abstract space. The identification of the
needed variables is based on the computation of unsatisfiable
cores of assumptions [17].

Besides the original IC3-based refinement procedure of [17],
here we consider also another variant, based on Bounded
Model Checking (BMC), which to the best of our knowledge

4For technical reasons (see [17]), the sets of visible variables are such that
Vi+1 ⊇ Vi for all i.

bool IC3 lazy abstraction(I , T , P ):
1. if is sat(I ∧ ¬P ): return False
2. F [0] = I , k = 1, F [k] = >
3. V [0] = {x | x ∈ P} # only variables in P are visible initially
4. while True:
5. while is sat(F [k] ∧ ¬P ):
6. c = get state(F [k] ∧ ¬P )
7. if not rec block abstract(c, k, V [k − 1]):
8. if refine abstraction(k): break
9. else: return False
10. k = k + 1, F [k] = >
11. V [k − 1] = V [k − 2]

12. for i = 1 to k − 1:
13. for each clause c ∈ F [i]:
14. if not is sat(F [i] ∧ ¬c ∧ Tαi−1 ∧ c′):
15. add c to F [i+ 1]
16. if F [i] == F [i+ 1]: return True

bool refine abstraction(k):
1. oldF = F
2. if not IC3 concrete blocking phase(F , k):
3. return False # found concrete counterexample
4. ϕ =

∧
xi∈X(li ↔ (x′i = τi(Y,X))

5. A = {li | li ∈ ϕ}
6. for j = 0 to k:
7. if F [j].size() > oldF [j].size(): # refinement at i
8. b = is sat assuming(ϕ ∧ F [j − 1] ∧ ¬F [j], A)
9. assert not b
10. for each xi in X:
11. if li ∈ get unsat assumptions():
12. add xi to V [j] . . . V [k − 1]

13. return True

Fig. 6. High-level description of IC3 with lazy abstraction [17].

bool refine abstraction BMC(k):
1. ϕ =

∧
xi∈X(li ↔ (x′i = τi(Y,X)))

2. A = {li | li ∈ ϕ}
3. if is sat assuming(I〈0〉 ∧

∧k−1
j=0 ϕ

〈j〉 ∧ ¬P 〈k〉,
∧k−1
j=0 A

〈j〉):
4. return False # found concrete counterexample
5. else:
6. for each xi in X:
7. for j = 0 to k − 1:
8. if l〈j〉i ∈ get unsat assumptions():
9. add xi to V [j] . . . V [k − 1]
10. return True

Fig. 7. BMC-based refinement for IC3 with lazy abstraction.

has not been considered before. The pseudo-code is reported
in Fig. 7. Similarly to the original refinement of [17], also
the BMC-based algorithm uses unsatisfiable cores in order
to identify the state variables that must be made visible at
each position j of the trace. However, differently from the
original algorithm, the check for counterexamples of length k
is performed with BMC, rather than with a sub-IC3 call.

IV. A PARAMETERIZED IC3 IMPLEMENTATION

It is well-known that comparing separate implementations
of similar algorithms within different model checking tools is
somewhat problematic: different tools typically differ in many
ways (e.g. programming language, data structures and basic
routines used, front-ends) which can have a significant impact
on their relative performance, and can make it very difficult to
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perform a fair analysis of the effectiveness of a given variant
of an algorithm. Thus, in order to conceptually and effectively
compare the characteristics and the impact of the possible vari-
ants of IC3, we implemented all of them in the same tool. As a
basis for our implementation we took the NUXMV verification
platform [7]. Our implementation is in C++, and its source
code is available at https://nuxmv.fbk.eu/tests/ic3-eval. We
have implemented all the variants of the high-level components
of IC3 described in the previous section (§III-B–§III-E) to the
best of our understanding, using both the literature describing
them and (when available) the original source code as a
reference. We have distinguished the algorithm configuration
parameters in two main categories: high-level and low-level.

