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Abstract
In this paper, we consider the problem of model checking fair transition systems expressed 
symbolically in the framework of Satisfiability Modulo Theories. This problem, referred 
to as Verification Modulo Theories, is tackled by combining two key elements from the 
legacy of Ed Clarke: SAT-based verification and abstraction refinement. We show how fun-
damental SAT-based algorithms have been lifted to deal with the extended expressiveness 
with a tight integration of abstraction within a CEGAR loop. In turn, the case of nonlinear 
theories is based on a CEGAR loop over the linear case. These two elements have also 
deeply impacted the development of the NuSMV model checker, born from a joint project 
between FBK and CMU, and its successor nuXmv, whose core integrates SMT-based tech-
niques for VMT.
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1  Introduction

In the early 80’s, Edmund Clarke coauthored one of the papers that gave birth to the field 
of Model Checking [1, 2], for which he received the 2007 ACM Turing Award [3]. Sub-
stantial breakthrough came from Clarke’s work on Bounded Model Checking [4], with two 
key insights. The first was to consider the problem of debugging, giving up completeness 
and focusing on the analysis of bounded traces. The second was to understand the potential 
for SAT-based techniques as a possible replacement of BDDs in symbolic model checking. 
This paved the way to the development of SAT-based verification techniques of increas-
ing power, from K-induction [5], to interpolation [6] and IC3 [7]. Later, Clarke and his 
colleagues introduced the fundamental concept of Counter-Example Guided Abstraction 
Refinement (CEGAR) [8]. CEGAR is an automated approach that combines the idea of 
reasoning in an abstract space, thus eliminating hopefully irrelevant details, with the idea 
of selectively introducing additional information based on spurious counterexamples.

These works heavily influenced the field of formal verification, and our own research in 
the last two decades. In this paper, we give an overview of our work on Verification Modulo 
Theories (VMT). VMT is the problem of model checking fair transition systems expressed 
symbolically in the framework of Satisfiability Modulo Theories (SMT). The framework 
is very appealing, because it is generic: similarly to the case of SMT, the expressiveness 
of the transition system depends on the background theory. This gives the ability to easily 
represent various kinds of infinite-state transition systems, and to express temporal proper-
ties with a background theory, in particular Linear-time Temporal Logic modulo Theory 
(LTL(T)). In a nutshell, this research can be seen as generalizing SAT-based verification to 
the case of infinite-state transition systems, leveraging the enormous progress of the field 
of SMT, by tightly integrating the computation of effective abstractions.

We first consider the problem of invariant checking, by generalizing to the infinite-state 
case two SAT-based algorithms, K-induction and IC3, by means of predicate abstraction. 
In particular, we rely on the idea of implicit predicate abstraction [9] to avoid the bot-
tleneck resulting from the eager computation of the abstract space. This enables a tighter 
integration of the abstraction within a CEGAR loop, as the refinement can be achieved 
incrementally. The resulting algorithms are able to deal with huge numbers of predicates, 
which are completely out of reach in the eager case [10].

Then, we consider invariant checking in the presence of nonlinear theories. This case 
can not be easily dealt with by a simple adaptation of the techniques above, since the 
SMT solvers are, in the case of nonlinear theories, currently unable to fulfill the require-
ments (interpolation, quantifier elimination) imposed by the algorithms. Hence, we adopt a 
CEGAR loop where nonlinear operators (e.g. multiplication, transcendental functions) are 
modeled as uninterpreted functions, and whose interpretation is progressively restricted by 
means of piecewise-linear constraints [11].

The algorithms for invariant verification lay the foundations to deal with the case of 
temporal properties. Based on the idea of invariant checking, temporal logic model check-
ing is tackled by considering specialized algorithms for the two complementary cases of 
proving and disproving LTL(T) properties. The first one is based on generalizations of 
the liveness-to-safety and K-liveness algorithms, with extensions specific to deal with 
infinite-state transition systems. In [12], implicit predicate abstraction is used to integrate 
liveness-to-safety and well-founded relations to prove LTL(T) properties. Spurious abstract 
lasso-shaped counterexamples that are not covered by the well-founded relations are used 
to find new predicates or new relations in a generalized CEGAR. In [13], K-liveness is 
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extended for timed systems to avoid spurious counterexamples based on Zeno behaviors. 
When counting the number of occurrences of a live signal to prove an LTL(T) property, the 
minimal time between two occurrences is bounded by a symbolic expression derived from 
the model. The second dual case of finding violations to an LTL(T) property is hindered by 
the fact that, differently from the finite-state case, false temporal properties may not admit 
lasso-shaped counterexamples. The idea is hence to provide an underapproximation of the 
model that only contains counterexample traces. The underapproximation is obtained by a 
search algorithm that segments the execution trace into a sequence of regions, whose states 
are eventually “funneled” into the following one, so that progress towards a fair region con-
dition is ensured [14, 15].

All the above algorithms have been implemented in the nuXmv model checker [16], a 
successor of the NuSMV model checker [17], born from a joint project between FBK and 
CMU. nuXmv integrates at its core the MathSAT [18] SMT solver to support a number 
of SMT-based techniques for VMT, and supports the standardized VMT language [19]. 
In turn, nuXmv is at the core of the HyCOMP [20] model checker for hybrid automata, 
the xSAP [21] tool for safety assessment, and of the OCRA [22] tool for contract-based 
design. The techniques described in this paper have been applied in several industrial set-
tings: nuclear [23], biological [24], railways [25, 26], avionics [27], space [28, 29], soft-
ware engineering [30, 31], and multi-core design [32].

This paper is structured as follows. In Sect. 2, we overview Satisfiability Modulo Theo-
ries. In Sect. 3, we define the problem of Verification Modulo Theories. In Sect. 4, we dis-
cuss implicit predicate abstraction and refinement. In Sect. 5, we overview the abstraction-
based algorithms for invariant checking, and, in Sect. 6, we discuss the extension to the 
nonlinear case by way of incremental linearization. In Sect. 7, we present the algorithms 
for LTL(T) model checking. In Sect. 8, we overview the NuSMV and nuXmv verification 
engines. In Sect. 9 we draw some conclusions.

2 � From SAT to SMT

2.1 � First‑order notation

We work in the setting of standard first order logic. We assume to be given a signature Σ of 
function and predicate symbols. A 0-ary function symbol is called a constant. A Σ-term is 
a first-order term built out of function symbols and variables. If t1,… , tn are Σ-terms and p 
is a predicate symbol, then p(t1,… , tn) is a Σ-atom. A Σ-formula � is built in the usual way 
out of the universal and existential quantifiers, Boolean connectives, and Σ-atoms. When Σ 
is implicit, we omit it and just talk about terms, atoms, and formulas. A literal is either an 
atom or its negation. We call a formula quantifier-free if it does not contain quantifiers, and 
ground if it does not contain free variables.

A clause is a disjunction of literals. A formula is said to be in conjunctive normal form 
(CNF) if it is a conjunction of clauses. For every non-CNF formula � , an equisatisfiable 
CNF formula � can be generated in polynomial time [33].

We also assume the usual first-order notions of interpretation, satisfiability, validity, 
logical consequence, and theory, as given, e.g., in [34]. We write Γ ⊧ 𝜙 to denote that the 
formula � is a logical consequence of the (possibly infinite) set Γ of formulas. A first-order 
theory, T  , is a set of first-order sentences. A structure A is a model of a theory T  if A 
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satisfies every sentence in T  . A formula is satisfiable in T (or T  -satisfiable) if it is satisfi-
able in a model of T .

In what follows, with a little abuse of notation, we might denote conjunctions of literals 
l1 ∧… ∧ ln as sets {l1,… , ln} and vice versa. If � ≡ {l1,… , ln} , we might write ¬� to mean 
¬l1 ∨… ∨ ¬ln . Moreover, following the terminology of the SAT and SMT communities, 
we shall refer to predicates of arity zero as propositional variables, and to uninterpreted 
constants as theory variables. Finally, if a formula � is satisfiable, we shall call a model of 
� any assignment � to (possibly a subset of) the variables of � and interpretation of sym-
bols which make the formula true, and we denote this with 𝜇 ⊧ 𝜑 . If � is a model and x is a 
variable, we write �[x] for the value of x in �.

