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Abstract. In finite-state systems, true existential properties admit wit-
nesses in form of lasso-shaped fair paths. When dealing with the infinite-
state case (e.g. software non-termination, model checking of hybrid au-
tomata) this is no longer the case. In this paper, we propose a compo-
sitional approach for proving the existence of fair paths of infinite-state
systems. First, we describe a formal approach to prove the existence of
a non-empty under-approximation of the original system that only con-
tains fair paths. Second, we define an automated procedure that, given
a set of hints (in form of basic components), searches for a suitable com-
position proving the existence of a fair path. We experimentally evaluate
the approach on examples taken from both software and hybrid systems,
showing its wide applicability and expressiveness.

1 Introduction

LTL model checking for infinite-state systems is a well-known undecidable prob-
lem. Most of the research has concentrated on proving that the properties are
universally verified, i.e. all traces satisfy the property. In this work, we focus on
its dual problem: the falsification of LTL properties, which amounts to proving
that one trace satisfies (the negation of) the property. Notable instances of this
problem are proving software non-termination (with the fair path to be found
corresponding to a non-terminating execution) and finding counterexamples and
scenarios in hybrid systems and in infinite-state fair transition systems. Model
checking can be reduced to proving the language emptiness of an infinite-state
fair transition system. In order to prove that the LTL property does not hold it
is necessary and sufficient to prove the existence of a fair infinite execution.

The problem is conceptually harder than in the finite-state case, since fair
paths may have no regular structure. Hence, in general they cannot be presented
in lasso-shaped form as α · βω, where α and β are finite sequences of states and
βω is the infinite repetition of β.

In this paper, we propose an approach to prove the existence of fair paths
in infinite-state fair transition systems. The approach is based on the following
insights. We define an underapproximation of the given transition system, ex-
tended with formulae describing regions of the state space of the system, which
we call R-abstraction. We identify a set of conditions over the underapproxima-
tion that are sufficient for the existence of a fair path. Such abstraction enjoys



the property that each fair loop over its regions entails the existence of a fair
path in the original system. In this sense, each lasso-shaped execution over the
regions represents a non-empty envelope containing only fair paths of the origi-
nal system. We formally present the hypotheses necessary for the R-abstraction
to represent a suitable non-empty under-approximation of the fair transition
system. This argument, based on a monolithic underapproximation, is refined
into a compositional approach. Intuitively, the monolithic underapproximation
is presented as the composition of smaller transition systems enriched with a set
of regions and assumptions. We define a set of conditions that, if satisfied by the
components, entail that the composition proves the existence of the fair path.

Based on this framework, we describe a search procedure to identify a compo-
sitional presentation of the under-approximation. The procedure takes in input
a candidate set of components, and looks for a suitable composition of a subset
of them that represents an adequate under-approximation of the original system.

We study a generalization to enforce the divergence of a specific symbol. This
is required, for example, to deal with conditions resulting from the conversion of
hybrid systems into fair transition systems, and the analysis is to be restricted
to non-zeno paths, where time diverges to infinity.

We implemented and evaluated the proposed approach. The procedure works
on symbolically represented infinite-state fair transition systems, and is able to
produce suitable compositions and to exhibit proofs of existence of fair paths
based on manual hints produced with moderate effort. The results, obtained
for benchmarks of diverse nature, derived from software termination and hybrid
automata, demonstrate the expressiveness of the framework and the effectiveness
of the approach.

The paper is organised as follows. In Sec. 2 and 3 we present the background
and a running example. In Sec. 4 and 5, we define the monolithic and compo-
sitional frameworks. The search procedure is described in Sec. 6. In Sec. 7 we
discuss symbol-divergence. In Sec. 8 we contrast our approach with related work.
Sec. 9 reports the experimental evaluation of the approach. Sec. 10 concludes
and outlines future works. The proofs of all the theorems are reported in the
extended version of this document1.

2 Background

We work in the setting of SMT, with the theory of quantified real arithmetic.
We assume the standard notions of interpretation, model, satisfiability, validity
and logical consequence. We write nnf(φ) for the negation normal form of φ. A
symbolic fair transition system M is a tuple 〈S, I, T, F 〉, where S is the set of
state variables; I and F are formulae over S, representing respectively the initial
and fair states; T is a formula over S and S′ representing the transitions, where
S′=̇{s′|s ∈ S} and the primed version of a variable refers to the next state. We
denote with S or s a total assignment over S, i.e. a state. A fair path of M is

1 The extended version is available at https://enricomagnago.com/proving_the_

existence_of_fair_paths_in_infinite-state_systems_extended.pdf
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an infinite sequence of states, s0, s1, . . ., such that s0 |= I, sis
′
i+1 |= T for all i,

and for each i there exists j > i such that sj |= F . A deadlock is a reachable
state that has no outgoing transitions.

We also assume the standard notions of trace, reachability, and temporal
logic model checking, using E,A for path quantifiers and G,F for “always” and
“eventually” (CTL* [17]).

We overload the |= symbol: when φ and ψ are SMT formulae, then φ |= ψ
stands for entailment in SMT; when M is a fair transition system and ψ is a
temporal property, then M |= ψ is to be interpreted with the LTL semantics.

3 Running example

For explanatory purposes, we consider a bouncing ball subject to the gravita-
tional acceleration. The ball follows the classical laws of a uniformly accelerated
motion, losing a fraction of its velocity at every bounce. The bounce is an in-
stantaneous transition where v′ = −v c

c+1 , with v being the velocity and c the
number of bounces. It is also possible for the ball to get stuck to the ground.
Let h be the distance of the ball from the ground. The dynamics are partitioned
into three phases: in the first phase, the ball is falling down (v < 0 ∧ h > 0);
in the second, the ball is bouncing h = 0; finally, the ball is moving upwards
(v > 0 ∧ h > 0). Unless stopped, the ball goes infinitely through the phases,
but for shorter and shorter periods of time: the interval between two consecutive
bounces c and c+ 1 is given by 1

c .