The high-level parameters are those corresponding to the
techniques described in Sections III-B–III-F:

• We consider six different variants for inductive general-
ization, namely:
– the original IC3 procedure of [2] (indgen-ic3), using the

MIC algorithm of Fig. 2 with the following parameter
values: min up size = 25,max fail = 3;

– the simple iterative algorithm of Fig. 3, with
max iter = +∞ (indgen-iter);

– the iterative algorithm of Fig. 3 with max iter = 1, as
done in the original PDR [3] (indgen-pdr);

– the CTG-based algorithm of Fig. 4 [9] with the settings
used also in [9], namely max fail = +∞,max ctg =
3,max lvl = 1 (indgen-ctg);

– the MIC-based algorithm of Fig. 2 with min up size =
+∞,max fail = +∞ (indgen-down), which uses the
same strategy of indgen-ctg for exploring the lattice
of subclauses of the input clause c, but without using
CTGs;

– a configuration in which relative induction is not used
at all (norelind), and a simple implication check of the
form Fi−1 ∧ T ∧ s′ is used instead of (1) for blocking
CTIs (generalization is performed with the iterative
algorithm with max iter = +∞).

• For the computation of predecessors, we consider the
SAT-based generalization procedure of Fig. 5 [16] with
max iter = +∞ (pre-gen), and the cone of influence
procedure of [2] (pre-basic).

• For the management of proof obligations, we use either
a priority queue (queue) or a stack (stack).

• We consider three variants of target-enlargement for the
property P , namely no enlargement (unroll-0), like in
the original PDR [3], 1-step enlargement (unroll-1), and
a more aggressive 4-step enlargement (unroll-4), inspired
by the implementation of the TIP model checker [15].

• Regarding the combination of IC3 with lazy abstrac-
tion, besides the original IC3 performing no abstraction
(noabs), we consider the two variants described in §III-F,
namely the one of [17] which uses a sub-IC3 for per-
forming abstraction refinement (absref-ic3, Fig. 6), and a
variant that uses BMC for refinement (absref-bmc, Fig. 7).

Finally, as a further high-level parameter, we consider
also the impact of preprocessing the transition system using
sequential simplification techniques, commonly used by state-

of-the-art model checkers, before invoking IC3. In particular,
in our preprocessing configuration (preproc) we apply two
simple techniques used (in various forms) by several tools,
namely 2-step temporal decomposition [18] and detection of
equivalent latches using ternary simulation [19], [20]. Overall,
we have 432 possible configurations for the high-level param-
eters (assuming that they are all independent).

The low-level parameters that we consider and that may
affect the performance of IC3 are:
• SAT solver: our implementation is based on a generic SAT

solver interface that can be instantiated using back-end
solvers. Here, we use the latest version of MINISAT [12]
available from Github [21], both with (minisat-simp) and
without (minisat) SAT preprocessing enabled, and the
latest version of PICOSAT [22] (picosat). When using
minisat-simp, we apply SAT preprocessing once every
time the SAT solver is reset (see also below).

• we consider two different algorithms for CNF conversion:
the standard Tseitin encoding (cnf-simple) and the more
sophisticated one presented in [23], as implemented in
ABC (cnf-abc).

• number of SAT solver instances: we considered having
either a single SAT solver instance for all the frames in
IC3 (onesolver), or a separate SAT solver instance for
each frame (manysolvers), as suggested in [3].

• literal activity: we can turn on (activity) or off (noactivity)
the ordering of literals based on their activity when
performing inductive generalization, as suggested in [2].5

• SAT solver reset: IC3 implementations make heavy use
of incremental SAT checks. This feature is not always
available in modern SAT solvers, but it can be emulated
using solving under assumptions (see e.g. [3]). However,
this has the disadvantage of introducing one fresh variable
per incremental call in the SAT solver. Over time, such
variables can cause a significant degrade in performance.
As a solution to this problem, the authors of [3] suggest
to destroy and create a fresh SAT solver instance every
few hundred incremental SAT checks.
Destroying the SAT solver periodically might still be
beneficial even when the solver provides a built-in in-
cremental interface,6 because it also resets the internal
state of the solver (scores of variables and clauses, saved
variable phase, database of learned clauses), which over
time might accumulate too much bias towards certain
(possibly poor) choices.
In this paper, we evaluate three different reset strategies:
every 200 incremental calls (sat-reset-200, a value similar
to what suggested in [3]), a less aggressive strategy that
destroys the solver every 5000 calls (sat-reset-5000), and
a strategy that never resets the solver (no-sat-reset).

• finally, we also investigate the possibility to perform
approximated calls to the SAT solver when possible.

5The activity heuristic works by preferring literals occurring less frequently
in the Fi’s for removal from a clause c during inductive generalization.

