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The problem of computing Craig interpolants has recently received a lot of interest. In this article,
we address the problem of efficient generation of interpolants for some important fragments of
first-order logic, which are amenable for effective decision procedures, called satisfiability modulo
theory (SMT) solvers.

We make the following contributions. First, we provide interpolation procedures for several
basic theories of interest: the theories of linear arithmetic over the rationals, difference logic over
rationals and integers, and UTVPI over rationals and integers. Second, we define a novel approach
to interpolate combinations of theories that applies to the delayed theory combination approach.

Efficiency is ensured by the fact that the proposed interpolation algorithms extend state-of-
the-art algorithms for satisfiability modulo theories. Our experimental evaluation shows that the
MathSAT SMT solver can produce interpolants with minor overhead in search, and much more
efficiently than other competitor solvers.
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1. INTRODUCTION

One of the most successful applications of computational logic is formal verifi-
cation, which aims at proving (or disproving) certain properties of the behaviors
of a reactive system. In recent years, also thanks to the impressive improve-
ments of SAT solvers, a wide variety of verification methods based on SAT
solving have been proposed. These methods proved effective for discrete state
systems, most notably hardware components. The approach is made practical
by the fact that SAT solvers, in addition to proving efficiently the satisfiability
of huge propositional formulas, provide several functionalities, such as model
generation, proof production, extraction of unsatisfiable cores, and generation
of Craig interpolants (interpolation). In particular, since the seminal paper of
McMillan [2003], interpolation has been recognized to be a substantial tool for
verification in the case of Boolean systems (e.g., Cabodi et al. [2006]; Li and
Somenzi [2006]; Marques-Silva [2007]).

One of the main limitations of SAT-based approaches is in their expressive
power. Many systems of practical interest, containing integer or real valued
variables, such as software and timed and hybrid systems, cannot be repre-
sented directly within propositional logic. This has prompted research in the
analysis of fragments of first-order logic: given a formula referring to variables,
the problem is to find a satisfying assignment in a theory of interest (e.g., linear
arithmetic). This field, referred to as Satisfiability Modulo Theory (SMT), has
resulted in substantial theoretical results, and in very effective decision pro-
cedures, known as SMT solvers. State-of-the-art SMT solvers complement the
Boolean SAT algorithms with specialized decision procedures for conjunctions
of literals in some given theory (theory solvers). In addition to checking satis-
fiability, SMT solvers are able to generate models, produce proofs, and extract
unsatisfiable cores. This has allowed the lifting of many SAT-based verifica-
tion algorithms to SMT-based verification, as well as opening up the way to
abstraction refinement with SMT.

Quite surprisingly, however, the research on interpolation for SMT has
not kept the pace of SMT solving. In fact, most of the approaches to pro-
ducing interpolants for fragments of first-order theories proposed in the
last few years [McMillan 2005; Yorsh and Musuvathi 2005; Rybalchenko
and Sofronie-Stokkermans 2007; Kroening and Weissenbacher 2007; Kapur
et al. 2006; Jain et al. 2009] suffer from a number of problems. Some of the
approaches are severely limited in terms of their expressiveness. For instance,
the tool described in Rybalchenko and Sofronie-Stokkermans [2007] can only
deal with conjunctions of literals, while the work described in Kroening and
Weissenbacher [2007] cannot deal with many useful theories. Furthermore,
very few tools are available [Rybalchenko and Sofronie-Stokkermans 2007;
McMillan 2005], and these tools do not seem to scale particularly well. More
than to naı̈ve implementation, this appears to be due to the underlying
algorithms, which substantially deviate from or ignore choices common in
state-of-the-art SMT. For instance, in the domain of linear arithmetic over the
rationals (LA(Q)), strict inequalities were encoded in McMillan [2005] as the
conjunction of a weak inequality and a disequality; although sound, this choice
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destroys the structure of the constraints, forces reasoning in the combination
of theories LA(Q) ∪ EUF , requires additional splitting, and ultimately results
in a larger search space. Similarly, the fragment of difference logic (DL(Q))
is dealt with by means of a general-purpose algorithm for full LA(Q), rather
than one of the well-known and much faster specialized algorithms. An even
more fundamental example is the fact that state-of-the-art SMT reasoners use
dedicated algorithms for linear arithmetic [Dutertre and de Moura 2006].

In this article, we tackle the problem of generating interpolants for SMT
problems, fully leveraging the algorithms used in a state-of-the-art SMT solver.
In particular, our main contributions are the following.

(1) An interpolation algorithm for LA(Q) that exploits a variant of the algo-
rithm presented in Dutertre and de Moura [2006], and that is capable of
handling the full LA(Q)—including strict inequalities and disequalities—
without the need of theory combination.

(2) An algorithm for computing interpolants in DL—both over the rationals
and over the integers—that builds on top of the efficient graph-based de-
cision algorithms given in Cotton and Maler [2006] and Nieuwenhuis and
Oliveras [2005], which ensures that the generated interpolants are still
in the DL fragment of linear arithmetic, and that allows for computing
stronger interpolants than the existing algorithms for the full linear arith-
metic.

(3) An algorithm for computing interpolants in UT VPI—both over the ratio-
nals and over the integers—that builds on an encoding ofDL. The algorithm
ensures that the generated interpolants are still in the UT VPI fragment
of linear arithmetic, and that allows for computing stronger interpolants
than the existing algorithms for the full linear arithmetic.

(4) An algorithm for computing interpolants in a combination T1 ∪ T2 of the-
ories based on the Delayed Theory Combination (DTC) method [Bozzano
et al. 2006; Bruttomesso et al. 2009] (as an alternative to the traditional
Nelson-Oppen method), which does not require ad hoc interpolant combi-
nation methods, but exploits the propositional interpolation algorithm for
performing the combination of theories.

(5) An efficient implementation of all the proposed techniques within the MATH-
SAT 4 SMT solver [Bruttomesso et al. 2008], and an extensive experimental
evaluation on a wide range of benchmarks.

This comprehensive approach advances the state of the art in two main direc-
tions: on the one side, we show how to extend efficient SMT solving techniques
to SMT interpolation, for a wide class of important theories, without paying a
substantial price in performance; on the other, we present an interpolating SMT
solver that is able to produce interpolants for a much wider class of problems
than its competitors, and, on problems that can be dealt with by other tools,
shows dramatic improvements in performance, often by orders of magnitude.

This article is structured as follows. In Section 2 we present some background
on interpolation in SMT. In Sections 3, 4, and 5 we show how to efficiently
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interpolate LA(Q), DL, and UT VPI, respectively. In Section 6 we discuss in-
terpolation for combined theories. The proposed techniques are experimentally
evaluated in Section 7. In Section 8 we draw some conclusions. The discussion
of related work is distributed in the technical sections (Sections 3–6).

2. BACKGROUND AND STATE-OF-THE-ART

2.1 Satisfiability Modulo Theory

Our setting is standard first-order logic. A 0-ary function symbol is called a
constant. A term is a first-order term built out of function symbols and variables.
We write t1 ≡ t2 when the two terms t1 and t2 are syntactically identical. If
t1, . . . , tn are terms and p is a predicate symbol, then p(t1, . . . , tn) is an atom.
A literal is either an atom or its negation. A formula φ is built in the usual
way out of the universal and existential quantifiers, Boolean connectives, and
atoms. We call a formula quantifier-free if it does not contain quantifiers, and
ground if it does not contain free variables. A clause is a disjunction of literals.
A formula is said to be in conjunctive normal form (CNF) if it is a conjunction
of clauses. For every non-CNF T -formula ϕ, an equisatisfiable CNF formula ψ

can be generated in polynomial time [Tseitin 1968].
We also assume the usual first-order notions of interpretation, satisfiability,

validity, logical consequence, and theory, as given, for example, in Enderton
[2001]. A first-order theory, T , is a set of first-order sentences. In this article,
we consider only theories with equality. A structure A is a model of a theory T
if A satisfies every sentence in T . A formula is satisfiable in T (or T -satisfiable)
if it is satisfiable in a model of T .

We call Satisfiability Modulo (the) Theory T , SMT(T ), the problem of decid-
ing the satisfiability of quantifier-free formulas1 with respect to a background
theory T . We denote formulas with φ,ψ, A, B, C, I, T -variables with x, y, z,
Boolean variables with p, q, and numeric constants with a, b, c, l, u. Given a
theory T , we write φ |=T ψ (or simply φ |= ψ) to denote that the formula ψ

is a logical consequence of φ in the theory T . With φ � ψ we denote that all
uninterpreted (in T ) symbols of φ appear in ψ . If C is a clause, C ↓ B is the
clause obtained by removing all the literals whose atoms do not occur in B, and
C \ B that obtained by removing all the literals whose atoms do occur in B. With
a little abuse of notation, we might sometimes denote conjunctions of literals
l1 ∧ · · · ∧ ln as sets {l1, . . . , ln} and vice versa. If η

def={l1, . . . , ln}, we might write ¬η

to mean ¬l1 ∨ · · · ∨ ¬ln. A theory T is stably-infinite iff every quantifier-free T -
satisfiable formula is satisfiable in an infinite model of T . A theory T is convex
iff, for every collection l1, . . . , lk, e1, . . . , en of literals in T such that e1, . . . , en are
of the form (x = y), x, y being variables, we have that {l1, ..., lk} |=T

∨n
i=1 ei if

and only if {l1, ..., lk} |=T ei for some 1 ≤ i ≤ n.
Given a decidable first-order theory T , we call a theory solver for T , T -

solver, any tool able to decide the satisfiability in T of sets/conjunctions of
ground atomic formulas and their negations—theory literals or T -literals—in

1The general definition of SMT deals also with quantified formulas. Nevertheless, in this article
we restrict our interest to quantifier-free formulas.
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the language of T . If Sdef={l1, . . . , ln} is a set of literals in T , we call (T )-conflict
set any subset η of S which is inconsistent in T .2 We call ¬η a T -lemma. (Notice
that ¬η is a T -valid clause.)

Definition 2.1 (Resolution Proof). Given a set of clauses Sdef={C1, . . . , Cn}
and a clause C, we call a resolution proof of the deduction

∧
i Ci |=T C a

DAG P such that

(1) C is the root of P;
(2) the leaves of P are either elements of S or T -lemmas;
(3) each nonleaf node C ′ has two premises Cp1 and Cp2 such that Cp1

def=p ∨ φ1,
Cp2

def=¬p∨ φ2, and C ′ def=φ1 ∨ φ2. The atom p is called the pivot of Cp1 and Cp2 .

If C is the empty clause (denoted with ⊥), then P is a resolution proof of
(T -)unsatisfiability for

∧
i Ci.

We consider the SMT(T ) problem for some background theory T .

Definition 2.2 (Craig Interpolant). Given an ordered pair (A, B) of formulas
such that A∧ B |=T ⊥, a Craig interpolant (simply “interpolant” hereafter) is a
formula I such that

(i) A |=T I,
(ii) I ∧ B |=T ⊥,

(iii) I � A and I � B.

2.2 Algorithms for SMT

A standard technique for solving the SMT(T ) problem is to integrate a DPLL-
based SAT solver and a T -solver in a “lazy” manner. The idea underlying every
lazy SMT(T ) procedure is that (a complete set of) the truth assignments for the
propositional abstraction of φ are enumerated and checked for satisfiability
in T ; the procedure either returns sat if one T -satisfiable truth assignment is
found, or it returns unsat otherwise.

Figure 1 presents a simplified schema of a lazy SMT(T ) procedure, called
the offline schema. The bijective function T 2P (“Theory-to-Boolean”), called
Boolean abstraction, maps Boolean atoms into themselves and non-Boolean
T -atoms into fresh Boolean atoms—so that two atom instances in φ are
mapped into the same Boolean atom iff they are syntactically identical—
and extends to T -formulas and sets of T -formulas in the obvious way—that
is, T 2P(¬φ1)def=¬T 2P(φ1), T 2P(φ1�φ2)def=T 2P(φ1)�T 2P(φ2) for each Boolean
connective �, T 2P({φi}i)

def={T 2P(φi)}i. The function P2T (“propositional-to-
theory”), called refinement, is the inverse of T 2P. The propositional abstraction
φ p of the input formula φ is given as input to an SAT solver based on the DPLL
algorithm [Davis et al. 1962; Zhang and Malik 2002], which either decides
that φ p is unsatisfiable, and hence φ is T -unsatisfiable, or returns a satisfying
assignment μp; in the latter case, P2T (μp) is given as input to T -solver. If

2In the next sections, as we are in an SMT(T ) context, we often omit specifying “in the theory T ”
when speaking of consistency, validity, etc.
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Fig. 1. A simplified schema for lazy SMT(T ) procedures.

P2T (μp) is found T -consistent, then φ is T -consistent. If not, T -solver returns
the conflict set η which caused the T -inconsistency of P2T (μp); the abstraction
of the T -lemma ¬η, T 2P (¬η), is then added as a clause to φ p. Then the DPLL
solver is restarted from scratch on the resulting formula.

Practical implementations follow a more elaborated schema, called the on-
line schema (see Sebastiani [2007]; Barrett et al. [2009]). As before, φ p is given
as input to a modified version of DPLL, and when a satisfying assignment μp is
found, the refinement P2T (μp) of μp is fed to the T -solver; if P2T (μp) is found
T -consistent, then φ is T -consistent; otherwise, T -solver returns the conflict
set η which caused the T -inconsistency of P2T (μp). Then the clause ¬ηp is
added in conjunction to φ p, either temporarily or permanently (T -learning),
and the algorithm backtracks up to the highest point in the search where one
of the literals in ¬ηp is unassigned (T -backjumping), and therefore its value is
(propositionally) implied by the others in ¬ηp. Another important improvement
is early pruning (EP): before every literal selection, intermediate assignments
are checked for T -satisfiability and, if not T -satisfiable, they are pruned (since
no refinement can be T -satisfiable). Finally, theory propagation can be used
to reduce the search space by allowing the T -solvers to explicitly return truth
values for unassigned literals, which can be unit-propagated by the SAT solver.
The interested reader is pointed to, for example, Sebastiani [2007] and Barrett
et al. [2009] for details and further references.

With a small modification of the embedded DPLL engine, a lazy SMT solver
can also be used to generate a resolution proof of unsatisfiability (see, e.g., van
Gelder [2007]).

2.3 Interpolation in SMT

The use of interpolation in formal verification was introduced by McMillan
[2003] for purely propositional formulas, and it was subsequently extended
to handle SMT(EUF ∪ LA(Q)) formulas in McMillan [2005], EUF being the
theory of equality and uninterpreted functions. The technique is based on ear-
lier work by Pudlák [1997], where two interpolant-generation algorithms were
described: one for computing interpolants for propositional formulas from res-
olution proofs of unsatisfiability, and one for generating interpolants for con-
junctions of (weak) linear inequalities in LA(Q). An interpolant for a pair (A, B)
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Algorithm 1. Interpolant generation for SMT(T )

(1) Generate a resolution proof of unsatisfiability P for A∧ B.
(2) For every T -lemma ¬η occurring in P, generate an interpolant I¬η for (η \ B, η ↓ B).
(3) For every input clause C in P, set IC

def=C ↓ B if C ∈ A, and IC
def= if C ∈ B.

(4) For every inner node C of P obtained by resolution from C1
def=p∨ φ1 and C2

def=¬p∨ φ2,
set IC

def=IC1 ∨ IC2 if p does not occur in B, and IC
def=IC1 ∧ IC2 otherwise.

(5) Output I⊥ as an interpolant for (A, B).

of CNF formulas is constructed from a resolution proof of unsatisfiability of
A∧B, generated as outlined in Section 2.1. The algorithm works by computing a
formula IC for each clause in the resolution refutation, such that the formula I⊥
associated with the empty root clause is the computed interpolant. In particular,
the following invariant holds for every clause C and corresponding formula IC

in the resolution refutation [McMillan 2005]:

(a) A |=T IC ∨ (C \ B);
(b) B∧ IC |= (C ↓ B); and
(c) IC � A and IC � B.

The algorithm can be described as follows.

Example 2.1. Consider the following two formulas in LA(Q):

A def= (p ∨ (0 ≤ x1 − 3x2 + 1)) ∧ (0 ≤ x1 + x2) ∧ (¬q ∨ ¬(0 ≤ x1 + x2)),

B def= (¬(0 ≤ x3 − 2x1 − 3) ∨ (0 ≤ 1 − 2x3)) ∧ (¬p ∨ q) ∧ (p ∨ (0 ≤ x3 − 2x1 − 3)).

Figure 2(a) shows a resolution proof of unsatisfiability for A∧ B, in which the
clauses from A have been underlined. The proof contains the following LA(Q)
lemma (displayed in boldface):

¬(0 ≤ x1 − 3x2 + 1) ∨ ¬(0 ≤ x1 + x2) ∨ ¬(0 ≤ x3 − 2x1 − 3) ∨ ¬(0 ≤ 1 − 2x3).

Figure 2(b) shows, for each clause �i in the proof, the formula I�i generated
by Algorithm 1. For the LA(Q) lemma, it is easy to see that (0 ≤ 4x1 + 1) is an
interpolant for ((0 ≤ x1−3x2+1)∧(0 ≤ x1+x2), (0 ≤ x3−2x1−3)∧(0 ≤ 1−2x3)) as
required by Step 2 of the algorithm. (We will show how to obtain this interpolant
in Example 2.2.) Therefore, I⊥

def=(p ∨ (0 ≤ 4x1 + 1)) ∧ ¬q is an interpolant for
(A, B).

Algorithm 1 can be applied also when Aand B are not in CNF. In this case, it
suffices to preconvert them into CNF by using disjoint sets of auxiliary Boolean
atoms in the usual way [McMillan 2005].

Notice that Step 2 of the algorithm is the only part which depends on the
theory T , so that the problem of interpolant generation in SMT(T ) reduces to
that of finding interpolants for T -lemmas. To this extent, McMillan [2005] gave
a set of rules for constructing interpolants for T lemmas in the theory of EUF ,
that of weak linear inequalities (0 ≤ t) in LA(Q), and their combination. Linear
equalities (0 = t) can be reduced to conjunctions (0 ≤ t)∧(0 ≤ −t) of inequalities.
Thanks to the combination of theories, also strict linear inequalities (0 < t) can
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Fig. 2. Resolution proof of unsatisfiability (a) and interpolant (b) for the pair (A, B) of formulas of
Example 2.1. In the tree on the left, T -lemmas are displayed in boldface, and clauses from A are
underlined.

be handled in EUF∪LA(Q) by replacing them with the conjunction (0 ≤ t)∧(0 �=
t),3 but this solution can be very inefficient.

