
Vol.:(0123456789)

Formal Methods in System Design
https://doi.org/10.1007/s10703-023-00434-x

1 3

Verification modulo theories

Alessandro Cimatti1 · Alberto Griggio1 · Sergio Mover2 · Marco Roveri3 ·
Stefano Tonetta1

Received: 10 December 2021 / Accepted: 5 May 2023
© The Author(s) 2023

Abstract
In this paper, we consider the problem of model checking fair transition systems expressed
symbolically in the framework of Satisfiability Modulo Theories. This problem, referred
to as Verification Modulo Theories, is tackled by combining two key elements from the
legacy of Ed Clarke: SAT-based verification and abstraction refinement. We show how fun-
damental SAT-based algorithms have been lifted to deal with the extended expressiveness
with a tight integration of abstraction within a CEGAR loop. In turn, the case of nonlinear
theories is based on a CEGAR loop over the linear case. These two elements have also
deeply impacted the development of the NuSMV model checker, born from a joint project
between FBK and CMU, and its successor nuXmv, whose core integrates SMT-based tech-
niques for VMT.

Keywords Infinite-state transition systems · Formal verification · Model checking ·
Satisfiability modulo theories · Implicit predicate abstraction

 * Alessandro Cimatti
 cimatti@fbk.eu

 Alberto Griggio
 griggio@fbk.eu

 Sergio Mover
 sergio.mover@lix.polytechnique.fr

 Marco Roveri
 marco.roveri@unitn.it

 Stefano Tonetta
 tonettas@fbk.eu

1 Fondazione Bruno Kessler, Trento, Italy
2 LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
3 Department of Information Engineering and Computer Science, University of Trento, Via

Sommarive 9, Povo, 38123 Trento, Italy

http://orcid.org/0000-0002-1315-6990
http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-023-00434-x&domain=pdf

 Formal Methods in System Design

1 3

1 Introduction

In the early 80’s, Edmund Clarke coauthored one of the papers that gave birth to the field
of Model Checking [1, 2], for which he received the 2007 ACM Turing Award [3]. Sub-
stantial breakthrough came from Clarke’s work on Bounded Model Checking [4], with two
key insights. The first was to consider the problem of debugging, giving up completeness
and focusing on the analysis of bounded traces. The second was to understand the potential
for SAT-based techniques as a possible replacement of BDDs in symbolic model checking.
This paved the way to the development of SAT-based verification techniques of increas-
ing power, from K-induction [5], to interpolation [6] and IC3 [7]. Later, Clarke and his
colleagues introduced the fundamental concept of Counter-Example Guided Abstraction
Refinement (CEGAR) [8]. CEGAR is an automated approach that combines the idea of
reasoning in an abstract space, thus eliminating hopefully irrelevant details, with the idea
of selectively introducing additional information based on spurious counterexamples.

These works heavily influenced the field of formal verification, and our own research in
the last two decades. In this paper, we give an overview of our work on Verification Modulo
Theories (VMT). VMT is the problem of model checking fair transition systems expressed
symbolically in the framework of Satisfiability Modulo Theories (SMT). The framework
is very appealing, because it is generic: similarly to the case of SMT, the expressiveness
of the transition system depends on the background theory. This gives the ability to easily
represent various kinds of infinite-state transition systems, and to express temporal proper-
ties with a background theory, in particular Linear-time Temporal Logic modulo Theory
(LTL(T)). In a nutshell, this research can be seen as generalizing SAT-based verification to
the case of infinite-state transition systems, leveraging the enormous progress of the field
of SMT, by tightly integrating the computation of effective abstractions.

We first consider the problem of invariant checking, by generalizing to the infinite-state
case two SAT-based algorithms, K-induction and IC3, by means of predicate abstraction.
In particular, we rely on the idea of implicit predicate abstraction [9] to avoid the bot-
tleneck resulting from the eager computation of the abstract space. This enables a tighter
integration of the abstraction within a CEGAR loop, as the refinement can be achieved
incrementally. The resulting algorithms are able to deal with huge numbers of predicates,
which are completely out of reach in the eager case [10].

Then, we consider invariant checking in the presence of nonlinear theories. This case
can not be easily dealt with by a simple adaptation of the techniques above, since the
SMT solvers are, in the case of nonlinear theories, currently unable to fulfill the require-
ments (interpolation, quantifier elimination) imposed by the algorithms. Hence, we adopt a
CEGAR loop where nonlinear operators (e.g. multiplication, transcendental functions) are
modeled as uninterpreted functions, and whose interpretation is progressively restricted by
means of piecewise-linear constraints [11].

The algorithms for invariant verification lay the foundations to deal with the case of
temporal properties. Based on the idea of invariant checking, temporal logic model check-
ing is tackled by considering specialized algorithms for the two complementary cases of
proving and disproving LTL(T) properties. The first one is based on generalizations of
the liveness-to-safety and K-liveness algorithms, with extensions specific to deal with
infinite-state transition systems. In [12], implicit predicate abstraction is used to integrate
liveness-to-safety and well-founded relations to prove LTL(T) properties. Spurious abstract
lasso-shaped counterexamples that are not covered by the well-founded relations are used
to find new predicates or new relations in a generalized CEGAR. In [13], K-liveness is

Formal Methods in System Design

1 3

extended for timed systems to avoid spurious counterexamples based on Zeno behaviors.
When counting the number of occurrences of a live signal to prove an LTL(T) property, the
minimal time between two occurrences is bounded by a symbolic expression derived from
the model. The second dual case of finding violations to an LTL(T) property is hindered by
the fact that, differently from the finite-state case, false temporal properties may not admit
lasso-shaped counterexamples. The idea is hence to provide an underapproximation of the
model that only contains counterexample traces. The underapproximation is obtained by a
search algorithm that segments the execution trace into a sequence of regions, whose states
are eventually “funneled” into the following one, so that progress towards a fair region con-
dition is ensured [14, 15].

All the above algorithms have been implemented in the nuXmv model checker [16], a
successor of the NuSMV model checker [17], born from a joint project between FBK and
CMU. nuXmv integrates at its core the MathSAT [18] SMT solver to support a number
of SMT-based techniques for VMT, and supports the standardized VMT language [19].
In turn, nuXmv is at the core of the HyCOMP [20] model checker for hybrid automata,
the xSAP [21] tool for safety assessment, and of the OCRA [22] tool for contract-based
design. The techniques described in this paper have been applied in several industrial set-
tings: nuclear [23], biological [24], railways [25, 26], avionics [27], space [28, 29], soft-
ware engineering [30, 31], and multi-core design [32].

This paper is structured as follows. In Sect. 2, we overview Satisfiability Modulo Theo-
ries. In Sect. 3, we define the problem of Verification Modulo Theories. In Sect. 4, we dis-
cuss implicit predicate abstraction and refinement. In Sect. 5, we overview the abstraction-
based algorithms for invariant checking, and, in Sect. 6, we discuss the extension to the
nonlinear case by way of incremental linearization. In Sect. 7, we present the algorithms
for LTL(T) model checking. In Sect. 8, we overview the NuSMV and nuXmv verification
engines. In Sect. 9 we draw some conclusions.

2 From SAT to SMT

2.1 First‑order notation

We work in the setting of standard first order logic. We assume to be given a signature Σ of
function and predicate symbols. A 0-ary function symbol is called a constant. A Σ-term is
a first-order term built out of function symbols and variables. If t1,… , tn are Σ-terms and p
is a predicate symbol, then p(t1,… , tn) is a Σ-atom. A Σ-formula � is built in the usual way
out of the universal and existential quantifiers, Boolean connectives, and Σ-atoms. When Σ
is implicit, we omit it and just talk about terms, atoms, and formulas. A literal is either an
atom or its negation. We call a formula quantifier-free if it does not contain quantifiers, and
ground if it does not contain free variables.

A clause is a disjunction of literals. A formula is said to be in conjunctive normal form
(CNF) if it is a conjunction of clauses. For every non-CNF formula � , an equisatisfiable
CNF formula � can be generated in polynomial time [33].

We also assume the usual first-order notions of interpretation, satisfiability, validity,
logical consequence, and theory, as given, e.g., in [34]. We write Γ ⊧ 𝜙 to denote that the
formula � is a logical consequence of the (possibly infinite) set Γ of formulas. A first-order
theory, T , is a set of first-order sentences. A structure A is a model of a theory T if A

 Formal Methods in System Design

1 3

satisfies every sentence in T . A formula is satisfiable in T (or T -satisfiable) if it is satisfi-
able in a model of T .

In what follows, with a little abuse of notation, we might denote conjunctions of literals
l1 ∧… ∧ ln as sets {l1,… , ln} and vice versa. If � ≡ {l1,… , ln} , we might write ¬� to mean
¬l1 ∨… ∨ ¬ln . Moreover, following the terminology of the SAT and SMT communities,
we shall refer to predicates of arity zero as propositional variables, and to uninterpreted
constants as theory variables. Finally, if a formula � is satisfiable, we shall call a model of
� any assignment � to (possibly a subset of) the variables of � and interpretation of sym-
bols which make the formula true, and we denote this with 𝜇 ⊧ 𝜑 . If � is a model and x is a
variable, we write �[x] for the value of x in �.

Note that we use the symbol ⊧ with different denotations. If � and � are state formulas,
𝜙 ⊧ 𝜓 denotes that � is a logical consequence of � . If � is an interpretation, 𝜇 ⊧ 𝜓 denotes
that � is a model of � . Later, we will introduce transition systems, paths, invariant prop-
erties and LTL properties. If S is a transition system and � an invariant property, S ⊧ 𝜓
denotes that � is an invariant of S. If instead � is a LTL(T) formula and � an infinite-path
of the transition system S, we use 𝜎 ⊧ 𝜓 to denote that the path � satisfies the LTL(T) for-
mula � and S ⊧ 𝜓 to denote that all the infinite paths of S satisfy � . Different usages of ⊧
will be clear from the context.

2.2 SAT and SMT solvers

A SAT solver is a procedure that can decide the satisfiability of a propositional formula �
(typically assumed to be in CNF), i.e. it returns true iff � has at least one model. Modern
SAT solver implementations typically follow the CDCL (Conflict-Driven-Clause-Learn-
ing) architecture [35]. Given a first-order theory T , an SMT solver for T – SMT(T) – is a
procedure that is able to decide the satisfiability of Boolean combinations of (quantifier-
free) propositional atoms and theory atoms in T .1 Examples of useful theories are equality
and uninterpreted functions, difference logic and linear arithmetic, either over the rationals
or the integers, the theory of arrays, that of bit vectors, and their combinations.

The currently most popular approach for solving the SMT(T) problem is the so-called
“lazy” approach [36, 37], also frequently called DPLL(T) or CDCL(T) [38]. The lazy
approach works by combining a propositional SAT solver based on the CDCL algorithm
with a theory solver for T (T -solver), which is a procedure that can decide the satisfiabil-
ity in T of sets/conjunctions of ground atomic formulas and their negations. Essentially,
CDCL is used as an enumerator of truth assignments �i of the atoms of � that proposition-
ally satisfy the input formula, and the T -solver is used for checking the T -satisfiability
of the enumerated assignments: if the current �i is T -satisfiable, then � is T -satisfiable.
Otherwise, if �i is T -unsatisfiable, the T -solver generates an unsatisfiable core �i , i.e. a
subset of �i which is still T -unsatisfiable; the negation of �i , which is a clause that is valid
in T (and therefore called a theory lemma or T -lemma), is then added to the input formula,
and the CDCL solver is called again on the updated formula. The procedure continues until
either a T -satisfiable �i is found, or the problem becomes propositionally unsatisfiable (and
therefore also T -unsatisfiable). In practice, several optimizations and heuristics are applied

1 Here we are implicitly assuming that the ground satisfiability problem for T is decidable. We shall relax
this assumption in Sect. 6.

Formal Methods in System Design

1 3

to make this basic description of the lazy SMT approach competitive. We refer the inter-
ested reader to [36, 37] for more details.

3 Verification modulo theories

3.1 Symbolic fair transition systems

We represent infinite-state systems over a background theory T with signature Σ . A tran-
sition system S is a tuple ⟨X, I,T⟩ where X is a set of (state) variables, I(X) is a Σ-formula
representing the initial states, and T(X,X�) is a Σ-formula representing the transitions
(X� ∶= {x� ∣ x ∈ X} is the set of variables representing the next state of the transition
system).