Note that we use the symbol ⊧ with different denotations. If � and � are state formulas, 
𝜙 ⊧ 𝜓 denotes that � is a logical consequence of � . If � is an interpretation, 𝜇 ⊧ 𝜓 denotes 
that � is a model of � . Later, we will introduce transition systems, paths, invariant prop-
erties and LTL properties. If S is a transition system and � an invariant property, S ⊧ 𝜓 
denotes that � is an invariant of S. If instead � is a LTL(T  ) formula and � an infinite-path 
of the transition system S, we use 𝜎 ⊧ 𝜓 to denote that the path � satisfies the LTL(T  ) for-
mula � and S ⊧ 𝜓 to denote that all the infinite paths of S satisfy � . Different usages of ⊧ 
will be clear from the context.

2.2 � SAT and SMT solvers

A SAT solver is a procedure that can decide the satisfiability of a propositional formula � 
(typically assumed to be in CNF), i.e. it returns true iff � has at least one model. Modern 
SAT solver implementations typically follow the CDCL (Conflict-Driven-Clause-Learn-
ing) architecture [35]. Given a first-order theory T  , an SMT solver for T  – SMT(T) – is a 
procedure that is able to decide the satisfiability of Boolean combinations of (quantifier-
free) propositional atoms and theory atoms in T .1 Examples of useful theories are equality 
and uninterpreted functions, difference logic and linear arithmetic, either over the rationals 
or the integers, the theory of arrays, that of bit vectors, and their combinations.

The currently most popular approach for solving the SMT(T) problem is the so-called 
“lazy” approach [36, 37], also frequently called DPLL(T  ) or CDCL(T  ) [38]. The lazy 
approach works by combining a propositional SAT solver based on the CDCL algorithm 
with a theory solver for T  (T -solver), which is a procedure that can decide the satisfiabil-
ity in T  of sets/conjunctions of ground atomic formulas and their negations. Essentially, 
CDCL is used as an enumerator of truth assignments �i of the atoms of � that proposition-
ally satisfy the input formula, and the T -solver is used for checking the T -satisfiability 
of the enumerated assignments: if the current �i is T -satisfiable, then � is T -satisfiable. 
Otherwise, if �i is T -unsatisfiable, the T -solver generates an unsatisfiable core �i , i.e. a 
subset of �i which is still T -unsatisfiable; the negation of �i , which is a clause that is valid 
in T (and therefore called a theory lemma or T -lemma), is then added to the input formula, 
and the CDCL solver is called again on the updated formula. The procedure continues until 
either a T -satisfiable �i is found, or the problem becomes propositionally unsatisfiable (and 
therefore also T -unsatisfiable). In practice, several optimizations and heuristics are applied 

1  Here we are implicitly assuming that the ground satisfiability problem for T  is decidable. We shall relax 
this assumption in Sect. 6.
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to make this basic description of the lazy SMT approach competitive. We refer the inter-
ested reader to [36, 37] for more details.

3 � Verification modulo theories

3.1 � Symbolic fair transition systems

We represent infinite-state systems over a background theory T  with signature Σ . A tran-
sition system S is a tuple ⟨X, I,T⟩ where X is a set of (state) variables, I(X) is a Σ-formula 
representing the initial states, and T(X,X�) is a Σ-formula representing the transitions 
( X� ∶= {x� ∣ x ∈ X} is the set of variables representing the next state of the transition 
system).

A state s of a transition system S is an interpretation ⟨M,�s⟩ to the symbols in the sig-
nature Σ and the variables X, where M and �s are respectively the domain and the assign-
ment of the interpretation. The satisfaction relation s ⊧ 𝜙 for a Σ-formula is defined as 
usual. We write s′ for the state s where the assignments to the variables x ∈ X from s are 
substituted with assignments to the variables x� ∈ X� (i.e., for all x ∈ X , s(x) = s�(x�) ). A 
finite path (of length k) of S is a finite sequence � ∶= s0, s1,… , sk of states with the same 
domain and interpretation of the symbols in Σ (e.g., for a term t ∈ Σ , �si

[t] = �sj
[t] , for any 

index i, j) such that s0 ⊧ I , and for all i, 0 ≤ i < k , si, s�i+1 ⊧ T  . Notice that the interpretation 
of the symbols in the signature Σ is rigid, meaning that the interpretation to uninterpreted 
functions and predicates does not change across the states in a path (while the assignments 
to the variables X can change). We say that a state s is reachable in S if and only if there 
exists a path of S ending in s. The set of reachable states of a transition system represented 
with formulas interpreted over theories can be infinite. We denote the set of all states (not 
necessarily reachable) of a system with state variables X as SX.

Example 1  S = ⟨{c, d}, c = 0 ∧ d = 0, c� = c + d ∧ d� = d + 1⟩ is an infinite-state tran-
sition system, where {c, d} are integer variables. The initial state s0 of the system has 
an assignment �s0

 where �s0
[c] = 0 and �s0

[d] = 0 . At every transition, the system S 
increases d by one and increases c by d. A path � ∶= s0, s1, s2 of the system S is such that 
𝜇s0

⊧ c = 0 ∧ d = 0 , 𝜇s1
⊧ c = 0 ∧ d = 1,  𝜇s2

⊧ c = 1 ∧ d = 2.

A fair transition system S ∶= ⟨X, I,T ,F⟩ is a transition system with an additional fair-
ness condition F. An infinite path � ∶= s0, s1,… of a fair transition system S is such that 
all the states have the same domain and interpretation of symbols in Σ , s0 ⊧ I and for all 
i > 0 si−1, s�i ⊧ T  . An infinite path is a fair path if for each i ≥ 0 there exists j > i such that 
sj ⊧ F (i.e., the path visits the fairness condition F infinitely often).

Example 2  Consider the fair transition system S = ⟨{c, d}, c = 0 ∧ d = 0, (c� = 0 ∧ d
� = 0)

∨(c� = c + d ∧ d
� = d + 1), c > d⟩ , which has a similar transition relation to the 

transition system in example  1. The infinite path that keeps incrementing the 
value of the c and d variables is a fair path (e.g., the path with the assignments 
{c = 0, d = 0}, {c = 0, d = 1}, {c = 1, d = 2}, {c = 3, d = 3},… ), while there are 
some infinite paths that are not fair (e.g., the path where c and d never change value 
{c = 0, d = 0}, {c = 0, d = 0}, {c = 0, d = 0},… ), since they don’t reach a state that satis-
fies c < d infinitely often.



	 Formal Methods in System Design

1 3

Given two (fair) transition systems S1 ∶= ⟨X1, I1, T1,F1⟩ and S2 ∶= ⟨X2, I2, T2,F2⟩ , 
their synchronous product is S1 × S2 ∶= ⟨X1 ∪ X2, I1 ∧ I2, T1 ∧ T2,F1 ∧ F2⟩.

In the following, we implicitly assume to represent the transition systems over a theory 
T  with a signature Σ.

3.2 � LTL(T  ): linear temporal logic modulo theory

Linear-time Temporal Logic (LTL) [39] is a modal logic to express sets of infinite traces 
of a transition system. We consider LTL(T  ) formulas [40],2 an extension of LTL where 
atomic propositions are first-order predicates over the theory T  and with variables X and 
X′ . Formally, a LTL(T  ) formula � is:

where p is a predicate, �1 and �2 are LTL(T  ) formulas, and t1,… , tk are terms. A term t is:

where f is a function symbol, t1,… , tk are terms, a is a constant, x ∈ X is a variable (in a set 
of variables X), and x� ∈ X� is a variable in the set of variables representing the next state. 
A predicate of LTL(T  ) also contains the next state variables X′ as terms. In such way, a 
LTL(T  ) formula can predicate about the next value of a variable, instead of just relating 
formulas in the current state and next state of the path with the LTL temporal operator 
X . We will use the standard abbreviations F𝜙 ∶= ⊤U𝜙 and G� ∶= ¬F¬� to denote the 
“finally” F and “globally” G operator.

In the following we consider infinite paths where all the states have the same domain 
and interpretation of symbols in Σ , while the assignments to the set of variables X in the 
states can change. Given an infinite path � ∶= s0, s1,… we write �[i] for the i-th element of 
� (i.e., si ) and we write �i for the suffix of � starting from state i-th (i.e., �i ∶= si, si+1,… ). 
We define when an infinite path � satisfies the LTL(T  ) formula � (i.e., 𝜎 ⊧ 𝜙 ) by induction:

•	 𝜎 ⊧ p(t,… , t) iff 𝜎[0], 𝜎[1]� ⊧ p(t,… , t);
•	 𝜎 ⊧ ¬p(t,… , t) iff 𝜎[0] ̸⊧ p(t,… , t);
•	 𝜎 ⊧ 𝜙1 ∧ 𝜙2 iff 𝜎 ⊧ 𝜙1 and 𝜎 ⊧ 𝜙2;
•	 𝜎 ⊧ X𝜙 iff 𝜎1 ⊧ 𝜙;
•	 𝜎 ⊧ 𝜙1U𝜙2 iff for some j ≥ 0 , 𝜎j ⊧ 𝜙2 and for all 0 ≤ k < j , 𝜎k ⊧ 𝜙1.