The combination EUF ∪ LA(Q) can also be used to compute interpolants for
other theories, such as those of lists, arrays, sets and multisets [Kapur et al.
2006].

In McMillan [2005], interpolants in the combined theory EUF ∪LA(Q) were
obtained by means of ad hoc combination rules. Yorsh and Musuvathi [2005],
instead, presented a method for generating interpolants for T1 ∪ T2 using the
interpolant-generation procedures of T1 and T2 as black boxes, using the Nelson-
Oppen approach [Nelson and Oppen 1979].

Also the method of Rybalchenko and Sofronie-Stokkermans [2007] allows
the computation interpolants in EUF ∪ LA(Q). Its peculiarity is that it is not
based on unsatisfiability proofs. Instead, it generates interpolants in LA(Q)
by solving a system of constraints using an off-the-shelf linear programming
(LP) solver. The method allows both weak and strict inequalities. Extension to
uninterpreted functions is achieved by means of reduction to LA(Q) using a
hierarchical calculus [Sofronie-Stokkermans 2006]. The algorithm works only
with conjunctions of atoms, although in principle it could be integrated in
Algorithm 1 to generate interpolants for T lemmas in LA(Q). As an alterna-
tive, Rybalchenko and Sofronie-Stokkermans [2007] showed how to generate
interpolants for formulas that are in disjunctive normal form (DNF).

Another different approach was explored in Kroening and Weissenbacher
[2007]. There the authors used the eager SMT approach to encode the

3The details were not given in McMillan [2005]. One possible way of doing this is to rewrite (0 �= t)
as (y = t) ∧ (z = 0) ∧ (z �= y), z and y being fresh variables.
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original SMT problem into an equisatisfiable propositional problem, for which
a propositional proof of unsatisfiability is generated. This proof is later “lifted”
to the original theory, and used to generate an interpolant in a way similar to
Algorithm 1. At the moment, the approach is, however, limited to the theory of
equality only (without uninterpreted functions).

The problem of efficient generation of interpolants in SMT has been ad-
dressed only recently. To the best of our knowledge, our work in Cimatti
et al. [2008] was the first to go in this direction, with the introduction of effi-
cient SMT-based interpolation algorithms for LA(Q), DL, and combinations of
convex theories. In Cimatti et al. [2009] covered interpolation for UT VPI(Q)
and UT VPI(Z). Lynch and Tang [2008] presented interpolation algorithms for
LA(Q) and some fragments of LA(Z). An efficient interpolation algorithm for
EUF was given in Fuchs et al. [2009]. Finally, another SMT-based method for
interpolation in combined theories was recently proposed in Goel et al. [2009].

All the above techniques construct one interpolant for (A, B). In general,
however, interpolants are not unique. In particular, some of them can be bet-
ter than others, depending on the particular application domain. Jhala and
McMillan [2005] showed how to manipulate proofs in order to obtain stronger4

interpolants. Jhala and McMillan [2006, 2007], instead, presented a technique
to restrict the language used in interpolants and showed it to be useful in
preventing divergence of techniques based on predicate abstraction.

One of the most important applications of interpolation in formal verification
is abstraction refinement [Henzinger et al. 2004; McMillan 2006]. In such a
setting, every input problem φ has the form φ

def=φ1∧· · ·∧φn, and the interpolating
solver is asked to compute several interpolants I1, . . . , In−1 corresponding to
different partitions of φ into Ai and Bi, such that

∀i, Ai
def= φ1 ∧ · · · ∧ φi, and Bi

def= φi+1 ∧ · · · ∧ φn. (1)

Moreover, I1, . . . , In−1 should be related by the following:

Ii ∧ φi+1 |= Ii+1. (2)

A sufficient condition for (2) to hold is that all the Ii ’s are computed from the
same proof of unsatisfiability � for φ [Henzinger et al. 2004].

2.3.1 Interpolants for Conjunctions of LA(Q) Literals. We recall the al-
gorithm of McMillan [2005] for computing interpolants from LA(Q) proofs
of unsatisfiability, for conjunctions of equalities and weak inequalities in
LA(Q).

AnLA(Q) proof rule R for a conjunction � of equalities and weak inequalities
is either an element of �, or it has the form P

φ
, where φ is an equality or a weak

inequality and P is a sequence of proof rules, called the premises of R. AnLA(Q)
proof of unsatisfiability for a conjunction of equalities and weak inequalities
� is simply a rule in which φ ≡ 0 ≤ c and where c is a negative numerical
constant.5

4In the implication ordering (see Section 3.3).
5In the following, we might sometimes write ⊥ as a synonym of an atom “0 ≤ c” when c is a negative
numerical constant.
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Fig. 3. LA(Q)-proof rules for a conjunction � of equalities and weak inequalities.

Similarly to McMillan [2005], we use the proof rules of Figure 3: LEQEQ

for deriving inequalities from equalities, and COMB for performing linear
combinations.6

Given an LA(Q) proof of unsatisfiability P for a conjunction � of equalities
and weak inequalities partitioned into (A, B), an interpolant I can be computed
simply by replacing every atom 0 ≤ t occurring in B (respectively, 0 = t) with
0 ≤ 0 (respectively, 0 = 0) in each leaf subrule of P, and propagating the
results: the interpolant is then the single weak inequality 0 ≤ t at the root of
P [McMillan 2005].

Example 2.2. Consider the following sets of LA(Q) atoms:

A def= {(0 ≤ x1 − 3x2 + 1), (0 ≤ x1 + x2)},
B def= {(0 ≤ x3 − 2x1 − 3), (0 ≤ 1 − 2x3)}.

An LA(Q) proof of unsatisfiability P for A∧ B is the following:
1 ∗ (0 ≤ x1 − 3x2 + 1) 4 ∗ (0 ≤ x1 + x2)

1 ∗ (0 ≤ 4x1 + 1)
2 ∗ (0 ≤ x3 − 2x1 − 3) 1 ∗ (0 ≤ 1 − 2x3)

1 ∗ (0 ≤ −4x1 − 5)
(0 ≤ −4)

By replacing inequalities in B with (0 ≤ 0), we obtain the proof P ′:
1 ∗ (0 ≤ x1 − 3x2 + 1) 4 ∗ (0 ≤ x1 + x2)

1 ∗ (0 ≤ 4x1 + 1)
2 ∗ (0 ≤ 0) 1 ∗ (0 ≤ 0)

1 ∗ (0 ≤ 0)
(0 ≤ 4x1 + 1)

Thus, the interpolant obtained is (0 ≤ 4x1 + 1).

3. FROM SMT(LA(Q)) SOLVING TO SMT(LA(Q)) INTERPOLATION

Traditionally, SMT solvers used some kind of incremental simplex algorithm
[Vanderbei 2001] as a T -solver for the LA(Q) theory. Recently, Dutertre and
de Moura [2006] have proposed a new simplex-based algorithm, specifically
designed for integration in a lazy SMT solver. The algorithm is extremely
suitable for SMT, and SMT solvers embedding it were shown to significantly
outperform (often by orders of magnitude) the ones based on other simplex
variants. It has now been integrated in several SMT solvers, including ARGOLIB,
CVC3, MATHSAT, YICES, and Z3. Remarkably, this algorithm also allows the
handling of strict inequalities.

In this section, we shall deal only with conjuctions of contraints in LA(Q) .
Interpolation for the SMT (LA(Q) ) formula, is then obtained by combining this

6In McMillan [2005] the LEQEQ rule is not used in LA(Q) , because the input is assumed to consist
only of inequalities.

ACM Transactions on Computational Logic, Vol. 12, No. 1, Article 7, Publication date: October 2010.



Efficient Generation of Craig Interpolants • 7:11

algorithm with the general procedure for SM (τ ) described in Section 2.3. In
Section 3.1 we begin by considering the case in which the input atoms are only
equalities and nonstrict inequalities. In this case, we only need to show how
to generate a proof of unsatisfiability, since then we can use the interpolation
rules defined in McMillan [2005]. Then, in Section 3.2 we show how to generate
interpolants for problems containing also strict inequalities and disequalities.

3.1 Interpolation with Nonstrict Inequalities

3.1.1 The Original Dutertre-de Moura Algorithm. In its original formu-
lation, the Dutertre-de Moura algorithm assumes that the variables xi are
partitioned a priori into two sets, hereafter denoted as B̂ (“initially basic” or
“dependent”) and N̂ (“initially nonbasic” or “independent”), and that the algo-
rithm receives as inputs two kinds of atomic formulas7:

—a set of equations eqi, one for each xi ∈ B̂, of the form
∑

xj∈N̂ âi j xj + âiixi = 0
such that all âij’s are numerical constants;

—elementary atoms of the form xj ≥ lj or xj ≤ uj such that xj ∈ B̂ ∪ N̂ and lj ,
uj are numerical constants.

In order to handle problems that are not in the above form, a satisfiability-
preserving preprocessing step is applied upfront, before invoking the algorithm.

The initial equations eqi are then used to build a tableau T :

{xi = ∑
xj∈N aijxj | xi ∈ B}, (3)

where B (“basic” or “dependent”), N (“nonbasic” or “independent”) and aij are
such that initially B ≡ B̂, N ≡ N̂ and aij ≡ −âij/âii.

In order to decide the satisfiability of the input problem, the algorithm per-
forms manipulations of the tableau that change the sets B and N and the values
of the coefficients aij, always keeping the tableau T in (3) equivalent to its ini-
tial version. In particular, the algorithm maintains a mapping β : B∪N �−→ Q

representing a candidate model which, at every step, satisfies the following
invariants:

∀xj ∈ N , lj ≤ β(xj) ≤ uj, ∀xi ∈ B, β(xi) = ∑
j∈N aijβ(xj). (4)

The algorithm tries to adjust the values of β and the sets B and N , and hence
the coefficients aij of the tableau, such that li ≤ β(xi) ≤ ui holds also for all the
xi ’s in B. Inconsistency is detected when this is not possible without violating
any constraint in (4): as the bounds on the variables in N are always satisfied
by β, then there is a variable xi ∈ B such that the inconsistency is caused either
by the elementary atom xi ≥ li or by the atom xi ≤ ui [Dutertre and de Moura
2006]; in the first case,8 a conflict set η is generated as follows:

η = {xj ≤ uj |xj ∈ N+} ∪ {xj ≥ lj |xj ∈ N−} ∪ {xi ≥ li}, (5)

where (xi = ∑
xj∈N aijxj) is the row of the current version of the tableau T (3)

corresponding to xi, N+ is {xj ∈ N |aij > 0} and N− is {xj ∈ N |aij < 0}.
7Notationally, we use the hat symbol ˆ to denote the initial value of the generic symbol.
8Here we do not consider the second case xi ≤ ui as it is analogous to the first one.
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Notice that η is a conflict set in the sense that it is made inconsistent by
(some of) the equations in the tableau T (3), that is, T ∪η |=LA(Q) ⊥. In general,
however, η �|=LA(Q) ⊥.

3.1.2 Our Proof-Producing Variant. In order to make it suitable for inter-
polant generation, we have conceived the following variant of the Dutertre-de
Moura algorithm.

We take as input an arbitrary set of inequalities lk ≤ ∑
h âkh yh or uk ≥∑

h âkh yh, and apply an internal preprocessing step to obtain a set of equations
and a set of elementary bounds. In particular, we introduce a “slack” variable
sk for each distinct term

∑
h âkh yh occurring in the input inequalities. Then we

replace such term with sk (thus obtaining lk ≤ sk or uk ≥ sk) and add an equation
sk = ∑

h âkh yh. Notice that we introduce a slack variable even for “elementary”
inequalities (lk ≤ yk). With this transformation, the initial tableau T (3) is

{sk = ∑
h âkh yh}k, (6)

such that B̂ is made of all the slack variables sk’s, N̂ is made of all the original
variables yh’s, and the elementary atoms contain only slack variables sk’s.

Then the algorithm proceeds as described above, producing a set η (5) in case
of inconsistency. In our variant of the algorithm, we can use η to generate a
conflict set η′, thanks to the following theorem.

THEOREM 3.1. In the set η of (5), xi and all the xj ’s are slack variables
introduced by our preprocessing step. Moreover, the set η′ def=ηN+ ∪ ηN− ∪ ηi is a
conflict set, where

ηN+
def= {uk ≥ ∑

h âkh yh|sk ≡ xj and xj ∈ N+},
ηN−

def= {lk ≤ ∑
h âkh yh|sk ≡ xj and xj ∈ N−},

ηi
def= {lk ≤ ∑

h âkh yh|sk ≡ xi}.
PROOF. We consider the case in which η (5) is generated from a row xi =∑
xj∈N aij xj in the tableau T (3) such that β(xi) < li. Dutertre and de Moura

[2006] showed that in this case the following facts hold:

∀xj ∈ N+, β(xj) = uj, and ∀xj ∈ N−, β(xj) = lj . (7)

(We recall that N+ = {xj ∈ N |aij > 0} and N− = {xj ∈ N |aij < 0}.) The bounds
uj and lj can be introduced only by elementary atoms. Since in our variant the
elementary atoms contain only slack variables, each xj must be a slack variable
(namely, sk). The same holds for xi (since its value is bounded by li).

Now consider η again. Dutertre and de Moura [2006] showed that when a
conflict is detected because β(xi) < li, then the following fact holds:

β(xi) = ∑
xj∈N+ aijuj + ∑

xj∈N− aijlj . (8)

From the ith row of tableau T (3) we can derive

0 ≤ ∑
xj∈N aij xj − xi. (9)

If we take each inequality 0 ≤ uj − xj multiplied by the coefficient aij for
all xj ∈ N+, each inequality 0 ≤ xj − lj multiplied by coefficient −aij for all

ACM Transactions on Computational Logic, Vol. 12, No. 1, Article 7, Publication date: October 2010.



Efficient Generation of Craig Interpolants • 7:13

xj ∈ N−, and the inequality (0 ≤ xi − li) multiplied by 1, and we add them to
(9), we obtain

0 ≤ ∑
N+ aij uj + ∑

N− aij lj − li, (10)

which by (8) is equivalent to 0 ≤ β(xi) − li. Thus we have obtained 0 ≤ c with
c ≡ β(xi) − li, which is strictly lower than zero. Therefore, η is inconsistent
under the definitions in T . Since we know that xi and all the xj ’s in η are slack
variables, we can replace every xj (i.e., every sk) with its corresponding term∑

h âkh yh, thus obtaining η′, which is thus inconsistent.

When our variant of the algorithm detects an inconsistency, we construct a
proof of unsatisfiability as follows. From the set η of (5) we build a conflict set η′

by replacing each elementary atom in it with the corresponding original atom,
as shown in Theorem 3.1. Using the HYP rule, we introduce all the atoms in ηN+ ,
and combine them with repeated applications of the COMB rule: if uk ≥ ∑

h âkh yh

is the atom corresponding to sk, we use as coefficient for the COMB the aij (in the
ith row of the current tableau) such that sk ≡ xj . Then we introduce each of
the atoms in ηN− with HYP, and add them to the previous combination, again
using COMB. In this case, the coefficient to use is −aij. Finally, we introduce the
atom in ηi and add it to the combination with coefficient 1.

COROLLARY 3.2. The result of the linear combination described above is the
atom 0 ≤ c, such that c is a numerical constant strictly lower than zero.

PROOF. Follows immediately by the proof of Theorem 3.1.

Besides the case just described (and its dual when the inconsistency is due
to an elementary atom xi ≤ ui), another case in which an inconsistency can
be detected is when two contradictory atoms are asserted: lk ≤ ∑

h âkh yh and
uk ≥ ∑

h âkh yh, with lk > uk. In this case, the proof is simply the combination of
the two atoms with coefficient 1.

The extension for handling also equalities like bk = ∑
h âkh yh is straightfor-

ward: we simply introduce two elementary atoms bk ≤ sk and bk ≥ sk and, in
the construction of the proof, we use the LEQEQ rule to introduce the proper
inequality.

Finally, notice that the current implementation in MATHSAT (see Section 7)
is slightly different from what presented here, and significantly more efficient.
In practice, η, η′ are not constructed in sequence; rather, they are built simul-
taneously. Moreover, some optimizations are applied to eliminate some slack
variables when they are not needed. (In particular, in an actual implementa-
tion there is no need of introducing slack variables for elementary inequalities
of the form lk ≤ xk. We refer the reader to de Moura and Bjørner [2008] for more
details about this fact.)

Example 3.1. Consider again the two sets of LA(Q) atoms of Example 2.2:

A def= {(0 ≤ x1 − 3x2 + 1), (0 ≤ x1 + x2},
B def= {(0 ≤ x3 − 2x1 − 3), (0 ≤ 1 − 2x3)}.
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With our variant of the Dutertre-de Moura algorithm, four “slack” variables
are introduced, resulting in the following tableau and elementary constraints:

T def=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s1 = x1 − 3x2, −1 ≤ s1,

s2 = x1 + x2, 0 ≤ s2,

s3 = x3 − 2x1, 3 ≤ s3,

s4 = −2x3, −1 ≤ s4.

To detect the inconsistency, the algorithm performs some pivoting steps, result-
ing in the final tableau T ′:

T ′ def=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x2 = − 1
12 s4 − 1

6 s3 − 1
3 s1,

s2 = − 1
3 s4 − 2

3 s3 − 1
3 s1,

x1 = − 1
4 s4 − 1

2 s3,

x3 = − 1
2 s4.

The final values of β are as follows:

β(x1) = 7
4 , β(x2) = − 1

12 , β(x3) = 1
2 ,

β(s1) = −1, β(s2) = − 4
3 , β(s3) = 3, β(s4) = −1.