A state s of a transition system S is an interpretation ⟨M,�s⟩ to the symbols in the sig-
nature Σ and the variables X, where M and �s are respectively the domain and the assign-
ment of the interpretation. The satisfaction relation s ⊧ 𝜙 for a Σ-formula is defined as
usual. We write s′ for the state s where the assignments to the variables x ∈ X from s are
substituted with assignments to the variables x� ∈ X� (i.e., for all x ∈ X , s(x) = s�(x�)). A
finite path (of length k) of S is a finite sequence � ∶= s0, s1,… , sk of states with the same
domain and interpretation of the symbols in Σ (e.g., for a term t ∈ Σ , �si

[t] = �sj
[t] , for any

index i, j) such that s0 ⊧ I , and for all i, 0 ≤ i < k , si, s�i+1 ⊧ T . Notice that the interpretation
of the symbols in the signature Σ is rigid, meaning that the interpretation to uninterpreted
functions and predicates does not change across the states in a path (while the assignments
to the variables X can change). We say that a state s is reachable in S if and only if there
exists a path of S ending in s. The set of reachable states of a transition system represented
with formulas interpreted over theories can be infinite. We denote the set of all states (not
necessarily reachable) of a system with state variables X as SX.

Example 1 S = ⟨{c, d}, c = 0 ∧ d = 0, c� = c + d ∧ d� = d + 1⟩ is an infinite-state tran-
sition system, where {c, d} are integer variables. The initial state s0 of the system has
an assignment �s0

 where �s0
[c] = 0 and �s0

[d] = 0 . At every transition, the system S
increases d by one and increases c by d. A path � ∶= s0, s1, s2 of the system S is such that
𝜇s0

⊧ c = 0 ∧ d = 0 , 𝜇s1
⊧ c = 0 ∧ d = 1, 𝜇s2

⊧ c = 1 ∧ d = 2.

A fair transition system S ∶= ⟨X, I,T ,F⟩ is a transition system with an additional fair-
ness condition F. An infinite path � ∶= s0, s1,… of a fair transition system S is such that
all the states have the same domain and interpretation of symbols in Σ , s0 ⊧ I and for all
i > 0 si−1, s�i ⊧ T . An infinite path is a fair path if for each i ≥ 0 there exists j > i such that
sj ⊧ F (i.e., the path visits the fairness condition F infinitely often).

Example 2 Consider the fair transition system S = ⟨{c, d}, c = 0 ∧ d = 0, (c� = 0 ∧ d
� = 0)

∨(c� = c + d ∧ d
� = d + 1), c > d⟩ , which has a similar transition relation to the

transition system in example 1. The infinite path that keeps incrementing the
value of the c and d variables is a fair path (e.g., the path with the assignments
{c = 0, d = 0}, {c = 0, d = 1}, {c = 1, d = 2}, {c = 3, d = 3},…), while there are
some infinite paths that are not fair (e.g., the path where c and d never change value
{c = 0, d = 0}, {c = 0, d = 0}, {c = 0, d = 0},…), since they don’t reach a state that satis-
fies c < d infinitely often.

 Formal Methods in System Design

1 3

Given two (fair) transition systems S1 ∶= ⟨X1, I1, T1,F1⟩ and S2 ∶= ⟨X2, I2, T2,F2⟩ ,
their synchronous product is S1 × S2 ∶= ⟨X1 ∪ X2, I1 ∧ I2, T1 ∧ T2,F1 ∧ F2⟩.

In the following, we implicitly assume to represent the transition systems over a theory
T with a signature Σ.

3.2 LTL(T): linear temporal logic modulo theory

Linear-time Temporal Logic (LTL) [39] is a modal logic to express sets of infinite traces
of a transition system. We consider LTL(T) formulas [40],2 an extension of LTL where
atomic propositions are first-order predicates over the theory T and with variables X and
X′ . Formally, a LTL(T) formula � is:

where p is a predicate, �1 and �2 are LTL(T) formulas, and t1,… , tk are terms. A term t is:

where f is a function symbol, t1,… , tk are terms, a is a constant, x ∈ X is a variable (in a set
of variables X), and x� ∈ X� is a variable in the set of variables representing the next state.
A predicate of LTL(T) also contains the next state variables X′ as terms. In such way, a
LTL(T) formula can predicate about the next value of a variable, instead of just relating
formulas in the current state and next state of the path with the LTL temporal operator
X . We will use the standard abbreviations F𝜙 ∶= ⊤U𝜙 and G� ∶= ¬F¬� to denote the
“finally” F and “globally” G operator.

In the following we consider infinite paths where all the states have the same domain
and interpretation of symbols in Σ , while the assignments to the set of variables X in the
states can change. Given an infinite path � ∶= s0, s1,… we write �[i] for the i-th element of
� (i.e., si) and we write �i for the suffix of � starting from state i-th (i.e., �i ∶= si, si+1,…).
We define when an infinite path � satisfies the LTL(T) formula � (i.e., 𝜎 ⊧ 𝜙) by induction:

• 𝜎 ⊧ p(t,… , t) iff 𝜎[0], 𝜎[1]� ⊧ p(t,… , t);
• 𝜎 ⊧ ¬p(t,… , t) iff 𝜎[0] ̸⊧ p(t,… , t);
• 𝜎 ⊧ 𝜙1 ∧ 𝜙2 iff 𝜎 ⊧ 𝜙1 and 𝜎 ⊧ 𝜙2;
• 𝜎 ⊧ X𝜙 iff 𝜎1 ⊧ 𝜙;
• 𝜎 ⊧ 𝜙1U𝜙2 iff for some j ≥ 0 , 𝜎j ⊧ 𝜙2 and for all 0 ≤ k < j , 𝜎k ⊧ 𝜙1.

Example 3 Consider for example the LTL formula FG c < d and the path
� = {c = 0, d = 0}, {c = 0, d = 1}� . The path satisfies the formula because it assigns ini-
tially both c and d to 0, and then c to 0 and d to 1 forever.

� ∶= p(t1,… , tk) ∣ �1 ∧ �2 ∣ ¬�1 ∣ X�1 ∣ �1U�2,

t ∶= f (t1,… , tk) ∣ a ∣ x ∣ x�,

2 The work in [40] further introduces event freezing operators “at next” and “at last”, which we do not con-
sider here for simplicity.

Formal Methods in System Design

1 3

3.3 Problem definition

3.3.1 Invariant checking

Given a transition system S = ⟨X, I,T⟩ and formula P(X) over the variables X, the invari-
ant verification problem for S and P is the problem to check if all the reachable states
of S satisfy the formula P. In that case, we say that the transition system S satisfies the
formula P, written as S ⊧ P . The formula P(X) represents a set of “safe” states of the
system, while any state in the complement ¬P is an “unsafe” state. The dual formula-
tion of the invariant verification problem is the reachability problem, which asks if there
exists a reachable state s such that s ⊧ ¬P.

A challenge when checking invariant properties for infinite-state systems is to
compute a possibly infinite set of reachable states. Instead, a central notion to solve
the invariant verification problem for infinite-state systems are inductive invari-
ants: a formula � is an inductive invariant for a transition system S if I(X) ⊧ 𝜓(X) and
𝜓(X) ∧ T(X,X�) ⊧ 𝜓(X�) . We can solve the invariant verification problem by finding an
inductive invariant � such that 𝜓 ⊧ P (i.e., if � is an inductive invariant and 𝜓 ⊧ P , then
S ⊧ P). Note that the set of reachable states R(X) is the strongest inductive invariant (i.e.,
R(X) is an inductive invariant and for any other inductive invariant �(X) we have that
R(X) ⊧ 𝜓(X)).

3.3.2 LTL(T) model checking

The LTL(T) model checking problem is the problem of checking if all the infinite paths
� of a fair transition system S ∶= ⟨X, I,T⟩ satisfy an LTL(T) formula � (i.e., for all infi-
nite paths � of S, 𝜎 ⊧ 𝜙). We denote the LTL(T) verification problem as S ⊧ 𝜙.

In the following, we consider standard reductions [41–43] of the LTL model check-
ing problem S ⊧ 𝜙 to the model checking problem S × S¬𝜙 ⊧ FG¬f¬𝜙 (i.e., S ⊧ 𝜙 if and
only if S × S¬𝜙 ⊧ FG¬f¬𝜙), where S¬� is a transition system with a fairness condition f¬� .
Such reduction allows us to prove that S ̸⊧ 𝜙 by finding a counterexample in the form
of a fair path, i.e., a path that visits the fairness condition f¬� of S × S¬� infinitely many
times. In the following, we assume that the above transformation has been applied to
the LTL(T) model checking problem, and consider a problem in the form S ⊧ FG¬f¬𝜙 ,
where � is a formula whose atoms are either propositional variables or predicates. When
clear from the context, we also drop the subscript ⋅¬� , and simply use FG¬f .

3.4 Algorithms for model checking modulo theories

Symbolic transition systems represented with propositional logic formulas can model
finite-state systems such as hardware design. Several successful symbolic model check-
ing algorithms [4–7] for finite-state systems are based on SAT solvers. Furthermore,
as we highlighted in Sect. 2, in the last two decades there has been an important pro-
gress in deciding the satisfiability of formulas in first-order logic modulo theory. Such
improvements enable a seamless transition of the verification algorithms for finite-state
systems based on SAT solvers to algorithms that verify infinite-state systems, repre-
sented with SMT formulas, based on SMT solvers. In the following, we survey how
the main verification algorithms that have been proposed in the SAT-based setting can

 Formal Methods in System Design

1 3

be naïvely applied to infinite-state systems by simply replacing the underlying decision
procedure (i.e., from a SAT to an SMT solver).

3.4.1 Invariant checking

Bounded Model Checking (BMC). BMC [4] is a symbolic reachability analysis algorithm
that explores paths of a transition system that can be reached in a bounded number of steps k.
BMC was first introduced to find violations to LTL properties for finite-state systems and was
subsequently extended to infinite-state systems [44], substituting the underlying SAT solver
with a SMT solver. BMC encodes the problem of finding a violation to an invariant property P
with a path of length k as follows:

where Xi ∶= {xi ∣ x ∈ X} is a set of copies of the set of variables X indexed with i ∈ ℕ .
The formula BMCk is satisfiable if and only if there exists a finite path � of the transition
system S that reaches a state sk in k steps and sk ̸⊧ P . To find a violation, we encode the
condition BMCk for an increasing value of k, and check each time the satisfiability of the
formula BMCk . Note that different encodings of the BMC problems are possible (e.g., one
may encode the problem of finding violations in any of the i-steps from 0 to k).

-K-Induction. While BMC could, in principle, prove that S ⊧ P by exploring a sufficiently
large bound k, such an upper bound is generally very large for finite-state systems and does
not exist, in general, for infinite-state systems. Thus, in practice BMC is effective only in find-
ing violations to an invariant verification problem. K-induction [5] builds on top of BMC and
generalizes the induction principle to multiple steps of the system with the goal of proving an
invariant property. The k-induction proof consists of a base and an inductive step. The base
step proves that an invariant property P holds for all the states reachable in k − 1 steps. We
prove this step showing that a BMC query similar to Eq. (1), but where the violation of the
property is checked at every time step (i.e.,

⋁k

i=0
¬P(Xi)), is unsatisfiable. The inductive step

proves either that: any path of length k cannot reach a state that was not visited with a path of
length k − 1 (Eq. (2)); or any safe path of length k − 1 cannot be extended to a path of length k
that violates P (Eq. (3)). The formulas that formalize the inductive steps are:

where:

and Xi ≠ Xj ∶=
⋁

x∈X x
i ≠ xj . The simple path formula SIMPLEk restrict the search to

simple paths, paths containing all different states (i.e., paths that never visit a state more
than once). The formula KINDFWk encodes the set of simple paths of length k starting
from an initial state of S. If such formula is unsatisfiable, then there is no path � of length
k that contains an unseen state in a path of length k − 1 . Thus, if the base case holds (i.e.,
all the states visited in the system up to length k − 1 satisfy P) and the formula KINDFWk

(1)BMCk ∶= I(X0) ∧
⋀

0≤i<k

T(Xi,Xi+1) ∧ ¬P(Xk),

(2)KINDFWk ∶= I(X0) ∧ SIMPLEk
,

(3)KINDBWk ∶= SIMPLEk ∧ ¬P(Xk),

(4)SIMPLEk ∶=
⋀

0≤i<k

T(Xi,Xi+1) ∧
⋀

0≤i<k

P(Xi) ∧
⋀

0≤i<j≤k

Xi ≠ Xj,

Formal Methods in System Design

1 3

is unsatisfiable, we can conclude that S ⊧ P since we visited all the states of S. The formula
KINDBWk provides another sufficient condition to prove that S ⊧ P and encodes that an
(uninitialized) path of length k − 1 that is safe can be extended to a path of length k that can
violate P. Also in this case, the simple path formula SIMPLEk encodes the uniqueness of
the states in the suffix. If the base case holds and the formula KINDBWk is unsatisfiable we
can conclude that S ⊧ P.