6For example, the latest version of MINISAT available from Github [21]
(our default SAT solver) supports the retraction of some variables, which can
be used to implement an efficient incremental interface without the need of
resetting the solver periodically. In our implementation we exploit this feature.
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From our measurements (consistent with what reported
in [3]), it turns out that satisfiable queries to the SAT
solver are much more expensive than unsatisfiable ones.
Moreover, only very few decisions are needed to detect
unsatisfiability in most cases. Therefore, we introduced
an option (sat-approx) to use approximated calls to the
SAT solver during inductive generalization queries (on
formulas of the form (1)), by setting a bound on the
number of decisions. If unsatisfiability is not detected
before the bound is hit, we treat the result as a failed
generalization.7 This allows to trade the effectiveness
of the generalization for the run-time spent in the SAT
solver. In our current implementation, we use a static limit
of 100 decisions as upper bound.

Overall, we have 144 possible configurations for the low-
level parameters.

V. SETUP OF THE COMPARISON

We consider as baseline for the experimental evaluation the
configuration with the following settings: indgen-iter, pre-gen,
queue, unroll-0, noabs, minisat, cnf-simple, onesolver, noac-
tivity, sat-reset-5000. The rationale for using this configuration
as baseline is that it corresponds to a basic implementation of
the algorithm following the description of [3].

In the experimental analysis, we assume all the algorithm
configuration parameters as being independent from each
other. We activate each of them separately and we analyze
its impact on the performance against the baseline. While the
assumption of independence might not be true in some cases,
it is however necessary in order to avoid the combinatorial
explosion of configurations to test.

For the comparison we considered all the 873 single track
benchmarks used in the hardware model checking compe-
titions from 2011 to 2014 [1]. These benchmarks come in
families of related problems. The three main ones, in terms of
number of instances, are:
• 6s are benchmarks generated by the SixthSense verifica-

tion platform of IBM [24]; this family consists of 318
instances;

• Beem are benchmarks derived from the BEEM explicit
state model checking benchmark set [25]; the family
contains 103 instances;

• Intel are benchmarks generated by Intel’s formal verifi-
cation flow; the set contains 60 instances.

We ran the experiments on a cluster running Scientific
Linux, equipped with 2.5Ghz Intel Xeon CPUs with 96Gb of
RAM. We set up a time limit of 900 seconds, and a memory
limit of 6Gb. For the comparison with other implementations
we used a time limit of 2 hours.

We concentrate mainly on two metrics for the comparison:
the number of problems solved in the given resource limits;
the time needed to provide an answer. We choose these

7Note that neither the correctness nor the completeness of IC3 is affected
by this, because we still use a complete SAT call for checking whether a
CTI can be blocked. We also use complete calls whenever a model must
be extracted from the SAT solver, in order to ensure that get model always
produces correct results.

metrics since they are the most intuitive to analyze given
the assumption of independence of the options. For certain
configurations, we also consider other metrics, in order to
better explain the results.

The data to reproduce the executed experiments, and all the
log files can also be downloaded from https://nuxmv.fbk.eu/
tests/ic3-eval.

VI. RESULTS

In this section, we first analyze the impact of the high-
level parameters, then we analyze the impact of the low-level
parameters, and finally we compare our implementation with
other ones and we provide an overall discussion.

A. Inductive generalization

We start from inductive generalization, one of the distin-
guishing features of IC3. Fig. 8 shows the survival plots for the
different inductive generalization options, plotting the number
(#) of solved instances (y-axis) in the given timeout (x-axis).8

More information is provided in Table I, where for each
configuration we show the # of solved instances, the difference
in # of solved instances wrt. the baseline, the number of
instances gained (i.e. solved by the given configuration but not
by the baseline) and lost, and the total execution time taken on
solved instances. Finally, Fig. 9 shows scatter plots comparing
each configuration against the baseline. (Each configuration is
indicated by the name of the parameter that is changed wrt. the
baseline.) In the scatter plots, we distinguish instances from
different families using points of different colors and shapes.
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Fig. 8. Survival plots comparing the baseline configuration with configura-
tions using different inductive generalization strategies.