Therefore, the bound (0 ≤ s2) is violated. From the second row of T ′, the set η

and the conflict set η′ are computed:

η
def= ∅ ∪ {(−1 ≤ s4), (3 ≤ s3), (−1 ≤ s1)} ∪ {(0 ≤ s2)},

η′ def= ∅ ∪ {(0 ≤ 1 − 2x3), (0 ≤ x3 − 2x1 − 3), (0 ≤ x1 − 3x2 + 1)} ∪ {(0 ≤ x1 + x2)}.
The generated proof of unsatisfiability P is

1
3 ∗ (0 ≤ 1 − 2x3) 2

3 ∗ (0 ≤ x3 − 2x1 − 3)

1 ∗ (0 ≤ − 4
3 x1 − 5

3 ) 1
3 ∗ (0 ≤ x1 − 3x2 + 1)

1 ∗ (0 ≤ −x1 − x2 − 4
3 ) 1 ∗ (0 ≤ x1 + x2)

(0 ≤ − 4
3 ) .

After replacing the inequalities of B with (0 ≤ 0) in P, the new proof P ′ is
1
3 ∗ (0 ≤ 0) 2

3 ∗ (0 ≤ 0)

1 ∗ (0 ≤ 0) 1
3 ∗ (0 ≤ x1 − 3x2 + 1)

1 ∗ (0 ≤ 1
3 x1 − x2 + 1

3 ) 1 ∗ (0 ≤ x1 + x2)

(0 ≤ 4
3 x1 + 1

3 ) .

Thus the computed interpolant is (0 ≤ 4
3 x1 + 1

3 ) (which is equivalent to that of
Example 2.2).

3.2 Interpolation with Strict Inequalities and Disequalities

Another benefit of the Dutertre-de Moura algorithm is that it can handle strict
inequalities directly. Its method is based on the following lemma.
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LEMMA 3.3 (LEMMA 1 IN DUTERTRE AND DE MOURA [2006]). A set of linear
arithmetic atoms � containing strict inequalities S = {0 < t1, . . . , 0 < tn} is
satisfiable iff there exists a rational number ε > 0 such that �ε

def=(� ∪ Sε) \ S is
satisfiable, where Sε

def={ε ≤ t1, . . . , ε ≤ tn}.
The idea of Dutertre and de Moura [2006] is that of treating the infinitesimal

parameter ε symbolically instead of explicitly computing its value. Strict bounds
(x < b) are replaced with weak ones (x ≤ b − ε), and the operations on bounds
are adjusted to take ε into account.

We extend the same idea to the computation of interpolants. We transform
every atom (0 < ti) occurring in the proof of unsatisfiability into (0 ≤ ti − ε).
Then we compute an interpolant Iε in the usual way. As a consequence of the
rules of McMillan [2005], Iε is always a single atom. As shown by the following
lemma, if Iε contains ε, then it must be in the form (0 ≤ t − c ε) with c > 0, and
we can rewrite Iε into (0 < t).

THEOREM 3.4 (INTERPOLATION WITH STRICT INEQUALITIES). Let �, S, �ε, and Sε

be defined as in Lemma 3.3. Let � be partitioned into A and B, and let Aε and
Bε be obtained from A and B by replacing atoms in S with the corresponding
ones in Sε. Let Iε be an interpolant for (Aε, Bε). Then

—if ε �� Iε, then Iε is an interpolant for (A, B).
—if ε � Iε, then Iε ≡ (0 ≤ t − c ε) for some c > 0, and Idef=(0 < t) is an interpolant

for (A, B).

PROOF. Since the side condition of the COMB rule ensures that equations are
combined only using positive coefficients, and since the atoms introduced in
the proof either do not contain ε or contain it with a negative coefficient, if ε

appears in Iε, it must have a negative coefficient.
If ε does not appear in Iε, then Iε has been obtained from atoms appearing

in A or B, so that Iε is an interpolant for (A, B).
If ε appears in Iε, since its value has not been explicitly computed, it can

be arbitrarily small, so thanks to Lemma 3.3 we have that Bε ∧ Iε |=LA(Q) ⊥
implies B∧ I |=LA(Q) ⊥.

We can prove that A |=LA(Q) I as follows. We consider some interpretation μ

which is a model for A. Since ε does not occur in A, we can extend μ by setting
μ(ε) = δ for some δ > 0 such that μ is a model also for Aε. As Aε |=LA(Q) Iε , μ

is also a model for Iε, and hence μ is also a model for I. Thus, we have that
A |=LA(Q) I.

Notice that Theorem 3.4 can be extended straightforwardly to the case in
which the interpolant is a conjunction of inequalities.

Thus, in case of strict inequalities, Theorem 3.4 gives us a way for construct-
ing interpolants with no need of expensive theory combination (as instead was
the case in McMillan [2005]). Moreover, thanks to it we can handle also negated
equalities (0 �= t) directly. Suppose our set S of input atoms (partitioned into
A and B) is the union of a set S ′ of equalities and inequalities (both weak
and strict) and a set S �= of disequalities, and suppose that S ′ is consistent. (If
not so, an interpolant can be computed from S ′.) Since LA(Q) is convex, S is
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inconsistent iff exists (0 �= t) ∈ S �= such that S′ ∪ {(0 �= t)} is inconsistent, that
is, such that both S′ ∪ {(0 < t)} and S′ ∪ {(0 > t)} are inconsistent.

Therefore, we pick one element (0 �= t) of S �= at a time, and check the
satisfiability of S′ ∪ {(0 < t)} and S ′ ∪ {(0 > t)}. If both are inconsistent, from
the two proofs we can generate two interpolants I− and I+. We combine I+

and I− to obtain an interpolant I for (A, B): if (0 �= t) ∈ A, then I is I+ ∨ I−; if
(0 �= t) ∈ B, then I is I+ ∧ I−, as shown by the following theorem.

THEOREM 3.5 (INTERPOLATION FOR NEGATED EQUALITIES). Let Aand B two con-
junctions of LA(Q) atoms, and let ndef=(0 �= t) be one such atom. Let gdef=(0 < t) and
ldef=(0 > t).

—If n ∈ A, then let A+ def=A\ {n} ∪ {g}, A− def=A\ {n} ∪ {l}, and B+ def=B− def=B.
—If n ∈ B, then let A+ def=A− def=A, B+ def=B \ {n} ∪ {g}, and B− def=B \ {n} ∪ {l}.
Assume that A+ ∧ B+ |=LA(Q) ⊥ and that A− ∧ B− |=LA(Q) ⊥, and let I+ and I−

be two interpolants for (A+, B+) and (A−, B−), respectively, and let

Idef=
{

I+ ∨ I−, if n ∈ A,

I+ ∧ I−, if n ∈ B.

Then I is an interpolant for (A, B).

PROOF. We have to prove that

(i) A |=LA(Q) I;
(ii) B∧ I |=LA(Q) ⊥;

(iii) I � A and I � B.

(i) If n ∈ A, then A |=LA(Q) g ∨ l. By hypothesis, we know that A+ |=LA(Q) I+

and A− |=LA(Q) I−. Then trivially A∪ {g} |=LA(Q) I+ and A∪ {l} |=LA(Q) I−.
Therefore A ∪ {g} |=LA(Q) I+ ∨ I− and A ∪ {l} |=LA(Q) I− ∨ I+, so that
A |=LA(Q) I.

If n ∈ B, then A+ ≡ A− ≡ A. By hypothesis A |=LA(Q) I+ and A |=LA(Q) I−,
so that A |=LA(Q) I.

(ii) If n ∈ A, then B+ ≡ B− ≡ B. By hypothesis B ∧ I+ |=LA(Q) ⊥ and B ∧
I− |=LA(Q) ⊥, so that B∧ I |=LA(Q) ⊥.

If n ∈ B, then B |=LA(Q) g ∨ l, so that either B → g or B → l must hold.
By hypothesis we have B+ ∧ I+ |=LA(Q) ⊥, so that B∪ {g} ∧ I+ |=LA(Q) ⊥. If
B → g holds, then B ∧ I+ |=LA(Q) ⊥, and hence B ∧ I |=LA(Q) ⊥. Similarly,
if B → l holds, then B∧ I− |=LA(Q) ⊥, and so again B∧ I |=LA(Q) ⊥.

(iii) By the hypothesis, both I+ and I− contain only symbols common to A and
B, so that I � A and I � B.

Example 3.2. Consider the following sets of LA(Q) atoms:

Adef={(0 �= x1 − 3x2 + 1), (0 = x1 + x2)},
Bdef={(0 = x3 − 2x1 − 1), (0 = 1 − 2x3)}.

To compute an interpolant for (A, B), we first split ndef=(0 �= x1 − 3x2 + 1) into
gdef=(0 < x1−3x2 +1) and ldef=(0 < −x1+3x2 −1), thus obtaining A+ and A− defined
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as in Theorem 3.5. We then generate two LA(Q) proofs of unsatisfiability P+
for A+ ∧ B and P− for A− ∧ B, and replace g in P+ with gε

def=(0 ≤ x1 −3x2 +1− ε)
and l in P− with lε

def=(0 ≤ −x1 + 3x2 − 1 − ε), obtaining P+
ε and P−

ε (we omit the
names of the inference rules):

P+
ε

def=

(0 ≤ x1 − 3x2 + 1 − ε)
(0 = x1 + x2)
(0 ≤ x1 + x2)

(0 ≤ 4x1 + 1 − ε)

(0 = x3 − 2x1 − 1)

(0 ≤ x3 − 2x1 − 1)

(0 = 1 − 2x3)

(0 ≤ 1 − 2x3)

(0 ≤ −4x1 − 1),
(0 ≤ −ε)

P−
ε

def=

(0 ≤ −x1 + 3x2 − 1 − ε)
(0 = x1 + x2)

(0 ≤ −x1 − x2)
(0 ≤ −4x1 − 1 − ε)

(0 = x3 − 2x1 − 1)

(0 ≤ −x3 + 2x1 + 1)

(0 = 1 − 2x3)

(0 ≤ −1 + 2x3)

(0 ≤ +4x1 + 1).
(0 ≤ −ε)

We then compute the two interpolants I+
ε from P+

ε and I−
ε from P−

ε :

I+
ε

def=(0 ≤ 4x1 + 1 − ε), I−
ε

def=(0 ≤ −4x1 − 1 − ε).

Therefore, according to Theorem 3.4 the two interpolants I+ for (A+, B) and I−

for (A−, B) are

I+ def=(0 < 4x1 + 1), I− def=(0 < −4x1 − 1).

Finally, since n ∈ B, according to Theorem 3.5, the interpolant I for (A, B) is

I def=I+ ∨ I− ≡ (0 < 4x1 + 1) ∨ (0 < −4x1 − 1).

3.3 Obtaining Stronger Interpolants

We conclude this section by illustrating a simple technique for improving the
strength of interpolants in LA(Q). The technique is orthogonal to our proof-
generation algorithm described in Section 3.1.2, and it is therefore of indepen-
dent interest. It is an improvement of the general algorithm of McMillan [2005]
(and outlined in Section 2.3.1) for generating interpolants from LA(Q) proofs
of unsatisfiability.

Definition 3.6. Given two interpolants I1 and I2 for the same pair (A, B) of
conjunctions of LA(Q) literals, we say that I1 is stronger than I2 if and only if
I1 |=LA(Q) I2 but I2 �|=LA(Q) I1.

A simple way of obtaining strong interpolants in LA(Q) is to exploit quan-
tifier elimination procedures. In this context, a quantifier elimination proce-
dure (denoted with QuantElim in the following) is a procedure that takes as
input an existentially quantified formula in prenex normal form9 and pro-
duces an equivalent quantifier-free formula. Given an LA(Q)-inconsistent pair
(A, B) of conjunctions of constraints, an interpolant can be computed by existen-
tially quantifying all the A-local variables in A, and then performing quantifier
elimination:

I def=QuantElim(∃({xi | xi �∈ B}).A). (11)

9We recall that a formula ϕ is in prenex normal form if and only it is written as a string of quantifiers
followed by a quantifier-free part.
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The interpolant (11) obtained via quantifier elimination is the strongest possi-
ble for (A, B). Moreover, such a technique can be applied also when the variables
are interpreted over the integers rather than over the rationals. In general,
however, quantifier elimination for LA(Q) is very expensive (and even more so
for LA(Z)), and for large problems it can be impractical: even in the restricted
case of conjunctions of constraints only, in fact, it can cause an exponential
blow-up in the size of the formula in the worst case (see, e.g., Kroening and
Strichman [2008]).

We present instead an alternative algorithm which, although it does not
guarantee the generation of the strongest interpolant, can be implemented very
efficiently on top of proof-generatingLA(Q)-decision procedures. Our technique
is based on the simple observation that the only purpose of the summations
performed during the traversal of proof trees for computing the interpolant (as
described in Section 2.3.1) is that of eliminating A-local variables. In fact, it is
easy to see that the conjunction of the constraints of Aoccurring as leaves in an
LA(Q) proof of unsatisfiability satisfies the first two points of the definition of
interpolant (Definition 2.2): if such constraints do not contain A-local variables,
therefore, their conjunction is already an interpolant; if not, it suffices to per-
form only the summations of constraints of A that are necessary to eliminate
A-local variables. Moreover, such an interpolant is stronger than that obtained
by performing the summations with the coefficients found in the proof tree,
since for any set of constraints {s1, . . . , sn} and any set of positive coefficients
{c1, . . . , cn}, s1 ∧ · · · ∧ sn |=LA(Q)

∑n
i=1 ci ∗ si holds.

According to this observation, our proposal can be described as: perform only
those summations which are necessary for eliminating A-local variables.

Example 3.3. Consider the following sets of LA(Q) atoms:

A def=
{

(0 ≤ 3x1 − 4x2 + 1), (0 ≤ x2 − 2x1),
(

0 ≤ x2 − 1
3

x3

)
,
(
0 ≤ x4 − 3

2
x5 − 1)

}
,

B def={(0 ≤ 3x5 − x1), (0 ≤ x3 − 2x4)},
and the following LA(Q) proof of unsatisfiability of A∧ B:

(0 ≤ 3x1 − 4x2 + 1) (0 ≤ x2 − 2x1)
(0 ≤ x1 − 3x2 + 1) 3 ∗ (0 ≤ x2 − 1

3 x3)

(0 ≤ x1 − x3 + 1) 2 ∗ (0 ≤ x4 − 3
2 x5 − 1)

(0 ≤ x1 − x3 + 2x4 − 3x5 − 1) (0 ≤ 3x5 − x1)

(0 ≤ −x3 + 2x4 − 1) (0 ≤ x3 − 2x4).

(0 ≤ −1)

Here, the variable x2 is A-local, whereas all the others are AB-common. The
interpolant computed with the algorithm of Section 2.3.1 is

(0 ≤ x1 − x3 + 2x4 − 3x5 − 1),

which is the result of the linear combination of all the atoms of A in the proof.
However, in order to eliminate the A-local variable x2, it is enough to combine
(0 ≤ x1 − 3x2 + 1) (with coefficient 1) and (0 ≤ x2 − 1

3 x3) (with coefficient 3),
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obtaining (0 ≤ x1 − x3 + 1). Therefore, a stronger interpolant is

(0 ≤ x1 − x3 + 1) ∧
(

0 ≤ x4 − 3
2

x5 − 1
)

.

Notice that in this case the interpolant is weaker than that computed with
quantifier elimination (11), which is(

0 ≤ −5
4

x1 + 1
4

)
∧

(
0 ≤ 3

4
x1 − 1

3
x3 + 1

4

)
∧

(
0 ≤ x4 − 3

2
x5 − 1

)
.

The technique can be implemented with a small modification of the proof-
based algorithm described in Section 2.3.1. We associate with each node in the
proof P ′ (which is obtained from the original proof P by replacing inequalities
from B with (0 ≤ 0)) a list of pairs 〈coefficient, inequality〉. For a leaf, this list
is a singleton in which the coefficient is 1 and the inequality is the atom in
the leaf itself. For an inner node (which corresponds to an application of the
COMB rule), the list l is generated from the two lists l1 and l2 of the premises as
follows:

(1) set l as the concatenation of l1 and l2;
(2) let c1 and c2 be the coefficients used in the COMB rule; multiply each coef-

ficient c′
i occurring in a pair 〈c′

i, 0 ≤ ti〉 of l by c1 if the pair comes from l1,
and by c2 otherwise;

(3) while there is an A-local variable x occurring in more than one pair 〈c′, 0 ≤ t〉
of l10:
(a) collect all the pairs 〈c′

i, 0 ≤ ti〉 in which x occurs;
(b) generate a new pair pdef=〈1, 0 ≤ ∑

i c′
i ∗ ti〉;

(c) add p to l, and remove all the pairs 〈c′
i, 0 ≤ ti〉.

After having applied the above algorithm, we can take the conjunction of the
inequalities in the list associated with the root of P ′ as an interpolant.

THEOREM 3.7. Let P be a LA(Q) proof of unsatisfiability for a conjunction
A∧Bof inequalities, and P ′ be obtained from P by replacing each inequality of B
with (0 ≤ 0). Let ldef=〈c1, 0 ≤ t1〉, . . . , 〈cn, 0 ≤ tn〉 be the list associated with the root
of P ′, computed as described above. Then Idef= ∧n

i=1(0 ≤ ti) is an interpolant for
(A, B). Moreover, I is always stronger than or equal to the interpolant obtained
with the algorithm of Section 2.3.1 for the same proof P ′.

PROOF. By induction on the structure of P ′, it is easy to prove that, for each
constraint (0 ≤ t) in P ′ with its associated list ldef=〈c1, 0 ≤ t1〉, . . . , 〈cn, 0 ≤ tn〉:
(1) A |= ∧n

i=1(0 ≤ ti); and
(2) (0 ≤ t) ≡ ∑n

i=1 ci · (0 ≤ ti)

Since the root of P ′ is an interpolant for (A, B), this immediately proves the
theorem.

10That is, x occurs in t.
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4. FROM SMT(DL) SOLVING TO SMT(DL) INTERPOLATION

Several interesting verification problems can be encoded using only a subset of
LA, the theory of difference logic (DL), either over the rationals (DL(Q)) or over
the integers (DL(Z)). DL is much simpler than LA, since in DL all atoms are
inequalities of the form (0 ≤ y − x + c), where x and y are variables and c is an
integer constant.11 Equalities can be handled as conjunctions of inequalities.
Here we do not consider the case when we also have strict inequalities (0 <

y−x+c) and disequalities (0 �= y−x+c), because in DL(Q) they can be handled
in a way which is similar to that described in Section 3.2 for LA(Q), while in
DL(Z) a strict inequality (0 < y − x + c) can be rewritten a priori into a weak
one (0 ≤ y − x + c − 1), and a disequality can be replaced by a disjunction of
strict inequalities.