IC3. IC3[7] is an efficient SAT-based algorithm for the verification of finite-
state systems, with Boolean state variables and propositional logic formulas.
The IC3 algorithm tries to prove that S ⊧ P by finding a suitable inductive invari-
ant F(X) such that F(X) ⊧ P(X) . In order to construct F , IC3 maintains a sequence
of formulas (called trace) F0(X),… ,Fk(X) such that: (i) F0 = I ; (ii) Fi ⊧ Fi+1 ; (iii)
Fi(X) ∧ T(X,X�) ⊧ Fi+1(X

�) ; (iv) for all i < k , Fi ⊧ P . Therefore, each element of the
trace Fi+1 , called a frame, is inductive relative to the previous one, Fi . IC3 strengthens
the frames by finding new relative inductive clauses. A clause c is inductive relative to
the frame F , i.e. F ∧ c ∧ T ⊧ c� , iff the formula

is unsatisfiable, so that a check of relative inductiveness can be directly tackled by a SAT
solver.

At a high level, IC3 proceeds incrementally by alternating two phases: a blocking
phase, and a propagation phase. In the blocking phase, the trace is analyzed to prove
that no intersection between Fk and ¬P(X) is possible. During this phase, the trace is
enriched with additional formulas, which can be seen as strengthening the approxima-
tion of the reachable state space. At the end of the blocking phase, either Fk ⊧ P is
proved or a counterexample is generated.

In the propagation phase, IC3 tries to extend the trace with a new formula Fk+1 ,
moving forward the clauses from preceding Fi’s. If, during this process, two consecu-
tive frames become identical (i.e. Fi = Fi+1), then a fixpoint is reached, and IC3 termi-
nates with Fi being an inductive invariant proving the property.

In the blocking phase IC3 maintains a set of pairs (s, i), where s is a set of states
that can lead to a bad state, and i > 0 is a position in the current trace. New formulas
(in the form of clauses) to be added to the current trace are derived by (recursively)
proving that a cube s of a pair (s, i) is unreachable starting from the formula Fi−1 . This
is done by checking the satisfiability of the formula RelInd(Fi−1, T ,¬s) . If the formula
is unsatisfiable, then ¬s is inductive relative to Fi−1 , and the bad state s can be blocked
at i. This is done by generalizing ¬s to a stronger clause ¬g that is still inductive rela-
tive to Fi−1 , and adding ¬g to Fi . Inductive generalization is a central step of IC3, that
is crucial for the performance of the algorithm. Adding ¬g to Fi blocks not only the
bad cube s, but possibly also many others, thus allowing for a faster convergence of the
algorithm.

If, instead, (5) is satisfiable, then the overapproximation Fi−1 is not strong enough to
show that s is unreachable. In this case, let p be a subset of the states in Fi−1 ∧ ¬s such
that all the states in p lead to a state in s′ in one transition step. Then, IC3 continues by
trying to show that p is not reachable in one step from Fi−2 (that is, it tries to block the
pair (p, i − 1)). This procedure continues recursively, possibly generating other pairs to
block at earlier points in the trace, until either IC3 generates a pair (q, 0), meaning that
the system does not satisfy the property, or the trace is eventually strengthened so that
the original pair (s, i) can be blocked.

(5)RelInd(F, T , c) ∶= F ∧ c ∧ T ∧ ¬c�,

 Formal Methods in System Design

1 3

3.4.2 Liveness checking

Encoding lasso-shaped paths. The liveness verification problem S ⊧ FG¬f amounts to
show that no infinite path in S visits f infinitely often. We can modify the BMC encoding to
find lasso-shaped paths. A path � ∶= s0, si,… sk is lasso-shaped if there exists j < k such
that sk, sj ⊧ T(Xk,Xj) (i.e., the state sk can “loop-back” to the state sj). The path is formed
by a finite path s0,… , sj−1 and a suffix sj,… , sk , which represents a loop. A lasso-shaped
path represents the infinite path of the system where the suffix can be repeated for an infi-
nite number of times. The BMC encoding (1) can be modified to find fair lasso-shaped
paths as follows:

The formula BMCk
f
 is satisfiable if there exists a lasso-shaped path where at least one of the

states in the loop satisfies f.

Liveness to safety reduction. The liveness to safety reduction (L2S) [45] encodes
the liveness model checking problem as an invariant model checking problem.
The L2S encoding transforms the transition system S to the new transition system
SL2S = ⟨X ∪ XL2S, IL2S, TL2S⟩ , where the set of variables XL2S contains a copy of the system
variables and the additional variables {seen, triggered, loop} . The new transition relation
TL2S guesses non-deterministically a state of the system where a loop of a fair path starts
and stores such state in the variables XL2S . When doing so, it also sets the Boolean vari-
able seen to true for recording that a loop started. The transition relation further records
(with the triggered variable) if the fairness condition f has been seen since the start of the
loop, and records if a fair lasso-shaped path for the fairness condition f exists with the
loop variable. In the case S is a finite-state system, the reduction is such that S ⊧ FG¬f
if and only if SL2S ⊧ ¬loop . In the infinite-state case, instead, the L2S reduction can only
find some of the violations to the liveness properties for the system S, i.e., if SL2S ⊧ ¬loop
then S ⊧ FG¬f , but the converse does not hold.

K-Liveness. K-Liveness [46] is an algorithm that reduces the liveness verification prob-
lem S ⊧ FG¬f to a sequence of safety verification problems. The main observation of the
K-Liveness algorithm is that each path � of the system S satisfies f a finite number of times
iff S ⊧ FG¬f . The K-Liveness algorithm finds a non-negative upper bound K on the num-
ber of times a path of S visits a state s that satisfy f. Let the formula #(f) ≥ K be true for a
finite path � of S, written as 𝜋 ⊧ #(f) ≥ K , if the number of times a state satisfying f in the
path � is not greater than K (i.e., #(f) denotes the size of the set {i ∣ 𝜋[i] ⊧ f }). We express
that all the paths of the system S do not reach f more than K times with S ⊧ #(f) ≤ K . We
have that:

The K-Liveness algorithm iteratively finds such K by solving a sequence of verification
problems for an increasing value of K (i.e., the algorithm checks S ⊧ #(f) ≤ 0 , S ⊧ #(f) ≤ 1 ,
...).

(6)BMCk
f
∶= I(X0) ∧

⋀

0≤i<k

T(Xi,Xi+1) ∧
⋁

0≤j<k

(⋀

x∈X

xk = xj ∧
⋁

j≤z<k

f z
)
.

(7)if ∃K ∈ ℕ.S ⊧ #(f) ≤ K then S ⊧ FG¬f .

Formal Methods in System Design

1 3

We can easily reduce each verification problem S ⊧ #(f) ≤ n , for a natural number
n ∈ ℕ , to an invariant verification problem. We first augment the transition system
S with an additional variable c counting the number of times a state satisfies f (i.e.,
the variable c starts from 0 and increments its value by 1 whenever the system visits
a state satisfying f). Then, we verify that S ⊧ c ≤ n with an invariant model checking
algorithm. In the original paper proposing K-Liveness [46] the authors propose an effi-
cient implementation that uses the IC3 algorithm to solve each safety verification prob-
lem. Such implementation exploits the incremental nature of IC3 to reuse all the frames
IC3 learned when solving the problem S ⊧ c ≤ n to solve the next verification problem
S ⊧ c ≤ n + 1 . This optimization is sound since the transition system S does not change
and the property c ≤ n implies c ≤ n + 1 , and both conditions ensure that the invariants
on the frames learned when verifying S ⊧ c ≤ n also hold when verifying S ⊧ c ≤ n + 1.

3.5 Challenges when verifying infinite‑state systems

The algorithms we present above are sound when we apply them to a symbolic fair transi-
tion system and we use SMT to decide satisfiability. However, since both the invariant and
liveness verification problems are undecidable for infinite-state transition systems, the pro-
cedures may not terminate. Furthermore, the procedures above may also not terminate on
decidable subclasses of the verification problem (e.g., safety verification timed automata
[47]) or on specific problem instances that may have a solution (e.g., k-induction and IC3
may be not be able to find an inductive invariant even if one exists). Here, we focus our
attention on the second problem, and we redirect the reader to several of the ad-hoc exten-
sions of the above techniques that target decidable cases for a description of solutions to
the first one (e.g. [48, 49]).

Invariant checking. In the infinite-state setting, Bounded Model Checking, k-induction,
and IC3 will eventually find a violation to a safety property, if such a violation exists. How-
ever, in an infinite-state system there is no maximum depth k that guarantees to visit all the
reachable states (the least number of steps to reach all the reachable states of in an infinite
state system, the diameter, can be unbounded).

Both the k-induction and IC3 algorithms may fail to prove that a property holds. In
k-induction, the inductive check with k steps may not be sufficient to prove the system is
safe, and the simple path condition SIMPLEk can be satisfiable for any k, preventing both
formulas KINDFWk and KINDBWk from ever being unsatisfiable. A naïve extension of the
IC3 algorithm to SMT is not effective because of the blocking phase. When the algorithm
cannot block a pair (s, i), it finds a predecessor state (p, i − 1) to block from an assignment
� satisfying the relative induction formula (5) (i.e., RelInd(Fi−1, T ,¬s)). Such strategies
would block a single state from an infinite set of states, and thus is ineffective. In Sect. 5
we present modifications to the k-induction and IC3 algorithms that efficiently verify a
sequence of finite-state abstractions of the system using counterexample-guided abstraction
refinement (CEGAR) [50].

Example 4 Both k-induction and IC3 will fail to verify that the transition system
S = ⟨{c, d}, c = 0 ∧ d = 0, (c� = c + d ∧ d� = d + 1)⟩ from the Example 1 satisfies the
property d ≤ 3 ∨ c > d . Observe that such property holds, since when d = 4 the variable c
is 4, and then we have that c > d in the following states of the path.

 Formal Methods in System Design

1 3

Applying k-induction would fail: (i) The base step for any k ≥ 0 succeeds (cleary, BMC
cannot find a counterexample); (ii) the KINDFWk formula (2) is always satisfiable, since
every path of length k − 1 can be extended to a k-long path with an “unseen” state (e.g.,
incrementing d by one will obtain a state with a new value of d for the path); (iii) similarly,
the KINDBWk formula (3) is also satisfiable following a similary reasoning.

Applying a naïve version of IC3 would also be ineffective: the algorithm would keep
enumerating states that do not satisfy d ≤ 3 ∨ c > d in the blocking phase. While each one
of such states can be blocked by the previous frame via the the relative inductive check (5),
their number is still infinite, so the algorithm would not terminate.

Liveness checking. One of the main challenges when verifying liveness properties for infi-
nite-state systems is that a violated property is not guaranteed to have a lasso-shaped coun-
terexample (e.g., all counterexamples may be paths where the value of variables diverge).

The BMC encoding shown in (6) only finds lasso-shaped paths, so the algorithm is not
guaranteed to find a counterexample, even when one exists. The algorithm in Sect. 7.3
addresses this issue using the notion of recurrence sets.

Example 5 Consider the fair transition system S = ⟨{c, d}, c ≥ 0, c� = c + d ∧ d� = d + 1,⊤⟩
and the LTL(T) property G c ≤ d . Clearly, S ̸⊧ G c ≤ d . However, BMC would fail since
the transition system has only fair paths that are not lasso-shaped.

The existence of non lasso-shaped paths does not allow to apply the same liveness to
safety [45] reduction for finite-state systems for proving a liveness property. The reduc-
tion works by recoding the occurrence of a lasso-shaped path violating the fairness condi-
tion, so such reduction does not take into account non lasso-shaped paths. In Sect. 7.1 we
describe an algorithm that circumvents such issues using abstraction techniques and well-
founded relations.

Example 6 Consider the fair transition system S = ⟨{c, d}, c ≥ 0, c� = c + d ∧ d� = d + 1,⊤⟩
and the LTL(T) property FG c < d . We have that S ̸⊧ FG c < d since, independently
from the initial value of d, d will eventually be positive and c will eventually become
greater than d. The transition system has only fair paths that are not lasso-shaped.
Such paths are ignored by the L2S reduction that, when applied naïvely, results in a tran-
sition system where the loop variable is never true (i.e., there are no fair paths in the
L2S reduction). In this case, verifying the L2S reduction would wrongly conclude that
S ⊧ FG c < d.