Looking at the results, we can make the following observa-
tions:
• The CTG-based technique proposed in [9] (indgen-ctg)

is the best performing one, solving 9 more instances than
our baseline. The survival plots show that CTG-based
generalization introduces a overhead for easy instances,

8Notice that, in order to improve readability of the plots, we use non-linear
scales in both axes that amplify the differences in the curves.
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TABLE I
SUMMARY OF RESULTS FOR THE DIFFERENT INDUCTIVE

GENERALIZATION CONFIGURATIONS

Cumulative
Configuration # Solved ∆baseline Gained Lost time (sec)
indgen-ctg 486 +9 31 22 40729
indgen-down 482 +5 16 11 31716
indgen-iter (baseline) 477 0 0 0 38197
indgen-pdr 472 -5 13 18 34054
indgen-ic3 449 -28 13 41 38860
norelind 434 -43 7 50 35764

but pays off for harder problems. These results are in
line with the findings of [9]. It is interesting however to
observe that indgen-ctg and indgen-iter (used in baseline)
seem to have somewhat complementary strengths, as can
be seen also by the scatter plots: there are 22 instances
that can be solved with indgen-iter but not with indgen-
ctg. This is mainly due (14 out of 22 instances) to the
Beem family, on which in general indgen-iter performs
better.

• The performance of indgen-down is quite close to that of
indgen-ctg. Although the latter solves 4 more instances,
indgen-down is generally faster, as shown by the survival
plots. It is also interesting to observe that, unlike indgen-
ctg, there is no specific family of benchmarks for which
indgen-down performs significantly worse than indgen-
iter.

• The original IC3 generalization strategy (indgen-ic3) [2]
performs significantly worse than the baseline. As for
indgen-ctg, this is mostly due to the Beem family (26
instances out of the 41 lost are in this set). This is due in
part to the cost of applying the up algorithm of [14],
but more importantly to the use of max fail = 3 in

generalize-MIC (Fig. 2). The purpose of the parameter
is to limit the time spent in inductive generalization. It
seems that this cutoff value however is too low for our
benchmark set, resulting in a significant loss of effec-
tiveness of the whole inductive generalization algorithm.9

Using max fail = +∞, as done in indgen-down, allows
MIC-based generalization to perform at its full potential.

• Using a fixpoint strategy in the iterative algorithm gives
only a small advantage compared to the single-round
strategy used in PDR: indgen-iter solves 5 more instances
than indgen-pdr, although both the survival plot and the
scatter plot show that the two behave very similarly.

• Finally, as expected disabling relative induction (nore-
lind) significantly hurts performance.

B. Other high-level parameters

Results for the other high-level parameters we considered
are showing in Fig. 10, Fig. 11, and Table II. We make the
following observations.

1) Predecessor computation: our results confirm that gen-
eralizing predecessors of CTIs (either via ternary simula-
tion [3] or via SAT [16]) is crucial for performance: this is the
single most important parameter among those we considered,
while evaluating the whole benchmark set. However, different
families show quite different behaviors. The 6s family is
the one for which pre-basic performs worse: out of the 103
instances lost, 45 belong to this family. On the other hand, pre-
basic seems to have basically no effect on the Intel family.

9In our first implementation, we were using the same cutoff value also in
indgen-ctg. With this setting, also the CTG-based generalization performed
worse than indgen-iter. We are grateful to Aaron Bradley for fruitful discus-
sions about this.
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Fig. 10. Survival plots comparing the baseline configuration with configura-
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TABLE II
SUMMARY OF RESULTS FOR THE OTHER HIGH-LEVEL PARAMETERS

Cumulative
Configuration # Solved ∆baseline Gained Lost time (sec)
preproc 494 +17 34 17 28943
unroll-4 490 +13 33 20 34109
unroll-1 486 +9 24 15 37022
baseline 477 0 0 0 38197
absref-bmc 476 -1 35 36 44239
stack 454 -23 13 36 38241
absref-ic3 452 -25 9 34 34011
pre-basic 381 -96 7 103 31739

2) Proof obligations management: our results confirm that
using a simple stack instead of a priority queue for managing
proof obligations leads to a visible degrade in performance.
The performance degradation happens for both safe and unsafe
instances alike, and in fact out of the 36 instances lost by
stack, 17 are safe and 19 are unsafe. The Beem family is
the most sensitive to this parameter (as can be seen from
Fig.11): there are 11 Beem instances solved by baseline but
not by stack, whereas there is only 1 that stack could solve but
baseline could not. Moreover, for the 33 Beem instances that
both configurations could solve, stack is on average 3.13 times
slower than baseline (with median 2.16 and 9th percentile 5.5).