1 MODULE main
2 VAR h : r e a l ; v : r e a l ; d e l t a : r e a l ; c : i n t ege r ;
3 s top : boolean ;
4 DEFINE g := 9 . 8 1 ;
5 INIT c = 1 & h = 0 & v = g / 2 ;
6 INVAR ( h = 0 & v < 0) −> d e l t a = 0 ;
7 INVAR d e l t a >= 0 & h >= 0 ;
8 TRANS ( h = 0 & v < 0) −> next ( c ) = c + 1 ;
9 TRANS ! ( h = 0 & v < 0) −> next ( c ) = c ;

10 TRANS ( s top & h = 0) −> ( next ( h ) = 0 & next ( v ) = 0 ) ;
11 TRANS ( ! s top & h = 0 & v = 0) −> ( next ( h ) = 0 & next ( v ) = 0 ) ;
12 TRANS ( ! s top & h = 0 & v < 0) −> ( next ( h ) = 0 &
13 next ( v ) = − v∗c / ( c + 1 ) ) ;
14 TRANS ( ! s top & ! ( h = 0 & v <= 0)) −> ( next ( v ) = v − g∗ d e l t a &
15 next ( h ) = h + v ∗ d e l t a − 0 .5 ∗ g ∗ pow( d e l t a , 2 ) ) ;
16 LTLSPEC ! G F ( h = 0 & v > 0 ) ;

Fig. 1. The SMV encoding of the bouncing ball



Systems like the bouncing ball are usually described as hybrid systems. Here
we consider the corresponding infinite state transition system, presented sym-
bolically in Figure 1 using a variant of the SMV language. The symbol delta

represents the amount of time elapsing at each transition. The nondeterminis-
tic stop variable controls the ball getting stuck to the ground. The (universal)
property states that the ball cannot bounce up infinitely often.

4 Fair Paths: Sufficient conditions

This section presents the main argument used to prove the existence of a fair
path for a fair transition system M . First, we identify a transition system, A,
organized according to a set of regionsR, each corresponding to a location. Then,
we show that if A is a non-empty under-approximation of M and satisfies some
conditions, then the existence of a fair cycle in M is ensured. When clear from
context, with a slight abuse of notation, we write R for the formula

∨m−1
i=0 Ri

denoting the region space.
We call A an R-abstraction with respect to a system M and regions R

if the following conditions hold. The region space R must be reachable in M
- intuitively, this corresponds to finding the “stem” of the fair path. A must
be an underapproximation of M , so that the transitions taken in a path in A
can be performed also in M . A must never deadlock in R, and there must be
no outgoing transitions from R, so that from every state in R there exists an
infinite path starting from it and contained in R. Finally, we require that the set
of fair locations FA is visited infinitely often. These conditions are formalised in
the following definition.

Definition 1 (R-abstraction). Let M=̇〈SM , IM (SM ), TM (SM , SM
′), FM (SM )〉

be a fair transition system. A transition system A=̇〈SA, IA(SA), TA(SA, S
′
A)〉 is

an R-abstraction of M with respect to a list of formulae R(SA)=̇[R0(SA), . . . , Rm−1(SA)],
also called regions, iff the following hold:

H.0 SM ⊆ SA,
H.1 There exists some initial state in M from which it is possible to reach an

initial state of A, for some assignment to the SA \ SM :

M 6|= AG¬IA(SA)

H.2 The set of initial states of A is a subset of the union of the regions:

A |= R(SA)

H.3 The transition relation of A underapproximates the transition relation of M :

R(SA) ∧ TA(SA, S
′
A) |= TM (SM , S

′
M )

H.4 Every state in R0, projected over the symbols in SM corresponds to a fair
state of M :

A |= AG(R0(SA)→ FM (SM ))



H.5 Every reachable state in A has at least one successor via its transition relation
TA:

A |= AGEX>
H.6 For each region Ri ∈ R, with i > 0, every state in Ri can remain in such

region at most a finite number of steps and must eventually reach a region
with a lower index j < i:

A |=
m−1∧
i=1

AG(Ri → A[RiU

i−1∨
j=0

Rj ])

H.7 All states reachable in one step from R0 are in R:

A |= AG(R0 → AX

m−1∨
i=0

Ri)

In order to prove the existence of a fair path in M , we seek a R-abstraction
A. This is sufficient since, as shown by the following theorem, all paths of A are
fair paths in M .

Theorem 1. Let M=̇〈SM , IM , TM , FM 〉 be a fair transition system. Let A be
an R-abstraction of M with respect to a sequence of regions R over S. Then M
admits a fair path, i.e. M 6|= FG¬FM (SM ), and all infinite paths of A starting
from some state reachable in M correspond to a fair path of M .

Example Consider the LTL model checking problem defined in Figure 1 and let
M=̇〈SM , IM , TM , FM 〉 be the fair transition system whose fair executions are
counterexamples for the LTL property. Then, IM and TM are defined as in the
system described in Figure 1 and the fairness condition is FM =̇h = 0 ∧ v > 0.

Fig. 2. R-abstraction for the running
example.

Figure 2 shows a possibleR-abstraction A
for M that proves the existence of at least
one counterexample for the LTL property.
A has two regions R0 and R1. The tran-
sition relation TA is shown with annota-
tions on the edges connecting the two lo-
cations. In both regions the ball is on the
ground (h = 0), but its velocity is negative
in R1 and positive in R0, hence the lat-
ter is fair. More formally, A is defined as
〈S,R0∨R1, TA〉 over two regions {R0, R1},
where:

R0=̇ c ≥ 1 ∧ delta =
1

c
∧ v =

g

2c
∧ h = 0

R1=̇ c ≥ 1 ∧ delta = 0 ∧ v = − g

2c
∧ h = 0

T0,1=̇ c′ = c ∧ delta′ = 0 ∧ v′ = v − g ∗ delta ∧ h′ = h

T1,0=̇ c′ = c + 1 ∧ delta′ =
1

c + 1
∧ v′ = −v c

c + 1
∧ h′ = h

TA=̇
∨

i∈{0,1}

(Ri ∧ Ti,1−i ∧R1−i
′).



It is easy to see that A is an R-abstraction and satisfies all required hypothe-
ses of Definition 1.

4.1 Comparison with recurrent sets

In the context of software non-termination the notion of recurrent set has been
introduced by Gupta et al. in [25]. They show that the existence of an (open) re-
current set is a sufficient and necessary condition for a not well-founded relation.
Cook et al. in [9] introduce the notion of closed recurrence sets, which is used
also in [14]. Closed recurrence sets, instead of characterising a set of states that
contain some infinite sequence, require the existence of at least one sequence in
the set and that every sequence remaining in such set is infinite. In the same
work they show that every closed recurrence set is also an open recurrent set
and that if a open recurrent set exists, then there exists a corresponding closed
recurrence set for some underapproximation of the transition relation.

These works are concerned with software non-termination and do not con-
sider fairness conditions. Since, as we show below, an R-abstraction corresponds
to a closed recurrent set when the fairness condition is trivial (i.e. >), our notion
of R-abstraction is strictly more expressive than what considered in the works
above.

A not well-founded relation exists iff there exists an open recurrent set [25].
Cook et al. [14] show that if a system admits some recurrent set then there exist
an underapproximation of it that admits a closed recurrence set. Therefore,
Theorem 2 below implies that a not well-founded relation exists, for a system
with trivial fairness, iff it admits an R-abstraction.