The existence of paths that are not lasso-shaped further affects k-liveness. K-liveness
proves fairness by showing that there exists a bound on the number of times a fairness
property is falsified. Even if a fairness property holds, such bound may not be an integer
number, but a value that depends on a, possibly infinite-valued, variable of the transition
system (e.g., an uninitialized parameter). In Sect. 7.2 we present an algorithm that tackles
such issues in transition systems where the value of a variable diverges along all the com-
putation paths.

Formal Methods in System Design

1 3

Example 7 Consider the fair transition system from Example 6 and the property
FG ¬(c < d) . K-liveness would reduce the check of S ⊧ FG ¬(c < d) to find a bound K on
the number of times S visits a state where c < d . Since the initial value of the variable d is
unknown in the initial state, there is no upper bound on the value of K: after we fix a K, we
can always pick a new path, choosing a smaller initial value for d, where the system visits a
state where c < d for K + 1 times.

4 CEGAR and predicate abstraction

Abstraction [51] is a technique used to reduce the search space while preserving the satis-
faction of some properties. In symbolic model checking, the abstraction yields a simpler
transition system Ŝ , possibly described by a different set of variables (denoted here by X̂).
The abstraction is usually obtained by means of a surjective function � ∶ SX → S

X̂
 , called

abstraction function, that maps the states of a symbolic fair transition system S into states
of Ŝ . The concretization function � ∶ S

X̂
→ 2SX is defined as � (̂s) = {s ∈ SX ∣ �(s) = ŝ} .

The abstraction function � is symbolically represented by a formula H�(X, X̂) such that
s,�s ⊧ H𝛼 iff �(s) = ŝ .

The Counterexample Guided Abstraction Refinement (CEGAR) framework [50] lev-
erages abstraction to create a simplified version of the input transition system, which is
amenable for finite state model checking. The abstraction is typically constructed to be
conservative, that is, every trace in the concrete space has a counterpart in the abstract
space. If there are no property violations in the abstract space, then there are no violations
in the original system. However, if an abstract counterexample exists, there may not be a
corresponding counterexample for the concrete system. Such an abstract counterexample
is then called a spurious counterexample. Then, abstraction-refinement tries to discover a
new abstract model, which contains more detail in order to rule out spurious counterexam-
ples. This is done by extracting information from counterexamples generated by the model
checker. The process is iterated until the property is either proved or disproved. In Fig. 1
we give a pictorial representation of the approach.

In the rest of this Section and in the following one, we focus on the instantiation of the
CEGAR framework to Predicate Abstraction [52], while in Sect. 6 we focus on the instan-
tiation of CEGAR to incremental linearization [11].

Fig. 1 The CEGAR loop for
the transition system S, initial
abstraction � , and property P

Compute the
abstraction
Ŝ = α(S)

S, P, α Model Check
Ŝ |= P̂?

Ŝ
S |= P

Yes

Simulate
Is π̂ spurious?

No, π̂

S �|= P
NoRefinement

Find a new
abstraction α

Yes

 Formal Methods in System Design

1 3

4.1 Computing the predicate abstraction

Predicate Abstraction [52] abstracts a transition system S with a transition system having
as states the (finite) set of truth assignments to a set of predicates ℙ = {p1(X),… , pm(X)} .
A transition between two abstract states ŝi and ŝj in the abstraction is possible iff there exist
two concrete states si and sj such that the evaluation of the predicates in si is ŝi , the evalua-
tion in sj is ŝj , and si, s′j ⊧ T .

Predicate abstraction can be symbolically represented by associating to each predi-
cate p a corresponding Boolean variable xp . We define the abstraction function for
predicate abstraction as:

The abstract initial states, the abstract transition relation, and the abstract fairness con-
dition of the abstract transition system Ŝ = ⟨X

ℙ
, Î, T̂ , F̂⟩ obtained by applying predicate

abstraction to the concrete system are symbolically represented by the Boolean formulas
Î(X

ℙ
) , T̂(X

ℙ
,X�

ℙ
) , and F̂(X

ℙ
) . The formulas are equivalent to the following definitions:

The abstract fair transition system thus obtained is purely Boolean, and can be subjected to
finite-state model checking to verify the abstraction of the properties of interest.

The computation of the abstraction (eqns. (9), (10) and (11)) is a key operation, and
in the literature it has been addressed with several approaches. A first simple approach
is based on encoding the problem in the quantified fragment of the theory T , and on
leveraging an SMT solver to perform the quantified elimination of the concrete vari-
ables X and X′ to obtain the abstract counterpart. This has been done either by using
specialized algorithms such as [53–55] or by leveraging general quantifier elimina-
tion procedures, e.g. [56–59]. All these approaches are subject to the model explosion
problem. Indeed, they all end-up enumerating enough implicants to cover the abstrac-
tion, and this boils down to going through the construction of the corresponding DNF.

The works in [60, 61] tackle the problem of computing the abstraction by integrat-
ing BDD-based quantification techniques with SMT-based constraint solving. These
approaches try to overcome the limitations of the previous approaches by exploiting
the fact that BDDs are a DAG representation of the space that a SAT-based enumera-
tor treats as a tree. In [61] the abstraction problem is no longer seen as a monolithic
quantifier elimination problem, but a conjunctively-partitioned representation of the
formula to quantify is leveraged to reduce the computation burden.

Finally, in [62] the idea of partitioning the computation, initially outlined in [61]
was further expanded by providing a structure-aware abstraction algorithm. The pro-
posed approach first exploits the high-level structure of the system, and partitions the
abstraction problem into the combination of several smaller abstraction problems, still
represented as a formula with quantifiers. Then, the low-level structure of the formula

(8)H
ℙ
(X,X

ℙ
) ∶=

⋀

p∈ℙ

p(X) ↔ xp.

(9)Î(X
ℙ
) ∶= ∃X.(I(X) ∧ H

ℙ
(X,X

ℙ
)),

(10)T̂(X
ℙ
,X�

ℙ
) ∶= ∃X,X�.(T(X,X�) ∧ H

ℙ
(X,X

ℙ
) ∧ H

ℙ
(X�,X�

ℙ
)),

(11)F̂(X
ℙ
) ∶= ∃X.(F(X) ∧ H

ℙ
(X,X

ℙ
)).

Formal Methods in System Design

1 3

(e.g. the occurrence of variables within the quantifiers, the application of low-level
rewriting rules like De-Morgan and quantifier push) is leveraged to further reduce
the scope of quantifiers. The resulting formulas (still with quantifiers) is then given
in input to existing state-of-the-art quantifier elimination approaches like the ones in
[56–61] to obtain a finite-state abstract model.

4.2 Refining the predicate abstraction from counterexamples

Let us now consider a sequence of abstract states ŝ0,⋯ , ŝk (where each abstract state ŝi
is a valuation to the variables X

ℙ
). If the abstract property does not hold in the abstract

model, we generate an abstract counterexample that must be checked for spuriousness,
i.e. we check whether it can be refined in the concrete space. This can be done with a
setting similar to bounded model checking, where each state of both the concrete and
abstract machine are replicated at different time steps, from 0 to k. Checking the spu-
riousness of a counterexample for an invariant property corresponds to checking if the
following formula is unsatisfiable:

Similar considerations also hold in the case the property is a liveness one: if Ŝ does not
have an initial fair path, then the same can also be concluded for S. In this case, the check
for the spuriousness of the counterexample shall also consider the fairness conditions F
and encode a loop enforcing the fairness conditions to hold within the loop.

The main idea behind the refinement phase is to learn more information from the
spurious counterexamples produced and use the information to refine the abstraction in
such a way that it rules out the spurious counterexample. Spurious transitions are those
abstract transitions that do not have any corresponding concrete transitions. If the most
precise abstraction with respect to the given set of predicates is computed, the spurious-
ness of the counterexample would be because of an insufficient number of predicates,
i.e. the absence of information rich enough to capture all the relevant behaviors of the
concrete system, even for the most precise abstraction. Several approaches have been
proposed in the literature to extract new predicates in the refinement. Most of them are
based on the analysis of the unsatisfiable cores or the computation of Craig interpolants
of the spuriousness check formula (12) (e.g., [63, 64]).

5 Invariant checking with implicit predicate abstraction

5.1 Implicit predicate abstraction

As also defined in [51, 65], the abstraction induces an equivalence relation among the
concrete states:

which in the case of predicate abstraction is characterized by the following formula:

(12)I(X0) ∧
⋀

0≤h<k

T(Xh,Xk+1) ∧
⋀

0≤h≤k

(
H

ℙ
(Xh,Xh

ℙ
) ∧ �sh(X

h
ℙ
)
)
.

s1 ∼ s2 ⇔ �(s1) = �(s2),

 Formal Methods in System Design

1 3

The formula EQ
ℙ
 asserts that two concrete states have a consistent evaluation of

predicates. It can be exploited to embed the abstraction into formulas over the concrete
variables, thus reasoning about abstract states without explicitly computing them. This
idea, first proposed [9] and later expanded in [10], takes the name of Implicit Abstrac-
tion (IA).

The clear advantage of IA is that it avoids the computation of the abstract transitions
that must be done upfront in the explicit predicate abstraction and which results typically in
a bottleneck. In fact, in the explicit abstraction case, the model checking algorithm on the
abstract transition system cannot start before computing abstract transition (this is partly
alleviated in Lazy Abstraction [66] where the abstraction is localized and computed on the
fly based on an explicit-state control graph). On the other side, IA reasons over the con-
crete variables and thus, in some cases, cannot exploit simplification available only in the
propositional case.

More in detail, IA embeds the definition of the predicate abstraction in the encoding of
a path. The formula Pathk

ℙ
∶=

⋀
1≤h<k(T(X

h−1
,Xh) ∧ EQ

ℙ
(Xh,X

h
)) ∧ T(X

k−1
,Xk) is satisfi-

able iff there exists a path of k steps in the abstract state space. Intuitively, instead of having
a contiguous sequence of transitions, the encoding represents a sequence of disconnected
transitions where every gap between two transitions is forced to lay in the same abstract
state (see Fig. 2).

We can therefore extend Pathk
ℙ
 to solve an abstract bounded model checking problem.

Suppose we want to verify that a property P(X) holds in the abstract state space in all
abstract states reachable in k abstract steps. We can encode the dual problem into a formula
BMCk

ℙ
 that uses Pathk

ℙ
 to assert that there exists an abstract path, the first state is initial, and

the last state satisfies the abstraction of ¬P . We use again EQ
ℙ
 to build this encoding just

using concrete variables as follows:

5.2 K‑induction with implicit predicate abstraction

Similarly to the encoding of bounded model checking, we can define the abstract version of
the k-induction conditions with IA:

(13)EQ
ℙ
(X,X) ∶=

⋀

p∈ℙ

p(X) ↔ p(X).

BMCk
ℙ
= I(X0) ∧ EQ

ℙ
(X0,X

0

) ∧ Pathk
ℙ
∧ EQ

ℙ
(Xk,X

k
) ∧ ¬P(X

k
).

(14)KINDFWk
ℙ
∶=I(X0) ∧ EQ

ℙ
(X0,X0) ∧ SIMPLEk

ℙ
,

(15)KINDBWk
ℙ
∶=SIMPLEk

ℙ
∧ EQ

ℙ
(Xk,Xk) ∧ ¬P(Xk),

Fig. 2 Abstract path

E
Q

T

E
Q

E
Q

E
Q

T

T

Formal Methods in System Design

1 3

where

Therefore, if BMCk
ℙ
 is unsatand, either KINDFWk

ℙ
 or KINDBWk

ℙ
 is unsat, then we can con-

clude that the invariant is not reachable in the abstract state space (and thus either in the
concrete system).

Notice that we do not use the stronger version of KINDFWk
ℙ
 and KINDBWk

ℙ
 defined in

[5], because they require to express the negation of the abstraction of P, which involves an
existential quantification, and their negation cannot be handled by the satisfiability solver.

5.3 IC3Ia: IC3 with implicit abstraction

Implicit Abstraction provides a simple, yet very effective, way of generalising IC3 from
SAT to SMT. The main idea is that of making IC3 work on the abstract state space defined
by a set of predicates ℙ , and use implicit abstraction to avoid the explicit computation of the
abstract transition relation. In the modified algorithm, which we call IC3Ia, clauses, frames
and cubes are formulas over the set X

ℙ
 of abstract variables. When working in the abstract

space, the critical step for IC3IA is repeatedly checking whether a clause c is inductive rela-
tive to the frame F (where c and F are both formulas over X

ℙ
). This check, if encoded as

RelInd(F, T̂ , c) , would require the explicit construction of T̂ . The key insight underlying
IC3Ia is to use implicit abstraction to perform the check without actually constructing the
abstract transition relation T̂ . This is done by checking the quantifier-free formula:

It can be shown (see [67]) that working with AbsRelInd is equivalent to working
with RelInd on the abstract transition relation T̂ , in the sense that every model � for
AbsRelInd(F, T , c,ℙ) is also a model for RelInd(F, T̂ , c) (when appropriately projected
to X

ℙ
∪ X

ℙ�). The consequence of this is that we can obtain an SMT-aware version of
IC3 operating on a predicate abstraction of the original system by simply replacing the
underlying SAT solver with an SMT solver, and using AbsRelInd instead of RelInd for per-
forming the relative induction checks. Thanks to implicit predicate abstraction, we there-
fore obtain an algorithm that is simple, flexible (automatically supporting all theories that
are handled by the underlying SMT solver), and very competitive in practice [67].