3) Target-enlargement: Both unroll-1 and unroll-4 perform
better than baseline, both in # of solved instances (see Table II)
and in execution time (see Fig. 10). unroll-4 provides the best
performance, solving 13 instances more than baseline and
reducing the runtime (on instances solved by both configu-
rations) of a factor of 1.4 on average (with median 1.2 and
9th percentile 5.5). However, unroll-4 results also in a non-
negligible number of lost instances (13), and more in general
in a significant performance degradation for many problems:
more specifically, there are 89 instances for which baseline
is at least 2 times faster than unroll-4, and for 31 of them
baseline is at least 4 times faster than unroll-4. In contrast,
unroll-1 provides a “more stable” (although less significant)
improvement, as can be seen from the scatter plots of Fig. 11.

4) Preprocessing: Turning on preproc helps significantly
both in increasing the # of solved instances and in reducing

TABLE III
SUMMARY OF RESULTS FOR THE LOW-LEVEL PARAMETERS

Cumulative
Configuration # Solved ∆baseline Gained Lost time (sec)
cnf-abc 504 +27 30 3 30872
sat-approx 501 +24 34 10 33601
minisat-simp 485 +8 20 12 30920
activity 484 +7 19 12 33703
baseline 477 0 0 0 38197
manysolvers 474 -3 11 14 35820
sat-reset-200 466 -11 4 15 35159
no-sat-reset 462 -15 4 19 32792
picosat 456 -21 10 31 35886

the run-time. This is typically due to a reduction in the number
of state variables in the transition system. Preprocessing is
crucial for the 6s family, as can be seen in the scatter plot
of Fig. 11: of the 34 instances gained by preproc, 25 are
of the 6s set; moreover, for 26 of the 102 instances solved
by both configurations, preproc is is at least one order of
magnitude faster than baseline. However, it might happen that
our preprocessor actually increases the number of variables
in some cases (when applying temporal decomposition does
not allow to discover further simplifications). This happens on
11 of the 17 lost instances (and in 6 of them the increase
is ≥2x). We remark that our preprocessor only implements
two commonly applied techniques (temporal decomposition
and detection of equivalent latches); given the importance
of preprocessing for some families, experimenting with other
techniques proposed in the literature is an interesing direction
for future work.

5) Lazy abstraction: The data in Table II seems to suggest
that using lazy abstraction does not pay off. This is particularly
evident for the absref-ic3 configuration using (our implemen-
tation of) the IC3-based refinement suggested in [17], which
solves 25 instances less than baseline. The situation is more
interesting for the configuration with the BMC-based refine-
ment of Fig. 7 (absref-bmc): although this configuration is
comparable to baseline in terms of # of solved instances, their
behavior is quite different on different benchmark families (see
Fig. 11). Lazy abstraction (with both refinement algorithms)
performs significantly worse than baseline on the Beem family,
losing 14 instances and gaining only 2. In contrast, absref-bmc
is very effective on the Intel family, solving 12 instances of
this set that baseline could not solve (and losing only 1). In
particular, 9 of such 12 instances cannot be solved by any
other of the configurations we tried (including the other state-
of-the-art implementations we tested, see §VI-D).

C. Low-level parameters

In this section we analyze the impact of the low-level
parameters. Fig. 12 shows the “survival plots” for the dif-
ferent configurations. Table III provides a summary of the
information and Fig. 13 shows scatter plots comparing each
low-level parameter against the baseline. These results lead to
the following observations.

1) CNF Conversion: the results show that cnf-abc is a
clear winner. Enabling this parameter leads to a noticeable
general improvement in run-time (see Fig. 13), with (almost)
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no instance lost. This is due mostly to a reduction in the SAT
solving time: the median of the ratio between the solving time
of baseline and cnf-abc (on instances solved by both) is 2.07,
the mean 4.66 and the 9th percentile 4.63. However, also the
number of generated cubes decreases slightly (median 1.0,
mean 1.30). This is a somewhat surprising result. Indeed, in all
the analysis performed so far (to the best of our knowledge)
the importance of the CNF conversion for the performance of
IC3 was not clearly highlighted.

2) Approximated SAT: the results show that enabling sat-
approx leads to general improvements. The logs show a
general decrease in the time spent in the SAT solver for
satisfiable queries, and (as a consequence) in the overall SAT
solving time: the median of the ratio between the solving

time of baseline and sat-approx for satisfiable queries is 1.71,
the mean 3.37 and the 9th percentile 5.67; a similar trend
is also shown for for the overall SAT solving time, with
median 1.65, mean 2.84, and 9th percentile 4.13. Yet, on
most instances using approximated checks does not seem to
have a negative impact on inductive generalization: both the
# of generated cubes and the length of the IC3 trace do not
vary much on average between baseline and sat-approx. There
are however cases in which the approximated queries hurt:
in the 10 instances lost by sat-approx, on 6 cases the # of
generated cubes is at least 3 times more than for the baseline
configuration. Considering the significant gains obtained and
the very small amount of code for its implementation, sat-
approx is probably the most effective of the optimizations
we tried. Given the simplicity of our heuristic (use a static
limit of 100 decisions, irrespective of the problem size), we
believe that these results show that using a more clever form
of approximated SAT checks is a promising direction.