Example 3  Consider for example the LTL formula FG c < d and the path 
� = {c = 0, d = 0}, {c = 0, d = 1}� . The path satisfies the formula because it assigns ini-
tially both c and d to 0, and then c to 0 and d to 1 forever.

� ∶= p(t1,… , tk) ∣ �1 ∧ �2 ∣ ¬�1 ∣ X�1 ∣ �1U�2,

t ∶= f (t1,… , tk) ∣ a ∣ x ∣ x�,

2  The work in [40] further introduces event freezing operators “at next” and “at last”, which we do not con-
sider here for simplicity.
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3.3 � Problem definition

3.3.1 � Invariant checking

Given a transition system S = ⟨X, I,T⟩ and formula P(X) over the variables X, the invari-
ant verification problem for S and P is the problem to check if all the reachable states 
of S satisfy the formula P. In that case, we say that the transition system S satisfies the 
formula P, written as S ⊧ P . The formula P(X) represents a set of “safe” states of the 
system, while any state in the complement ¬P is an “unsafe” state. The dual formula-
tion of the invariant verification problem is the reachability problem, which asks if there 
exists a reachable state s such that s ⊧ ¬P.

A challenge when checking invariant properties for infinite-state systems is to 
compute a possibly infinite set of reachable states. Instead, a central notion to solve 
the invariant verification problem for infinite-state systems are inductive invari-
ants: a formula � is an inductive invariant for a transition system S if I(X) ⊧ 𝜓(X) and 
𝜓(X) ∧ T(X,X�) ⊧ 𝜓(X�) . We can solve the invariant verification problem by finding an 
inductive invariant � such that 𝜓 ⊧ P (i.e., if � is an inductive invariant and 𝜓 ⊧ P , then 
S ⊧ P ). Note that the set of reachable states R(X) is the strongest inductive invariant (i.e., 
R(X) is an inductive invariant and for any other inductive invariant �(X) we have that 
R(X) ⊧ 𝜓(X)).

3.3.2 � LTL(T  ) model checking

The LTL(T  ) model checking problem is the problem of checking if all the infinite paths 
� of a fair transition system S ∶= ⟨X, I,T⟩ satisfy an LTL(T  ) formula � (i.e., for all infi-
nite paths � of S, 𝜎 ⊧ 𝜙 ). We denote the LTL(T  ) verification problem as S ⊧ 𝜙.

In the following, we consider standard reductions [41–43] of the LTL model check-
ing problem S ⊧ 𝜙 to the model checking problem S × S¬𝜙 ⊧ FG¬f¬𝜙 (i.e., S ⊧ 𝜙 if and 
only if S × S¬𝜙 ⊧ FG¬f¬𝜙 ), where S¬� is a transition system with a fairness condition f¬� . 
Such reduction allows us to prove that S ̸⊧ 𝜙 by finding a counterexample in the form 
of a fair path, i.e., a path that visits the fairness condition f¬� of S × S¬� infinitely many 
times. In the following, we assume that the above transformation has been applied to 
the LTL(T  ) model checking problem, and consider a problem in the form S ⊧ FG¬f¬𝜙 , 
where � is a formula whose atoms are either propositional variables or predicates. When 
clear from the context, we also drop the subscript ⋅¬� , and simply use FG¬f .

3.4 � Algorithms for model checking modulo theories

Symbolic transition systems represented with propositional logic formulas can model 
finite-state systems such as hardware design. Several successful symbolic model check-
ing algorithms [4–7] for finite-state systems are based on SAT solvers. Furthermore, 
as we highlighted in Sect. 2, in the last two decades there has been an important pro-
gress in deciding the satisfiability of formulas in first-order logic modulo theory. Such 
improvements enable a seamless transition of the verification algorithms for finite-state 
systems based on SAT solvers to algorithms that verify infinite-state systems, repre-
sented with SMT formulas, based on SMT solvers. In the following, we survey how 
the main verification algorithms that have been proposed in the SAT-based setting can 
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be naïvely applied to infinite-state systems by simply replacing the underlying decision 
procedure (i.e., from a SAT to an SMT solver).

3.4.1 � Invariant checking

Bounded Model Checking (BMC). BMC [4] is a symbolic reachability analysis algorithm 
that explores paths of a transition system that can be reached in a bounded number of steps k. 
BMC was first introduced to find violations to LTL properties for finite-state systems and was 
subsequently extended to infinite-state systems [44], substituting the underlying SAT solver 
with a SMT solver. BMC encodes the problem of finding a violation to an invariant property P 
with a path of length k as follows:

where Xi ∶= {xi ∣ x ∈ X} is a set of copies of the set of variables X indexed with i ∈ ℕ . 
The formula BMCk is satisfiable if and only if there exists a finite path � of the transition 
system S that reaches a state sk in k steps and sk ̸⊧ P . To find a violation, we encode the 
condition BMCk for an increasing value of k, and check each time the satisfiability of the 
formula BMCk . Note that different encodings of the BMC problems are possible (e.g., one 
may encode the problem of finding violations in any of the i-steps from 0 to k). 

-K-Induction. While BMC could, in principle, prove that S ⊧ P by exploring a sufficiently 
large bound k, such an upper bound is generally very large for finite-state systems and does 
not exist, in general, for infinite-state systems. Thus, in practice BMC is effective only in find-
ing violations to an invariant verification problem. K-induction [5] builds on top of BMC and 
generalizes the induction principle to multiple steps of the system with the goal of proving an 
invariant property. The k-induction proof consists of a base and an inductive step. The base 
step proves that an invariant property P holds for all the states reachable in k − 1 steps. We 
prove this step showing that a BMC query similar to Eq. (1), but where the violation of the 
property is checked at every time step (i.e., 

⋁k

i=0
¬P(Xi) ), is unsatisfiable. The inductive step 

proves either that: any path of length k cannot reach a state that was not visited with a path of 
length k − 1 (Eq. (2)); or any safe path of length k − 1 cannot be extended to a path of length k 
that violates P (Eq. (3)). The formulas that formalize the inductive steps are:

where:

and Xi ≠ Xj ∶=
⋁

x∈X x
i ≠ xj . The simple path formula SIMPLEk restrict the search to 

simple paths, paths containing all different states (i.e., paths that never visit a state more 
than once). The formula KINDFWk encodes the set of simple paths of length k starting 
from an initial state of S. If such formula is unsatisfiable, then there is no path � of length 
k that contains an unseen state in a path of length k − 1 . Thus, if the base case holds (i.e., 
all the states visited in the system up to length k − 1 satisfy P) and the formula KINDFWk 

(1)BMCk ∶= I(X0) ∧
⋀

0≤i<k

T(Xi,Xi+1) ∧ ¬P(Xk),

(2)KINDFWk ∶= I(X0) ∧ SIMPLEk
,

(3)KINDBWk ∶= SIMPLEk ∧ ¬P(Xk),

(4)SIMPLEk ∶=
⋀

0≤i<k

T(Xi,Xi+1) ∧
⋀

0≤i<k

P(Xi) ∧
⋀

0≤i<j≤k

Xi ≠ Xj,
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is unsatisfiable, we can conclude that S ⊧ P since we visited all the states of S. The formula 
KINDBWk provides another sufficient condition to prove that S ⊧ P and encodes that an 
(uninitialized) path of length k − 1 that is safe can be extended to a path of length k that can 
violate P. Also in this case, the simple path formula SIMPLEk encodes the uniqueness of 
the states in the suffix. If the base case holds and the formula KINDBWk is unsatisfiable we 
can conclude that S ⊧ P.