We report the definition of closed recurrence set from [9], where we explicitly
state that we are interested in an underapproximation of the transition relation.
A set G is a closed recurrence set for a transition system M=̇〈S, I(S), T (S, S′)〉,
with respect to some underapproximation TG of T iff the following hold:

∃S : G(S) ∧ I(S)

∀S∃S′ : G(S)→ TG(S, S′)

∀S, S′ : G(S) ∧ TG(S, S′)→ G(S′)

∀S, S′ : TG(S, S′)→ T (S, S′)

Theorem 2. A system M〈S, I(S), T (S, S′),>〉 admits an R-abstraction
A=̇〈SA, IA(SA), TA(SA, S

′
A)〉 if and only if there exists a closed recurrence set

G.

5 Decomposition of the sufficient conditions

Finding a monolithic R-abstraction satisfying all the hypotheses for some fair
transition system is a challenging problem. Here we refine the framework to
present the R-abstraction compositionally, as a network of smaller components,



by considering a subset of the symbols at a time. For each subset of the symbols
we identify some smaller components that could represent the behaviour of the
system projected only on those variables. The monolithic R-abstraction is the
composition of these smaller components, one for each subset of variables. We de-
scribe the interaction between the components in an assume-guarantee fashion.
Each component, that we call AG-skeleton (for Assume-Guarantee skeleton), de-
scribes the behaviour of a subset of the symbols while assuming some properties
about the others. These properties represent the conditions that are necessary
for this behaviour to be enabled and we need to prove that such conditions are
ensured by some other AG-skeleton.

The following is the outline of the approach. We first formally defineAG-skeletons
and a composition operator over such structures. In order to find anR-abstraction,
given a set of AG-skeletons we apply such operator until we obtain a composed
AG-skeleton with an empty set of assumptions, which, by definition of the com-
position operator, implies that we considered one AG-skeleton for each subset
of the symbols. This AG-skeleton is a transition system associated with a list of
regions that either does not allow any loop over the regions or satisfies hypothe-
ses H.5, H.6 and H.7. Among all possible compositions the procedure described
in Sec. 6 searches for one that admits at least one such loop that also satisfies
H.1, H.2, H.3 and H.4, hence an R-abstraction.

Formally, let M be given. Let {S0, . . . , Sn−1} be pairwise disjoint and a
covering2 of SM . Let {Hj}n−1j=0 be a set of transition systems of the form 〈Sj ∪
S 6=j , Ij , T j〉 and mj ∈ N be the number of regions of Hj . We say that Sj are

the symbols controlled by Hj or its local symbols. We also write S for
⋃n−1
j=0 S

j

and S 6=i for S \Si. Let Rj=̇{Rji (S)|0 ≤ i < mj} be the set of regions of Hj and

Aj=̇{Aji (S 6=j)|0 ≤ i < mj} the set of assumptions of Hj . Let Aji (S 6=j) be the
assumptions of Hj in its ith region on the other components. We assume such
assumptions are in cartesian form, by requiring

Aji (S
6=j)=̇

∧
k 6=j

Aj,ki (Sk)

where Aj,ki (Sk) are (independent) assumptions on Hk of Hj in the ith region.

Notice that the regions Rji (S) of Hj can depend on all the variables S, while

the assumptions Aji (S
6=j) cannot refer to the “local variables” Sj of Hj . The

restricted region i of Hj is (Rji ∧A
j
i ).

Every AG-skeleton Hj must satisfy the following condition.

I . If there is pair of states satisfying the transition relation, such that the first
one is in the restricted region i and the latter in the restricted region i′, then
for every state in the restricted region i the transition relation allows for a

2 Hence, SM ⊆
⋃

j S
j and ∀j 6= k : Sj ∩ Sk = ∅



successor state in the restricted region i′:

∀i, i′ : 0 ≤ i < mj ∧ 0 ≤ i′ < mj →

∃S, S′ : (Rji (S) ∧Aji (S
6=j) ∧ T j(S, S′) ∧Rji′(S

′) ∧Aji′(S
6=j ′)) |=

∀S∃Sj ′∀S 6=j ′ : Rji (S) ∧Aji (S
6=j) ∧Aji′(S

6=j ′)→ Rji′(S
′) ∧ T j(S, S′)

This is related to must-abstractions, presented for example in [36], in the
sense that for every assignment to the current state symbols S there must exist
an assignment to the next state symbols. However, in our case we restrict the
existential quantification only to the symbols local to the AG-skeleton Sj

′
.

Definition 2 (compatible transitions). Let {Hj0 , . . . ,Hjk} ⊆ {Hi}n−1i=0 be a

subset of the AG-skeletons. A transition from state Ŝ to Ŝ′ is compatible iff the
transitions of the AG-skeletons, from every pair of states in the same regions,
meet the respective assumptions of the AG-skeletons.

compatible{j0,...,jk}(Ŝ, Ŝ
′)=̇∀S, S′ :

∧
0≤i0<mj0 ,0≤i′0<mj0 ,...,0≤ik<mjk ,0≤i′k<m

jk

(Rj0i0 (Ŝ) ∧Aj0i0 (Ŝ) ∧Rj0i′0 (Ŝ′) ∧Aj0i′0 (Ŝ′) ∧ . . . ∧Rjkik (Ŝ) ∧Ajkik (Ŝ) ∧Rjki′k (Ŝ′) ∧Ajki′k (Ŝ′)→∧
0≤t≤k

((Rtit(S) ∧Atit(S
6=jt) ∧Ati′t(S

6={js}ks=1
′
)∧

∧
0≤s≤k∧s6=t

T s(S, S′) ∧Rsi′s(S′) ∧Asi′s(S 6=js
′
))→

∧
0≤h≤k∧h 6=t

At,jhi′t
(Sjh

′
)

)

)

Compatible holds iff the existence of a transition from some state Ŝ to Ŝ′ in
the intersection of some restricted regions, implies that every transition between
the same intersection of restricted regions implies that the assumptions made by
each AG-skeleton are met.

We now define the composition of AG-skeletons as the standard product of
transition systems restricted to the compatible transitions and show that this
operation is closed: the composition of k AG-skeletons is an AG-skeleton.