Example 8 Take the transition system and property from Example 4 and the set of predi-
cates ℙ = {(c = 0), (d = 0), (d ≤ 3), (c ≤ d)} . The algorithm eventually checks that
AbsRelInd(F0, T , c0,ℙ) , where F0 ∶= {xc=0, xd=0} , c0 ∶= xc=0 ∧ ¬xd=0 ∧ ¬xd≤3 ∧ xc≤d , and
xp ∈ X

ℙ
 denotes the abstract variable for the predicate p ∈ ℙ (e.g., xd=0 is the abstract vari-

able of the predicate d = 0):

(16)SIMPLEk
ℙ
∶=Pathk

ℙ
∧

⋀

0≤i<j≤k

¬EQ
ℙ
(Xi,Xj).

(17)
AbsRelInd(F, T , c,ℙ) ∶=F(X

ℙ
) ∧ c(X

ℙ
) ∧ H

ℙ
(X,X

ℙ
) ∧ H

ℙ
(X�,X�

ℙ
)∧

EQ
ℙ
(X,X) ∧ T(X,X

�
) ∧ EQ

ℙ
(X

�
,X�) ∧ ¬c(X�

ℙ
).

 Formal Methods in System Design

1 3

Since AbsRelInd(F0, T , c0,ℙ) ⊧ ⊥ , it’s also the case case that RelInd(F0,
�T , c) ⊧ ⊥ in the

abstract system (see [67] for a full example of a run of IC3Ia).

5.4 Refining implicit predicate abstractions

Like all techniques based on predicate abstraction, when IC3Ia finds an abstract counter-
example �̂ ∶= ŝ0, ŝ1,… , ŝk (in the form of an interpretation of

⋃k

i=0
Xi
ℙ
), it must check

whether it can be concretized, i.e. whether there exists a corresponding counterexample in
S. This is done by simulating the abstract counterexample �̂ in the concrete system S, by
encoding all the paths of S up to k steps restricted to �̂ :

where ŝi(Xi
ℙ
)[ℙ(Xi)∕Xi

ℙ
] is the formula obtained from ŝi(Xi

ℙ
) , seen as a conjunctions of lit-

erals, by replacing each Boolean variable in Xi
ℙ
 by the corresponding predicate over Xi.

If (18) is satisfiable, then the interpretation of the concrete variables X0,… ,Xk yields a
concrete counterexample s0, s1,… , sk witnessing the violation of P. Otherwise, �̂ is spuri-
ous, and the abstraction must be refined by adding new predicates. The refinement pro-
cedure is somewhat orthogonal to IC3Ia, and can be done in various ways [66, 68, 69].
The only requirement is that the new set of predicates should be sufficient to remove the
spurious counterexample. A popular approach is to use SMT-based interpolation to dis-
cover new predicates, as described in [68]. Although this technique always returns a set
of predicates that are sufficient to refute the spurious counterexample, it offers no guar-
antee that all the discovered predicates are necessary. In other words, predicate discovery
via interpolation can produce redundant predicates, which cause an increase in the preci-
sion of the predicate abstraction which might be not necessary, thus potentially slowing
down the convergence of IC3Ia. This drawback can however be mitigated by exploiting
implicit abstraction also for detecting redundant predicates. Let ℙnew be the set of predi-
cates produced by the refinement procedure, such that the set ℙ ∪ ℙnew is sufficient to refute

AbsRelInd(F0, T , c0,ℙ0) ∶=

xc=0 ∧ xd=0∧ [F0(Xℙ
)]

xc=0 ∧ ¬xd=0 ∧ ¬xd≤3 ∧ xc≤d∧ [c0(Xℙ
)]

xd=0 ↔ (d = 0) ∧ xc=0 ↔ (c = 0)∧ [H
ℙ
(X,X

ℙ
)]

xd≤3 ↔ (d ≤ 3) ∧ xc≤d ↔ (c ≤ d)∧

x�
d=0

↔ (d� = 0) ∧ x�
c=0

↔ (c� = 0)∧ [H
ℙ
(X�,X�

ℙ
)]

x�
d≤3

↔ (d� ≤ 3) ∧ x�
c≤d

↔ (c� ≤ d�)∧

(d = 0) ↔ (d = 0) ∧ (c = 0) ↔ (c = 0)∧ [EQ
ℙ
(X,X)]

(d ≤ 3) ↔ (d ≤ 3) ∧ (c ≤ d) ↔ (c ≤ d)∧

(c� = c + d) ∧ (d� = d + 1)∧ [T(X,X
�
)]

(d� = 0) ↔ (d� = 0) ∧ (c� = 0) ↔ (c� = 0)∧

(d� ≤ 3) ↔ (d� ≤ 3) ∧ (c� ≤ d�) ↔ (c� ≤ d�)∧ [EQ
ℙ
(X

�
,X�)]

¬(x�
c=0

∧ ¬x�
d=0

∧ ¬x�
d≤3

∧ x�
c≤d

) [¬c0(X
�
ℙ
)]

(18)
⋀

0≤i<k

T(Xi,Xi+1) ∧
⋀

0<i≤k

�si(X
i
ℙ
)[ℙ(Xi)∕Xi

ℙ
],

Formal Methods in System Design

1 3

the abstract counterexample. By definition, this means that �̂ is not a path of the abstract
system Ŝ , i.e. the predicate abstraction of S, wrt. ℙ ∪ ℙnew . Formulating this in terms of
implicit abstraction means that the formula

is unsatisfiable. We can use this fact to check for predicate redundancy, e.g. by heuristi-
cally replacing ℙnew with one of its subsets as long as (19) is still unsatisfiable. In prac-
tice, this can be performed efficiently by exploiting the capability offered by modern
SMT solvers of (i) solving a formula under a set of assumptions, and (ii) producing an
unsatisfiable core of the assumptions in case the formula is not satisfiable. More in detail,
for each predicate p ∈ ℙnew , we can generate a fresh label variable lp . Then, we replace

each formula EQ
ℙnew

(Xi,X
i
) in (19) with

⋀
p∈ℙnew

lp → (p(Xi) ↔ p(X
i
)) (and similarly for

EQ
ℙnew

(X
i+1

,Xi+1)). Finally, we solve under the assumptions {lp ∣ p ∈ ℙnew} , and mark all
the predicates p for which lp is not in the unsat core as redundant.

6 CEGAR via incremental linearization

Predicate abstraction is not the only approach to implement a CEGAR loop. In fact, the tech-
niques presented in the previous sections are not always applicable, since they rely on several
strong assumptions on the ability of the SMT solver: first, the SMT solver is given a large
number of satisfiable queries; second, the SMT solver must expose an incremental interface;
third, it must be able to provide interpolation and quantifier elimination. These requirements
become hard to satisfy when dealing with nonlinear theories, that allow for multiplications
between real- or integer-valued variables, or for transcendental functions such as exponentia-
tion and trigonometric functions. Hence, despite the power of theory solvers based on Cylin-
drical Algebraic Decomposition [70] and effective implementations like Z3 [71], the direct
integration of a nonlinear SMT solver inside the IC3Ia algorithm would not be practical.

We describe a CEGAR loop for the theory of nonlinear arithmetic with transcendental
functions (NTA). The approach, that is not based on predicate abstraction, is called Incremen-
tal Linearization [11] (Fig. 3). The idea is to abstract the VMT(NTA) problem in the com-
bined theory of linear real arithmetic and the theory of equality with uninterpreted functions
(UFLRA). Specifically, nonlinear multiplications and transcendental functions are abstracted
as uninterpreted function symbols. For example, the formula

is abstracted to

(19)

⋀

0<i≤k

�si(X
i
ℙ
)
⋀

0<i<k

(
T(X

i
,X

i+1
)∧

H
ℙ
(Xi,Xi

ℙ
) ∧ H

ℙ
(Xi+1,Xi+1

ℙ
)∧

EQ
ℙ
(Xi,X

i
) ∧ EQ

ℙ
(X

i+1
,Xi+1)∧

H
ℙnew

(Xi,Xi
ℙnew

) ∧ H
ℙnew

(Xi+1,Xi+1
ℙnew

)∧

EQ
ℙnew

(Xi,X
i
) ∧ EQ

ℙnew
(X

i+1
,Xi+1)

)

x ∗ x + y ∗ y ≤ 2 ∧ (x ≥ 1.1 ∨ x ≤ −1.1) ∧ (x + 3 ∗ y ≥ 1.1 ∨ 2 ∗ sin(x) ≤ −1.1)

f∗(x, x) + f∗(y, y) ≤ 2 ∧ (x ≥ 1.1 ∨ x ≤ −1.1) ∧ (x + 3 ∗ y ≥ 1.1 ∨ 2 ∗ fsin(x) ≤ −1.1)

 Formal Methods in System Design

1 3

We notice that the linear multiplications (e.g. 3 ∗ y) are not abstracted, while the nonlinear
applications of ∗ and sin are replaced by the uninterpreted functions f∗(⋅) and fsin(⋅) . This
abstraction is clearly conservative. Hence, if the property holds in the abstract space, then
the concrete system can be deemed to be safe. However, if a counterexample can be found
in the abstract space, a concretization step in VMT(NTA) is required. If the abstract coun-
terexample can be concretized, then the property does not hold. Otherwise, it is necessary
to refine the abstraction by restricting the interpretation of the uninterpreted symbols in
VMT(UFLRA).

Interestingly, the approach builds upon a black-box invariant checker for
VMT(UFLRA), which could be based on a complex abstraction refinement loop as
described in the previous sections. Precise reasoning in NTA is limited to SMT in the
concretization phase, given that the reason for spuriousness is that some uninterpreted
functions may have been misinterpreted. For example, it is possible that the interpre-
tation of the abstraction of multiplication of x and y, referred to as �̂[f∗(x, y)] , does not
respect the semantics of multiplication, i.e. �̂[f∗(x, y)] ≠ �̂[x] ∗ �̂[u] . In order to rule out
such spurious models, various patterns of linear axioms are introduced (see Fig. 4). These
include some basic facts (e.g. sign rules, commutativity, multiplication by zero), monoto-
nicity, and tangent plane approximation. The latter dynamically constrains the multipli-
cation on point (a, b), when the interpretation of f∗(x, y) is such that �̂[f∗(x, y)] ≠ a ∗ b ,
with a = �̂[x] and b = �̂[y] . The idea is to approximate the multiplication function, that is
a hyperbolic paraboloid (Fig. 5, upper left), with a tangent plane centered around (a, b).
In addition to constraining the value on the specific point, we can see that the plane inter-
sects the multiplication curve on straight lines expressible in the form of linear equalities
(Fig. 5, lower left), and in the resulting quadrants it can be used to express upper- and
lower-bounds.

Additional attention is required to deal with approximations of nonlinear transcendental
functions. First, since irrational values are not directly representable, one needs to make
sure that the piece-wise linear functions are correct (over- or under-) approximations,
which depends on the actual concavity of the curve. Second, trigonometric functions are
dealt with by leveraging periodicity, reducing reasoning to the base period between −� and
� and ensuring that all the lemmas can be applied to the other periods. We refer to [11] for
the details.

Despite its simplicity, incremental linearization leads to significant results for VMT(NTA),
both in terms of expressiveness as well as in terms of effectiveness. The approach is motivated
by the fact that many practical applications are “mostly linear”, in the sense that only a small
percentage of the constraints are nonlinear. Hence, the idea is to look for a piece-wise linear
invariant that is strong enough to prove the property, so that expensive nonlinear reasoning is
replaced – as much as possible – by cheaper linear reasoning.