Very efficient solving algorithms have been conceived for DL [Cotton and
Maler 2006; Nieuwenhuis and Oliveras 2005]. In this section we present a
specialized technique for computing interpolants in DL which exploits such
state-of-the-art decision procedures. Since a set of weak inequalities in DL is
consistent over the rationals if and only if it is consistent over the integers, our
algorithm is applicable without any modifications to both DL(Q) and DL(Z)
(see, e.g., Nieuwenhuis and Oliveras [2005]).

Many SMT solvers use dedicated, graph-based algorithms for checking the
consistency of a set of DL(Q) atoms [Cotton and Maler 2006; Nieuwenhuis
and Oliveras 2005]. Intuitively, a set S of DL(Q) atoms induces a graph whose
vertexes are the variables of the atoms, and there exists an edge x

c−→ y for
every (0 ≤ y − x + c) ∈ S. S is inconsistent if and only if the induced graph has
a cycle of negative weight.

We now extend the graph-based approach to generate interpolants. Consider
the interpolation problem (A, B) where Aand Bare sets of inequalities as above,
and let C be (the set of atoms in) a negative cycle in the graph corresponding
to A∪ B.

If C ⊆ A, then A is inconsistent, in which case the interpolant is ⊥. Similarly,
when C ⊆ B, the interpolant is . If neither of these occurs, then the edges in
the cycle can be partitioned into subsets of Aand B. We call the maximal Apath
of C a path x1

c1−→ · · · cn−1−−→ xn such that (I) xi
ci−→ xi+1 ∈ A for i ∈ [1, n− 1], and (II)

C contains x′ c′−→ x1 and xn
c′′−→ x′′ that are in B. Clearly, the end-point variables

x1, xn of the maximal A path are such that x1, xn � A and x1, xn � B. Let the
summary constraint of a maximal A path x1

c1−→ · · · cn−1−−→ xn be the inequality
0 ≤ xn − x1 + ∑n−1

i=1 ci.

THEOREM 4.1. The conjunction of summary constraints of the A paths of C
is an interpolant for (A, B).

PROOF. Using the rules for LA(Q) of Figure 3, we build a deduction of
the summary constraint of an maximal A path from the conjunction of its

11Notice that we can assume without loos of generality that all constants are in Z because, if this is
not so, then we can rewrite the whole formula into an equivalently—satisfiable one by multiplying
all constant symbols occurring in the formula by their greatest common denominator.
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corresponding set of constraints
∧n−1

i=1 (0 ≤ xi+1 − xi + ci):

(0 ≤ x2 − x1 + c1) (0 ≤ x3 − x2 + c2)

(0 ≤ x3 − x1 + c1 + c2) (0 ≤ x4 − x3 + c3)
. . . . . . (0 ≤ xn − xn−1 + cn−1)

(0 ≤ xn − x1 + ∑n−1
i=1 ci) .

Hence, A entails the conjunction of the summary constraints of all maximal
A paths. Then, we notice that the conjunction of the summary constraints is
inconsistent with B. In fact, the weight of a maximal A path and the weight
of its summary constraint are the same. Thus the cycle obtained from C by
replacing each maximal A path with the corresponding summary constraint
is also a negative cycle. Finally, we notice that every variable x occurring in
the conjunction of the summary constraints is an end-point variable, and thus
x � A and x � B.

A final remark is in order. In principle, in order to generate a proof of un-
satisfiability for a conjunction of DL(Q) atoms A∧ B, the same rules used for
LA(Q) [McMillan 2005] could be used. For instance, it is easy to build a proof
which repeatedly applies the COMB rule with c1 = c2 = 1. In general, however,
the interpolants generated from such proofs are not DL(Q) formulas anymore
and, if computed starting from the same inconsistent set C, they are either
identical or weaker than those generated with our method. In fact, it is easy
to see that, unless our technique of Section 3.3 is adopted, such interpolants
are in the form (0 ≤ ∑

i ti) such that
∧

i(0 ≤ ti) is the corresponding interpolant
generated with our graph-based method.

Example 4.1. Consider the following sets of DL(Q) atoms:

A def= {(0 ≤ x1 − x2 + 1), (0 ≤ x2 − x3), (0 ≤ x4 − x5 − 1)},
B def= {(0 ≤ x5 − x1), (0 ≤ x3 − x4 − 1)},

−1

−10

1

0

1

A
B

x1 x5

x2

x3

x4

corresponding to the negative cycle on the right. It is straightforward to see
from the graph that the resulting interpolant is (0 ≤ x1−x3+1)∧(0 ≤ x4−x5−1),
because the first conjunct is the summary constraint of the first two conjuncts
in A.

Applying instead the rules of Figure 3 with coefficients 1, the proof of unsat-
isfiability is

(0 ≤ x1 − x2 + 1) (0 ≤ x2 − x3)

(0 ≤ x1 − x3 + 1) (0 ≤ x4 − x5 − 1)

(0 ≤ x1 − x3 + x4 − x5) (0 ≤ x5 − x1)

(0 ≤ −x3 + x4) (0 ≤ x3 − x4 − 1).

(0 ≤ −1)

By using the interpolation rules for LA(Q) , the interpolant we obtain is (0 ≤
x1 − x3 + x4 − x5), which is not in DL(Q), and is weaker than that computed
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above:
(0 ≤ x1 − x2 + 1) (0 ≤ x2 − x3)

(0 ≤ x1 − x3 + 1) (0 ≤ x4 − x5 − 1)

(0 ≤ x1 − x3 + x4 − x5) (0 ≤ 0)

(0 ≤ x1 − x3 + x4 − x5) (0 ≤ 0)

(0 ≤ x1 − x3 + x4 − x5) .

Finally, we observe that our technique of Section 3.3 can be easily adapted
to the graph-based approach used for DL(Q). In such setting, the technique
amounts to avoiding unnecessary summarizations of A paths: instead of build-
ing summary constraints for maximal A paths, we build summaries for all the
A paths whose end-point variables x1, xn are shared between A and B (i.e., they
are such that x1, xn � A and x1, xn � B). Unlike with LA(Q) (see Example 3.3),
in DL(Q) this procedure yields the same result as performing an existential
quantification followed by quantifier elimination of all the A-local variables in
the subset of constraints of Aoccurring in the negative cycle. (Proof sketch: each
variable in a negative cycle occurs exactly in two inequalities, once positively
and once negatively. Therefore, its elimination using the Fourier-Motzkin al-
gorithm can be performed by simply taking the linear combination of such two
constraints, which corresponds to a summarization step. Since we summarize
only the A paths whose non-end-point variables are A-local, we do not remove
any AB-common variable.)

Example 4.2. Consider the following sets of DL(Q) atoms:

A def= {(0 ≤ x1 − x2), (0 ≤ x3 − x4), (0 ≤ x5 − x6),

(0 ≤ x6 − x1 − 1)},
B def= {(0 ≤ x2 − x3), (0 ≤ x4 − x5), (0 ≤ x4 − x6 + 1)},

A
B

0

0

0

0

−1

−1

0

x3

x5

x2

x4

x1

x6

A∧ B is DL(Q)-inconsistent, as demonstrated by the negative cycle on the right.
By computing summaries for the maximal A paths in the cycle, the generated
interpolant would be (0 ≤ x5 − x2 − 1) ∧ (0 ≤ x3 − x4). However, there is no

need of summarizing the whole A path x5
0−→ x6

−1−→ x1
0−→ x2 for eliminating

the only A-local variable, which is x1. For this, it is enough to summarize

the nonmaximal A path x6
−1−→ x1

x2−→, thus obtaining the stronger interpolant
(0 ≤ x5 − x6) ∧ (0 ≤ x6 − x2 − 1) ∧ (0 ≤ x3 − x4).

5. FROM SMT(UT VPI) SOLVING TO SMT(UT VPI) INTERPOLATION

The Unit-Two-Variables-Per-Inequality (UT VPI) theory is a subtheory of lin-
ear arithmetic, in which all constraints are in the form (0 ≤ ax1 + bx2 + k),
where k is a numerical constant, a, b ∈ {−1, 0, 1}, and variables xi, x2 range
either over the rationals (for UT VPI(Q)) or over the integers (for UT VPI(Z)).
Consequently, DL(Q) is a subtheory of UT VPI(Q), which is itself a subtheory
of LA(Q), and DL(Z) is a subtheory of UT VPI(Z), which is itself a subtheory of
LA(Z).
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Table I. The Conversion Map from UT VPI(Q) to DL(Q).

UT VPI(Q) Constraints DL(Q) Constraints
(0 ≤ x1 − x2 + k) (0 ≤ x+

1 − x+
2 + k), (0 ≤ x−

2 − x−
1 + k)

(0 ≤ −x1 − x2 + k) (0 ≤ x−
1 − x+

2 + k), (0 ≤ x−
2 − x+

1 + k)
(0 ≤ x1 + x2 + k) (0 ≤ x+

1 − x−
2 + k), (0 ≤ x+

2 − x−
1 + k)

(0 ≤ −x1 + k) (0 ≤ x−
1 − x+

1 + 2 · k)
(0 ≤ x1 + k) (0 ≤ x+

1 − x−
1 + 2 · k)

As for DL, UT VPI can be treated more efficiently than the full LA, and
several specialized algorithms for UT VPI have been proposed in the literature.
Traditional techniques are based on the iterative computation of the transitive
closure of the constraints [Harvey and Stuckey 1997; Jaffar et al. 1994]; more
recently [Lahiri and Musuvathi 2005] proposed a novel technique based on
a reduction to DL, so that graph-based techniques can be exploited, resulting
into an asymptotically faster algorithm. We adopt the latter approach and show
how the graph-based interpolation technique of Section 4 can be extended to
UT VPI, for both the rationals (Section 5.1) and the integers (Section 5.2).

5.1 Graph-Based Interpolation for UT VPI on the Rationals

We analyze first the simpler case of UT VPI(Q). Miné [2001] showed that it
is possible to encode a set of UT VPI(Q) constraints into a DL(Q) one in a
satisfiability-preserving way. The encoding works as follows. We use xi to denote
variables in the UT VPI(Q) domain and u, v for variables in the DL(Q) domain.
For every variable xi in UT VPI(Q), we introduce two distinct variables x+

i and
x−

i in DL(Q). We introduce a mapping ϒ from DL(Q) variables to UT VPI(Q)
signed variables, such that ϒ(x+

i ) = xi and ϒ(x−
i ) = −xi. ϒ extends to (sets of)

constraints in the natural way: ϒ(0 ≤ ax1 + bx2 + k)def=(0 ≤ aϒ(x1) + bϒ(x2) + c),
and ϒ({ci}i)

def={ϒ(ci)}i. We say that (x+
i )− = x−

i and (x−
i )− = x+

i . We say that
the constraints (0 ≤ u − v) and (0 ≤ (v)− − (u)−) such that u, v ∈ {x+

i , x−
i }i are

dual. We encode each UT VPI constraint into the conjunction of two dual DL(Q)
constraints, as represented in Table I. For each DL(Q) constraint (0 ≤ v−u+k),
(0 ≤ ϒ(v) − ϒ(u) + k) is the corresponding UT VPI(Q) constraint. Notice that
the two dual DL(Q) constraints in the right column of Table I are just different
representations of the original UT VPI(Q) constraint. (The two dual constraints
encoding a single-variable constraint are identical, so that their conjunction is
collapsed into one constraint only.) The resulting set of constraints is satisfiable
in DL(Q) if and only if the original one is satisfiable in UT VPI(Q) [Miné 2001;
Lahiri and Musuvathi 2005].

Consider the pair (A, B) where A and B are sets of UT VPI(Q) constraints.
We apply the map of Table I and we encode (A, B) into a DL(Q) pair (A′, B′),
and build the constraint graph G(A′ ∧ B′). If G(A′ ∧ B′) has no negative cycle,
we can conclude that A′ ∧ B′ is DL(Q)-consistent, and hence that A ∧ B is
UT VPI(Q)-consistent; otherwise, A′∧ B′ is DL(Q)-inconsistent, and hence A∧ B
isUT VPI(Q)-inconsistent [Miné 2001; Lahiri and Musuvathi 2005]. In fact, it is
straightforward to observe that, for any set of DL(Q) constraints {C1, . . . , Cn, C}
resulting from the encoding of some UT VPI(Q) constraints, if

∧n
i=1 Ci |=DL(Q) C

then
∧n

i=1 ϒ(Ci) |=UT VPI(Q) ϒ(C).

ACM Transactions on Computational Logic, Vol. 12, No. 1, Article 7, Publication date: October 2010.



7:24 • A. Cimatti et al.

When A ∧ B is inconsistent, we can generate an UT VPI(Q) interpolant by
extending the graph-based approach used for DL(Q).

THEOREM 5.1. Let A ∧ B be an inconsistent conjunction of UT VPI(Q) con-
straints, and let G(A′ ∧ B′) be the corresponding graph of DL(Q) constraints. Let
I′ be a DL(Q) interpolant built from G(A′ ∧ B′) with the technique described in
Section 4. Then Idef=ϒ(I′) is an interpolant for (A, B).

PROOF. (i) I′ is a conjunction of summary constraints, so it is in the form∧
i Ci. Therefore A′ |=DL(Q) Ci for all i, and so by the observation above

A |=UT VPI(Q) ϒ(Ci). Hence, A |=UT VPI(Q) I. (ii) From the DL(Q) inconsis-
tency of I′ ∧ B′ we immediately derive that I ∧ B is UT VPI(Q)-inconsistent.
(iii) I � A and I � B derive from I′ � A′ and I′ � B′ by the definitions of ϒ and
the map of Table I.

As with theDL(Q) case, in principle, it is possible to generate a proof of unsat-
isfiability for a conjunction of UT VPI(Q) atoms A∧ B by repeatedly applying
the COMB rule for LA(Q) [McMillan 2005] with c1 = c2 = 1. As with DL(Q),
however, the interpolants generated from such proofs may not be UT VPI(Q)
formulas anymore. Moreover, if computed starting from the same inconsistent
set C and unless our technique of Section 3.3 is adopted, they are either iden-
tical or weaker than those generated with our graph-based method, since they
are in the form (0 ≤ ∑

i ti) such that
∧

i(0 ≤ ti) is the interpolant generated
with our method.

Example 5.1. Consider the following sets of UT VPI(Q) constraints:

A = {(0 ≤ −x2 − x1 + 3), (0 ≤ x1 + x3 + 1)

(0 ≤ −x3 − x4 − 6), (0 ≤ x5 + x4 + 1)},
B = {(0 ≤ x2 + x3 + 3)(0 ≤ x6 − x5 − 1), (0 ≤ x4 − x6 + 4)}.

By the map of Table I, they are converted into the following sets of DL(Q)
constraints:

A′ = {(0 ≤ x−
1 − x+

2 + 3), (0 ≤ x−
2 − x+

1 + 3),

(0 ≤ x+
3 − x−

1 + 1), (0 ≤ x+
1 − x−

3 + 1),

(0 ≤ x−
4 − x+

3 − 6), (0 ≤ x−
3 − x+

4 − 6),

(0 ≤ x+
4 − x−

5 + 1), (0 ≤ x+
5 − x−

4 + 1)},

B′ = {(0 ≤ x+
3 − x−

2 + 3), (0 ≤ x+
2 − x−

3 + 3),

(0 ≤ x+
6 − x+

5 − 1), (0 ≤ x−
5 − x−

6 − 1),

(0 ≤ x+
4 − x+

6 + 4), (0 ≤ x−
6 − x−

4 + 4)},
whose conjunction corresponds to the constraint graph of Figure 4. This graph
has a negative cycle

C ′ def= x+
2

3−→ x−
1

1−→ x+
3

−6−→ x−
4

4−→ x−
6

−1−→ x−
5

1−→ x+
4

−6−→ x−
3

3−→ x+
2 .

Thus, A ∧ B is inconsistent in UT VPI(Q). From the negative cycle C ′ we can

extract the set of A′-paths {x+
2

−2−→ x−
4 , x−

5
−5−→ x−

3 }, corresponding to the formula
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A

B

negative cycle

maximal A−paths

−5

−2

1 1 4 4

−6 133 −1

−6 133 −1

x−1 x+
2 x−3 x+

4 x−5 x−6

x+
6x+

5x−4x+
3x−2x+

1

Fig. 4. The constraint graph of Example 5.1. (We represent only one negative cycle with its
corresponding A-paths, because the other is dual.)

I′ def=(0 ≤ x−
4 − x+

2 − 2) ∧ (0 ≤ x−
3 − x−

5 − 5), which is an interpolant for (A′, B′). I′

is thus mapped back into I def=ϒ(I′)def=(0 ≤ −x2 − x4 − 2) ∧ (0 ≤ x5 − x3 − 5), which
is an interpolant for (A, B).

Applying instead the LA(Q) interpolation technique of McMillan [2005], we
find the interpolant (0 ≤ −x2 − x4 + x5 − x3 − 7), which is not in UT VPI(Q) and
is strictly weaker than that computed with our method.

5.2 Graph-Based Interpolation for UT VPI on the Integers

In order to deal with the more complex case of UT VPI(Z), we adopt a layered
approach [Sebastiani 2007]. First, we check the consistency in UT VPI(Q) us-
ing the technique of Miné [2001]. If this results in an inconsistency, we compute
an UT VPI(Q) interpolant as described in Section 5.1. If the UT VPI(Q) proce-
dure does not detect an inconsistency, we check the consistency in UT VPI(Z)
using the algorithm proposed by Lahiri and Musuvathi [2005], which extends
the ideas of Miné [2001] to the integer domain. In particular, it gives neces-
sary and sufficient conditions to decide unsatisfiability by detecting particular
kinds of zero-weight cycles in the induced DL constraint graph. This proce-
dure works in O(n · m) time and O(n + m) space, m and n being the number of
constraints and variables, respectively, which improves the previous O(n2 · m)
time and O(n2) space complexity of the previous procedure of Jaffar et al.
[1994].

We build on top of this algorithm and we extend the graph-based approach
of Section 5.1 for producing interpolants also in UT VPI(Z). In particular, we
use the following reformulation of a result of Lahiri and Musuvathi [2005].