3) Activity: enabling activity gives a small benefit in terms
of execution time and # of instances (see Fig. 12), although
the scatter plot of Fig. 13 shows no clear trend.

4) SAT preprocessor: similarly to the activity case, the use
of SAT preprocessing (minisat-simp) leads to a small improve-
ment in performance (see Fig. 12), but several instances are
lost. Surprisingly, using a specialized CNF conversion (cnf-
abc) seems to be much more effective.

5) # SAT solvers: the use of one SAT solver instance per
frame shows no benefit; moreover, as expected it leads in
general to a significant increase in memory consumption (>3x
median, >6x average, almost 100x max).

6) SAT solver: the use of PICOSAT as SAT solver leads to
a general increase in solving time (median 1.45, mean 3.26),
with no significant change in trace length, number of added
cubes, or invariant size. We believe that this behavior might

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2015.2481869

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



11

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

cn
f-

a
b
c

baseline

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

sa
t-

a
p
p
ro

x
baseline

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

m
in

is
a
t-

si
m

p

baseline

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

a
ct

iv
it

y

baseline

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

m
a
n
y
so

lv
e
rs

baseline

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

sa
t-

re
se

t-
2

0
0

baseline

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

n
o
-s

a
t-

re
se

t

baseline

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

p
ic

o
sa

t

baseline

Fig. 13. Detailed comparison of low-level configurations vs the baseline. The baseline is always on the x-axis. Points above the diagonal indicate better
performance of the baseline. Points on the borders indicate timeouts (900 s). Different point types denote different benchmark families.

be due to a not as good support to incremental solving as
MINISAT. However, in this respect, we envisage to perform a
deeper experimentation with different thresholds/heuristics for
resetting the solver that may lead to better performance.

7) SAT solver reset: the frequency with which the SAT
solver is reset has a visible impact on performance. Both
resetting too often (sat-reset-200) and not resetting at all (no-
sat-reset) results in a similar degradation in performance. In
both cases, the degradation is more evident for safe instances
(10 out of 15 lost for sat-reset-200, 14 out of 19 for no-sat-
reset). Our default strategy (sat-reset-5000, used in baseline)
seems to be a “sweet spot”. We should remark however that
we could not observe any convincing correlation between the
SAT solving time and the performance differences of the tested
configurations in this case.

8) Randomness: in order to verify the stability of the results
wrt. randomness in the algorithm, we performed an experiment
in which we compared different runs of the same configuration
with different random seeds. We used the PICOSAT solver,
since MINISAT by default does not perform random decisions,
and we used a random ordering of literals when performing
inductive generalization. Although on individual instances
there is indeed a visible impact, the survival plots for the
various runs are essentially identical, and the gap in term of
# of solved instances is at most 2. Similar results hold also
if we only change the random seed in PICOSAT, but use the
same fixed ordering for literals (We don’t include such plots
for lack of space).

D. Comparison with other implementations

We also compared our implementation against other state-
of-the-art implementations, namely the “reference” IC3 im-
plementation provided by Bradley [8] (ic3ref ) and the version
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Fig. 14. Survival plots comparing the baseline configurations with the best
candidate configuration, virtual best and other implementations.

of PDR implemented within ABC [3] (abcpdr). We also con-
sidered four new “best candidate” configurations, obtained by
combining the various parameters that lead to an improvement
in the # of solved problems wrt. baseline. More specifically:

• bestcand-1 consists of baseline plus preproc, unroll-4,
cnf-abc, activity, sat-approx, and minisat-simp;

• bestcand-2 is obtained from bestcand-1 by using indgen-
ctg instead of indgen-iter; and

• bestcand-3 consists of bestcand-1 plus absref-bmc.
• bestcand-2-nopreproc is obtained from bestcand-2 by

turning off preprocessing of the input system (preproc).
This is intended to provide a fair comparison with abcpdr
and ic3ref which do not use any preprocessing.