IC3. IC3[7] is an efficient SAT-based algorithm for the verification of finite-
state systems, with Boolean state variables and propositional logic formulas. 
The IC3  algorithm tries to prove that S ⊧ P by finding a suitable inductive invari-
ant F(X) such that F(X) ⊧ P(X) . In order to construct F  , IC3 maintains a sequence 
of formulas (called trace) F0(X),… ,Fk(X) such that: (i) F0 = I ; (ii) Fi ⊧ Fi+1 ; (iii) 
Fi(X) ∧ T(X,X�) ⊧ Fi+1(X

�) ; (iv) for all i < k , Fi ⊧ P . Therefore, each element of the 
trace Fi+1 , called a frame, is inductive relative to the previous one, Fi . IC3 strengthens 
the frames by finding new relative inductive clauses. A clause c is inductive relative to 
the frame F  , i.e. F ∧ c ∧ T ⊧ c� , iff the formula

is unsatisfiable, so that a check of relative inductiveness can be directly tackled by a SAT 
solver.

At a high level, IC3 proceeds incrementally by alternating two phases: a blocking 
phase, and a propagation phase. In the blocking phase, the trace is analyzed to prove 
that no intersection between Fk and ¬P(X) is possible. During this phase, the trace is 
enriched with additional formulas, which can be seen as strengthening the approxima-
tion of the reachable state space. At the end of the blocking phase, either Fk ⊧ P is 
proved or a counterexample is generated.

In the propagation phase, IC3  tries to extend the trace with a new formula Fk+1 , 
moving forward the clauses from preceding Fi’s. If, during this process, two consecu-
tive frames become identical (i.e. Fi = Fi+1 ), then a fixpoint is reached, and IC3 termi-
nates with Fi being an inductive invariant proving the property.

In the blocking phase IC3 maintains a set of pairs (s,  i), where s is a set of states 
that can lead to a bad state, and i > 0 is a position in the current trace. New formulas 
(in the form of clauses) to be added to the current trace are derived by (recursively) 
proving that a cube s of a pair (s, i) is unreachable starting from the formula Fi−1 . This 
is done by checking the satisfiability of the formula RelInd(Fi−1, T ,¬s) . If the formula 
is unsatisfiable, then ¬s is inductive relative to Fi−1 , and the bad state s can be blocked 
at i. This is done by generalizing ¬s to a stronger clause ¬g that is still inductive rela-
tive to Fi−1 , and adding ¬g to Fi . Inductive generalization is a central step of IC3, that 
is crucial for the performance of the algorithm. Adding ¬g to Fi blocks not only the 
bad cube s, but possibly also many others, thus allowing for a faster convergence of the 
algorithm.

If, instead, (5) is satisfiable, then the overapproximation Fi−1 is not strong enough to 
show that s is unreachable. In this case, let p be a subset of the states in Fi−1 ∧ ¬s such 
that all the states in p lead to a state in s′ in one transition step. Then, IC3 continues by 
trying to show that p is not reachable in one step from Fi−2 (that is, it tries to block the 
pair (p, i − 1) ). This procedure continues recursively, possibly generating other pairs to 
block at earlier points in the trace, until either IC3 generates a pair (q, 0), meaning that 
the system does not satisfy the property, or the trace is eventually strengthened so that 
the original pair (s, i) can be blocked.

(5)RelInd(F, T , c) ∶= F ∧ c ∧ T ∧ ¬c�,
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3.4.2 � Liveness checking

Encoding lasso-shaped paths. The liveness verification problem S ⊧ FG¬f  amounts to 
show that no infinite path in S visits f infinitely often. We can modify the BMC encoding to 
find lasso-shaped paths. A path � ∶= s0, si,… sk is lasso-shaped if there exists j < k such 
that sk, sj ⊧ T(Xk,Xj) (i.e., the state sk can “loop-back” to the state sj ). The path is formed 
by a finite path s0,… , sj−1 and a suffix sj,… , sk , which represents a loop. A lasso-shaped 
path represents the infinite path of the system where the suffix can be repeated for an infi-
nite number of times. The BMC encoding  (1) can be modified to find fair lasso-shaped 
paths as follows:

The formula BMCk
f
 is satisfiable if there exists a lasso-shaped path where at least one of the 

states in the loop satisfies f.

Liveness to safety reduction. The liveness to safety reduction (L2S) [45] encodes 
the liveness model checking problem as an invariant model checking problem. 
The L2S encoding transforms the transition system S to the new transition system 
SL2S = ⟨X ∪ XL2S, IL2S, TL2S⟩ , where the set of variables XL2S contains a copy of the system 
variables and the additional variables {seen, triggered, loop} . The new transition relation 
TL2S guesses non-deterministically a state of the system where a loop of a fair path starts 
and stores such state in the variables XL2S . When doing so, it also sets the Boolean vari-
able seen to true for recording that a loop started. The transition relation further records 
(with the triggered variable) if the fairness condition f has been seen since the start of the 
loop, and records if a fair lasso-shaped path for the fairness condition f exists with the 
loop variable. In the case S is a finite-state system, the reduction is such that S ⊧ FG¬f  
if and only if SL2S ⊧ ¬loop . In the infinite-state case, instead, the L2S reduction can only 
find some of the violations to the liveness properties for the system S, i.e., if SL2S  ⊧ ¬loop 
then S  ⊧ FG¬f  , but the converse does not hold.

K-Liveness. K-Liveness [46] is an algorithm that reduces the liveness verification prob-
lem S ⊧ FG¬f  to a sequence of safety verification problems. The main observation of the 
K-Liveness algorithm is that each path � of the system S satisfies f a finite number of times 
iff S ⊧ FG¬f  . The K-Liveness algorithm finds a non-negative upper bound K on the num-
ber of times a path of S visits a state s that satisfy f. Let the formula #(f ) ≥ K be true for a 
finite path � of S, written as 𝜋 ⊧ #(f ) ≥ K , if the number of times a state satisfying f in the 
path � is not greater than K (i.e., #(f ) denotes the size of the set {i ∣ 𝜋[i] ⊧ f } ). We express 
that all the paths of the system S do not reach f more than K times with S ⊧ #(f ) ≤ K . We 
have that:

The K-Liveness algorithm iteratively finds such K by solving a sequence of verification 
problems for an increasing value of K (i.e., the algorithm checks S ⊧ #(f ) ≤ 0 , S ⊧ #(f ) ≤ 1 , 
...).

(6)BMCk
f
∶= I(X0) ∧

⋀

0≤i<k

T(Xi,Xi+1) ∧
⋁

0≤j<k

(⋀

x∈X

xk = xj ∧
⋁

j≤z<k

f z
)
.

(7)if ∃K ∈ ℕ.S ⊧ #(f ) ≤ K then S ⊧ FG¬f .
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We can easily reduce each verification problem S ⊧ #(f ) ≤ n , for a natural number 
n ∈ ℕ , to an invariant verification problem. We first augment the transition system 
S with an additional variable c counting the number of times a state satisfies f (i.e., 
the variable c starts from 0 and increments its value by 1 whenever the system visits 
a state satisfying f). Then, we verify that S ⊧ c ≤ n with an invariant model checking 
algorithm. In the original paper proposing K-Liveness [46] the authors propose an effi-
cient implementation that uses the IC3 algorithm to solve each safety verification prob-
lem. Such implementation exploits the incremental nature of IC3 to reuse all the frames 
IC3 learned when solving the problem S ⊧ c ≤ n to solve the next verification problem 
S ⊧ c ≤ n + 1 . This optimization is sound since the transition system S does not change 
and the property c ≤ n implies c ≤ n + 1 , and both conditions ensure that the invariants 
on the frames learned when verifying S ⊧ c ≤ n also hold when verifying S ⊧ c ≤ n + 1.

3.5 � Challenges when verifying infinite‑state systems

The algorithms we present above are sound when we apply them to a symbolic fair transi-
tion system and we use SMT to decide satisfiability. However, since both the invariant and 
liveness verification problems are undecidable for infinite-state transition systems, the pro-
cedures may not terminate. Furthermore, the procedures above may also not terminate on 
decidable subclasses of the verification problem (e.g., safety verification timed automata 
[47]) or on specific problem instances that may have a solution (e.g., k-induction and IC3 
may be not be able to find an inductive invariant even if one exists). Here, we focus our 
attention on the second problem, and we redirect the reader to several of the ad-hoc exten-
sions of the above techniques that target decidable cases for a description of solutions to 
the first one (e.g. [48, 49]).

Invariant checking. In the infinite-state setting, Bounded Model Checking, k-induction, 
and IC3 will eventually find a violation to a safety property, if such a violation exists. How-
ever, in an infinite-state system there is no maximum depth k that guarantees to visit all the 
reachable states (the least number of steps to reach all the reachable states of in an infinite 
state system, the diameter, can be unbounded).