Definition 3 (composition of AG-skeletons). We define the composition of
{Hj0 , . . . ,Hjk} ⊆ {Hj}n−1j=0 , such that the sets of local symbols {Sji}ki=0 are

pairwise disjoint, as Hc=̇
⊗k

t=0H
jt = 〈S, Ic, T c〉 where:

– Sc=̇
⋃k
t=0 S

jt ;

– mc=̇
∏k
t=0m

jt ;

– Rc=̇{
∧k
t=0R

jt
it

(S)∧
∧

0≤s≤k∧s 6=tA
jt,js
it

(Sjs)|∀t ∈ {0, . . . , k}, it ∈ {0, . . . ,mjt−
1} : Rjtit (S) ∈ Rjt and ∀s . 0 ≤ s ≤ k ∧ s 6= t : Ajt,jsit

(Sjs) ∈ Ajt};
– Ac=̇{

∧k
t=0

∧
js 6∈{j0,...,jk}A

jt,js
it

(Sjs)|∀t ∈ {0, . . . , k}, js 6∈ {j0, . . . , jk}, it ∈
{0, . . . ,mjt − 1} : Ajt,jsit

(Sjs) ∈ Ajtit (S 6=js)};



– Ic(S)=̇
∧k
t=0 I

jt(S);

– T c(S, S′)=̇compatiblej0,...,jk(S, S′) ∧
∧k
t=0 T

jt(S, S′).

For compactness we will use S 6=c for S \Sc which is equal also to
⋃k
t=0 S

6=jt and

Aji (S
6=c) for

∧
js 6∈{j0,...,jk}A

j,js
i (Sjs).

Theorem 3 (AG-skeletons are closed under ⊗). Given a set of AG-skeletons

{Hj0 , . . . ,Hjk} ⊆ {Hj}n−1j=0 , their composition Hc=̇
⊗k

t=0H
jt = 〈S, Ic, T c〉 is

still an AG-skeleton, i.e. it satisfies hypothesis I.

By composing a sequence of AG-skeletons such that their local symbols are
pairwise disjoint and cover the set of symbols SMof the fair transition system M ,
we obtain an AG-skeleton with an empty set of assumptions. By definition, the
composition satisfies I: every pair of regions either do not admit any transition
between them or from one it is always possible to reach the other in one step
and there is no deadlock. Therefore, such AG-skeleton is a transition system
associated with a list of regions such that H.5 and H.6 hold, and, in case a
region is a subset of the fair states of M , also H.7 holds. In the next section we
describe a procedure that (i) computes such a composition of AG-skeletons, and
(ii) among all possible compositions it looks for one that admits some loop over
the regions satisfying also the remaining hypotheses (H.1, H.2, H.3 and H.4),
thus ensuring that it is an R-abstraction.

5.1 Example: decomposition

In the following, for compactness, we write Rj for Rj(S), Aj for Aj(S 6=j), T j

for T j(S, S′) and Rj
′
, Aj

′
for Rj(S′) and Aj(S 6=j

′
) respectively. We now show

how the R-abstraction in Figure 2 can be represented as composition of smaller
AG-skeletons. Consider the partitioning of S given by SC=̇{c}, SH=̇{h} and
SDV =̇{d, v}. We define three corresponding AG-skeletons:

C=̇〈SC , c ≥ 1, c′ = c+ 1 ∨ c′ = c〉

with no assumptions and a single region c ≥ 1.

H=̇〈SH , (RH0 ∧AH0 ) ∨ (RH1 ∧AH1 ),

(RH0 ∧AH0 ∧ TH0,0 ∧RH0
′ ∧AH0

′
)∨

(RH0 ∧AH0 ∧ TH0,1 ∧RH1
′ ∧AH1

′
)∨

(RH1 ∧AH1 ∧ (TH1,0,0 ∨ TH1,0,1) ∧RH0
′ ∧AH0

′
)〉

where RH0 ≡ RH1 =̇h = 0, AH0 =̇delta = 0, AH1 =̇delta = 2v
g , TH0,0 ≡ TH0,1 ≡

TH1,0,0=̇h′ = h and TH1,0,1=̇h′ = h+ v ∗ delta− g
2delta

2. Finally we define

DV =̇〈SDV , (RDV0 ∧ADV0 ) ∨ (RDV1 ∧ADV1 ),

(RDV0 ∧ADV0 ∧ TDV0,1 ∧RDV1

′ ∧ADV1

′
)∨

(RDV1 ∧ADV1 ∧ TDV1,0 ∧RDV0

′ ∧ADV0 )
′〉



where RDV0 =̇delta = 0 ∧ v = − g
2c and RDV1 =̇delta = 1

c ∧ v = g
2c , the two

assumptions are ADV0 ≡ ADV1 = c ≥ 1 ∧ h = 0 and the two components of
the transition relation are defined as TDV0,1 =̇delta′ = 1

c+1 ∧ v
′ = −v c

c+1 and

TDV1,0 =̇delta′ = 0 ∧ v′ = v − g ∗ delta.
The three AG-skeletons satisfy I. Applying the composition operator and

removing empty regions and transitions we obtain

B=̇C ⊗DV ⊗H = 〈SB , RB0 ∨RB1 , (RB0 ∧ TB0,1 ∧RB1
′
) ∨ (RB1 ∧ TB1,0 ∧RB0

′
)〉

with two regions {RB0 , RB1 } and no assumptions, where:

RB0 =̇c ≥ 1 ∧ delta =
1

c
∧ v =

g

2c
∧ h = 0

RB1 =̇c ≥ 1 ∧ delta = 0 ∧ v = − g

2c
∧ h = 0

TB0,1=̇ c′ = c ∧ delta′ = 0 ∧ v′ = v − g ∗ delta ∧ h′ = h

TB1,0=̇ c′ = c+ 1 ∧ delta′ =
1

c+ 1
∧ v′ = −v c

c+ 1
∧ h′ = h

Region RB0 implies the fairness condition h = 0 ∧ v > 0 and we obtain the

R-abstraction 〈S, {RB0 , RB1 }, TB〉, where TB=̇
∨
i∈{0,1}(R

B
i ∧TBi,1−i∧RB1−i

′
) which

is exactly the definition of H shown in Figure 2.

6 Search of the composition

Let M=̇〈S, I(S), T (S, S′), F (S)〉 be a fair transition system and H be a set of
AG-skeletons. We want to find a subset {H0, . . . ,Hn} ⊆ H, with a composition
C=̇H0 ⊗ . . .⊗Hn such that: (i) the symbols associated to the AG-skeletons in
the subset are pairwise disjoint and define a covering of S; (ii) C is an underap-
proximation of M ; (iii) C admits a loop over the regions such that there exists a
reachable region in the loop and one of the regions underapproximates the fair
states F (S) of M .