We also compared against various “virtual best” configura-
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Fig. 15. Comparison of our baseline and best configurations vs ABC and IC3REF. Points on the borders indicate timeouts (2 h, except for cnf-abc vs abcpdr
which is 900 s). Different point types denote different benchmark families.

TABLE IV
SUMMARY OF RESULTS: BEST VS OTHER

Cumulative
Configuration # Solved ∆baseline Gained Lost time (sec)
bestcand-1-2-3 (virtual) 643 +109 116 7 169220
bestcand-2-3 (virtual) 639 +105 116 11 206418
bestcand-1-3 (virtual) 619 +85 95 10 121598
bestcand-1-2 (virtual) 613 +79 88 9 175423
bestcand-2 596 +62 85 23 223335
bestcand-3 592 +58 91 33 162063
bestcand-1 576 +42 56 14 106056
bestcand-2-nopreproc 559 +25 55 30 157383
abcpdr 550 +16 36 20 156140
ic3ref 542 +8 40 32 240867
baseline 534 0 0 0 219738

tions, obtained by taking the best result for each individual in-
stance when considering all three best candidates (bestcand-1-
2-3) or a combination of two of them (bestcand-1-2, bestcand-
1-3, bestcand-2-3), in order to evaluate the (potential) benefits
of running a portfolio of different configurations in parallel.
Moreover, in order to better represents the use of IC3 in real-
world settings, for this comparison we used a longer timeout
of 2 hours rather than 900 seconds as in the previous cases
(and as done in the HWMCC competitions). The results are
reported in Fig. 14 (survival plots), in Fig. 15 (scatter plots),
and summarized in Table IV. The following observations arise
from these results.

• ic3ref is slightly ahead of our baseline in terms of #
of solved problems, especially when considering longer
timeouts (as can be clearly seen from the curves in
Fig. 14). However, the scatter plot (Fig. 15) and the
relatively large numbers of gained (40) and lost (32)
instances show that the two implementations appear to
be quite complementary.

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

a
b
cp

d
r

cnf-abc

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

a
b
cp

d
r 

w
it

h
 m

o
n
o
lit

h
ic

 C
N

F

cnf-abc

Fig. 16. Comparison of cnf-abc and abcpdr with and without incremental
CNF conversion (on selected instances).

• The IC3 implementation within ABC is significantly more
efficient than our baseline implementation. However, in
terms of # of solved instances, it is comparable to cnf-
abc. This seems to indicate that the efficiency of abcpdr
is due at least in part to the CNF conversion algorithm.
From the scatter plot that compares abcpdr vs cnf-abc
(Fig. 15), we see that abcpdr is still significantly faster
than cnf-abc, particularly on instances of the 6s family.
An explanation for this might be the use of a smart
incremental CNF conversion algorithm in ABC, which
generates clauses on demand, only when needed [3]. Our
implementation currently lacks such feature, and always
adds all the clauses at once (in a “monolithic” fashion).
In order to test the importance of this optimization, we
selected the subset of benchmarks for which cnf-abc was
at least 4 times slower than abcpdr, and reran abcpdr
with incremental CNF conversion turned off. The results,
reported in Fig. 16, show that when using the monolithic
CNF algorithm the performance gap between abcpdr and
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cnf-abc gets almost completely closed.
• All our best candidate configurations are a significant

improvement wrt. the baseline configuration, both in
terms of the # of solved problems and in solving time.
The configuration solving the largest # of instances is
bestcand-2, but all the three configurations show different
strengths in different benchmark families. For instance,
bestcand-3 is particularly effective on Intel benchmarks,
thanks to its use of lazy abstraction (see §VI-B5). Simi-
larly, bestcand-2 generally performs worse than bestcand-
1 on instances of the Beem family, for which the CTG-
based inductive generalization algorithm does not seem
to perform well (see §VI-A). However, both bestcand-2
and bestcand-3 result in a non-negligible number of lost
instances (23 and 33 respectively) wrt. baseline.

• Even without considering the benefits of preprocess-
ing, which are crucial for several instances, our best
performing configuration (bestcand-2-nopreproc) is quite
competitive with other state-of-the-art implementations,
solving 9 instances more than abcpdr and 17 more than
ic3ref .

• The three best candidate configurations are different
enough that their combination in a (virtual) portfolio gives
significant advantages for this set of benchmarks. As can
be seen from Fig. 14 and Table IV, all three configura-
tions (bestcand-1-2-3) contribute to the performance of
the virtual portfolio. However, it is also interesting to see
that even with the combination of all three best candidate
configurations there are still some (7) lost instances wrt.
baseline.