Both the k-induction and IC3 algorithms may fail to prove that a property holds. In 
k-induction, the inductive check with k steps may not be sufficient to prove the system is 
safe, and the simple path condition SIMPLEk can be satisfiable for any k, preventing both 
formulas KINDFWk and KINDBWk from ever being unsatisfiable. A naïve extension of the 
IC3 algorithm to SMT is not effective because of the blocking phase. When the algorithm 
cannot block a pair (s, i), it finds a predecessor state (p, i − 1) to block from an assignment 
� satisfying the relative induction formula  (5) (i.e., RelInd(Fi−1, T ,¬s) ). Such strategies 
would block a single state from an infinite set of states, and thus is ineffective. In Sect. 5 
we present modifications to the k-induction and IC3 algorithms that efficiently verify a 
sequence of finite-state abstractions of the system using counterexample-guided abstraction 
refinement (CEGAR) [50].

Example 4  Both k-induction and IC3 will fail to verify that the transition system 
S = ⟨{c, d}, c = 0 ∧ d = 0, (c� = c + d ∧ d� = d + 1)⟩ from the Example  1 satisfies the 
property d ≤ 3 ∨ c > d . Observe that such property holds, since when d = 4 the variable c 
is 4, and then we have that c > d in the following states of the path.
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Applying k-induction would fail: (i) The base step for any k ≥ 0 succeeds (cleary, BMC 
cannot find a counterexample); (ii) the KINDFWk formula (2) is always satisfiable, since 
every path of length k − 1 can be extended to a k-long path with an “unseen” state (e.g., 
incrementing d by one will obtain a state with a new value of d for the path); (iii) similarly, 
the KINDBWk formula (3) is also satisfiable following a similary reasoning.

Applying a naïve version of IC3 would also be ineffective: the algorithm would keep 
enumerating states that do not satisfy d ≤ 3 ∨ c > d in the blocking phase. While each one 
of such states can be blocked by the previous frame via the the relative inductive check (5), 
their number is still infinite, so the algorithm would not terminate.

Liveness checking. One of the main challenges when verifying liveness properties for infi-
nite-state systems is that a violated property is not guaranteed to have a lasso-shaped coun-
terexample (e.g., all counterexamples may be paths where the value of variables diverge).

The BMC encoding shown in (6) only finds lasso-shaped paths, so the algorithm is not 
guaranteed to find a counterexample, even when one exists. The algorithm in Sect.  7.3 
addresses this issue using the notion of recurrence sets.

Example 5  Consider the fair transition system S = ⟨{c, d}, c ≥ 0, c� = c + d ∧ d� = d + 1,⊤⟩ 
and the LTL(T  ) property G c ≤ d . Clearly, S ̸⊧ G c ≤ d . However, BMC would fail since 
the transition system has only fair paths that are not lasso-shaped.

The existence of non lasso-shaped paths does not allow to apply the same liveness to 
safety [45] reduction for finite-state systems for proving a liveness property. The reduc-
tion works by recoding the occurrence of a lasso-shaped path violating the fairness condi-
tion, so such reduction does not take into account non lasso-shaped paths. In Sect. 7.1 we 
describe an algorithm that circumvents such issues using abstraction techniques and well-
founded relations.

Example 6  Consider the fair transition system S = ⟨{c, d}, c ≥ 0, c� = c + d ∧ d� = d + 1,⊤⟩ 
and the LTL(T  ) property FG c < d . We have that S ̸⊧ FG c < d since, independently  
from the initial value of d, d will eventually be positive and c will eventually become 
greater than d. The transition system has only fair paths that are not lasso-shaped.  
Such paths are ignored by the L2S reduction that, when applied naïvely, results in a tran-
sition system where the loop variable is never true (i.e., there are no fair paths in the 
L2S reduction). In this case, verifying the L2S reduction would wrongly conclude that 
S ⊧ FG c < d.

The existence of paths that are not lasso-shaped further affects k-liveness. K-liveness 
proves fairness by showing that there exists a bound on the number of times a fairness 
property is falsified. Even if a fairness property holds, such bound may not be an integer 
number, but a value that depends on a, possibly infinite-valued, variable of the transition 
system (e.g., an uninitialized parameter). In Sect. 7.2 we present an algorithm that tackles 
such issues in transition systems where the value of a variable diverges along all the com-
putation paths.
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Example 7  Consider the fair transition system from Example  6 and the property 
FG ¬(c < d) . K-liveness would reduce the check of S ⊧ FG ¬(c < d) to find a bound K on 
the number of times S visits a state where c < d . Since the initial value of the variable d is 
unknown in the initial state, there is no upper bound on the value of K: after we fix a K, we 
can always pick a new path, choosing a smaller initial value for d, where the system visits a 
state where c < d for K + 1 times.

4 � CEGAR and predicate abstraction

Abstraction [51] is a technique used to reduce the search space while preserving the satis-
faction of some properties. In symbolic model checking, the abstraction yields a simpler 
transition system Ŝ , possibly described by a different set of variables (denoted here by X̂ ). 
The abstraction is usually obtained by means of a surjective function � ∶ SX → S

X̂
 , called 

abstraction function, that maps the states of a symbolic fair transition system S into states 
of Ŝ . The concretization function � ∶ S

X̂
→ 2SX is defined as � (̂s) = {s ∈ SX ∣ �(s) = ŝ} . 

The abstraction function � is symbolically represented by a formula H�(X, X̂) such that 
s,�s ⊧ H𝛼 iff �(s) = ŝ .

The Counterexample Guided Abstraction Refinement (CEGAR) framework [50] lev-
erages abstraction to create a simplified version of the input transition system, which is 
amenable for finite state model checking. The abstraction is typically constructed to be 
conservative, that is, every trace in the concrete space has a counterpart in the abstract 
space. If there are no property violations in the abstract space, then there are no violations 
in the original system. However, if an abstract counterexample exists, there may not be a 
corresponding counterexample for the concrete system. Such an abstract counterexample 
is then called a spurious counterexample. Then, abstraction-refinement tries to discover a 
new abstract model, which contains more detail in order to rule out spurious counterexam-
ples. This is done by extracting information from counterexamples generated by the model 
checker. The process is iterated until the property is either proved or disproved. In Fig. 1 
we give a pictorial representation of the approach.

In the rest of this Section and in the following one, we focus on the instantiation of the 
CEGAR framework to Predicate Abstraction [52], while in Sect. 6 we focus on the instan-
tiation of CEGAR to incremental linearization [11].

Fig. 1   The CEGAR loop for 
the transition system S, initial 
abstraction � , and property P 

Compute the
abstraction
Ŝ = α(S)

S, P, α Model Check
Ŝ |= P̂?

Ŝ
S |= P

Yes

Simulate
Is π̂ spurious?

No, π̂

S �|= P
NoRefinement

Find a new
abstraction α

Yes
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4.1 � Computing the predicate abstraction

Predicate Abstraction [52] abstracts a transition system S with a transition system having 
as states the (finite) set of truth assignments to a set of predicates ℙ = {p1(X),… , pm(X)} . 
A transition between two abstract states ŝi and ŝj in the abstraction is possible iff there exist 
two concrete states si and sj such that the evaluation of the predicates in si is ŝi , the evalua-
tion in sj is ŝj , and si, s′j ⊧ T .

Predicate abstraction can be symbolically represented by associating to each predi-
cate p a corresponding Boolean variable xp . We define the abstraction function for 
predicate abstraction as:

The abstract initial states, the abstract transition relation, and the abstract fairness con-
dition of the abstract transition system Ŝ = ⟨X

ℙ
, Î, T̂ , F̂⟩ obtained by applying predicate 

abstraction to the concrete system are symbolically represented by the Boolean formulas 
Î(X

ℙ
) , T̂(X

ℙ
,X�

ℙ
) , and F̂(X

ℙ
) . The formulas are equivalent to the following definitions:

The abstract fair transition system thus obtained is purely Boolean, and can be subjected to 
finite-state model checking to verify the abstraction of the properties of interest.

The computation of the abstraction (eqns. (9), (10) and (11)) is a key operation, and 
in the literature it has been addressed with several approaches. A first simple approach 
is based on encoding the problem in the quantified fragment of the theory T  , and on 
leveraging an SMT solver to perform the quantified elimination of the concrete vari-
ables X and X′ to obtain the abstract counterpart. This has been done either by using 
specialized algorithms such as [53–55] or by leveraging general quantifier elimina-
tion procedures, e.g. [56–59]. All these approaches are subject to the model explosion 
problem. Indeed, they all end-up enumerating enough implicants to cover the abstrac-
tion, and this boils down to going through the construction of the corresponding DNF.