We propose an incomplete procedure to find such C, that relies on a reduction
to a sequence of reachability problems and SMT queries. Algorithm 1 shows the
main steps required by our procedure. The function filter-incorrect-hints
(line 1) filters the list of hints by keeping only those that satisfy condition I: a
satisfiability query checks whether two regions admit some transition between
them and if this is the case the unsatisfiability of the ∃∀∃ formula is decided
by employing a variant of the approach presented in [16]. Once the correct-
ness of the AG-skeletons has been established the problem of identifying an
R-abstraction is encoded as a reachability problem by calling the function get-
reachability-problem (line 6). Then, check-reachabilty (line 7) relies on
a model checker to identify a witness for the reachability problem. From the wit-
ness composition-from-trace (line 11) constructs a candidate composition.
At this point check-assumptions (line 12) checks whether the candidate com-
position satisfies also the compatibility requirement of the composition operator,



via a sequence of SMT validity checks. If all those checks succeed then we found a
composition that meets all the requirements and the procedure stops; otherwise,
at least one validity check failed, and the SMT solver provides an assignment
that describes a transition for each AG-skeleton such that those transitions are
not compatible. In the pseudocode, we refer to this assignment as bad. We can
refine our reachability encoding by forbidding such composition, by adding ¬bad
as an additional invariant constraint to the reachabiliy problem. In this way, we
keep refining the encoding and asking the model checker for a candidate com-
position, until either a valid composition is found or the target state becomes
unreachable. In this second case the procedure must stop without providing a
definite answer (line 9).

Algorithm 1 find-composition(M , H)

1: H ← filter-incorrect-hints(H)
2: constr ← >
3: bad← ⊥
4: while true do
5: constr ← constr ∧ ¬bad
6: prob← get-reachability-problem(H,M, constr)
7: trace← check-reachabilty(prob)
8: if trace = ∅ then
9: return ∅

10: end if
11: comp← composition-from-trace(trace,H)
12: bad← check-assumptions(comp)
13: if bad = ⊥ then
14: return comp
15: end if
16: end while

We now describe how we build the transition system and the reachability
problem returned in line 6. We begin by computing, using a sequence of SMT
validity checks, underapproximations of T and F that will allow us to construct
a composition satisfying conditions H.3 and H.4, while H.5, H.6 and H.7 are
implied by I if the composition allows for at least a loop over the regions.

Condition H.3 [resp. H.4] requires us to decide whether the transition relation
[resp. some region] of the composed AG-skeleton implies the transition relation
[resp. fairness condition] of M . The transition relation and regions of the com-
posed AG-skeleton, by definition of the composition operator, are given by the
conjunction of the transition relations and restricted regions of the AG-skeletons
involved in the composition. Therefore, we need to decide the validity of a for-
mula of shape (

∧k
j=0 cj) → φ, where φ is either the transition relation or the

fairness condition of M and the cj are, respectively, the transition relations or
the restricted regions of the components. Assume φ is in negated normal form.



We apply the following rewriting recursively:

((

k∧
j=0

cj)→ φ) 7→

{
((
∧k
j=0 cj)→ φ0) ∧ ((

∧k
j=0 cj)→ φ1) if φ=̇φ0 ∧ φ1

((
∧k
j=0 cj)→ φ0) ∨ ((

∧k
j=0 cj)→ φ1) if φ=̇φ0 ∨ φ1

Notice that in the second case, if the formulae contain some non-convex the-
ory it might be the case that the original formula holds while our rewritten
formula does not. Therefore, we are guaranteed that if the rewritten formula
holds, so does the original implication, but the vice-versa might not hold. We
apply this rewriting until we obtain a formula that is the conjunction and dis-
junction of implications with a single positive or negated literal on the right hand
side. Finally, we again underapproximate the truth assignment of each implica-
tion (

∧k
j=0 cj) → l, where l is either a positive or negative literal by checking

whether for some cj the following is valid: cj → l. We rely on the SMT-solver to
decide the validity of such implications, and include such results in our encoding
of the problem such that any composition will satisfy conditions H.3 and H.4. In
the following we detail how we include these observations in the encoding of our
problem. We remark that we need to handle the case in which the SMT-solver is
unable to provide a definite answer (e.g. because it runs out of resources and/or
the support for the underlying theory is incomplete). Let PT and PF be the set
of atomic formulas occurring in nnf(T ) and nnf(F ) respectively. We introduce,
for each AG-skeleton Hj in H, for each predicate fk ∈ PF , a boolean variable
isT(fHk , i), and for each predicate tk ∈ PT , a boolean variable isT(tHk , i, i

′). We

define, for each regions Rji , R
j
i′ ∈ Rj ,

eval(isT(fHk , i)) :=

> if Rji ∧A
j
i |= pFk

⊥ if Rji ∧A
j
i |= ¬pFk

? otherwise

eval(isT(tHk , i, i
′)) :=


> if Rji ∧A

j
i ∧ T j∧

Rji′ ∧A
j
i′ |= pFk

⊥ if Rji ∧A
j
i ∧ T j∧

Rji′ ∧A
j
i′ |= ¬pFk

? otherwise

We then combine the predicates for all AG-skeletons in H by defining

isT(fk, i)=̇(
∨

Hj∈H

isT(fH
j

, i) = >) ∧
∧

Hj∈H

isT(fH
j

, i) 6= ⊥

and its negated counterpart as

isF(fk, i)=̇(
∨

Hj∈H

isT(fH
j

, i) = ⊥) ∧
∧

Hj∈H

isT(fH
j

, i) 6= >

Similarly we define isT(tk, i, i
′) and isF(tk, i, i

′) over the isT(tH
j

, i, i′). The un-

versal abstraction of F , denoted as F̂ , at region Ri is obtained by replacing in



nnf(F ) every positive literal fk with isT(fk, i) and every negative literal ¬fk
with isF(fk, i). The universal abstraction of T , denoted as T̂ , between regions
Ri and Ri′ is obtained similarly by replacing in nnf(T ) every positive [negative,
resp.] occurrence tk ∈ T with isT(tk, i, i

′) [isF(tk, i, i
′), resp.].

Since T̂ |= T and F̂ |= F , in our encoding we need to ensure that T̂ holds in

every transition and that there exists a region in the loop that satisfies F̂ .
With the construction above, we can now define the transition system

E=̇〈SE , IE , TE , FE〉 as follows:

– SE=̇S ∪ SH ∪ SChoice ∪ {prefix} ∪ Sl2s ∪ SP , where:
• S are the symbols of the input system M ;
• SH=̇{lHj | Hj ∈ H} are symbols used to keep track of the index of the

current region of each AG-skeleton Hj ;
• SChoice=̇{enableHj | Hj ∈ H} is a set of booleans;
• prefix is an integer;
• Sl2s=̇{inLoop, fairLoop}∪{lBackHj | Hj ∈ H}, where the first two are

booleans and the lBackHj are used to nondeterministically choose the
loop-back region for the AG-skeleton Hj ;

• SP =̇{isT(fH
j

k )|pFk ∈ F and Hj ∈ H} ∪ {isT(tH
j

k )|pTk ∈ T and Hj ∈ H}
are symbols with domain {>,⊥, ?};

– IE=̇I ∧ prefix > 0∧¬inLoop∧¬fairLoop∧ IChoice is the initial condition,
where IChoice constrains the assignments over SChoice such that the symbols
of the enabled components are pairwise disjoint and a covering of S (where
the set of enabled components in a state s is {Hj ∈ H | s |= enableHj}).