Finally, we note that the idea of incremental linearization not only applies to VMT but also
to SMT(NTA). In fact, incremental linearization is akin to a lemmas-on-demand approach,

Fig. 3 The VMT(NTA) CEGAR
loop via Incremental Lineariza-
tion

Ŝ = α(S)
Abstract NT A functions

as uninterpreted
in UFLRA

S, P, α Ŝ |= P̂
Model Check in UFLRA

Ŝ
S |= P

Yes

Is π̂ spurious?
Simulate in NT A

No, π̂

S �|= P
No

Refine the abstraction α
Add lineariza-

tion axioms (Fig.4)

Yes

Formal Methods in System Design

1 3

where the interpretation of nonlinear multiplications and transcendental functions is progres-
sively restricted by the introduction of lemmas that will rule out spurious abstract models (in
the case of SMT) or counterexamples (in VMT).

Fig. 4 Axioms for nonlinear mul-
tiplication refinement

Fig. 5 A graphical view of tangent plane approximation

 Formal Methods in System Design

1 3

7 LTL(T) model checking

7.1 Liveness to safety via implicit abstraction and well‑founded relations

As described in the previous sections, various approaches to LTL Model Checking reduce
the problem to the verification of an invariant. Such reductions may be neither complete
nor correct in the case of infinite-state systems. Some of the issues are that, on one hand,
if there exists a counterexample, it is not guaranteed that there exists a lasso-shaped one;
on the other hand, if there is no counterexample visiting a live signal infinitely many times,
there may be no bound on the number of such visits.

In order to cope with these issues, in [12], we proposed an approach integrating live-
ness-to-safety with implicit abstraction and well-founded relations. By applying implicit
abstraction to the liveness-to-safety encoding, we can effectively prove the absence of
abstract fair loops without explicitly constructing the abstract state space. The approach
is extended by using termination techniques based on well-founded relations derived from
ranking functions: the idea is to prove that any existing abstract fair loop is covered by a
given set of well-founded relations. Within this framework, k-liveness is integrated as a
generic ranking function. The algorithm iterates by attempting to remove spurious abstract
fair loops: either it finds new predicates, to avoid spurious abstract prefixes, or it introduces
new well-founded relations, based on the analysis of the abstract lasso. The implementation
fully leverages the efficiency and incrementality of the underlying safety checker IC3Ia.

More specifically, after encoding the LTL model checking problem into a liveness prob-
lem in the form FG¬f on a transition system S, we produce a sequence of invariant check-
ing problems S0 ⊧inv 𝜙0 , S1 ⊧inv 𝜙1 , … . For each j, Sj and �j are the result of an encoding
operation dependent on given sets of state predicates P and well-founded relations W : Sj,
ϕj = enCode(S, f, P, W). enCode is a variant of the liveness-to-safety transformation that
includes both implicit predicate abstraction and well-founded relations: if Sj ⊧inv 𝜙j either
there is no abstract fair loop or every such loop is covered by the given set of well-founded
relations. Thus, it ensures that if Sj ⊧inv 𝜙j , then S ⊧ FG¬f , in which case the iteration termi-
nates. If Sj ̸⊧inv 𝜙j , we analyze a (finite) counterexample trace � in Sj to determine whether
it corresponds to an (infinite) counterexample for FG¬f in S. If so, then we conclude that
the property doesn’t hold. Otherwise, if we can conclude that � doesn’t correspond to any
real counterexample in S, we try to extract new predicates P′ and/or well-founded rela-
tions W ′ to produce a refined encoding: Sj+1,�j+1 ∶= enCode (S, f ,P ∪ P�,W ∪W �) , where
P�,W � ∶= enCode (Sj,�,P,W) . If we can neither confirm nor refute the existence of real
counterexamples, we abort the execution, returning “unknown”.3

Example 9 Consider the transition system S = ⟨{c, d}, c = 0 ∧ d ≥ 0, c� = c + 1 ∧ d
� = d,⊤⟩ , the

LTL(T) property FG c > d , and the initial set of predicates ℙ ∶= {c ≤ d, c = 0, 0 ≤ d} .
The algorithm will first find an abstract lasso-shaped counter-example with prefix
{xc≤d, xc=0, x0≤d} and a self loop on the abstract state {xc≤d,¬xc=0, x0≤d} . The algorithm can-
not determine that such abstract counter-example is spurious using bounded model check-
ing, since there is no corresponding lasso-shaped path in S. Instead, the algorithm synthe-
sizes a ranking function d − c , with lower bound −1 ≤ d − c , proving the the abstract loop

3 We might also diverge and/or exhaust resources in various intermediate steps (e.g. in checking Sj ⊧ 𝜙j or
during refinement).

Formal Methods in System Design

1 3

terminates. The algorithm uses the ranking function to get a well-founded relation. We
refer to [12] for the details of the encoding of the ranking function in the liveness-to-safety
reduction: intuitively, the encoding relaxes the loop condition used in L2S (see Sect. 3.4.2),
so that abstract loops that satisfy at least a well founded relation are not considered as vio-
lation for the LTL property.

7.2 The K‑Zeno algorithm

The K-liveness algorithm is sound and complete for finite-state systems (i.e., the implica-
tion in (7) holds also in the other direction) although, in practice, the algorithm is effec-
tive only for proving liveness, rather than finding a violation. The K-liveness algorithm
is sound, however not complete, to prove liveness properties for infinite-state systems.
In an infinite-state system the bound K may not be a specific natural number but instead
may depend on the system variables (the bound K is a function of the state variables of
the transition system S). For example, consider an infinite-state system S with an integer
parameter p ≥ 0 where the condition f can be visited at most p times. In such system the
property S ⊧ FG¬f holds, but K-liveness would never prove that since for all K ∈ ℕ , there
exists a value of p ≥ 0 such that S ⊧ p > K . In practice, once we fix the value of K to an
natural number to check S ⊧ #(f) ≤ K , the path where p = K + 1 is sufficient to show that
S ⊧ #(f) ≤ K.

The above limitation of K-liveness also affects the analysis of infinite-state systems with
paths where the value of a variable diverges. We obtain infinite-state transition systems
with such diverging paths when we encode timed automata [47] and hybrid automata [72],4
two formalisms that model respectively real-time systems and control systems. Both for-
malisms do not exclude fair Zeno paths, infinite paths of the system where the real time
does not diverge. We call non-Zeno paths all the infinite paths where time diverges. How-
ever, the fairness verification problem for timed and hybrid automata does not consider
such Zeno paths, since they unrealistically assume that an infinite number of computa-
tion steps can happen in a finite amount of time [72]. K-liveness would not prove liveness
properties when naïvely applied to the transition system S encoding of a timed or hybrid
automaton that contains Zeno paths where the fairness condition f holds. In fact, for every
possible value of K, the transition system would have an infinite path where the real time
variable does not diverge and where the the condition f holds. This means that, for any
choice of K, we would have that S ⊧ #(f) ≤ K.

The K-Zeno [13] algorithm applies a transformation to the transition system S to con-
sider only occurrences of the fairness condition f on paths where time diverges. In such
transformation the algorithm uses a new transition system S� that introduces a bound � on
the real time elapsed between two consecutive occurrences of the fairness condition f. In
this way, the system only considers occurrences of the condition f that happen on a non-
Zeno path. The liveness verification problem that considers only non-Zeno paths where f
may hold is then:

(20)∃K ⋅ S × S𝛽 ⊧ #(f) ≤ K

4 See [73–76] for details about possible encoding of timed and hybrid systems as infinite-state transition
systems.

 Formal Methods in System Design

1 3

The specific construction of the transition system S� depends on the kind of system to
verify. For example, if the system is a timed automaton (without parameters), the bound
� can be just a constant (the maximum constant in the model or 1). The transition sys-
tem S� may have to capture a symbolic bound �(X) that is a function of the state variables
X, instead of being just a constant, when analyzing more general classes of systems (e.g.,
hybrid automata). The work in [13] shows that there exists a monitor S�(X) that guarantees
a complete reduction in the case of initialized with bounded non-determinism parametric
hybrid automata (i.e., if S ⊧ FG¬f then ∃K.S × S𝛽(X) ⊧ #(f) ≤ K).

7.3 Beyond lasso‑shaped counterexamples

In finite-state systems, if an LTL property is false, there is always a counterexample path
(i.e. a witness) for it which is ultimately periodic (i.e. in a lasso-shaped form). When deal-
ing with the infinite-state case, this is no longer the case, as in general in an infinite-state
system a false LTL property might admit no lasso-shaped witness. Therefore, in order to
effectively find counterexamples for LTL properties in infinite-state systems, it is necessary
to look for ways to encode a more general class of infinite traces.

This problem has been investigated extensively in the context of software (non)termi-
nation. In that setting, closed recurrence sets [77] are used to represent a witness for the
nontermination of some software program. A closed recurrence set consists of a reachable
set of states that is disjoint from the end states and inductive with respect to a left-total
transition relation that underapproximates the transition relation of the program. The set
represents at least one infinite execution for the program: (i) its reachability ensures that
there is some finite execution of the program ending in some state within the set; (ii) since
the set is also inductive, we know that no transition starting from within the set can reach a
state outside of it and (iii) the left-total transition relation ensures that there always exists at
least one successor state satisfying also the transition relation of the program.

However, in the more general context of counterexamples for full LTL properties, recur-
rent sets are not sufficient, as a counterexample trace has the additional requirement of
being fair, i.e. it needs to visit some fair state infinitely often. Unless the set underapproxi-
mates the fair states, without additional information, we cannot conclude that the infinite
executions described by the closed recurrence set are fair.

In order to solve this problem, we have recently generalised the notion of recurrence set
to take fairness conditions into proper account [78]. We split the closed recurrence set into
two components S and D, such that D is a subset of the fair states. The union of S and D
must satisfy the same conditions described above for closed recurrence sets and, in addi-
tion, the left-total transition relation must not allow for infinite sequences of S states: every
state in S must reach a state in D in a finite number of steps. Moreover, in order to aid the
automatic discovery of such generalised recurrence sets, we split the monolithic problem
described above into two orthogonal directions: by segmenting the infinite paths into finite
paths and decomposing the system with respect to some partitioning of the symbols.

More precisely, we segment the fair paths into a concatenation of finite paths: we split S
into multiple regions such that each region represents a set of finite paths that must eventu-
ally reach the following region. Notice that, while each path in a region must be finite, there
might be no upper bound to their length: a region can represent an infinite number of finite
paths with increasing lengths. We call each segment funnel and their concatenation repre-
senting the fair paths funnel-loop. In addition, we decompose the system by partitioning
its symbols. Each component, called E-component (for existential component), describes

Formal Methods in System Design

1 3

the behavior of a subset of the symbols while assuming some properties about the others.
These properties represent the conditions that are necessary for this behavior to be enabled
and we need to prove that such conditions are ensured by some other component.

With this partitioned representation, which we have proven to be both sound and rela-
tively complete, we have then developed a search procedure, based on a combination of
invariant checking with abstraction, bounded model checking and SMT-based synthesis via
quantified reasoning, that is capable of identifying funnel-loops in an automatic manner
[78], with an implementation that significantly outperforms the state of the art on a wide
class of benchmarks.

Example 10 Consider the fair transition system:

The system admits fair paths that are not lasso-shaped. For example, one such path is the
following (where the states show the values for the variables c, n, o, and k is an integer
constant):

We can represent the paths above using a funnel as defined in [78], which intuitively
defines an underapproximation of the original system that contains only fair paths. The
funnel is defined as having a source region S ∶= (o > 0 ∧ n > o) (which is a subset
of the initial states of the system), a destination region D ∶= (o > 0 ∧ o < n ∧ c = 0)
(which is a subset of S consisting of fair states), connected by a transition relation
T ∶= (c < n ∧ c

� = c + 1 ∧ n
� = n ∧ o

� = o) ∨ (c ≥ n ∧ o
� = n ∧ c

� = 0 ∧ n
� = n + 1) , which is

an underapproximation of the transition relation of the system ensuring that eventually D
must be reached when starting from S.5

8 The nuXmv model checker

All the techniques and algorithms described in the previous sections have been imple-
mented in nuXmv [16], a state-of-the-art symbolic model checker for both finite- and
infinite-state synchronous fair transition systems. nuXmv is the successor of nuSmv [17],
the popular symbolic model checker for finite-state systems which was conceived in 1999
within a joint cooperation of the CMU group of Ed Clarke and FBK.6 In some sense, there-
fore, nuXmv carries on the legacy of Ed Clarke and his message of combining theoretical
results with strong practical applications.

From a technical standpoint, nuXmv integrates, extends and complements the func-
tionalities of nuSmv with multiple functionalities to facilitate its deployment in sev-
eral operational industrial and research settings. For finite-state systems, it complements
the basic verification techniques available in nuSmv with a family of new state-of-the-
art SAT-based techniques, including interpolation and IC3. For infinite-state systems,

⟨{c, n, o},⊤, (n > o) ∧ ((c < n ∧ c� = c + 1 ∧ n� = n ∧ o� = o) ∨ (c ≤ n ∧ o� = n)), c = 0⟩.