The works in [60, 61] tackle the problem of computing the abstraction by integrat-
ing BDD-based quantification techniques with SMT-based constraint solving. These 
approaches try to overcome the limitations of the previous approaches by exploiting 
the fact that BDDs are a DAG representation of the space that a SAT-based enumera-
tor treats as a tree. In [61] the abstraction problem is no longer seen as a monolithic 
quantifier elimination problem, but a conjunctively-partitioned representation of the 
formula to quantify is leveraged to reduce the computation burden.

Finally, in [62] the idea of partitioning the computation, initially outlined in [61] 
was further expanded by providing a structure-aware abstraction algorithm. The pro-
posed approach first exploits the high-level structure of the system, and partitions the 
abstraction problem into the combination of several smaller abstraction problems, still 
represented as a formula with quantifiers. Then, the low-level structure of the formula 

(8)H
ℙ
(X,X

ℙ
) ∶=

⋀

p∈ℙ

p(X) ↔ xp.

(9)Î(X
ℙ
) ∶= ∃X.(I(X) ∧ H

ℙ
(X,X

ℙ
)),

(10)T̂(X
ℙ
,X�

ℙ
) ∶= ∃X,X�.(T(X,X�) ∧ H

ℙ
(X,X

ℙ
) ∧ H

ℙ
(X�,X�

ℙ
)),

(11)F̂(X
ℙ
) ∶= ∃X.(F(X) ∧ H

ℙ
(X,X

ℙ
)).
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(e.g. the occurrence of variables within the quantifiers, the application of low-level 
rewriting rules like De-Morgan and quantifier push) is leveraged to further reduce 
the scope of quantifiers. The resulting formulas (still with quantifiers) is then given 
in input to existing state-of-the-art quantifier elimination approaches like the ones in 
[56–61] to obtain a finite-state abstract model.

4.2 � Refining the predicate abstraction from counterexamples

Let us now consider a sequence of abstract states ŝ0,⋯ , ŝk (where each abstract state ŝi 
is a valuation to the variables X

ℙ
 ). If the abstract property does not hold in the abstract 

model, we generate an abstract counterexample that must be checked for spuriousness, 
i.e. we check whether it can be refined in the concrete space. This can be done with a 
setting similar to bounded model checking, where each state of both the concrete and 
abstract machine are replicated at different time steps, from 0 to k. Checking the spu-
riousness of a counterexample for an invariant property corresponds to checking if the 
following formula is unsatisfiable:

Similar considerations also hold in the case the property is a liveness one: if Ŝ does not 
have an initial fair path, then the same can also be concluded for S. In this case, the check 
for the spuriousness of the counterexample shall also consider the fairness conditions F 
and encode a loop enforcing the fairness conditions to hold within the loop.

The main idea behind the refinement phase is to learn more information from the 
spurious counterexamples produced and use the information to refine the abstraction in 
such a way that it rules out the spurious counterexample. Spurious transitions are those 
abstract transitions that do not have any corresponding concrete transitions. If the most 
precise abstraction with respect to the given set of predicates is computed, the spurious-
ness of the counterexample would be because of an insufficient number of predicates, 
i.e. the absence of information rich enough to capture all the relevant behaviors of the 
concrete system, even for the most precise abstraction. Several approaches have been 
proposed in the literature to extract new predicates in the refinement. Most of them are 
based on the analysis of the unsatisfiable cores or the computation of Craig interpolants 
of the spuriousness check formula (12) (e.g., [63, 64]).

5 � Invariant checking with implicit predicate abstraction

5.1 � Implicit predicate abstraction

As also defined in [51, 65], the abstraction induces an equivalence relation among the 
concrete states:

which in the case of predicate abstraction is characterized by the following formula:

(12)I(X0) ∧
⋀

0≤h<k

T(Xh,Xk+1) ∧
⋀

0≤h≤k

(
H

ℙ
(Xh,Xh

ℙ
) ∧ �sh(X

h
ℙ
)
)
.

s1 ∼ s2 ⇔ �(s1) = �(s2),
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The formula EQ
ℙ
 asserts that two concrete states have a consistent evaluation of 

predicates. It can be exploited to embed the abstraction into formulas over the concrete 
variables, thus reasoning about abstract states without explicitly computing them. This 
idea, first proposed [9] and later expanded in [10], takes the name of Implicit Abstrac-
tion (IA).

The clear advantage of IA is that it avoids the computation of the abstract transitions 
that must be done upfront in the explicit predicate abstraction and which results typically in 
a bottleneck. In fact, in the explicit abstraction case, the model checking algorithm on the 
abstract transition system cannot start before computing abstract transition (this is partly 
alleviated in Lazy Abstraction [66] where the abstraction is localized and computed on the 
fly based on an explicit-state control graph). On the other side, IA reasons over the con-
crete variables and thus, in some cases, cannot exploit simplification available only in the 
propositional case.

More in detail, IA embeds the definition of the predicate abstraction in the encoding of 
a path. The formula Pathk

ℙ
∶=

⋀
1≤h<k(T(X

h−1
,Xh) ∧ EQ

ℙ
(Xh,X

h
)) ∧ T(X

k−1
,Xk) is satisfi-

able iff there exists a path of k steps in the abstract state space. Intuitively, instead of having 
a contiguous sequence of transitions, the encoding represents a sequence of disconnected 
transitions where every gap between two transitions is forced to lay in the same abstract 
state (see Fig. 2).

We can therefore extend Pathk
ℙ
 to solve an abstract bounded model checking problem. 

Suppose we want to verify that a property P(X) holds in the abstract state space in all 
abstract states reachable in k abstract steps. We can encode the dual problem into a formula 
BMCk

ℙ
 that uses Pathk

ℙ
 to assert that there exists an abstract path, the first state is initial, and 

the last state satisfies the abstraction of ¬P . We use again EQ
ℙ
 to build this encoding just 

using concrete variables as follows:

5.2 � K‑induction with implicit predicate abstraction

Similarly to the encoding of bounded model checking, we can define the abstract version of 
the k-induction conditions with IA:

(13)EQ
ℙ
(X,X) ∶=

⋀

p∈ℙ

p(X) ↔ p(X).

BMCk
ℙ
= I(X0) ∧ EQ

ℙ
(X0,X

0

) ∧ Pathk
ℙ
∧ EQ

ℙ
(Xk,X

k
) ∧ ¬P(X

k
).

(14)KINDFWk
ℙ
∶=I(X0) ∧ EQ

ℙ
(X0,X0) ∧ SIMPLEk

ℙ
,

(15)KINDBWk
ℙ
∶=SIMPLEk

ℙ
∧ EQ

ℙ
(Xk,Xk) ∧ ¬P(Xk),

Fig. 2   Abstract path
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where

Therefore, if BMCk
ℙ
 is unsatand, either KINDFWk

ℙ
 or KINDBWk

ℙ
 is unsat, then we can con-

clude that the invariant is not reachable in the abstract state space (and thus either in the 
concrete system).

Notice that we do not use the stronger version of KINDFWk
ℙ
 and KINDBWk

ℙ
 defined in 

[5], because they require to express the negation of the abstraction of P, which involves an 
existential quantification, and their negation cannot be handled by the satisfiability solver.

5.3 � IC3ia: IC3 with implicit abstraction

Implicit Abstraction provides a simple, yet very effective, way of generalising IC3  from 
SAT to SMT. The main idea is that of making IC3 work on the abstract state space defined 
by a set of predicates ℙ , and use implicit abstraction to avoid the explicit computation of the 
abstract transition relation. In the modified algorithm, which we call IC3ia, clauses, frames 
and cubes are formulas over the set X

ℙ
 of abstract variables. When working in the abstract 

space, the critical step for IC3IA is repeatedly checking whether a clause c is inductive rela-
tive to the frame F  (where c and F  are both formulas over X

ℙ
 ). This check, if encoded as 

RelInd(F, T̂ , c) , would require the explicit construction of T̂  . The key insight underlying 
IC3ia is to use implicit abstraction to perform the check without actually constructing the 
abstract transition relation T̂  . This is done by checking the quantifier-free formula:

It can be shown (see [67]) that working with AbsRelInd is equivalent to working 
with RelInd on the abstract transition relation T̂  , in the sense that every model � for 
AbsRelInd(F, T , c,ℙ) is also a model for RelInd(F, T̂ , c) (when appropriately projected 
to X

ℙ
∪ X

ℙ� ). The consequence of this is that we can obtain an SMT-aware version of 
IC3  operating on a predicate abstraction of the original system by simply replacing the 
underlying SAT solver with an SMT solver, and using AbsRelInd instead of RelInd for per-
forming the relative induction checks. Thanks to implicit predicate abstraction, we there-
fore obtain an algorithm that is simple, flexible (automatically supporting all theories that 
are handled by the underlying SMT solver), and very competitive in practice [67].