THEOREM 5.2. Let φ be a conjunction of UT VPI(Z) constraints such that φ is
satisfiable in UT VPI(Q). Then φ is unsatisfiable in UT VPI(Z) iff the constraint
graph G(φ) generated from φ has a cycle C of weight zero containing two vertices
x+

i and x−
i such that the weight of the path x−

i �x+
i along C is odd.

PROOF. The “only if” part is a corollary of lemmas 1, 2, and 4 in Lahiri
and Musuvathi [2005]. The “if” comes straightforwardly from the analysis
done in Lahiri and Musuvathi [2005], whose main intuitions we recall in what
follows. Assume the constraint graph G(φ) generated from φ has one cycle C
of weight zero containing two vertices x+

i and x−
i such that the weight of the
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path x−
i �x+

i along C is 2k + 1 for some integer value k. (Since C has weight
zero, the weight of the other path x+

i �x−
i along C is −2k − 1.) Then the paths

x−
i �x+

i and x+
i �x−

i contain at least two constraints, because otherwise their
weights would be even (see the last two lines of Table I). Then x−

i �x+
i is in the

form x−
i �v

n−→ x+
i , for some v and n. From x−

i �v, we can derive the summary
constraint (0 ≤ v − x−

i + (2k + 1 − n)), which corresponds to the UT VPI(Z)
constraint (0 ≤ ϒ(v) + xi + (2k+ 1 − n)). (This corresponds to l − 2 applications
of the TRANSITIVE rule of Lahiri and Musuvathi [2005], l being the number
of constraints in x−

i �x+
i .) Then, by observing that the UT VPI(Z) constraint

corresponding to v
n−→ x+

i is (0 ≤ xi − ϒ(v) + n), we can apply the TIGHTENING

rule of Lahiri and Musuvathi [2005] to obtain (0 ≤ xi + �(2k + 1 − n + n)/2�),
which is equivalent to (0 ≤ xi + k). Similarly, from x+

i �x−
i we can obtain (0 ≤

−xi − k − 1), and thus an inconsistency using the CONTRADICTION rule of Lahiri
and Musuvathi [2005].

Consider a pair (A, B) of UT VPI(Z) constraints such that A∧ B is consistent
in UT VPI(Q) but inconsistent in UT VPI(Z). By Theorem 1, the constraint
graph G(A′ ∧ B′) has a cycle C of weight zero containing two vertices x+

i and
x−

i such that the weight of the paths x−
i �x+

i and x+
i �x−

i along C are 2k + 1
and −2k − 1, respectively, for some value k ∈ Z. Our algorithm computes an
interpolant for (A, B) from the cycle C. Let CA and CB be the subsets of the
edges in C corresponding to constraints in A′ and B′, respectively. We have to
distinguish four distinct subcases.

Case 1. xi occurs in B but not in A. Consequently, x+
i and x−

i occur in B′ but
not in A′, and hence they occur in CB but not in CA. Let I′ be the conjunction of
the summary constraints of the maximal CA paths, and let I be the conjunction
of the corresponding UT VPI(Z) constraints. The following theorem shows that
I is an interpolant for (A, B).

THEOREM 5.3. Let (A, B) be a pair of sets of UT VPI(Z) constraints such that
A∧ B |=UT VPI(Z) ⊥, let xi be a variable that occurs in B but not in A, let G(A′ ∧ B′)
be the graph of the DL encoding of A∧ B, and let C be a zero-weight cycle in the
graph such that the weight of the paths x−

i �x+
i and x+

i �x−
i along it are odd. Let

I′ be the conjunction of the summary constraints of the maximal CA paths, and
let I be the conjunction of the corresponding UT VPI(Z) constraints. Then I is
an interpolant for (A, B).

PROOF. (i) By construction, A |=UT VPI(Z) I, as in Section 5.1. (ii) The con-
straints in I′ and CB form a cycle matching the hypotheses of Theorem 5.2,
from which I ∧ B is UT VPI(Z)-inconsistent. (iii) We notice that every variable
x+

j , x−
j occurring in the conjunction of the summary constraints is an end-point

variable, so that I′ � CA and I′ � CB, and thus I � A and I � B.

Example 5.2. Consider the following set of constraints:

S = {(0 ≤ x1 − x2 + 4), (0 ≤ −x2 − x3 − 5), (0 ≤ x2 + x6 − 4), (0 ≤ x5 + x2 + 3),

(0 ≤ −x1 + x3 + 2), (0 ≤ −x6 − x4), (0 ≤ x4 − x5)},
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Fig. 5. UT VPI(Z) interpolation, Case 1.

partitioned into A and B as follows:

A

⎧⎪⎨
⎪⎩

(0 ≤ x3 − x1 + 2)

(0 ≤ −x6 − x4)

(0 ≤ x4 − x5),
B

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0 ≤ x1 − x2 + 4)

(0 ≤ −x2 − x3 − 5)

(0 ≤ x2 + x6 − 4)

(0 ≤ x5 + x2 + 3).

Figure 5 shows a zero-weight cycle C in G(A′ ∧ B′) such that the paths
x−

2 � x+
2 and x+

2 � x−
2 have an odd weight (−1 and 1, respectively) Therefore, by

Theorem 5.2 A ∧ B is UT VPI(Z)-inconsistent. The two summary constraints
of the maximal CA paths are (0 ≤ x−

6 − x+
5 ) and (0 ≤ x+

3 − x+
1 + 2). It is easy to

see that I = (0 ≤ −x6 − x5) ∧ (0 ≤ x3 − x1 + 2) is an UT VPI(Z)-interpolant for
(A, B).

Case 2. xi occurs in both A and B. Consequently, x+
i and x−

i occur in both A′

and B′. If neither x+
i nor x−

i is such that both the incoming and outgoing edges
belong to CA, then the cycle obtained by replacing each maximal CA path with
its summary constraint still contains both x+

i and x−
i , so we can apply the same

process of Case 1. Otherwise, if both the incoming and outgoing edges of x+
i

belong to CA, then we split the maximal CA path u1
c1−→ · · · ck−→ x+

i
ck+1−−→ · · · cn−→ un

containing x+
i into the two parts which are separated by x+

i : u1
c1−→ · · · ck−→ x+

i

and x+
i

ck+1−−→ · · · cn−→ un. We do the same for x−
i . Let I′ be the conjunction of the

resulting summary constraints, and let I be corresponding set of UT VPI(Z)
constraints. The following theorem shows that I is an interpolant for (A, B).

THEOREM 5.4. Let (A, B) be a pair of sets of UT VPI(Z) constraints such that
A∧ B |=UT VPI(Z) ⊥, let xi be a variable that occurs in both Aand B, let G(A′ ∧ B′)
be the graph of the DL encoding of A ∧ B, and let C be a zero-weight cycle in
the graph such that the weight of the paths x−

i � x+
i and x+

i � x−
i along it are

odd, and such that both the incoming and outgoing edges of x+
i in C belong to

CA. Let u1
c1−→ · · · ck−→ x+

i
ck+1−−→ · · · cn−→ un be the maximal CA path containing x+

i ,
and let s1 and s2 be, respectively, the summary constraints of the two parts of the
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Fig. 6. UT VPI(Z) interpolation, Case 2.

above path which are separated by x+
i . Let I′ be the conjunction of s1, s2 and the

summary constraints of the other maximal CA paths, and let I be the conjunction
of the corresponding UT VPI(Z) constraints. Then I is an interpolant for (A, B).

PROOF. (i) As with Case 1, again, A |=UT VPI(Z) I. (ii) Since we split the
maximal CA paths as described above, the constraints in I′ and CB form a
cycle matching the hypotheses of Theorem 5.2, from which I ∧ B is UT VPI(Z)-
inconsistent. (iii) x+

i , x−
i occur in both A′ and B′ by hypothesis, and every other

variable x+
j , x−

j occurring in the conjunction of the summary constraints is an
end-point variable, so that I′ � CA and I′ � CB, and thus I � A and I � B.

Example 5.3. Consider again the set of constraints S of Example 5.2, par-
titioned into A and B as follows:

A

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0 ≤ x3 − x1 + 2)

(0 ≤ −x6 − x4)

(0 ≤ x2 + x6 − 4)

(0 ≤ x1 − x2 + 4),

B

⎧⎪⎨
⎪⎩

(0 ≤ −x2 − x3 − 5)

(0 ≤ x5 + x2 + 3)

(0 ≤ x4 − x5).

and the zero-weight cycle C of G(A′ ∧ B′) shown in Figure 6. As in the previous
example, there is a path x−

2 � x+
2 of weight −1 and a path x+

2 � x−
2 of weight 1.

In this case there is only one maximal CA path, namely, x+
4 � x+

3 . Since the cycle
obtained by replacing it with its summary constraint (0 ≤ x+

3 − x+
4 + 2) does

not contain x+
2 , we split x+

4 � x+
3 into two paths, x+

4 � x+
2 and x+

2 � x+
3 , whose

summary constraints are (0 ≤ x+
2 − x+

4 − 4) and (0 ≤ x+
3 − x+

2 + 6), respec-
tively. By replacing the two paths above with the two summary constraints,
we get a zero-weight cycle which still contains the two odd paths x−

2 � x+
2 and

x+
2 � x−

2 . Therefore, I def=(0 ≤ x2 − x4 − 4) ∧ (0 ≤ x3 − x2 + 6) is an interpolant for
(A, B).

Notice that the UT VPI(Z) formula J def= (0 ≤ x3 − x4 + 2) corresponding to
the summary constraint of the maximal CA path x+

4 � x+
3 is not an interpolant,

since J ∧ B is not UT VPI(Z)-inconsistent. In fact, if we replace the maximal CA

path x+
4 � x+

3 with the summary constraint x+
4

2−→ x+
3 , the cycle we obtain has

still weight zero, but it contains no odd path between two variables x+
i and x−

i .
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Case 3. xi occurs in A but not in B, and one of the paths x+
i � x−

i or x−
i � x+

i
in C contains only constraints of CA. In this case, x+

i and x−
i occur in A′ but not

in B′. Suppose that x−
i � x+

i consists only of constraints of CA (the case x+
i � x−

i
is analogous).

Let 2k + 1 be the weight of the path x−
i � x+

i (which is odd by hypothesis),

and let C be the cycle obtained by replacing such path with the edge x−
i

2k−→ x+
i

in C. In the following, we call such a replacement tightening summarization.
Since C has weight zero, C has negative weight. Let C P be the set of DL
constraints in the path x−

i � x+
i . Let I′ be the DL interpolant computed from

C for (CA \ C P ∪ {(0 ≤ x+
i − x−

i + 2k)}, CB), and let I be the corresponding
UT VPI(Z) formula. The following theorem shows that I is an interpolant for
(A, B).

THEOREM 5.5. Let (A, B) be a pair of sets of UT VPI(Z) constraints such that
A∧ B |=UT VPI(Z) ⊥, let xi be a variable that occurs in Abut not in B, let G(A′ ∧ B′)
be the graph of the DL encoding of A ∧ B, and let C be a zero-weight cycle in
the graph such that the weight of the paths x−

i � x+
i and x+

i � x−
i along it are

odd, and such that all the constraints in the path x−
i � x+

i belong to CA. Let

C be the cycle obtained by replacing the path x−
i � x+

i with the edge x−
i

2k−→ x+
i

in C, where 2k + 1 is the weight of the replaced path. Let C P be the set of DL
constraints in the path x−

i � x+
i . Let I′ be the DL interpolant computed from C

for (CA\C P ∪{(0 ≤ x+
i −x−

i +2k)}, CB), and let I be the corresponding UT VPI(Z)
formula. Then I is an interpolant for (A, B).

PROOF. (i) Let P be the set of UT VPI(Z) constraints in the path x−
i � x+

i .
Since the weight 2k+1 of such path is odd, we have that P |=UT VPI(Z) (0 ≤ xi+k)
(cf. the proof of Theorem 5.2). Since P ⊆ A, therefore, A |=UT VPI(Z) (0 ≤ xi + k).
By observing that (0 ≤ x+

i − x−
i + 2k) is the DL constraint corresponding to

(0 ≤ xi + k) we conclude that CA \ C P ∪ (0 ≤ x+
i − x−

i + 2k) |=DL I′ implies that
A\ P ∪ (0 ≤ xi + k) |=UT VPI(Z) I, and so that A |=UT VPI(Z) I.

(ii) Since all the constraints in CB occur in C, we have that B∧I is UT VPI(Z)-
inconsistent.

(iii) Since by hypothesis all the constraints in the path x−
i � x+

i occur in CA,
from I′ � (CA \ C P ∪ {(0 ≤ x+

i − x−
i + 2k)}) we have that I � A. Finally, since all

the constraints in CB occur in C, we have that I � B.

Example 5.4. Consider again the set S of constraints of Example 5.2, this
time partitioned into A and B as follows:

A

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(0 ≤ x1 − x2 + 4),

(0 ≤ x3 − x1 + 2),

(0 ≤ −x2 − x3 − 5),

(0 ≤ x2 + x6 − 4),

(0 ≤ x5 + x2 + 3),

B

{
(0 ≤ −x6 − x4),

(0 ≤ x4 − x5).

Figure 7 shows a zero-weight cycle C of G(A′ ∧ B′). The only maximal CA path
is x−

6 � x+
5 . Since the path x+

2 � x−
2 has weight 1, we can add the tightening edge
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Fig. 7. UT VPI(Z) interpolation, Case 3.

x+
2

1−1−−→ x−
2 to G(A′ ∧ B′) (shown in dots and dashes in Figure 7), corresponding

to the constraint (0 ≤ x−
2 − x+

2 ). Since all constraints in the path x+
2 � x−

2 belong
to A′, A′ |= (0 ≤ x−

2 − x+
2 ). Moreover, the cycle obtained by replacing the path

x+
2 � x−

2 with the tightening edge x+
2

0−→ x−
2 has a negative weight (−1). There-

fore, we can generate a DL interpolant I′ def=(0 ≤ x−
2 − x−

6 − 4) from such cycle,
which corresponds to the UT VPI(Z) interpolant I def= (0 ≤ −x2 + x6 − 4).

Notice that, similarly to Example 5.3, also in this case we cannot obtain an
interpolant from the summary constraint (0 ≤ x+

5 − x−
6 ) of the maximal CA path

x−
6 � x+

5 , as (0 ≤ x5 + x6) ∧ B is not UT VPI(Z)-inconsistent.

Case 4. xi occurs in A but not in B, and neither the path x+
i � x−

i nor the path
x−

i � x+
i in C consists only of constraints of CA. As in the previous case, x+

i and
x−

i occur in A′ but not in B′, and hence they occur in CA but not in CB. In this
case, however, we can apply a tightening summarization neither to x+

i � x−
i nor

to x−
i � x+

i , since none of the two paths consists only of constraints of CA. We
can, however, perform a conditional tightening summarization as follows. Let
C P

A and C P
B be the sets of constraints of CA and CB, respectively, occurring in the

path x−
i � x+

i , and let C
P
A and C

P
B be the sets of summary constraints of maximal

paths in C P
A and C P

B . From C
P
A ∪ C

P
B, we can derive x−

i
2k−→ x+

i (cf. Case 3), where

2k+1 is the weight of the path x−
i � x+

i . Therefore, C
P
A ∪C

P
B |= (0 ≤ x+

i −x−
i +2k),

and thus C
P
A |= C

P
B → (0 ≤ x+

i − x−
i + 2k). We say that (0 ≤ x+

i − x−
i + 2k) is the

summary constraint for x−
i � x+

i conditioned to C
P
B.

Using conditional tightening summarization, we generate an interpolant as

follows. By replacing the path x−
i � x+

i with x−
i

2k−→ x+
i , we obtain a negative-

weight cycle C, as in Case 3. Let I′ be the DL interpolant computed from C
for (CA \ C P

A ∪ {(0 ≤ x+
i − x−

i + 2k)}, CB \ C P
B ), and let I be the corresponding

UT VPI(Z) formula. Finally, let PB be the conjunction of UT VPI(Z) constraints

corresponding to C
P
B. The following theorem show that (PB → I) is an inter-

polant for (A, B).

THEOREM 5.6. Let (A, B) be a pair of sets of UT VPI(Z) constraints such that
A∧ B |=UT VPI(Z) ⊥, let xi be a variable that occurs in Abut not in B, let G(A′ ∧ B′)

ACM Transactions on Computational Logic, Vol. 12, No. 1, Article 7, Publication date: October 2010.



Efficient Generation of Craig Interpolants • 7:31

A

B

x+
1

x−2x−6

x+
3x+

2

24

0

-4

30

x+
4

x+
5

-5

0

-2

-3

Fig. 8. UT VPI(Z) interpolation, Case 4.

be the graph of the DL encoding of A∧ B, and let C be a zero-weight cycle in the
graph such that the weight of the paths x−

i � x+
i and x+

i � x−
i along it are odd,

and such that none of such two paths consists only of constraints from CA. Let
C P

A and C P
B be the sets of constraints of CA and CB, respectively, occurring in the

path x−
i � x+

i , and let C
P
A and C

P
B be the sets of summary constraints of maximal

paths in C P
A and C P

B . Let C be the cycle obtained by replacing the path x−
i � x+

i

with the edge x−
i

2k−→ x+
i in C, where 2k+1 is the weight of the replaced path. Let I′

be theDL interpolant computed from C for (CA\C P
A ∪{(0 ≤ x+

i −x−
i +2k)}, CB\C P

B ),
and let I be the corresponding UT VPI(Z) formula. Let PB be the conjunction of

UT VPI(Z) constraints corresponding to C
P
B. Then (PB → I) is an interpolant

for (A, B).