• It is interesting to observe that, if we consider the
short timeout of 900 seconds used in the HWMCC
competitions, the ranking for the three best candidate
configurations changes substantially (in fact, it becomes
the opposite).

E. Discussion

The results clearly show that the different parameters are
not independent. Indeed, by enabling all the most promising
options we obtain the best performance in term of # of
solved problems and in term of search time. However, the
# of solved problems is lower than the sum of additional
problems solved if enabled individually wrt. the baseline. In
order to better characterize the dependencies, a deeper analysis
is needed, possibly considering additional new metrics. The
results also show that some “low-level” parameters can have a
bigger impact on performance than more sophisticated “high-
level” ones. This is indeed the case for the CNF conversion
algorithm, or for the new approximated SAT solving heuristic.
If we disregard the results for cnf-abc, it is evident from
the analysis that there is no clear winner among the above
approaches, and a given configuration can allow to solve
problems that another configuration may fail to solve. The
results obtained considering the best configurations confirm
that a portfolio approach, with many configurations run in
parallel, can give very significant performance advantages for
this kind of problems.

VII. CONCLUSIONS

We have presented a first systematic comparison of different
variants of the IC3 algorithm. We implemented all the variants
in a unique tool, to the best of our understanding from the liter-
ature and reference implementations (whenever available), and
we carried out a thorough experimental evaluation on all the
benchmarks used for the latest hardware model checking com-
petitions. In the analysis we considered well-known and state-
of-the-art optimizations, and also parameters not yet argument
of comparison in existing papers (e.g. the underlying SAT
solver, the CNF conversion algorithm). The results showed that
the CNF conversion algorithm has a non-negligible impact on
the performance of IC3 algorithm, sometimes more evident
than other higher-level parameters (e.g. inductive general-
ization or model preprocessing). We also identified various
sets of parameters that allow our implementation to compare
very favorably with existing well-optimized implementations.
Finally, our results highlight that in most cases different
configurations have different and complementary strengths,
suggesting that a portfolio approach might give significant
advantages.

As future work, we aim at better investigating the relation
existing among the different parameters, in order to better
understand their respective impact. We also plan to consider
other configuration settings that have been omitted from the
current analysis, (such as further preprocessing techniques and
advanced CNF conversion algorithms, or specialized “IC3-
aware” SAT heuristics), and identify an even better set of
parameter configurations, possibly with the help of automatic
parameter tuning procedures as in [26].
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Eds. FMCAD Inc., 2011.

[4] R. K. Brayton and A. Mishchenko, “Abc: An academic industrial-
strength verification tool,” in CAV, ser. LNCS, T. Touili, B. Cook, and
P. Jackson, Eds., vol. 6174. Springer, 2010.

[5] A. Bradley, F. Somenzi, and Z. Hassan, “IIMC – Incremental Inductive
Model Checker,” http://ecee.colorado.edu/wpmu/iimc.

[6] G. Cabodi, S. Nocco, and S. Quer, “PdTRAV – politecnico di torino
reachability analysis & verification.”

[7] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The NUXMV symbolic model
checker,” in CAV, ser. LNCS, A. Biere and R. Bloem, Eds., vol. 8559.
Springer, 2014.

[8] A. Bradley, “IC3ref,” https://github.com/arbrad/IC3ref.
[9] Z. Hassan, A. R. Bradley, and F. Somenzi, “Better generalization in ic3,”

in FMCAD. IEEE, 2013.
[10] “Aiger,” http://fmv.jku.at/aiger/.
[11] J. Marques-Silva, I. Lynce, and S. Malik, “Conflict-driven clause learn-

ing sat solvers,” Handbook of satisfiability, vol. 185, 2009.
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[15] K. Claessen and N. Sörensson, “A liveness checking algorithm that
counts,” in FMCAD. IEEE, 2012.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2015.2481869

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



14

[16] H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo, “Incremental
formal verification of hardware,” in FMCAD, P. Bjesse and A. Slo-
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[21] N. Sörensson, “MINISAT,” https://github.com/niklasso/minisat.
[22] A. Biere, “Picosat essentials,” JSAT, vol. 4, no. 2-4, 2008.
[23] N. Eén, A. Mishchenko, and N. Sörensson, “Applying logic synthesis
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