Example 8  Take the transition system and property from Example 4 and the set of predi-
cates ℙ = {(c = 0), (d = 0), (d ≤ 3), (c ≤ d)} . The algorithm eventually checks that 
AbsRelInd(F0, T , c0,ℙ) , where F0 ∶= {xc=0, xd=0} , c0 ∶= xc=0 ∧ ¬xd=0 ∧ ¬xd≤3 ∧ xc≤d , and 
xp ∈ X

ℙ
 denotes the abstract variable for the predicate p ∈ ℙ (e.g., xd=0 is the abstract vari-

able of the predicate d = 0):

(16)SIMPLEk
ℙ
∶=Pathk

ℙ
∧

⋀

0≤i<j≤k

¬EQ
ℙ
(Xi,Xj).

(17)
AbsRelInd(F, T , c,ℙ) ∶=F(X

ℙ
) ∧ c(X

ℙ
) ∧ H

ℙ
(X,X

ℙ
) ∧ H

ℙ
(X�,X�

ℙ
)∧

EQ
ℙ
(X,X) ∧ T(X,X

�
) ∧ EQ

ℙ
(X

�
,X�) ∧ ¬c(X�

ℙ
).
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Since AbsRelInd(F0, T , c0,ℙ) ⊧ ⊥ , it’s also the case case that RelInd(F0,
�T , c) ⊧ ⊥ in the 

abstract system (see [67] for a full example of a run of IC3ia).

5.4 � Refining implicit predicate abstractions

Like all techniques based on predicate abstraction, when IC3ia finds an abstract counter-
example �̂ ∶= ŝ0, ŝ1,… , ŝk (in the form of an interpretation of 

⋃k

i=0
Xi
ℙ
 ), it must check 

whether it can be concretized, i.e. whether there exists a corresponding counterexample in 
S. This is done by simulating the abstract counterexample �̂  in the concrete system S, by 
encoding all the paths of S up to k steps restricted to �̂ :

where ŝi(Xi
ℙ
)[ℙ(Xi)∕Xi

ℙ
] is the formula obtained from ŝi(Xi

ℙ
) , seen as a conjunctions of lit-

erals, by replacing each Boolean variable in Xi
ℙ
 by the corresponding predicate over Xi.

If (18) is satisfiable, then the interpretation of the concrete variables X0,… ,Xk yields a 
concrete counterexample s0, s1,… , sk witnessing the violation of P. Otherwise, �̂  is spuri-
ous, and the abstraction must be refined by adding new predicates. The refinement pro-
cedure is somewhat orthogonal to IC3ia, and can be done in various ways [66, 68, 69]. 
The only requirement is that the new set of predicates should be sufficient to remove the 
spurious counterexample. A popular approach is to use SMT-based interpolation to dis-
cover new predicates, as described in [68]. Although this technique always returns a set 
of predicates that are sufficient to refute the spurious counterexample, it offers no guar-
antee that all the discovered predicates are necessary. In other words, predicate discovery 
via interpolation can produce redundant predicates, which cause an increase in the preci-
sion of the predicate abstraction which might be not necessary, thus potentially slowing 
down the convergence of IC3ia. This drawback can however be mitigated by exploiting 
implicit abstraction also for detecting redundant predicates. Let ℙnew be the set of predi-
cates produced by the refinement procedure, such that the set ℙ ∪ ℙnew is sufficient to refute 

AbsRelInd(F0, T , c0,ℙ0) ∶=

xc=0 ∧ xd=0∧ [F0(Xℙ
)]

xc=0 ∧ ¬xd=0 ∧ ¬xd≤3 ∧ xc≤d∧ [c0(Xℙ
)]

xd=0 ↔ (d = 0) ∧ xc=0 ↔ (c = 0)∧ [H
ℙ
(X,X

ℙ
)]

xd≤3 ↔ (d ≤ 3) ∧ xc≤d ↔ (c ≤ d)∧

x�
d=0

↔ (d� = 0) ∧ x�
c=0

↔ (c� = 0)∧ [H
ℙ
(X�,X�

ℙ
)]

x�
d≤3

↔ (d� ≤ 3) ∧ x�
c≤d

↔ (c� ≤ d�)∧

(d = 0) ↔ (d = 0) ∧ (c = 0) ↔ (c = 0)∧ [EQ
ℙ
(X,X)]

(d ≤ 3) ↔ (d ≤ 3) ∧ (c ≤ d) ↔ (c ≤ d)∧

(c� = c + d) ∧ (d� = d + 1)∧ [T(X,X
�
)]

(d� = 0) ↔ (d� = 0) ∧ (c� = 0) ↔ (c� = 0)∧

(d� ≤ 3) ↔ (d� ≤ 3) ∧ (c� ≤ d�) ↔ (c� ≤ d�)∧ [EQ
ℙ
(X

�
,X�)]

¬(x�
c=0

∧ ¬x�
d=0

∧ ¬x�
d≤3

∧ x�
c≤d

) [¬c0(X
�
ℙ
)]

(18)
⋀

0≤i<k

T(Xi,Xi+1) ∧
⋀

0<i≤k

�si(X
i
ℙ
)[ℙ(Xi)∕Xi

ℙ
],
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the abstract counterexample. By definition, this means that �̂  is not a path of the abstract 
system Ŝ , i.e. the predicate abstraction of S, wrt. ℙ ∪ ℙnew . Formulating this in terms of 
implicit abstraction means that the formula

is unsatisfiable. We can use this fact to check for predicate redundancy, e.g. by heuristi-
cally replacing ℙnew with one of its subsets as long as (19) is still unsatisfiable. In prac-
tice, this can be performed efficiently by exploiting the capability offered by modern 
SMT solvers of (i) solving a formula under a set of assumptions, and (ii) producing an 
unsatisfiable core of the assumptions in case the formula is not satisfiable. More in detail, 
for each predicate p ∈ ℙnew , we can generate a fresh label variable lp . Then, we replace 

each formula EQ
ℙnew

(Xi,X
i
) in (19) with 

⋀
p∈ℙnew

lp → (p(Xi) ↔ p(X
i
)) (and similarly for 

EQ
ℙnew

(X
i+1

,Xi+1) ). Finally, we solve under the assumptions {lp ∣ p ∈ ℙnew} , and mark all 
the predicates p for which lp is not in the unsat core as redundant.

6 � CEGAR via incremental linearization

Predicate abstraction is not the only approach to implement a CEGAR loop. In fact, the tech-
niques presented in the previous sections are not always applicable, since they rely on several 
strong assumptions on the ability of the SMT solver: first, the SMT solver is given a large 
number of satisfiable queries; second, the SMT solver must expose an incremental interface; 
third, it must be able to provide interpolation and quantifier elimination. These requirements 
become hard to satisfy when dealing with nonlinear theories, that allow for multiplications 
between real- or integer-valued variables, or for transcendental functions such as exponentia-
tion and trigonometric functions. Hence, despite the power of theory solvers based on Cylin-
drical Algebraic Decomposition [70] and effective implementations like Z3 [71], the direct 
integration of a nonlinear SMT solver inside the IC3ia algorithm would not be practical.