PROOF. (i) We know that CA \ C P
A ∪ {(0 ≤ x+

i − x−
i + 2k)} |= I′, because I′ is

a DL interpolant. Moreover, C
P
A ∪ C

P
B |= (0 ≤ x+

i − x−
i + 2k), and so C P

A ∪ C
P
B |=

(0 ≤ x+
i − x−

i + 2k). Therefore, CA ∪ C
P
B |= I′, and thus A∪ PB |=UT VPI(Z) I, from

which A |=UT VPI(Z) (PB → I).
(ii) Since I′ is a DL interpolant for (CA \ C P

A ∪ {(0 ≤ x+
i − x−

i + 2k)}, CB \ C P
B ),

I′∧(CB\C P
B ) is DL-inconsistent, and thus I∧B is UT VPI(Z)-inconsistent. Since

by construction B |=UT VPI(Z) PB, (PB → I) ∧ B is UT VPI(Z)-inconsistent.
(iii) From I′ � CB \ C P

B we have that I � B, and from I′ � CA \ C P
A ∪ {(0 ≤

x+
i −x−

i +2k)} that I � A. Moreover, all the variables occurring in the constraints

in C
P
B are end-point variables, so that C

P
B � CA and C

P
B � CB, and thus PB � A

and PB � B. Therefore, (PB → I) � A and (PB → I) � B.

Example 5.5. We partition the set S of constraints of Example 5.2 into A
and B as follows:

A

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0 ≤ x1 − x2 + 4),

(0 ≤ −x2 − x3 − 5),

(0 ≤ x5 + x2 + 3),

(0 ≤ x2 + x6 − 4),

B

⎧⎪⎨
⎪⎩

(0 ≤ x3 − x1 + 2),

(0 ≤ −x6 − x4),

(0 ≤ x4 − x5).
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Consider the zero-weight cycle C of G(A′ ∧ B′) shown in Figure 8. In this case,
neither the path x+

2 � x−
2 nor the path x−

2 � x+
2 consists only of constraints

of A′, and thus we cannot use any of the two tightening edges x+
2

1−1−−→ x−
2 and

x−
2

−1−1−−−→ x+
2 directly for computing an interpolant. However, we can compute the

summary x−
2

−2−→ x+
2 for x−

2 � x+
2 conditioned to x+

5
0−→ x−

6 , which is the summary
constraint of the B path x+

5 � x−
6 , and whose corresponding UT VPI(Z) con-

straint is (0 ≤ −x6 − x5). By replacing the path x−
2 � x+

2 with such summary, we
obtain a negative-weight cycle C, from which we generate the DL interpolant
(0 ≤ x+

1 −x+
3 −3), corresponding to theUT VPI(Z) formula (0 ≤ x1−x3−3). There-

fore, the generated UT VPI(Z) interpolant is (0 ≤ −x6 − x5) → (0 ≤ x1 − x3 − 3).
As in Example 5.4, notice that we cannot generate an interpolant from the

conjunction of summary constraints of maximal CA paths, since the formula
we obtain (i.e., (0 ≤ x1 + x6) ∧ (0 ≤ x5 − x3 − 2)) is not inconsistent with B.

6. COMPUTING INTERPOLANTS FOR COMBINED THEORIES VIA DTC

In this Section, we consider the problem of generating interpolants for a pair
of T1 ∪ T2 formulas (A, B), and propose a method based on the Delayed Theory
Combination (DTC) approach [Bozzano et al. 2006]. First, in Section 6.1 we pro-
vide some background on Nelson-Oppen (NO) and DTC combination methods,
and recall from Yorsh and Musuvathi [2005] the basics of interpolation for com-
bined theories using NO; then, we present our novel technique for computing
interpolants using DTC (Section 6.2); in Section 6.3 we discuss the advantages
of the novel method; finally, in Section 6.4, we show how our novel technique
can be used to generate multiple interpolants from the same proof.

6.1 Background

6.1.1 Resolution Proofs with NO Versus Resolution Proofs with DTC. One
of the typical approaches to the SMT problem in combined theories, SMT(T1 ∪
T2), is that of combining the solvers for T1 and for T2 with the Nelson-Oppen
(NO) integration schema [Nelson and Oppen 1979]. The NO framework works
for combinations of stably-infinite, signature-disjoint theories Ti with equality.
Moreover, it requires the input formula to be pure (i.e., such that all the atoms
contain only symbols in one theory): if not, a purification step is performed,
by recursively labeling terms t with fresh variables vt, and by conjoining the
definition atom (vt = t) to the formula. This process is linear in the size of
the input formula.12 For instance, the formula ( f (x + 3y) = g(2x − y)) can be
purified into ( f (vx+3y) = g(v2x−y)) ∧ (vx+3y = x + 3y) ∧ (v2x−y = 2x − y)).

In the NO setting, the two decision procedures for T1 and T2 cooperate by
deducing and exchanging interface equalities,13 that is, equalities between vari-
ables appearing in atoms of different theories (interface variables).

12As shown in Barrett et al. [2002], the purification step is not strictly necessary. However, in the
rest we shall assume that it is performed (as it is traditionally done in articles on combination of
theories), since it makes the exposition easier.
13They deduce and exchange disjunctions of interface equalities if the theory is not convex.
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Fig. 9. Different structures of resolution proofs of unsatisfiability for T1 ∪ T2 formulas, using NO
(left) and DTC (right).

With an NO-based SMT solver, resolution proofs for formulas in a combina-
tion T1 ∪T2 of theories have the same structure as those for formulas in a single
theory T . The only difference is that theory lemmas in this case are the result
of the NO-combination of T1 and T2 (i.e., they are T1 ∪ T2 lemmas) (Figure 9,
left). From the point of view of interpolation, the difference with respect to the
case of a single theory T is that the T1 ∪ T2 interpolants for the negations of
the T1 ∪T2 lemmas can be computed with the combination method of Yorsh and
Musuvathi [2005] whenever it applies (see Section 6.1.2).

Recently, an alternative approach for combining theories in SMT has been
proposed, called Delayed Theory Combination (DTC) [Bozzano et al. 2006]. With
DTC, the solvers for T1 and T2 do not communicate directly. The integration is
performed by the SAT solver, by augmenting the Boolean search space with up
to all the possible interface equalities, so that each truth assignment on both
original atoms and interface equalities is checked for consistency independently
on both theories. DTC has several advantages with respect to NO, in terms of
versatility, efficiency, and restrictions imposed to T solvers [Bozzano et al. 2006;
Bruttomesso et al. 2009], so that many current SMT tools implement variants
and evolutions of DTC.

With DTC, resolution proofs are quite different from those obtained with
NO. There is no T1 ∪ T2 lemma anymore, because the two Ti solvers don’t
communicate directly. Instead, the proofs contain both T1 lemmas and T2 lem-
mas (Figure 9, right), and—importantly—they contain also interface equalities.
(Notice that Ti lemmas derive either from Ti conflicts and from Ti propaga-
tion steps.) In this case, the combination of theories is encoded directly in the
proofs (thanks to the presence of interface equalities), and not “hidden” in the
T1 ∪ T2 lemmas as with NO. This observation is at the heart of our DTC-based
interpolant combination method.

Example 6.1. Consider the following formula φ:

φ
def= (a1 = f (a2)) ∧ (b1 = f (b2))∧

(y − a2 = 1) ∧ (y − b2 = 1) ∧ (a1 + y = 0) ∧ (b1 + y = 1).
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φ is expressed over the combined theory EUF ∪ LA(Q) : the first two atoms
belong to EUF , while the last four belong to LA(Q) .

Using the NO combination method, φ can be proved unsatisfiable as follows:

(1) from the conjunction (y − a2 = 1) ∧ (y − b2 = 1), the LA(Q) solver deduces
the interface equality (a2 = b2), which is sent to the EUF solver;

(2) from (a2 = b2) and the conjunction (a1 = f (a2))∧ (b1 = f (b2)) the EUF solver
deduces the interface equality (a1 = b1), which is sent to the LA(Q) solver;

(3) Together with the conjunction (a1 + y = 0) ∧ (b1 + y = 1), (a1 = b1) causes
an inconsistency in the LA(Q) solver;

(4) The EUF ∪ LA(Q) conflict set generated is {(y − a2 = 1), (y − b2 = 1), (a1 =
f (a2)), (b1 = f (b2)), (a1 + y = 0), (b1 + y = 1)}, corresponding to the EUF ∪
LA(Q) Lemma C def=¬(y − a2 = 1) ∨ ¬(y − b2 = 1) ∨ ¬(a1 = f (a2)) ∨ ¬(b1 =
f (b2)) ∨ ¬(a1 + y = 0) ∨ ¬(b1 + y = 1).

The corresponding NO proof of unsatisfiability for φ is thus

C (b1 + y = 1)
· · · (a1 + y = 0)

· · · (y − b2 = 1)
· · · (y − a2 = 1)

· · · (b1 = f (b2))
· · · (a1 = f (a2))

⊥ .

With DTC, the Boolean search space is augmented with the set of all possible
interface equalities Eqdef={(a1 = a2), (a1 = b1), (a1 = b2), (a2 = b1), (a2 = b2), (b1 =
b2)}, so that the DPLL engine can branch on them. If we suppose that the
negative branch is explored first (and we assume for simplicity that the T
solvers do not perform deductions), using the DTC combination method φ can
be proved unsatisfiable as follows:

(1) assigning (a2 = b2) to false causes an inconsistency in the LA(Q) solver,
which generates the LA(Q) lemma C1

def=¬(y − a2 = 1) ∨ ¬(y − b2 = 1) ∨
(a2 = b2). C1 is used by the DPLL engine to backjump and unit-propagate
(a2 = b2);

(2) after such propagation, assigning (a1 = b1) to false causes an inconsistency
in the EUF solver, which generates the EUF lemma C2

def=¬(a1 = f (a2)) ∨
¬(b1 = f (b2)) ∨ ¬(a2 = b2) ∨ (a1 = b1). C2 is used by the DPLL engine to
backjump and unit-propagate (a1 = b1);

(3) this propagation causes an inconsistency in the LA(Q) solver, which gen-
erates the LA(Q) lemma C3

def=¬(y − a2 = 1) ∨ ¬(y − b2 = 1) ∨ ¬(a1 = b1);
(4) after learning C3, the DPLL engine detects the unsatisfiability of φ.
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The corresponding DTC proof of unsatisfiability for φ is thus

C1 (y − a2 = 1)
· · · (y − b2 = 1)

· · · C2

· · · (b1 = f (b2))
· · · C3

· · · (b1 + y = 1)
· · · (a1 + y = 0)

· · · (a1 = f (a2))
⊥ .

An important remark is in order. It is relatively easy to implement DTC in
such a way that, if both T1 and T2 are convex, then all T lemmas generated
contain at most one positive interface equality. This is due to the fact that for
convex theories T it is possible to implement efficient T solvers which gener-
ates conflict sets containing at most one negated equality between variables
[Bozzano et al. 2005]14 (e.g., this is true for all the Ti solvers on convex theories
implemented in MATHSAT.) Thus, since we restrict to convex theories, in the
rest of this article we can assume without loss of generality that every T lemma
occurring as a leaf in a resolution proof � of unsatisfiability deriving from DTC
contains at most one positive interface equality.

6.1.2 Interpolation with Nelson-Oppen. Yorsh and Musuvathi [2005] gave
a method for generating an interpolant for a pair (A, B) of T1 ∪ T2 for-
mulas such that A ∧ B |=T1∪T2 ⊥ by means of the NO schema. As in
Yorsh and Musuvathi [2005], we assume that A and B have been purified
using disjoint sets of auxiliary variables. We recall from Yorsh and Musuvathi
[2005] a couple of definitions.

Definition 6.1 (AB-Mixed Equality). An equality between variables (a = b)
is an AB-mixed equality iff a �� B and b �� A (or vice versa).

Definition 6.2 (Equality-Interpolating Theory). A theory T is said to be
equality-interpolating iff, for all A and B in T such that A ∧ B |=T (a = b)
and for all AB mixed equalities (a = b), there exists a term t such that
A∧ B |=T (a = t) ∧ (t = b) and t � A and t � B.

Yorsh and Musuvathi [2005] described procedures for computing the term
t from an AB-mixed interface equality (a = b) for some convex theories of
interest, including EUF , LA(Q), and the theory of lists.

Notationally, with the letters x, xi, y, yi, z we denote generic variables, while
with the letters a, ai, and b, bi we denote variables such that ai �� B and bi �� A;
hence, with the letters ei we denote generic AB-mixed interface equalities in
the form (ai = bi); with the letters η, ηi we denote conjunctions of literals where
no AB-mixed interface equality occurs, and with the letters μ, μi we denote
conjunctions of literals where AB-mixed interface equalities may occur. If μi

14We recall that, if T is convex, then μ ∧ ∧
i ¬li |=T ⊥ iff μ ∧ ¬li |=T ⊥ for some i, where the li ’s

are positive literals.
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(respectively, ηi) is
∧

i li, we write ¬μi (respectively, ¬ηi) for the clause
∨

i ¬li.
Let A∧ B be a T1 ∪ T2-inconsistent conjunction of T1 ∪ T2 literals, such that

Adef=A1 ∧ A2 and Bdef=B1 ∧ B2 where each Ai and Bi is Ti pure. The NO-based
method of Yorsh and Musuvathi [2005] computes an interpolant for (A, B) by
combining Ti specific interpolants for subsets of A, B and the set of entailed
interface equalities {e j} j that are exchanged between the Ti solvers for de-
ciding the unsatisfiability of A ∧ B. In particular, let Eqdef={e j} j be the set of
entailed interface equalities. Due to the fact that both T1 and T2 are equality-
interpolating, it is possible to assume without loss of generality that Eq does
not contain AB mixed equalities, because, instead of deducing an AB mixed
interface equality (a = b), a T solver can always deduce the two corresponding
equalities (a = t) ∧ (t = b). (Notice that the other T solver treats the term t as
if it were a variable [Yorsh and Musuvathi 2005].) Let A′ def=A ∪ (Eq ↓ A) and
B′ def=B∪ (Eq ↓ B). Then, Ti-specific partial interpolants are combined according
to the following inductive definition:

IA,B(e)def=

⎧⎪⎨
⎪⎩

⊥, if e ∈ A,

, if e ∈ B,

(Ii
A′,B′ (e) ∨ ∨

ea∈A′ IA,B(ea)) ∧ ∧
eb∈B′ IA,B(eb), otherwise,

(12)

where e is either an entailed interface equality or ⊥, and Ii
A′,B′ (e) is a Ti inter-

polant for (A′ ∪ ¬e, B′) if e � A, and for (A′, B′ ∪ ¬e) otherwise (if e � B). The
computed interpolant for (A, B) is then IA,B(⊥). We refer the reader to Yorsh
and Musuvathi [2005] for more details.

6.2 From DTC Solving to DTC Interpolation

We now discuss how to extend the DTC method to interpolation. As with Yorsh
and Musuvathi [2005], we can handle the case that T1 and T2 are convex and
equality-interpolating. The approach to generating interpolants for combined
theories starts from the proof generated by DTC. Let Eq be the set of all inter-
face equalities occurring in a DTC refutation proof for a T1 ∪ T2-unsatisfiable
formula φ

def=A∧ B.
In the case Eq does not contain AB-mixed equalities, that is, Eq can be

partitioned into two sets (Eq \ B)def={(x = y)|(x = y) � A and (x = y) �� B} and
(Eq ↓ B)def={(x = y)|(x = y) � B}, no interpolant-combination method is needed:
the combination is already encoded in the proof of unsatisfiability, and a direct
application of Algorithm 1 to such proof yields an interpolant for the combined
theory T1 ∪ T2. Notice that this fact holds despite the fact that the interface
equalities in Eq occur neither in A nor in B, but might be introduced in the
resolution proof � by T lemmas. In fact, as observed in McMillan [2005], as
long as for an atom p either p � A or p � B holds, it is possible to consider it
part of A (respectively of B) simply by assuming the tautology clause p∨ ¬p to
be part of A (respectively of B). Therefore, we can treat the interface equalities
in (Eq \ B) as if they appeared in A, and those in (Eq ↓ B) as if they appeared
in B.

When Eq contains AB-mixed equalities, instead, a proof-rewriting step is
performed in order to obtain a proof that is free from AB-mixed equalities and
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that is amenable for interpolation as described above. The idea is similar to
that used in Yorsh and Musuvathi [2005] in the case of NO: using the fact that
T1 and T2 are equality-interpolating, we reduce this case to the previous one
by “splitting” every AB-mixed interface equality (ai = bi) into the conjunction
of two parts (ai = ti) ∧ (ti = bi), such that (ai = ti) � A and (ti = bi) � B. The
main difference is that we do this a posteriori, after the construction of the
resolution proof of unsatisfiability �. In order to do this, we traverse � and
split each AB-mixed equality, performing also the necessary manipulations to
ensure that the result is still a resolution proof of unsatisfiability.

We describe this process in two steps. In Section 6.2.1 we introduce a partic-
ular kind of resolution proofs of unsatisfiability, called ie -local, and show how
to eliminate AB-mixed interface equalities from ie -local proofs; in Section 6.2.2
we show how to implement a variant of DTC so that to generate ie -local
proofs.

6.2.1 Eliminating AB-Mixed Equalities by Exploiting ie-Locality.

Definition 6.3 (ie Local Proof). A resolution proof of unsatisfiability � is
local with respect to interface equalities (ie -local) iff the interface equalities
occur only in subproofs �ie

i of �, such that within each �ie
i :

(i) all leaves are also T lemma leaves of �;
(ii) all the pivots are interface equalities;

(iii) the root contains no interface equality;
(iv) every right premise of an inner node is a leaf T lemma containing exactly

one positive interface equality.15

As a consequence of this definition, we also have that, within each �ie
i in �:

(v) all nodes are T1 ∪ T2-valid; (Proof sketch: they result from Boolean resolu-
tion steps from T1-valid and T2-valid clauses, and hence they are T1 ∪ T2-
valid.)

(vi) the only leaf T lemma which is a left premise contains no positive interface
equality. (Proof sketch: we notice that, in a resolution step C1 C2

C3
, if C3

contains no positive interface equality, at least one between C1 and C2

contains no positive interface equality; since by (iv) the right premise
contains one positive interface equality, only the left premise contains no
positive interface equality. Thus the leftmost leaf T -lemma of �ie

i contains
no positive interface equality.)

(vii) if an interface equality e j occurs negatively in some T lemma Cj , then
e j occurs positively in a leaf T lemma Ck which is the right premise of a
resolution step whose left premise derives from Cj and other T lemmas.
(Proof sketch: suppose that ¬e j occurs in Cj but e j does not occur in any
such Ck. Then e j can not be a pivot; hence ¬e j occurs in the root of �ie

i ,
thus violating (iii).)