{0, 1, 0}, {1, 1, 0}, {0, 2, 1}, {1, 2, 1},… , {k − 1, k, k − 1}, {k, k, k − 1}, {0, k + 1, k},…

5 The details are omitted for simplicity. We refer to [78] for a full definition of funnels and their properties.
6 At that time Istituto Trentino di Cultura.

 Formal Methods in System Design

1 3

nuXmv extends the nuSmv language with new data types, namely integers, reals and
unbounded arrays. Figure 6 shows the nuXmv specification for the transition system and
property from Example 4. The example shows how the nuXmv language can express infi-
nite state transition systems, specifying the variables (VAR declarations), the initial condi-
tion (INIT declaration), and the transition relation (TRANS) declaration. Notice that the
nuXmv input language is way richer, allowing to specify, for example, modules, fairness
constraints, and timed transition systems [79]. nuXmv provides advanced SmT-based
model checking techniques and implements all the abstraction-based approaches discussed
in the previous sections (including several explicit computation techniques, e.g., [60–62]).
Moreover, it complements these algorithms with other functionalities whose description is
out of scope of this paper. The interested reader can refer to [16] for detailed discussion of
all the functionalities provided by nuXmv.

nuXmv has been used in a wide range of applications, both at academic and at industrial
level, in different application domains including avionics, railways, automotive, space, and
biological (e.g. [24, 31, 32, 80–84].) Finally, nuXmv is also the back-end of several other
tools, including the KraToS [85] software model checker, the RATSY [86] tool for tempo-
ral logic synthesis, the OCRA [22] platform for contract-based verification, the xSAP [87]
for model-based safety assessment, and the HyCOMP [20] model checker for the verifica-
tion of hybrid systems.

9 Conclusions

In this paper we presented a retrospective on the verification of infinite-state transition sys-
tems expressed symbolically in SMT. This line of work was substantially influenced by
the work of Ed Clarke, based on the ideas on SAT-based model checking and abstraction
refinement. At the methodological level, Clarke always underlined the importance of devel-
oping strong tools and applying them in practical case studies, being enthusiastic about the
work on the NuSMV model checker. This paved the way to the development of the nuXmv
model checker, and its applications to practical industrial case studies.

Challenges for future research include devising effective verification and falsification
algorithms and tools for more expressive classes of VMT problems: parameterized systems
expressed in the quantified theory of arrays [88], timed and hybrid systems [40], sequential
and concurrent software, recurrent neural networks, and the closed-loop combination of
physical systems and control software.

Fig. 6 nuXmv listing for the tran-
sition system of Example 4

Formal Methods in System Design

1 3

Acknowledgements We acknowledge the support of the PNRR project FAIR - Future AI Research
(PE00000013), under the NRRP MUR program funded by the Next Generation EU.

 Availability of data and materials The manuscript has no associated data.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Clarke EM, Emerson EA (1981) Design and synthesis of synchronization skeletons using branching-
time temporal logic. In: Kozen D (ed) Logics of programs, workshop, yorktown heights, New York,
USA, May 1981. Lecture Notes in Computer Science, vol 131, pp 52–71. https:// doi. org/ 10. 1007/
BFb00 25774. https:// doi. org/ 10. 1007/ BFb00 25774

 2. Queille J, Sifakis J (1982) Specification and verification of concurrent systems in CESAR. In: Dezani-
Ciancaglini M, Montanari U (eds) International symposium on programming, 5th colloquium, Torino,
Italy, April 6–8, 1982, Proceedings. Lecture Notes in Computer Science, vol 137, pp 337–351. https://
doi. org/ 10. 1007/3- 540- 11494-7_ 22. https:// doi. org/ 10. 1007/3- 540- 11494-7_ 22

 3. Clarke EM, Emerson EA, Sifakis J (2009) Model checking: algorithmic verification and debugging.
Commun ACM 52(11):74–84. https:// doi. org/ 10. 1145/ 15927 61. 15927 81

 4. Biere A, Cimatti A, Clarke EM, Strichman O, Zhu Y (2003) Bounded model checking. Adv Comput
58:117–148

 5. Sheeran M, Singh S, Stålmarck G (2000) Checking safety properties using induction and a sat-solver.
In: FMCAD. Lecture notes in computer science, vol 1954, pp 108–125

 6. McMillan KL (2003) Interpolation and sat-based model checking. In: CAV. Lecture notes in computer
science, vol 2725, pp 1–13

 7. Bradley AR (2011) SAT-based model checking without unrolling. In: VMCAI. LNCS, vol 6538, pp
70–87

 8. Clarke EM, Grumberg O, Jha S, Lu Y, Veith H (2003) Counterexample-guided abstraction refinement
for symbolic model checking. J ACM 50(5):752–794. https:// doi. org/ 10. 1145/ 876638. 876643

 9. Tonetta S (2009) Abstract model checking without computing the abstraction. In: FM. Lecture notes in
computer science, vol 5850, pp 89–105

 10. Cimatti A, Griggio A, Mover S, Tonetta S (2016) Infinite-state invariant checking with IC3 and predi-
cate abstraction, vol 49, pp 190–218

 11. Cimatti A, Griggio A, Irfan A, Roveri M, Sebastiani R (2018) Incremental linearization for satisfi-
ability and verification modulo nonlinear arithmetic and transcendental functions. ACM Trans Comput
Log 19(3):19–11952. https:// doi. org/ 10. 1145/ 32306 39

 12. Daniel J, Cimatti A, Griggio A, Tonetta S, Mover S (2016) Infinite-state liveness-to-safety via implicit
abstraction and well-founded relations. In: CAV (1). Lecture notes in computer science, vol 9779, pp
271–291

 13. Cimatti A, Griggio A, Mover S, Tonetta S (2014) Verifying LTL properties of hybrid systems with
K-liveness. In: CAV. Lecture notes in computer science, vol 8559, pp 424–440

 14. Cimatti A, Griggio A, Magnago E (2021) Proving the existence of fair paths in infinite-state systems.
In: VMCAI. Lecture notes in computer science, vol 12597, pp 104–126

 15. Cimatti A, Griggio A, Magnago E (2021) Automatic discovery of fair paths in infinite-state transition
systems. In: ATVA. Lecture notes in computer science, vol 12971, pp 32–47

 16. Cavada R, Cimatti A, Dorigatti M, Griggio A, Mariotti A, Micheli A, Mover S, Roveri M, Tonetta S
(2014) The nuxmv symbolic model checker. In: CAV. Lecture notes in computer science, vol 8559, pp
334–342

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/3230639

 Formal Methods in System Design

1 3

 17. Cimatti A, Clarke EM, Giunchiglia E, Giunchiglia F, Pistore M, Roveri M, Sebastiani R, Tacchella A
(2002) Nusmv 2: an opensource tool for symbolic model checking. In: CAV. Lecture notes in computer
science, vol 2404, pp 359–364

 18. Cimatti A, Griggio A, Schaafsma BJ, Sebastiani R (2013) The MathSAT5 SMT Solver. In: Piterman
N, Smolka SA (eds) TACAS. LNCS, vol 7795, pp 93–107

 19. Cimatti A, Griggio A, Tonetta S (2021) The VMT-LIB language and tools. CoRR arXiv: abs/ 2109.
12821

 20. Cimatti A, Griggio A, Mover S, Tonetta S (2015) Hycomp: an smt-based model checker for hybrid
systems. In: TACAS. Lecture notes in computer science, vol 9035, pp 52–67

 21. Bozzano M, Cimatti A, Gario M, Jones D, Mattarei C (2021) Model-based safety assessment of a tri-
ple modular generator with xsap. Formal Aspects Comput 33(2):251–295

 22. Cimatti A, Dorigatti M, Tonetta S (2013) OCRA: a tool for checking the refinement of temporal con-
tracts. In: ASE. IEEE, pp 702–705

 23. Pakonen A (2021) Model-checking infinite-state nuclear safety i &c systems with nuxmv. In: INDIN.
IEEE, pp 1–6

 24. Aluf-Medina M, Korten T, Raviv A, Jr, DVN, Kugler H (2021) Formal semantics and verification of
network-based biocomputation circuits. In: VMCAI. Lecture notes in computer science, vol 12597, pp
464–485

 25. Amendola A, Becchi A, Cavada R, Cimatti A, Griggio A, Scaglione G, Susi A, Tacchella A, Tessi M
(2020) A model-based approach to the design, verification and deployment of railway interlocking sys-
tem. In: ISoLA (3). Lecture notes in computer science, vol 12478, pp 240–254

 26. Limbrée C, Cappart Q, Pecheur C, Tonetta S (2016) Verification of railway interlocking: composi-
tional approach with OCRA. In: RSSRail. Lecture notes in computer science, vol 9707, pp 134–149

 27. Bozzano M, Cimatti A, Pires AF, Jones D, Kimberly G, Petri T, Robinson R, Tonetta S (2015) Formal
design and safety analysis of AIR6110 wheel brake system. In: CAV (1). Lecture notes in computer
science, vol 9206, pp 518–535

 28. Gario M, Cimatti A, Mattarei C, Tonetta S, Rozier KY (2016) Model checking at scale: automated air
traffic control design space exploration. In: CAV (2). Lecture notes in computer science, vol 9780, pp
3–22

 29. Alaña E, Naranjo H, Yushtein Y, Bozzano M, Cimatti A, Gario M, de Ferluc E, Garcia G (2012) Auto-
mated generation of FDIR for the compass integrated toolset (AUTOGEF). DASIA 2012

 30. Sahu S, Schorr R, Medina-Bulo I, Wagner MF (2020) Model translation from papyrus-rt into the
nuxmv model checker. In: SEFM. Lecture notes in computer science, vol 12524, pp 3–20

 31. Gidey HK, Collins A, Marmsoler D (2019) Modeling and verifying dynamic architectures with factum
studio. In: FACS. Lecture notes in computer science, vol 12018, pp 243–251

 32. Bukhari SAA, Khalid F, Hasan O, Shafique M, Henkel J (2020) Toward model checking-driven fair
comparison of dynamic thermal management techniques under multithreaded workloads. IEEE Trans
Comput Aided Des Integr Circuits Syst 39(8):1725–1738

 33. Tseitin GS (1968) On the complexity of derivation in propositional calculus. Stud Constr Math Math
Logic 2:115–125

 34. Enderton HB (2001) A mathematical introduction to logic, 2nd edn. Academic Press
 35. Marques-Silva J, Lynce I, Malik S (2009) Conflict-driven clause learning sat solvers. Handb Satisfiabil

185
 36. Sebastiani R (2007) Lazy satisfiability modulo theories. J Satisfiabil Boolean Model Comput JSAT

3(3–4):141–224
 37. Barrett CW, Sebastiani R, Seshia SA, Tinelli C (2009) Satisfiability modulo theories. In: Biere A,

Heule M, van Maaren H, Walsh T (eds) Handbook of satisfiability. Frontiers in artificial intelligence
and applications, vol 185. IOS Press, pp 825–885

 38. Nieuwenhuis R, Oliveras A, Tinelli C (2006) Solving SAT and SAT Modulo Theories: from an abstract
Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J ACM 53(6):937–977. https:// doi. org/ 10.
1145/ 12178 56. 12178 59

 39. Pnueli A (1977) The temporal logic of programs. In: FOCS, pp 46–57
 40. Cimatti A, Griggio A, Magnago E, Roveri M, Tonetta S (2020) Smt-based satisfiability of first-order

LTL with event freezing functions and metric operators. Inf Comput 272:104502
 41. Vardi MY (1995) An automata-theoretic approach to linear temporal logic. In: Banff higher order

workshop, pp 238–266
 42. Claessen K, Eén N, Sterin B (2013) A circuit approach to LTL model checking. In: FMCAD. IEEE,

pp 53–60
 43. Clarke EM, Grumberg O, Hamaguchi K (1997) Another look at LTL model checking. Formal

Methods Syst Design 10(1):47–71

http://arxiv.org/2109.12821
http://arxiv.org/2109.12821
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859

Formal Methods in System Design

1 3

 44. de Moura LM, Rueß H, Sorea M (2002) Lazy theorem proving for bounded model checking over
infinite domains. In: CADE. Lecture notes in computer science, vol 2392, pp 438–455

 45. Biere A, Artho C, Schuppan V (2002) Liveness checking as safety checking. Electron Not Theor
Comput Sci 66(2):160–177

 46. Claessen K, Sörensson N (2012) A liveness checking algorithm that counts. In: Cabodi G, Singh S
(eds) FMCAD. IEEE, pp 52–59