– TE=̇TEnable ∧ TPrefix ∧ TLoop, where:
• TEnable=̇

∧
enableH∈SChoice enable′H = enableH ensures that the choice of

enabled components is fixed for each trace;
• TPrefix=̇prefix > 0 → T (S, S′) ∧ prefix′ = prefix − 1 ∧ ¬inLoop′ ∧
¬fairLoop′ allows E to perform prefix steps following the transition
relation of M ; this prefix ensures the reachability of the resulting com-
position (hypothesis H.1);

• TLoop=̇prefix = 0 → TAut ∧ T l2s ∧ T̂ ∧ prefix′ = 0 ensures that,
as soon as the prefix finishes, T̂ , which implies T , holds at every step
(hypothesis H.3) and E must follow the transition relation of the enabled
AG-skeletons, where:
∗ T l2s=̇inLoop′ = (inLoop∨ lBack)∧fairLoop′ = (fairLoop∨F̂ ) and
lBack=̇

∧
Hj∈H lHj = lBackHj holds iff all components are in their

loopback location.

∗ TAut=̇
∧
Hj∈H(enableHj → TH

jenabled

) ∧ (¬enableHj → lHj = l′Hj ∧∧
pH∈SP pH = ?) defines how the AG-skeletons evolve: disabled com-

ponents never change their location and they cannot contribute in
satisfying T̂ and F̂ , whereas enabled ones evolve according to their

transition relation: TH
jenabled

=̇TPredAbsHj ∧ THj

(S, S′)
∧
i,i′(lHj = i∧

l′Hj = i′) → RH
j

i (S) ∧ AHj

i (S), where TPredAbsHj encodes the truth
assignments to the SP as follows: TPredAbsHj =̇(

∧
Ri∈RHj lHj = i →



∧
pk∈F isT(fH

j

k , i) = eval(isT(fH
j

k , i)) ∧ (
∧
Ri,Ri′∈RHj (lHj = i ∧

l′Hj = i′)→
∧
pk∈T isT(tHk , i, i

′) = eval(isT(tH
j

k , i, i′)), where eval(isT(fH
j

k , i))

and eval(isT(tH
j

k , i, i′)) are the assignments we computed previously
for the fairness and transition predicates respectively. This transition
relation requires to find an assignment for S and S′ such that the
conjunction of the enabled transitions is satisfied, ensuring that hy-
pothesis I is not trivially satisfied because of the lack of any transition
between the regions.

Using this encoding, the reachability problem asks whether there exists a
path in E that reaches a state in which fairLoop ∧ lBack holds. T l2s ensures
that the path found by the model checker (line 7) will be a lasso-shape over the

regions 3, and there will be at least one region in the loop that satisfies F̂ , which
implies F .

If the model checker finds a path (line 7), the assignments to enableHj and
lHj for each Hj ∈ H describe the subset of AG-skeletons, the locations and
transitions to be considered at every state and transition to obtain the composed
R-abstraction. In this way we can construct the candidate composition from the
obtained trace (line 11).

In the following we show that the AG-skeleton found by Algorithm 1 meets
all the hypothesis required for an R-abstraction.

– Hypothesis H.0 holds since in the initial condition IE we ensure that the
local symbols of the AG-skeletons are pairwise disjoint and cover SM .

– Hypothesis H.1 holds since in the encoding we allow for prefix steps starting
from IM before reaching some conjunction of the regions of the enabled
AG-skeletons.

– Hypothesis H.2 holds since the initial condition of the R-abstraction is ex-
actly the state reached after prefix steps, which by construction is in one of
the regions.

– Hypothesis H.3 holds since T holds at every step in which prefix > 0, and
for prefix = 0 T̂ must hold, which implies T .

– The liveness-to-safety construction ensures that there exist a region in the
composed AG-skeleton that satisfies F̂ , and hence implies F . We call such
region R0 in the R-abstraction, hence H.4 holds.

– Hypotheses H.5, H.6 and H.7 are implied by I. The liveness-to-safety con-
struction allows the procedure to find a sequence of regions R0, . . . , Rk, such
that R0 is fair and Rk = R0, then the encoding E ensures that for all
0 ≤ i < k, ∃S, S′ : Ri(S) ∧ T (S, S′) ∧ Ri+1(S′), hence I is not trivially
satisfied due to the lack of transitions.

7 Ensuring divergence of a given symbol

In timed and hybrid systems there is an additional requirement for an infinite
counterexample to be valid: there is an explicit notion of “time” whose assign-

3 Note that this is the liveness-to-safety construction of [7].



ments must diverge to infinity. When encoding a hybrid system as a transition
system, time is typically modeled with an additional variable δ representing the
duration of each transition (where δ = 0 for discrete transitions and δ ≥ 0 for
transitions corresponding to time elapses). In order for a transition system trace
(of infinite length) to be valid for the original hybrid system, it must not impose
any upper bound on the total time elapsed; in other words, the assignments of
δ along the trace must describe a series that diverges to infinity. We call such
traces non-zeno.

This section identifies an approach to restrict the language of an AG-skeleton
or a R-abstraction to a non-empty set such that “time” is guaranteed to diverge
to infinity in all infinite executions in the language. Theorem 4 shows that the
composition operator preserves this property.

Theorem 4. If all infinite executions of the AG-skeleton A responsible for δ
are non-zeno, then also every infinite path of every composition, involving A, is
non-zeno.

Therefore, if it is possible to prove this property locally for the AG-skeleton
we are guaranteed that the composition will preserve it. However, if the local
information is insufficient to determine whether all its traces are non-zeno, a
global analysis of the final composition is required. For this reason, we show how
to shrink the language of an AG-skeleton or a R-abstraction so that all its paths
are non-zeno, while preserving hypothesis I in the first case, and the hypotheses
required by Definition 1 of R-abstraction in the second one.

In the following we will refer generically to regions and transitions meaning
the restricted region Ri ∧Ai in the case of an AG-skeleton and the region Ri in
the case of an R-abstraction. We write a+n b, with n ∈ N to represent the sum
of a and b modulo n. We assume that the domain of δ are the positive reals and
that the predicates involving δ in every region i and transition from region i to
i+n 1 can be written respectively as δ ./ f(S \{δ}) and δ′ ./ g(S \{δ}, S′ \{δ′}),
where ./ ∈ {<,≤,=,≥, >}.