15We have adopted the graphical convention that at each resolution step in a �ie
i subproof, if

(ai = bi) is the pivot, then the premises containing ¬(ai = bi) and (ai = bi) are the left and right
premises, respectively.
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Intuitively, in ie -local proofs of unsatisfiability all the reasoning on inter-
face equalities is circumscribed within �ie

i subproofs, which are linear sub-
proofs involving only T lemmas as leaves, starting from the one containing
no positive interface equality, each time eliminating one negative interface
equality by resolving it against the only positive one occurring in another leaf
T lemma.

Example 6.2. Consider the EUF ∪ LA(Q) formula φ of Example 6.1, and
the T lemmas C1, C2, and C3 introduced by DTC to prove its unsatisfiability.
The proof � of Example 6.1 is not ie -local, because resolution steps involving
interface equalities are interleaved with resolution steps involving other atoms.
The following proof �′, instead, is ie -local: all the interface equalities are used
as pivots in the �ie subproof:

C3 C2

. . .
[pivot (a1 = b1)]

C1

. . .
[pivot (a2 = b2)]

�ie

(a2 + z = 1)

. . . (a1 + z = 0)
. . . (z − x2 = 1)

. . . (a1 = f (x1))
. . . (a2 = f (x2))

. . . (z − x1 = 1)
⊥ ,

C1
def=(a2 = b2) ∨ ¬(y − a2 = 1) ∨ ¬(y − b2 = 1).

C2
def=(a1 = b1) ∨ ¬(b1 = f (b2)) ∨ ¬(a1 = f (a2)) ∨ ¬(a2 = b2),

C3
def=¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(a1 = b1).

If � is an ie -local proof containing AB-mixed interface equalities, then it is
possible to eliminate all of them from � by applying Algorithm 2 to every �ie

i
subproof of �. In a nutshell, each �ie

i subproof is explored bottom-up, starting
from the right premise of the root, each time expanding the rightmost side T
lemma in the form Ci

def=(ai = bi) ∨ ¬ηi such that (ai = bi) is AB-mixed into the
(implicit) conjunction of two novel T lemmas C ′

i
def= (ai = ti) ∨ ¬ηi and C ′′

i
def= (ti =

bi) ∨ ¬ηi (step (4)), where ti is the AB-pure term computed from Ci as described
in Section 6.1.2. Then the resolution step against Ci is substituted with the
concatenation of two resolution steps against C ′

i and C ′′
i (step (5)) and then

the substitution ¬(ai = bi) �−→ ¬(ai = ti) ∨ ¬(ti = bi) is propagated bottom-up
along the left subproof �. Notice that C ′

i and C ′′
i are still Ti-valid because Ti

is equality-interpolating and ηi does not contain other AB-mixed interfaced
equalities.

Example 6.3. Consider the formula φ of Example 6.1 and its ie -local proof
of unsatisfiability of Example 6.2. Suppose that φ is partitioned as follows:

φ
def= A∧ B,

A def= (a1 = f (a2)) ∧ (y − a2 = 1) ∧ (a1 + y = 0),

B def= (b1 = f (b2)) ∧ (y − b2 = 1) ∧ (b1 + y = 1).
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Algorithm 2. Rewriting of �ie subproofs

(1) Let σ be a mapping from negative AB-mixed interface equalities to a disjunction
of two negative interface equalities, such that σ [¬(ai = bi)] �→ ¬(ai = ti) ∨ ¬(ti = bi)
and ti is an AB-pure term as described in Section 6.1.2. Initially, σ is empty.

(2) Let Ci
def=(ai = bi) ∨ ¬μi be the right premise T lemma of the root of the �ie subproof.

(3) Replace each ¬(aj = bj) in Ci with σ [¬(aj = bj)], to obtain C∗
i

def=(ai = bi) ∨ ¬ηi . If
(ai = bi) is not AB-mixed, then let � be the subproof rooted in the left premise, and
go to step (7).

(4) Split C∗
i into C ′

i
def=(ai = ti) ∨ ¬ηi and C ′′

i
def=(ti = bi) ∨ ¬ηi .

(5) Rewrite the subproof

...
¬(ai = bi) ∨ ¬μk Ci

¬μk ∨ ¬μi

into

...
¬(ai = ti) ∨ ¬(ti = bi) ∨ ¬μk

�

C ′
i

¬(ti = bi) ∨ ¬ηk ∨ ¬ηi C ′′
i ,

¬ηk ∨ ¬ηi

where ¬ηk is obtained by ¬μk by substituting each negative AB-mixed interface
equality ¬(aj = bj) with σ [¬(aj = bj)].

(6) Update σ by setting σ [¬(ai = bi)] to ¬(ai = ti) ∨ ¬(ti = bi).

(7) If � is of the form

... Cj

· · · , set Ci to Cj and go to step (3).

(8) Otherwise, � is the leaf ¬(ai = ti) ∨ ¬(ti = bi) ∨ ¬μk. In this case, replace each
¬(aj = bj) in ¬μk with σ [¬(aj = bj)], and then exit.

In this case, both interface equalities (a1 = b1) and (a2 = b2) are AB-mixed.
Consider the �ie subproof of Example 6.2:

C1
def= (a2 = b2) ∨ ¬(y − a2 = 1) ∨ ¬(y − b2 = 1),

C2
def= (a1 = b1) ∨ ¬(b1 = f (b2)) ∨ ¬(a1 = f (a2)) ∨ ¬(a2 = b2),

C3
def= ¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(a1 = b1),

C3 C2

�1 C1

�2

�ie

�1
def= ¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(b1 = f (b2)) ∨ ¬(a1 = f (a2)) ∨ ¬(a2 = b2),

�2
def= ¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(b1 = f (b2)) ∨ ¬(a1 = f (a2)) ∨ ¬(y − a2 = 1) ∨ ¬(y − b2 = 1).

The first T lemma processed by Algorithm 2 is C1. Using the technique of Yorsh
and Musuvathi [2005], (a2 = b2) is split into (a2 = y−1)∧ (y−1 = b2) (step (4)),
thus obtaining C ′

1, C ′′
1, and the new proof (in step (5)):

C ′
1

def= (a2 = y − 1) ∨ ¬(y − a2 = 1) ∨ ¬(y − b2 = 1),
C ′′

1
def= (y − 1 = b2) ∨ ¬(y − a2 = 1) ∨ ¬(y − b2 = 1),

�′
2

def= ¬(y − 1 = b2) ∨ ¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(b1 = f (b2))∨
¬(a1 = f (a2)) ∨ ¬(y − a2 = 1) ∨ ¬(y − b2 = 1).

C3 C2

�1 C ′
1

�′
2 C ′′

1

�2

Then, σ [¬(a2 = b2)] is set to ¬(a2 = y − 1) ∨ ¬(y − 1 = b2) (step (6)), and a
new iteration of the loop (3)–(7) is performed, this time processing C2. First,
¬(a2 = b2) is replaced by ¬(a2 = y − 1) ∨ ¬(y − 1 = b2) (step (3)). Then, (a1 = b1)
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can be split into (a1 = f (y − 1)) ∧ ( f (y − 1) = b1) (step (4)). After the rewriting
of step (5), the proof is

C ′
2

def= (a1 = f (y − 1)) ∨ ¬(b1 = f (b2)) ∨ ¬(a1 = f (a2)) ∨ ¬(a2 = y − 1), ∨
¬(y − 1 = b2),

C ′′
2

def= ( f (y − 1) = b1) ∨ ¬(b1 = f (b2)) ∨ ¬(a1 = f (a2)) ∨ ¬(a2 = y − 1), ∨
¬(y − 1 = b2),

�′
1

def= ¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(b1 = f (b2)) ∨ ¬(a1 = f (a2)), ∨
¬(a2 = y − 1) ∨ ¬(y − 1 = b2),

�′′
1

def= ¬(a1 = f (y − 1)) ∨ ¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(b1 = f (b2)), ∨
¬(a1 = f (a2)) ∨ ¬(a2 = b2).

C3 C ′
2

�′′
1 C ′′

2

�′
1 C ′

1

�′
2 C ′′

1

�2

Finally, C3 is processed in step (8), ¬(a1 = b1) gets replaced with
¬(a1 = f (y − 1)) ∨ ¬( f (y − 1) = b1), and the following final proof �′ie is
generated:

C ′
3 C ′

2

�′′
1 C ′′

2

�′
1 C ′

1

�′
2 C ′′

1

�2

such that C ′
3

def= C3[¬(a1 = b1) �→ ¬(a1 = f (y − 1)) ∨ ¬( f (y − 1) = b1)].

The following theorem states that Algorithm 2 is correct.

THEOREM 6.4. Let � be a �ie subproof, and let �′ be the result of applying
Algorithm 2 to �. Then

(a) �′ does not contain any AB-mixed interface equality; and
(b) �′ is a valid subproof with the same root as �.

PROOF.

(a) Consider the T lemma Ci of step (3). By item (vii) of Definition 6.3, all neg-
ative interface equalities occurring in Ci occur positively in leaf T lemmas
that are closer to the root of �. For the same reason, the first T lemma
Ci analyzed in step (2) contains no negative AB-mixed interface equali-
ties. Therefore, it follows by induction that all negative AB-mixed interface
equalities in Ci must have been split in step (4) of a previous iteration of the
loop (3)–(7) of Algorithm 2, and thus they occur in σ . The same argument
can be used to show also that at steps (5) and (8) every negative AB-mixed
interface equality in ¬μk occurs in σ .

(b) We show that

(i) every substep
�′ �′′

�′′′ of �′ is a valid resolution step;

(ii) every leaf of �′ is a T lemma; and
(iii) the root of �′ is the same as that of �.

(i) The only problematic case is the resolution step
¬(ai = ti) ∨ ¬(ti = bi) ∨ ¬μk C ′

i

¬(ti = bi) ∨ ¬ηk ∨ ¬ηi
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introduced in step (5) of Algorithm 2. In this case, we have to show
that, at the end of the algorithm, all the negative AB-mixed interface
equalities in ¬μk have been replaced such that the result is identical
to ¬ηk. We already know that all negative AB-mixed equalities in ¬μk

occur in σ ; thus we only have to show that σ [¬e j] cannot change between
the time when ¬e j was rewritten to obtain ¬ηk and the time in which it
is rewritten in ¬μk. The negative equality ¬e j is replaced in ¬μk at the
next iteration of the algorithm (in step (5) for inner nodes, and in step
(8) for the final leaf). In the meantime, the only update to σ is performed
in step (6), but it involves the negative equality ¬(ai = bi), which does
not occur in ¬μk.

(ii) Let Ci be a T lemma in �. First, we observe that if Ci ≡ ¬(ai = bi)∨¬μi,
then for any ti also the clause C∗

i
def=¬(ai = ti) ∨ ¬(ti = bi) ∨ ¬μi is a T

lemma, since (ai = ti) ∧ (ti = bi) |=T (ai = bi) by transitivity. Therefore,
it follows by induction on the number of substitutions that the clauses
obtained in steps (3) and (8) of Algorithm 2 are still T lemmas. Finally,
since we are considering equality-interpolating theories, after step (4)
of Algorithm 2 both C ′

i and C ′′
i are T lemmas.

(iii) Since the root of � does not contain any interface equality (item (iii) of
Definition 6.3), in step (5) ¬ηi ≡ ¬μi and ¬ηk ≡ ¬μk, and therefore the
root does not change.

Clearly, Algorithm 2 operates in linear time on the number of T lemmas,
and thus of AB-mixed interface equalities. Moreover, every time an interface
equality is split, only two new nodes are added to the proof (a right leaf and an
inner node), and therefore the size of �′ is linear in that of �.

The advantage of having ie -local proofs is that they ease significantly the pro-
cess of eliminating AB-mixed interface equalities. First, since all the reasoning
involving interface equalities is confined in �ie subproofs, only such subproofs—
which typically constitute only a small fraction of the whole proof—need to be
traversed and manipulated. Second, the simple structure of �ie subproofs al-
lows for an efficient application of the rewriting process of steps (5) and (3),
preventing any explosion in size of the proof. In fact, for example, if in step (5)
the right premise of the last step were instead the root of some subproof �i

with Ci as a leaf, then two copies of �′
i and �′′

i would be produced, in which each
instance of (ai = bi) must be replaced with (ai = ti) and (ti = bi), respectively.

6.2.2 Generating ie-Local Proofs in DTC. In this section we show how to
implement a variant of DTC so that to generate ie -local proofs of unsatisfia-
bility. For the sake of simplicity, we describe first a simplified algorithm which
makes use of two distinct DPLL engines. We then describe how to avoid the
need of a second DPLL engine with the use of a particular search strategy for
DTC.

The simplified algorithm uses two distinct DPLL engines, a main one and
an auxiliary one, which we shall call DPL-1 and DPL-2, respectively. Consider
Figure 10, left. DPLL-1 receives in input the clauses of the input problem φ

(which we assume pure and T1 ∪ T2,-inconsistent), but no interface equality,
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Fig. 10. Simple strategy for generating ie -local proofs. Left: DTC search; top-right: corresponding
(sub)proof; bottom-right: �ie (sub)proof after rewriting.

which are instead given to DPLL-2. DPLL-1 enumerates total Boolean models
μ of φ, and invokes the two Ti solvers separately on the subsets μT1 and μT2 of μ.
If one Ti solver reports an inconsistency, then DPLL-1 backtracks. Otherwise,
both μTi are Ti-consistent, and DPLL-2 is invoked on the list of unit clauses
composed of the T1 ∪ T2 literals in μ, to check its T1 ∪ T2 consistency.

DPLL-2 branches only on interface equalities, assigning them always to
false first. Some interface equalities e j

1, however, may be assigned to true by
unit propagation on previously learned clauses in the form C j

1
def=¬μ

j
1 ∨ e j

1, or
by T propagation on deduction clauses C j

1 in the same form; we call C j
1 the

antecedent clause of e j
1.16 (As in Bruttomesso et al. [2009], we assume that when

a T propagation step μ
j
i |=T e j

i occurs, μ
j
i being a subset of the current branch,

the deduction clause C j
i

def=¬μ
j
i ∨e j

i is learned, either temporarily or permanently;
if so, we can see this step as a unit propagation on C j

i .) When all the interface
equalities have been assigned a truth value, the propositional model μ′ ≡
μT1 ∪ μT2 ∪ μie is checked for T1 ∪ T2 consistency by invoking each of the Ti

solvers on μTi ∪ μie.17 Since φ is inconsistent, one of the two Ti solvers detects
an inconsistency (if both do, we consider only the first). Therefore a Ti lemma
C1 is generated. As stated at the end of Section 6.1.1, we can assume without
loss of generality that C1 contains at most one positive interface equality e1.
(Notice also that all negative interface equalities ¬e j

1 in C1, if any, have been
assigned by unit propagation or T propagation on some antecedent clause C j

1.)

16Notationally, e j
i denotes the jth most-recently unit-propagated interface equality in the branch

in which Ci is learned, and C j
i

def=¬μ
j
i ∨ e j

i denotes the antecedent clause of e j
i .

17In fact, it is not necessary to wait for all interface equalities to have a value before invoking the
Ti solvers. Rather, the standard early pruning optimization (see Section 2.2) can be applied.
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DPLL-2 then learns C1 and uses it as a conflicting clause to backjump: starting
from C1, it eliminates from the clause every ¬e j

1 by resolving the current clause
against its antecedent clause C j

1, until no negated equality occurs in the final
clause C∗

1.18

If C1 includes one positive interface equality e1, then also the final clause C∗
1

includes it, so that DPLL-2 uses C∗
1 as a conflict clause to jump up to μ and to

unit propagate e1. Then DPLL-2 starts exploring a new branch. This process
is repeated on several branches, learning a sequence of T lemmas C1, . . . , Ck

each Ci containing only one positive interface equality ei, until a branch causes
the generation of a T lemma Ck+1 containing no positive interface equalities.
Then Ck+1 is resolved backward against the antecedent clauses of its negative
interface equalities, generating a final conflict clause C∗ which contains no
interface equalities.

Overall, DPLL-2 has checked the T1 ∪ T2 unsatisfiability of μ, building a
resolution (sub)proof �∗ whose root is C∗. (Figure 10, top right.) Then the
T1 ∪T2 lemma C∗ is passed to DPLL-1, which uses it as a blocking clause for the
assignment μ, it backtracks and continues the search. When the empty clause
is obtained, it generates a proof of unsatisfiability in the usual way (see, e.g.,
van Gelder [2007]).

Since the main solver knows nothing about interface equalities, they can
only appear inside the proofs of the blocking clauses generated by the auxiliary
solver (like �∗). Each �∗ is not yet a �ie subproof, since it complies only with
items (i), (ii), and (iii) of Definition 6.3 but not with item (iv). The reason for the
latter fact is that �∗ contains a set of right branches �Ci , one of each T lemma Ci

in {Ck+1, ..., C1}, representing the resolution steps to resolve away the interface
equalities introduced by unit propagation/T propagation in each branch. Each
such subbranch �Ci , however, can be reduced to length 1 by moving downward
the resolution steps with the antecedent clauses C1

i , C2
i , ... that Ci encounters

in the branch. (Figure 10, bottom right.) This is done by recursively applying
the following rewriting step to �Ci , until it reduces to the single clause Ci:

...
¬ei ∨ ¬μ′

i

C j
i︷ ︸︸ ︷

¬μ
j
i ∨ e j

i

C j−1
i

C1
i Ci

...

¬μ′′
i ∨ ¬e j

i ∨ ei

¬μ
j
i ∨ ¬μ′′

i ∨ ei

�Ci

¬μ′
i ∨ ¬μ

j
i ∨ ¬μ′′

i

18In order to determine the order in which to eliminate the interface equalities, the implication
graph of the auxiliary DPLL engine can be used. This is a standard process in the conflict analysis
in modern SAT and SMT solvers (see, e.g., van Gelder [2007]; Sebastiani [2007]).
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=⇒

...
¬ei ∨ ¬μ′

i

C j−1
i

C1
i Ci

...

¬μ′′
i ∨ ¬e j

i ∨ ei

�′
Ci

¬μ′
i ∨ ¬μ′′

i ∨ ¬e j
i

C j
i︷ ︸︸ ︷

¬μ
j
i ∨ e j

i

¬μ′
i ∨ ¬μ

j
i ∨ ¬μ′′

i . (13)

As a result, each �∗ is transformed into a �ie subproof, so that the final proof
is ie -local.