 47. Alur R, Dill DL (1991) The theory of timed automata. In: REX Workshop. Lecture notes in com-
puter science, vol 600, pp 45–73

 48. Kloos J, Majumdar R, Niksic F, Piskac R (2013) Incremental, inductive coverability. In: CAV. Lec-
ture notes in computer science, vol 8044, pp 158–173

 49. Kindermann R, Junttila TA, Niemelä I (2012) Smt-based induction methods for timed systems. In:
FORMATS. Lecture notes in computer science, vol 7595, pp 171–187

 50. Clarke EM, Grumberg O, Jha S, Lu Y, Veith H (2000) Counterexample guided abstraction refine-
ment. In: Emerson EA, Sistla AP (eds) CAV. LNCS, vol 1855, pp 154–169

 51. Clarke EM, Grumberg O, Long DE (1994) Model checking and abstraction. ACM Trans Program
Lang Syst 16(5):1512–1542. https:// doi. org/ 10. 1145/ 186025. 186051

 52. Graf S, Saidi H (1997) Construction of abstract state graphs with PVS. In: Grumberg O (ed) Proc.
9th international conference on computer aided verification (CAV’97). LNCS, vol 1254, pp 72–83

 53. Lahiri SK, Bryant RE, Cook B (2003) A symbolic approach to predicate abstraction. In: Jr, WAH,
Somenzi F (eds) Computer aided verification, 15th international conference, CAV 2003, Boulder,
CO, USA, July 8–12, 2003, Proceedings. Lecture notes in computer science, vol 2725, pp 141–153.
https:// doi. org/ 10. 1007/ 978-3- 540- 45069-6_ 15

 54. Lahiri SK, Nieuwenhuis R, Oliveras A (2006) SMT techniques for fast predicate abstraction. In:
Ball T, Jones RB (eds) Computer aided verification, 18th international conference, CAV 2006,
Seattle, WA, USA, August 17–20, 2006, Proceedings. Lecture Notes in Computer Science, vol
4144, pp 424–437. https:// doi. org/ 10. 1007/ 11817 963_ 39

 55. Lahiri SK, Ball T, Cook B (2007) Predicate abstraction via symbolic decision procedures. Log
Methods Comput Sci. https:// doi. org/ 10. 2168/ LMCS- 3(2:1) 2007

 56. Schrijver A (1998) Theory of linear and integer programming. Wiley, pp 155–156
 57. Loos R, Weispfenning V (1993) Applying linear quantifier elimination. Comput J 36(5):450–462
 58. Monniaux D (2008) A quantifier elimination algorithm for linear real arithmetic. In: Cervesato

I, Veith H, Voronkov A (eds) Logic for programming, artificial intelligence, and reasoning, 15th
international conference, LPAR 2008, Doha, Qatar, November 22–27, 2008. Proceedings. Lecture
Notes in Computer Science, vol 5330, pp 243–257. https:// doi. org/ 10. 1007/ 978-3- 540- 89439-1_ 18.
https:// doi. org/ 10. 1007/ 978-3- 540- 89439-1_ 18

 59. Monniaux D (2010) Quantifier elimination by lazy model enumeration. In: Touili T, Cook B, Jack-
son PB (eds) Computer aided verification, 22nd international conference, CAV 2010, Edinburgh,
UK, July 15–19, 2010. Proceedings. Lecture notes in computer science, vol 6174, pp 585–599.
https:// doi. org/ 10. 1007/ 978-3- 642- 14295-6_ 51. https:// doi. org/ 10. 1007/ 978-3- 642- 14295-6_ 51

 60. Cavada R, Cimatti A, Franzén A, Kalyanasundaram K, Roveri M, Shyamasundar RK (2007) Com-
puting predicate abstractions by integrating bdds and SMT solvers. In: Formal methods in com-
puter-aided design, 7th international conference, FMCAD 2007, Austin, Texas, USA, November
11–14, 2007, Proceedings, pp 69–76. IEEE Computer Society. https:// doi. org/ 10. 1109/ FAMCAD.
2007. 35

 61. Cimatti A, Franzén A, Griggio A, Kalyanasundaram K, Roveri M (2010) Tighter integration of
bdds and SMT for predicate abstraction. In: Micheli GD, Al-Hashimi BM, Müller W, Macii E (eds)
Design, automation and test in Europe, DATE 2010, Dresden, Germany, March 8–12, 2010. IEEE
Computer Society, pp 1707–1712. https:// doi. org/ 10. 1109/ DATE. 2010. 54570 90

 62. Cimatti A, Dubrovin J, Junttila TA, Roveri M (2009) Structure-aware computation of predicate
abstraction. In: Proceedings of 9th international conference on formal methods in computer-aided
design, FMCAD 2009, 15–18 November 2009, Austin, Texas, USA. IEEE, pp 9–16. https:// doi. org/
10. 1109/ FMCAD. 2009. 53511 49

 63. Gupta A, Strichman O (2005) Abstraction refinement for bounded model checking. In: CAV. Lec-
ture notes in computer science, vol 3576, pp 112–124

 64. Cimatti A, Griggio A, Sebastiani R (2010) Efficient generation of craig interpolants in satisfiability
modulo theories. ACM Trans Comput Log 12(1):7–1754

 65. Clarke EM, Grumberg O, Peled DA (2001) Model checking. MIT Press. http:// books. google. de/ books?
id= Nmc4w EaLXF EC

 66. Henzinger TA, Jhala R, Majumdar R, Sutre G (2002) Lazy abstraction. In: POPL, pp 58–70

https://doi.org/10.1145/186025.186051
https://doi.org/10.1007/978-3-540-45069-6_15
https://doi.org/10.1007/11817963_39
https://doi.org/10.2168/LMCS-3(2:1)2007
https://doi.org/10.1007/978-3-540-89439-1_18
https://doi.org/10.1007/978-3-540-89439-1_18
https://doi.org/10.1007/978-3-642-14295-6_51
https://doi.org/10.1007/978-3-642-14295-6_51
https://doi.org/10.1109/FAMCAD.2007.35
https://doi.org/10.1109/FAMCAD.2007.35
https://doi.org/10.1109/DATE.2010.5457090
https://doi.org/10.1109/FMCAD.2009.5351149
https://doi.org/10.1109/FMCAD.2009.5351149
http://books.google.de/books?id=Nmc4wEaLXFEC
http://books.google.de/books?id=Nmc4wEaLXFEC

 Formal Methods in System Design

1 3

 67. Cimatti A, Griggio A, Mover S, Tonetta S (2016) Infinite-state invariant checking with IC3 and predi-
cate abstraction. Formal Methods Syst Des 49(3):190–218. https:// doi. org/ 10. 1007/ s10703- 016- 0257-4

 68. Henzinger TA, Jhala R, Majumdar R, McMillan KL (2004) Abstractions from proofs. In: POPL, pp
232–244

 69. Ball T, Podelski A, Rajamani SK (2002) Relative completeness of abstraction refinement for software
model checking. In: Katoen J, Stevens P (eds) TACS. LNCS, vol 2280, pp 158–172

 70. Collins GE (1975) Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Automata theory and formal languages. Lecture notes in computer science, vol 33,
pp 134–183

 71. Jovanovic D, de Moura LM (2012) Solving non-linear arithmetic. In: IJCAR. Lecture notes in com-
puter science, vol 7364, pp 339–354

 72. Henzinger TA (1996) The theory of hybrid automata. In: LICS. IEEE Computer Society, pp 278–292
 73. Audemard G, Cimatti A, Kornilowicz A, Sebastiani R (2002) Bounded model checking for timed sys-

tems. In: FORTE. Lecture notes in computer science, vol 2529, pp 243–259
 74. Niebert P, Mahfoudh M, Asarin E, Bozga M, Maler O, Jain N (2002) Verification of timed automata

via satisfiability checking. In: FTRTFT. Lecture notes in computer science, vol 2469, pp 225–244
 75. Audemard G, Bozzano M, Cimatti A, Sebastiani R (2005) Verifying industrial hybrid systems with

mathsat. Electron Not Theor Comput Sci 119(2):17–32
 76. Cimatti A, Mover S, Tonetta S (2014) Quantifier-free encoding of invariants for hybrid systems. For-

mal Methods Syst Des 45(2):165–188
 77. Cook B, Fuhs C, Nimkar K, O’Hearn PW (2014) Disproving termination with overapproximation. In:

FMCAD. IEEE, pp 67–74
 78. Cimatti A, Griggio A, Magnago E (2022) LTL falsification in infinite-state systems. Inf Comput

289:104977. https:// doi. org/ 10. 1016/j. ic. 2022. 104977
 79. Cimatti A, Griggio A, Magnago E, Roveri M, Tonetta S (2019) Extending nuxmv with timed transition

systems and timed temporal properties. In: CAV (1). Lecture notes in computer science, vol 11561, pp
376–386

 80. Miller SP, Whalen MW, Cofer DD (2010) Software model checking takes off. Commun ACM
53(2):58–64. https:// doi. org/ 10. 1145/ 16463 53. 16463 72

 81. Ferrante O, Benvenuti L, Mangeruca L, Sofronis C, Ferrari A (2012) Parallel NuSMV: a NuSMV
extension for the verification of complex embedded systems. In: Ortmeier F, Daniel P (eds)
SAFECOMP Workshops. LNCS, vol 7613, pp 409–416

 82. Cimatti A, Corvino R, Lazzaro A, Narasamdya I, Rizzo T, Roveri M, Sanseviero A, Tchaltsev A
(2012) Formal verification and validation of ERTMS industrial railway train spacing system. In: Mad-
husudan P, Seshia SA (eds) CAV. LNCS, vol 7358, pp 378–393

 83. Bozzano M, Cimatti A, Katoen J-P, Nguyen VY, Noll T, Roveri M, Wimmer R (2010) A model
checker for AADL. In: Touili T, Cook B, Jackson P (eds) CAV. LNCS, vol 6174, pp 562–565

 84. Chiappini A, Cimatti A, Macchi L, Rebollo O, Roveri M, Susi A, Tonetta S, Vittorini B (2010) For-
malization and validation of a subset of the european train control system. In: Kramer J, Bishop J,
Devanbu PT, Uchitel S (eds) ICSE (2). ACM, pp 109–118

 85. Cimatti A, Griggio A, Micheli A, Narasamdya I, Roveri M (2011) Kratos: a software model checker
for SystemC. In: Gopalakrishnan G, Qadeer S (eds) CAV. LNCS, vol 6806, pp 310–316

 86. Bloem R, Cimatti A, Greimel K, Hofferek G, Könighofer R, Roveri M, Schuppan V, Seeber R (2010)
RATSY: a new requirements analysis tool with synthesis. In: Touili T, Cook B, Jackson P (eds) CAV.
LNCS, vol 6174, pp 425–429

 87. Bittner B, Bozzano M, Cavada R, Cimatti A, Gario M, Griggio A, Mattarei C, Micheli A, Zampedri G
(2016) The xsap safety analysis platform. In: TACAS. Lecture notes in computer science, vol 9636, pp
533–539

 88. Cimatti A, Griggio A, Redondi G (2021) Universal invariant checking of parametric systems with
quantifier-free SMT reasoning. In: CADE. Lecture notes in computer science, vol 12699, pp 131–147

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1007/s10703-016-0257-4
https://doi.org/10.1016/j.ic.2022.104977
https://doi.org/10.1145/1646353.1646372

	Verification modulo theories
	Abstract
	1 Introduction
	2 From SAT to SMT
	2.1 First-order notation
	2.2 SAT and SMT solvers

	3 Verification modulo theories
	3.1 Symbolic fair transition systems
	3.2 LTL( ): linear temporal logic modulo theory
	3.3 Problem definition
	3.3.1 Invariant checking
	3.3.2 LTL( ) model checking

	3.4 Algorithms for model checking modulo theories
	3.4.1 Invariant checking
	3.4.2 Liveness checking

	3.5 Challenges when verifying infinite-state systems

	4 CEGAR and predicate abstraction
	4.1 Computing the predicate abstraction
	4.2 Refining the predicate abstraction from counterexamples

	5 Invariant checking with implicit predicate abstraction
	5.1 Implicit predicate abstraction
	5.2 K-induction with implicit predicate abstraction
	5.3 IC3ia: IC3 with implicit abstraction
	5.4 Refining implicit predicate abstractions

	6 CEGAR via incremental linearization
	7 LTL(T) model checking
	7.1 Liveness to safety via implicit abstraction and well-founded relations
	7.2 The K-Zeno algorithm
	7.3 Beyond lasso-shaped counterexamples

	8 The nuXmv model checker
	9 Conclusions
	Acknowledgements
	References