Consider one loop over the regions at a time. Let n ∈ N be the length
of such loop and Ri(Si) be the ith region in the loop. For each transition
Ti,i+n1(S, S′)=̇Ri(S) ∧ T (S, S′) ∧ Ri+n1(S′) from Ri to Ri+n1 in the loop as-
sume we are given a function lowi,i+n1 : S → R that maps every assignment in
Ri(S) to a real value such that:∑∞

it=0

∑n−1
i=0 lowi,i+n1(Siti ) = +∞

where Siti is the assignment prescribed by the infinite unrolling of the loop at
location i during the itth iteration. We want to restrict the paths corresponding
to our loop over the regions to only the paths such that:∧n−1

i=0 Ri(S
it
i ) ∧ Ti,i+n1(Siti ,S

it
i+n1

) ∧ δiti+n1
≥ lowi,i+n1(Siti )

for all iterations it and where δi+n1 is the evaluation of δ at location i +n 1.
Since the sum of the lowi,i+n1 diverges to infinity and it is a lower bound for the
assignments to δ, every path satisfying the condition above is non-zeno.



We now identify some sufficient conditions for this additional constraint to
preserve the required hypotheses.

The sufficient condition requires lowi,i+n1 to be a lower bound for the small-
est upper bound for δi,i+n1 at every transition Ti,i+n1 for all paths starting
from some S0. We define such bound for transition Ti,i+n1 as minδ(Si, Si+n1).
minδ(Si, Si+n1) is the minimum of all g(Si, Si+n1) and f(Si+n1) such that δ′ .
g(Si, Si,i+n1) ∈ Ti,i+n1(Si, Si+n1) and δ′ . f(Si+n1) ∈ Ri+n1(Si+n1), for some
.∈ {<,≤} and functions f , g that do not contain any of δ and δ′. We define the
following condition for lowi,i+n1:

|= ∀S0, . . . , Sn−1 :(

n−1∧
i=0

Ri(Si) ∧ Ti,i+n1(Si, Si+n1) ∧Ri+n1(Si+n1))→

n−1∑
i=0

minδ(Si, Si+n1) > lowi,i+n1(Si)

Theorem 5. Given a loop over n ∈ N regions R0(S), . . . , Rn−1(S) and n func-
tions lowi,i+n1 : S → R that map every state in Ri(S) to a real value, such that
the following holds:

|= ∀S0, . . . , Sn−1 :(

n−1∧
i=0

Ri(Si) ∧ Ti,i+n1(Si, Si+n1) ∧Ri+n1(Si+n1))→

n−1∑
i=0

minδ(Si, Si+n1) > lowi,i+n1(Si)

where minδ(Si, Si+n1) is defined as above. Then replacing every transition
Ti,i+n1(Si, Si+n1) with Ti,i+n1(Si, Si+n1) ∧ δi+n1 ≥ lowi,i+n1(Si) preserves hy-
pothesis I in the case of an AG-skeleton and all the hypotheses of Definition 1
in the case of a R-abstraction.

7.1 Example: diverging “time”

Consider the AG-skeleton DV defined in subsection 5.1 for the bouncing ball
example. We know that in every loop of DV delta is equal to zero in region
RDV0 and to 1

c in RDV1 . However, we do not have any information about c and
we are unable to conclude anything about the summation of the assignments
to the symbol δ in its executions. Then, we need to consider the R-abstraction
represented in Figure 2. In this case we also know that c ≥ 1 and its value
increases by 1 in every iteration. We can define low1,0(c)=̇ 1

c+1 and low0,1(c)=̇0.
Their summation can be written as:∑+∞

it=0 low0,1(cit) + low1,0(cit) =
∑+∞
it=0

1
cit+1

This corresponds to the well-known diverging harmonic series. Therefore, we can
use low0,1 and low1,0 as lower bounds for δ. In this case this has no effect on
the language of R-abstraction, hence all its executions were already non-zeno
paths.



8 Related work

Most of the literature in verification of temporal properties of infinite-state tran-
sition systems, hybrid automata and termination analysis focuses on the univer-
sal case, while the existential one has received relatively little attention.

The most closely related works to ours are proving program non-termination.
[25] and [14] are based on the notion of closed recurrence set, that corresponds to
proving the non-termination of a relation. We compare our approach with such
techniques in subsection 4.1. [9] and [32] search for non-terminating executions
via a sequence of safety queries. Other approaches look for specific classes of
programs ([21] and [26] prove the decidability of termination for linear loops over
the integers), or specific non-termination arguments (in [33] non-termination is
seen as the sum of geometric series).

A first obvious difference is that these approaches rely on the existence of
a control flow graph, whereas we work at the level of transition system. More-
over, none of these works deals with fairness and our approach can be seen as
building a generalization of a closed recurrence set to the fair case. Another key
difference with all the above approaches is that they synthesize a monolithic
non-termination argument. We propose the composition of a finite number of
partial non-termination arguments to prove the non-termination of the whole
system. Assume-guarantee style compositional reasoning [23] is a broad topic
concerned with the verification of properties. Instead, we employ such kind of
reasoning for the falsification of temporal properties.

The only work that explicitly deals with fairness for infinite-state programs
is [15], that supports full CTL* and is able to deal with existential properties and
to provide fair paths as witnesses. The approach is fully automatic, but it focuses
on programs manipulating integer variables, with an explicit control-flow graph,
rather than more general symbolic transition systems expressed over different
theories (including non-linear real arithmetic). Another approach supporting
full CTL* is proposed in [28]. The work presents a model checking algorithm for
the verification of CTL* on finite-state systems and a deductive proof system
for CTL* on infinite-state systems. In the first case they reduce the verification
of CTL* properties to the verification of properties without temporal operators
and a single fair path quantifier in front of the formula. To the best of our
knowledge there is no generalisation of this algorithm, first reported in [29] and
then also in [30], to the infinite-state setting. The rules presented in the second
case have been exploited in [6] to implement a procedure for the verification of
CTL properties, while our objective is the falsification of LTL properties.

Moreover, in these settings ([15], [28]) there is no notion of non-zenoness.
The analysis of hybrid systems deals with more general dynamics than our

setting. Most of the works focus on the computation of the set of reachable
states, with tools such as FLOW* [10], SpaceEx [20], CORA [1], PHAVer [18]
and PHAVerLite [3], that compute an overapproximation of the reachable states
using different structures, for example Taylor models, polytopes, polyhedra, sup-
port functions. Interestingly, Ariadne [5] computes both an over and under ap-
proximation of the reachable set, and can prove and disprove a property, but



limited to the case of reachability properties. The few works on falsification of
temporal properties [35, 37, 38] have the common trait of being the restriction
to logic fragments (bounded-time MTL, LTL safety properties) for which finite
witnesses are sufficient. Tools in this context, such as TaLiRo [2], rely on sim-
ulations to find such finite witnesses. Instead, we are interested in identifying
infinite witnesses for more general temporal properties. Finally, the HyCOMP
model checker [13] supports hybrid systems verification of LTL via a reduction
to infinite-state model checking. Its verification procedure k-zeno [12] can only
disprove the property when lasso-shaped counterexamples exist.