In an actual implementation, there is no need of having two distinct DPLL
solvers for constructing ie -local proofs. In fact, we can obtain the same result by
adopting a variant of the DTC Strategy 1 of Bruttomesso et al. [2009]. We never
select an interface equality for case splitting if there is some other unassigned
atom, and we always assign false to interface equalities first. Moreover, we
“delay” T propagation of interface equalities until all the original atoms have
been assigned a truth value. Finally, when splitting on interface equalities, we
restrict both the backjumping and the learning procedures of the DPLL engine
as follows. Let d be the depth in the DPLL tree at which the first interface
equality is selected for case splitting. If during the exploration of the current
DPLL branch we have to backjump above d, then we generate by resolution
a conflict clause that does not contain any interface equality, and “deactivate”
all the T lemmas containing some interface equality—that is, we do not use
such T lemmas for performing unit propagation—and we reactivate them only
when we start splitting on interface equalities again. Using such a strategy, we
obtain the same effect as in the simple algorithm using two DPLL engines: the
search space is partitioned into two distinct subspaces, one of original atoms
and the other of interface equalities, and the generated proof of unsatisfiability
reflects this partition.

Finally, we remark that what described above is only one possible strategy
for generating ie -local proofs, and not necessarily the most efficient one. More-
over, that of generating ie -local proofs is only a sufficient condition to obtain
interpolants from DTC avoiding duplications of subproofs, and more general
strategies may be conceived. The investigation of alternative strategies is part
of ongoing and future work.

6.3 Discussion

Our new DTC-based combination method has several advantages over the
traditional one of Yorsh and Musuvathi [2005] based on NO.

(1) It inherits all the advantages of DTC over the traditional NO in terms
of versatility, efficiency and restrictions imposed to T solvers [Bozzano
et al. 2006; Bruttomesso et al. 2009]. Moreover, it allows for using a more
modern SMT solver, since many state-of-the-art solvers adopt variants or
extensions of DTC instead of NO.

ACM Transactions on Computational Logic, Vol. 12, No. 1, Article 7, Publication date: October 2010.



Efficient Generation of Craig Interpolants • 7:45

(2) Instead of requiring an “ad hoc” method for performing the combination, it
exploits the Boolean interpolation algorithm. In fact, thanks to the fact that
interface equalities occur in the proof of unsatisfiability �, once the AB-
mixed terms in � are split there is no need of any interpolant-combination
method at all. In contrast, with the NO-based method of Yorsh and Musu-
vathi [2005] interpolants for T1 ∪ T2 lemmas are generated by combining
“theory-specific partial interpolants” for the two Ti ’s with an algorithm
that essentially duplicates the work that in our case is performed by the
Boolean algorithm. This allows also for potentially exploiting optimization
techniques for Boolean interpolation which are or will be made available
from the literature.

(3) By splitting AB-mixed terms only after the construction of the proof �, it
allows for computing several interpolants for several different partitions
of the input problem into (A, B) from the same proof � . This is particu-
larly important for applications in abstraction refinement [Henzinger et al.
2004]. (This feature is discussed in Section 6.4.)

The work of Yorsh and Musuvathi [2005] can in principle deal with non-
convex theories. Our approach is currently limited to the case of convex the-
ories; however, we see no reason that would prevent from it being extensi-
ble at least theoretically to the case of nonconvex theories. Extending the
approach to nonconvex theories is part of ongoing work. We also remark
that implementing the algorithm of Yorsh and Musuvathi [2005] for noncon-
vex theories is a nontrivial task, and in fact we are not aware of any such
implementation.

Another algorithm for computing interpolants in combined theories was
given in Sofronie-Stokkermans [2006]. Rather than a combination of theo-
ries with disjoint signatures, that work considers the interpolation problem
for extensions of a base (convex) theory with new function symbols, and it is
therefore orthogonal to ours. The solution adopted is, however, similar to what
we propose, in the sense that the algorithm of Sofronie-Stokkermans [2006]
also works by splitting AB-mixed terms. The difference is that our algorithm is
tightly integrated into an SMT context, as it is guided by the resolution proof
generated by the DPLL engine.

6.4 Generating Multiple Interpolants

In Section 2.3 we remarked that a sufficient condition for generating multiple
interpolants is that all the interpolants Ii ’s are computed from the same proof of
unsatisfiability. When generating interpolants with our DTC-based algorithm,
however, we generate a different proof of unsatisfiability �i for each partition
of the input formula φ into Ai and Bi. In particular, every �i is obtained from
the same “base” proof �, by splitting all the Ai Bi-mixed interface equalities
with the algorithm described in Section 6.2. In this section, we show that (2)
(at Section 2.3) holds also when each �i is obtained from the same ie -local
proof � by the rewriting of Algorithm 2 of Section 6.2.1. In order to do so, we
need the following lemma.
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LEMMA 6.5. Let � be a T1 ∪ T2 lemma, and let � be a �ie proof for it which
does not contain any AB-mixed term. Then the formula I� associated to � in
Algorithm 1 is an interpolant for (¬� \ B,¬� ↓ B).

PROOF. By induction on the structure of �, we have to prove that

(1) ¬� \ B |= I�;
(2) I� ∧ (¬� ↓ B) |= ⊥;
(3) I� contains only common symbols.

The base case is when � is just a single leaf. Then, the lemma trivially holds
by definition of I� in this case (see Algorithm 1).

For the inductive step, let �1
def=(x = y) ∨ φ1 and �2

def=¬(x = y) ∨ φ2 be the
antecedents of � in �. (So �

def=φ1 ∨ φ2). Let I�1 and I�2 be the interpolants for
�1 and �2 (by the inductive hypothesis).

If (x = y) �� B, then I�
def=I�1 ∨ I�2 .

(1) By the inductive hypothesis, (¬φ1∧¬(x = y))\B ≡ (¬φ1\B)∧¬(x = y) |= I�1 ,
and (¬φ2\B)∧(x = y) |= I�2 . Then by resolution (¬φ1∧¬φ2)\B ≡ ¬�\B |= I�.

(2) By the inductive hypothesis, I�1 |= φ1 ↓ B and I�2 |= φ2 ↓ B, so I�1 ∨ I�2 |=
(φ1 ∨ φ2) ↓ B, that is, I� ∧ (¬� ↓ B) |= ⊥.

(3) By the inductive hypothesis, both I�1 and I�2 contain only common symbols,
and so also I� does.

If (x = y) � B, then I�
def=I�1 ∧ I�2 .

(1) By the inductive hypothesis, ¬φ1 \ B |= I�1 and ¬φ2 \ B |= I�2 , so (¬φ1 ∧
¬φ2) \ B ≡ ¬� \ B |= I�.

(2) By the inductive hypothesis, we also have that I�1 |= φ1 ↓ B ∨ (x = y)
and I�2 |= φ2 ↓ B ∨ ¬(x = y). Therefore, I�1 ∧ I�2 |= (φ1 ∨ φ2) ↓ B, that is,
I� ∧ (¬� ↓ B) |= ⊥.

(3) Finally, also in this case both I�1 and I�2 contain only common symbols,
and so also I� does.

We now formalize the sufficient condition of Henzinger et al. [2004] that (2)
holds if the Ii ’s are computed from the same �. The proof of it will be useful for
showing that (2) holds also if the Ii ’s are computed from �i ’s obtained from �

by splitting the Ai Bi-mixed interface equalities.

THEOREM 6.6. Let φ
def=φ1 ∧ φ2 ∧ φ3, and let � be a proof of unsatisfiability

for it. Let A′ def=φ1, B′ def=φ2 ∧ φ3, A′′ def=φ1 ∧ φ2, and B′′ def=φ3, and let I′ and I′′ be two
interpolants for (A′, B′) and (A′′, B′′), respectively, both computed from �. Then

I′ ∧ φ2 |= I′′.

PROOF. Let �� be a proof whose root is the clause �. We will prove, by
induction on the structure of ��, that

I′
� ∧ φ2 |= I′′

� ∨ (� \ φ3),

where I� is defined as in Algorithm 1. The validity of the theorem follows
immediately, by observing that the root of � is ⊥.
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We have to consider three cases:

(1) The first is when � is an input clause. Then, we have three subcases:
(a) If � ∈ φ3, then I′

�

def=, I′′
�

def= and (� \ φ3) ≡ ⊥, so the theorem holds.
(b) If � ∈ φ1, then I′

�

def=(� ↓ (φ2 ∪ φ3)), I′′
� ∨ (� \ φ3)def=(� ↓ φ3) ∨ (� \ φ3) ≡ �,

so the theorem holds also in this case.
(c) If � ∈ φ2, then I′

�∧φ2 ≡ φ2 and I′′
�∨(�\φ3) ≡ �, so again the implication

holds.
(2) The second is when � is a T lemma. In this case, we have that I′

� is an
interpolant for (¬� \ (φ2 ∪ φ3),¬� ↓ (φ2 ∪ φ3)) and I′′

� is an interpolant for
(¬� \ φ3,¬� ↓ φ3). Therefore, by the definition of interpolant, (¬� \ (φ2 ∪
φ3)) |= I′

� and (¬� \ φ3) |= I′′
�. Therefore, I′

� ∨ (� \ (φ2 ∪ φ3)) and I′′
� ∨ (� \ φ3)

are valid clauses, and so the implication trivially holds.
(3) In this case � is obtained by resolution from �1

def=φ ∨ p and �2
def=ψ ∨ ¬p.

If p ∈ φ1 or p ∈ φ3, then, by the inductive hypotheses that I′
�i

∧ φ2 |=
I′′
�i

∨ (�i \ φ3), we have that I′
� ∧ φ2 |= I′′

� ∨ (� \ φ3).
If p ∈ φ2, then I′

�

def=I′
�1

∧ I′
�2

and I′′
�

def=I′′
�1

∨ I′′
�2

. Again, by the inductive
hypotheses I′

� ∧ φ2 |= I′′
� ∨ (� \ φ3) holds.

THEOREM 6.7. Let φ
def=φ1 ∧ φ2 ∧ φ3. Let A′ def=φ1, A′′ def=φ1 ∧ φ2, B′ def=φ2 ∧ φ3, and

B′′ def=φ3. Let � be a proof of unsatisfiability for φ, and let �′ and �′′ be obtained
from � by splitting all the A′B′-mixed and A′′B′′-mixed interface equalities,
respectively. Let I′ be an interpolant for (A′, B′) computed from �′, and I′′ be an
interpolant for (A′′, B′′) computed from �′′. Then

I′ ∧ φ2 |= I′′.

PROOF. We observe that �′ and �′′ are identical except for some �ie sub-
proofs that contained some mixed interface equalities. Then we can proceed as
in Theorem 6.6; we just need to consider one more case, namely, when � is a
T1 ∪ T2 lemma at the root of a �ie subproof. In this case, thanks to Lemma 6.5
we have the same situation as in the second case of the proof of Theorem 6.6,
and so we can apply the same argument.

Thus, due to Theorem 6.7, we can use our DTC-based interpolation method
in the context of abstraction refinement without any modification: it is enough
to remember the original proof �, and compute the interpolant Ii from the proof
�i obtained by splitting the Ai Bi-mixed terms in �, for each partition of the
input formula φ into Ai and Bi as in (1).

7. EXPERIMENTAL EVALUATION

The techniques presented in previous sections have been implemented within
MATHSAT 4 [Bruttomesso et al. 2008]. MATHSAT is an SMT solver supporting a
wide range of theories and their combinations. In the last SMT solvers competi-
tion (SMT-COMP’08), it proved to be competitive with the other state-of-the-art
solvers. In this section, we experimentally evaluate our approach.
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7.1 Description of the Benchmark Sets

We have performed our experiments on two different sets of benchmarks. The
first was obtained by running the BLAST software model checker [Beyer et al.
2007] on some Windows device drivers; these are similar to those used in
Rybalchenko and Sofronie-Stokkermans [2007]. This is one of the most im-
portant applications of interpolation in formal verification, namely, abstraction
refinement in the context of CEGAR. The problem represents an abstract coun-
terexample trace, and consists of a conjunction of atoms. In this setting, the
interpolant generator is called very frequently, each time with a relatively
simple input problem.

The second set of benchmarks originates from the SMT-LIB [Ranise and
Tinelli 2006], and is composed of a subset of the unsatisfiable problems used
in recent SMT solvers competitions.19 The instances have been converted to
CNF and then split in two consistent parts of approximately the same size.
The set consists of problems of varying difficulty and with a nontrivial Boolean
structure.

The experiments were performed on a 3 GHz Intel Xeon machine with 4 GB
of RAM running Linux. All the tools were run with a timeout of 600 s and a
memory limit of 900 MB.

7.2 Comparison with the State-of-the-Art Tools Available

In this section, we compare with the other interpolant generators which
are available: FOCI [McMillan 2005; Jhala and McMillan 2006], CLP-PROVER

[Rybalchenko and Sofronie-Stokkermans 2007], and CSISAT [Beyer et al. 2008].
Other natural candidates for comparison would have been ZAP [Ball et al. 2005],
and LIFTER [Kroening and Weissenbacher 2007]; however, it was not possible to
obtain them from the authors. We also remark that no comparison with INT2
[Jain et al. 2009] is possible, since the domains of applications of MATHSAT and
INT2 are disjoint: INT2 can handle LA(Z) equations/disequations and modu-
lar equations but only conjunctions of literals, whereas MATHSAT can handle
formulas with arbitrary Boolean structure, but does not support LA(Z) except
for its fragments DL(Z) and UT VPI(Z).

The comparison had to be adapted to the limitations of FOCI, CLP-PROVER, and
CSISAT. In fact, the current version of FOCI which is publically available does
not handle the full LA(Q) , but only the DL(Q) fragment.20 We also notice that
the interpolants it generates are not always DL(Q) formulas. (See, e.g., Exam-
ple 4.2 of Section 4.) CLP-PROVER does handle the full LA(Q) , but it accepts only
conjunctions of atoms, rather than formulas with arbitrary Boolean structure.
CSISAT, instead, can deal with EUF ∪ LA(Q) formulas with arbitrary Boolean
structure, but it does not support Boolean variables. These limitations made it
impossible to compare all the four tools on all the instances of our benchmark
sets. Therefore, we performed the following comparisons.

19http://www.smtcomp.org.
20For example, it fails to detect the LA(Q) unsatisfiability of the following problem: (0 ≤ y − x +
w) ∧ (0 ≤ x − z − w) ∧ (0 ≤ z − y − 1).
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Table II. Comparison of Execution Times of MATHSAT, FOCI, CLP-PROVER

and CSISAT on Problems Generated by BLAST

Family # of Problems MATHSAT FOCI CLP-PROVER CSISAT

kbfiltr.i 64 0.16 0.36 1.47 0.17
diskperf.i 119 0.33 0.78 3.08 0.39
floppy.i 235 0.73 1.64 5.91 0.86
cdaudio.i 130 0.35 1.07 2.98 0.47

Fig. 11. Comparison of MATHSAT and FOCI on SMT-LIB instances: execution time (left), and
size of the interpolant (right). In the left plot, points on the horizontal and vertical lines are
timeouts/failures.

—We compared all the four solvers on the problems generated by BLAST.
—We compared MATHSAT with FOCI on SMT-LIB instances in the theories

of EUF , DL(Q) and their combination. In this case, we compared both the
execution times and the sizes of the generated interpolants (in terms of
number of nodes in the DAG representation of the formula). For computing
interpolants in EUF , we applied the algorithm of McMillan [2005], using an
extension of the algorithm of Nieuwenhuis and Oliveras [2007] to generate
EUF proof trees. The combination EUF∪DL(Q) is handled with the technique
described in Section 6;

—We compare MATHSAT, CLP-PROVER, and CSISAT on LA(Q) problems consisting
of conjunctions of atoms. These problems are single branches of the search
trees explored by MATHSAT for some LA(Q) instances in the SMT-LIB. We
have collected several problems that took more than 0.1 s to MATHSAT to
solve, and then randomly picked 50 of them. In this case, we did not compare
the sizes of the interpolants as they are always atomic formulas.

—We compared MATHSAT and CSISAT on the subset (consisting of 78 instances
of the about 400 collected) of the SMT-LIB instances without Boolean vari-
ables.

The results are collected in Table II and Figures 11 through 14. We can observe
the following facts:

—Interpolation problems generated by BLAST are trivial for all the tools. In
fact, we even had some difficulties in measuring the execution times reliably.
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Fig. 12. Comparison of MATHSAT and CLP-PROVER on conjunctions of LA(Q) atoms.

Fig. 13. Comparison of MATHSAT and CSISAT on SMT-LIB instances.

Despite this, MATHSAT and CSISAT seem to be a little faster than the others.
—For problems with a nontrivial Boolean structure, MATHSAT outperformed

FOCI in terms of execution time. This is true even for problems in the combined
theory EUF ∪DL(Q), despite the fact that the current implementation is still
preliminary. As regards CSISAT, it could solve (within the time and memory
limits) only 5 of the 78 instances it could potentially handle, and in all cases
MATHSAT outperformed it.

—In terms of size of the generated interpolants, the gap between MATHSAT
and FOCI was smaller on average. However, the right plot of Figure 11 (which
considers only instances for which both tools were able to generate an in-
terpolant) shows that there were more cases in which MATHSAT produced a
smaller interpolant.

—On conjunctions of LA(Q) atoms, MATHSAT outperformed CLP-PROVER, some-
times by more than two orders of magnitude. The performance of MATHSAT
and CSISAT is comparable on such instances, with MATHSAT being slightly
faster. However, there were several cases in which CSISAT computed a wrong
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Fig. 14. Comparison of MATHSAT and CSISAT on conjunctions of LA(Q) atoms.

result, due to the use of floating-point arithmetic instead of infinite-precision
arithmetic (which is used by MATHSAT).

8. CONCLUSIONS

In this article, we have shown how to efficiently build interpolants using state-
of-the-art SMT solvers. Our methods encompass a wide range of theories (in-
cluding EUF , DL, UT VPI, and LA), and their combination (based on the De-
layed Theory Combination schema). A thorough experimental evaluation shows
that the proposed methods retain the efficiency of the solvers, and are vastly
superior to the state-of-the-art interpolants, both in terms of expressiveness,
and in terms of efficiency.
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