The works on timed automata are less relevant: although the concrete system
may exhibit no lasso-shape witnesses, due to the divergence of clocks, the prob-
lem is decidable, and lasso-shaped counterexamples exist in finite bi-simulating
abstractions. This view is adopted in Uppaal [4], CTAV [34] and LTSmin [27].
Other tools directly search for non lasso-shaped counterexamples, but the pro-
posed techniques are specific for the setting of timed automata [11,31] and lack
the generality of the method proposed in this paper.

9 Experimental evaluation

In order to evaluate the practical feasibility of our approach, we have imple-
mented the procedure described in Sec. 6 by relying on the pysmt library [22]
to interact with SMT solvers, and the nuXmv model checker [8] to perform
the reachability checks. Our prototype tool FairFind takes as input a sym-
bolic transition system, a fairness condition and a set of AG-skeletons used as
building blocks (or hints) for constructing the R-abstraction and implements
Algorithm 1. When successful, FairFind returns a suitable set of regions R
and a R-abstraction A of M satisfying all the conditions H.0–H.7 presented in
Sec. 4. A is the result of a suitable composition of a subset of the input hints4.
The prototype does not prove the divergence of symbols and the user can rely
of the approach presented in 7 to achieve this. When successful, FairFind is

4 Artifact DOI: https://doi.org/10.5281/zenodo.4271411

Fig. 3. Execution time of FairFind compared to Anant, AProVe and nuXmv.

https://doi.org/10.5281/zenodo.4271411


able to produce a proof of the validity of the produced R-abstraction as a se-
quence of SMT queries, which can be independently checked. This additional
check increases the confidence on the correctness of the obtained results. In our
evaluation, we have successfully verified the correctness of our results in all cases
except 3, for which this additional correctness check fails to provide a definite
answer. This fact supports the significance of the approach in the sense that it
was able to identify a R-abstraction for which we are unable to directly prove
the validity of the required hypotheses.

We have tested FairFind on 43 benchmark instances: 31 are non-linear soft-
ware non-termination problems, and 12 are LTL verification problems, 9 on
hybrid systems and 3 on infinite state transition systems. 29 of the software
benchmarks have been taken from [14], while the remaining 2 are new bench-
marks we defined. Among the hybrid systems benchmarks, 4 are variations of
our running example, whereas the remaining 5 have been taken from the ARCH
competition on hybrid systems verification [19]. In our experiment, we have de-
fined the hints manually. In most cases, the AG-skeletons are responsible for
the evolution of a single variable of the input system. We defined an average of
5 hints per benchmark (with a minimum of 2 and a maximum of 17). We ran
FairFind with a total timeout of 600 seconds per benchmark, and a timeout
of 5 seconds for each SMT query5. FairFind was able to produce a witness
R-abstraction for all the benchmarks, suggesting the practical viability of the
approach.

We also compared FairFind with two fully automatic procedures for pro-
gram (non-)termination, Anant [14] and AProVe [24] (limited to the software
non-termination benchmarks), and with the LTL model checker nuXmv [8] (on
all the benchmarks). The objective is not to directly contrast the performance of
the various tools, as they operate under very different assumptions: FairFind is
more general, but it requires human assistance, whereas Anant and AProVe
are specialised tools for software (non-)termination, and nuXmv has very lim-
ited support for LTL counterexamples on infinite-state systems [11]. Rather, the
goal here is to assess the significance of the benchmarks w.r.t. the state of the
art. The results of this experiments are presented in the scatter plots of Fig. 3.

Fig. 4. Execution time of FairFind with
increasing number of AG-skeletons.

From the plots, we can see that none of
the other tools is able to solve all the
benchmarks solved by FairFind, and
in fact there are 13 instances that are
uniquely solved by FairFind (3 of the
software benchmarks, 1 of the transi-
tion systems and all the hybrid bench-
marks).

Fig. 4 shows the increase in execu-
tion time of FairFind as we increase

5 This allows the procedure to make progress even if the solver is unable to provide a
definite answer for some query. Many of the benchmarks require reasoning in mixed
integer/real non-linear arithmetic (in general undecidable).



the number of AG-skeletons provided. The objective of this evaluation is to test
the robustness of the approach with respect to an increasing number of un-
necessary and/or redundant hints. For this reason we increase the number of
AG-skeletons such that in all cases the procedure selects the same set of hints.
We considered 3 benchmarks: our non-linear, hybrid, running example, one of
the software benchmarks taken from [14] (bench-19 ) and one of the non-linear
software benchmarks we defined (example-2 ). We let FairFind run with a num-
ber of AG-skeletons ranging from 4 to 36. We observe a worst case linear increase
in execution time in these experiments. In addition, these benchmarks show two
different behaviours. In the bouncing ball and example-2 cases the execution time
is dominated by the time required to compute the validity of the implications
required for the approximations T̂ and F̂ . In the bench-19 case, the execution
time is much lower than in the other two cases, but FairFind performs a higher
number of refinements of candidate compositions. In all these cases the proce-
dure has to deal with many non-linear expressions, and this could cause high
execution times and instabilities; in fact, sometimes, by increasing the number
of AG-skeletons the required time decreases. However, the results we obtained
seem promising and we did not observe a blow-up in the time required to identify
the R-abstraction.

10 Conclusions

We tackled the problem of proving the existence of fair paths in infinite-state fair
transition systems, proposing a deductive framework based on a combination of
under-approximations. The framework also encompasses diverging fair paths, re-
quired to deal with zenoness. Then, we defined and implemented a procedure to
search for a proof based on a suitable composition of AG-skeletons. The exper-
imental evaluation shows that the framework is highly expressive, and the pro-
cedure effectively finds fair paths on benchmarks from software non-termination
and hybrid systems falsification.

In the future, we will extend the automation of the search procedure and
integrate it with a complementary procedure to demonstrate the dual universal
property. In order to increase the automation we plan to exploit current tech-
niques in the context of software non-termination and syntax-guided approaches
as procedures to synthesise AG-skeletons. Many of the AG-skeletons that have
been used in our benchmarks could be synthesised by such techniques. However,
some of them, such as the ones in our running example, require the ability to
heavily reason about non-linear systems and might be harder to synthesise au-
tomatically. For this reason the possibility of taking and verifying hints from
the user might be relevant to successfully identify an R-abstraction for complex
systems.

We will also experiment the applicability in the finite state case, and integrate
the method into satisfiability procedures for temporal logics over hybrid traces.
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