We describe a CEGAR loop for the theory of nonlinear arithmetic with transcendental 
functions ( NTA ). The approach, that is not based on predicate abstraction, is called Incremen-
tal Linearization [11] (Fig. 3). The idea is to abstract the VMT(NTA ) problem in the com-
bined theory of linear real arithmetic and the theory of equality with uninterpreted functions 
( UFLRA ). Specifically, nonlinear multiplications and transcendental functions are abstracted 
as uninterpreted function symbols. For example, the formula

is abstracted to

(19)

⋀

0<i≤k

�si(X
i
ℙ
)
⋀

0<i<k

(
T(X

i
,X

i+1
)∧

H
ℙ
(Xi,Xi

ℙ
) ∧ H

ℙ
(Xi+1,Xi+1

ℙ
)∧

EQ
ℙ
(Xi,X

i
) ∧ EQ

ℙ
(X

i+1
,Xi+1)∧

H
ℙnew

(Xi,Xi
ℙnew

) ∧ H
ℙnew

(Xi+1,Xi+1
ℙnew

)∧

EQ
ℙnew

(Xi,X
i
) ∧ EQ

ℙnew
(X

i+1
,Xi+1)

)

x ∗ x + y ∗ y ≤ 2 ∧ (x ≥ 1.1 ∨ x ≤ −1.1) ∧ (x + 3 ∗ y ≥ 1.1 ∨ 2 ∗ sin(x) ≤ −1.1)

f∗(x, x) + f∗(y, y) ≤ 2 ∧ (x ≥ 1.1 ∨ x ≤ −1.1) ∧ (x + 3 ∗ y ≥ 1.1 ∨ 2 ∗ fsin(x) ≤ −1.1)
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We notice that the linear multiplications (e.g. 3 ∗ y ) are not abstracted, while the nonlinear 
applications of ∗ and sin are replaced by the uninterpreted functions f∗(⋅) and fsin(⋅) . This 
abstraction is clearly conservative. Hence, if the property holds in the abstract space, then 
the concrete system can be deemed to be safe. However, if a counterexample can be found 
in the abstract space, a concretization step in VMT(NTA ) is required. If the abstract coun-
terexample can be concretized, then the property does not hold. Otherwise, it is necessary 
to refine the abstraction by restricting the interpretation of the uninterpreted symbols in 
VMT(UFLRA).

Interestingly, the approach builds upon a black-box invariant checker for 
VMT(UFLRA ), which could be based on a complex abstraction refinement loop as 
described in the previous sections. Precise reasoning in NTA is limited to SMT in the 
concretization phase, given that the reason for spuriousness is that some uninterpreted 
functions may have been misinterpreted. For example, it is possible that the interpre-
tation of the abstraction of multiplication of x and y, referred to as �̂[f∗(x, y)] , does not 
respect the semantics of multiplication, i.e. �̂[f∗(x, y)] ≠ �̂[x] ∗ �̂[u] . In order to rule out 
such spurious models, various patterns of linear axioms are introduced (see Fig. 4). These 
include some basic facts (e.g. sign rules, commutativity, multiplication by zero), monoto-
nicity, and tangent plane approximation. The latter dynamically constrains the multipli-
cation on point (a, b), when the interpretation of f∗(x, y) is such that �̂[f∗(x, y)] ≠ a ∗ b , 
with a = �̂[x] and b = �̂[y] . The idea is to approximate the multiplication function, that is 
a hyperbolic paraboloid (Fig. 5, upper left), with a tangent plane centered around (a, b). 
In addition to constraining the value on the specific point, we can see that the plane inter-
sects the multiplication curve on straight lines expressible in the form of linear equalities 
(Fig. 5, lower left), and in the resulting quadrants it can be used to express upper- and 
lower-bounds.

Additional attention is required to deal with approximations of nonlinear transcendental 
functions. First, since irrational values are not directly representable, one needs to make 
sure that the piece-wise linear functions are correct (over- or under-) approximations, 
which depends on the actual concavity of the curve. Second, trigonometric functions are 
dealt with by leveraging periodicity, reducing reasoning to the base period between −� and 
� and ensuring that all the lemmas can be applied to the other periods. We refer to [11] for 
the details.

Despite its simplicity, incremental linearization leads to significant results for VMT(NTA ), 
both in terms of expressiveness as well as in terms of effectiveness. The approach is motivated 
by the fact that many practical applications are “mostly linear”, in the sense that only a small 
percentage of the constraints are nonlinear. Hence, the idea is to look for a piece-wise linear 
invariant that is strong enough to prove the property, so that expensive nonlinear reasoning is 
replaced – as much as possible – by cheaper linear reasoning.

Finally, we note that the idea of incremental linearization not only applies to VMT but also 
to SMT(NTA ). In fact, incremental linearization is akin to a lemmas-on-demand approach, 

Fig. 3   The VMT(NTA ) CEGAR 
loop via Incremental Lineariza-
tion

Ŝ = α(S)
Abstract NT A functions

as uninterpreted
in UFLRA

S, P, α Ŝ |= P̂
Model Check in UFLRA

Ŝ
S |= P

Yes

Is π̂ spurious?
Simulate in NT A

No, π̂

S �|= P
No

Refine the abstraction α
Add lineariza-

tion axioms (Fig.4)

Yes
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where the interpretation of nonlinear multiplications and transcendental functions is progres-
sively restricted by the introduction of lemmas that will rule out spurious abstract models (in 
the case of SMT) or counterexamples (in VMT).

  

Fig. 4   Axioms for nonlinear mul-
tiplication refinement

Fig. 5   A graphical view of tangent plane approximation
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7 � LTL(T) model checking

7.1 � Liveness to safety via implicit abstraction and well‑founded relations

As described in the previous sections, various approaches to LTL Model Checking reduce 
the problem to the verification of an invariant. Such reductions may be neither complete 
nor correct in the case of infinite-state systems. Some of the issues are that, on one hand, 
if there exists a counterexample, it is not guaranteed that there exists a lasso-shaped one; 
on the other hand, if there is no counterexample visiting a live signal infinitely many times, 
there may be no bound on the number of such visits.

In order to cope with these issues, in [12], we proposed an approach integrating live-
ness-to-safety with implicit abstraction and well-founded relations. By applying implicit 
abstraction to the liveness-to-safety encoding, we can effectively prove the absence of 
abstract fair loops without explicitly constructing the abstract state space. The approach 
is extended by using termination techniques based on well-founded relations derived from 
ranking functions: the idea is to prove that any existing abstract fair loop is covered by a 
given set of well-founded relations. Within this framework, k-liveness is integrated as a 
generic ranking function. The algorithm iterates by attempting to remove spurious abstract 
fair loops: either it finds new predicates, to avoid spurious abstract prefixes, or it introduces 
new well-founded relations, based on the analysis of the abstract lasso. The implementation 
fully leverages the efficiency and incrementality of the underlying safety checker IC3ia.

More specifically, after encoding the LTL model checking problem into a liveness prob-
lem in the form FG¬f  on a transition system S, we produce a sequence of invariant check-
ing problems S0 ⊧inv 𝜙0 , S1 ⊧inv 𝜙1 , … . For each j, Sj and �j are the result of an encoding 
operation dependent on given sets of state predicates P and well-founded relations W : Sj, 
ϕj = encode(S, f, P, W). encode is a variant of the liveness-to-safety transformation that 
includes both implicit predicate abstraction and well-founded relations: if Sj ⊧inv 𝜙j either 
there is no abstract fair loop or every such loop is covered by the given set of well-founded 
relations. Thus, it ensures that if Sj ⊧inv 𝜙j , then S ⊧ FG¬f  , in which case the iteration termi-
nates. If Sj ̸⊧inv 𝜙j , we analyze a (finite) counterexample trace � in Sj to determine whether 
it corresponds to an (infinite) counterexample for FG¬f  in S. If so, then we conclude that 
the property doesn’t hold. Otherwise, if we can conclude that � doesn’t correspond to any 
real counterexample in S, we try to extract new predicates P′ and/or well-founded rela-
tions W ′ to produce a refined encoding: Sj+1,�j+1 ∶= encode (S, f ,P ∪ P�,W ∪W �) , where 
P�,W � ∶= encode (Sj,�,P,W) . If we can neither confirm nor refute the existence of real 
counterexamples, we abort the execution, returning “unknown”.3

Example 9  Consider the transition system S = ⟨{c, d}, c = 0 ∧ d ≥ 0, c� = c + 1 ∧ d
� = d,⊤⟩ , the 

LTL(T  ) property FG c > d , and the initial set of predicates ℙ ∶= {c ≤ d, c = 0, 0 ≤ d} . 
The algorithm will first find an abstract lasso-shaped counter-example with prefix 
{xc≤d, xc=0, x0≤d} and a self loop on the abstract state {xc≤d,¬xc=0, x0≤d} . The algorithm can-
not determine that such abstract counter-example is spurious using bounded model check-
ing, since there is no corresponding lasso-shaped path in S. Instead, the algorithm synthe-
sizes a ranking function d − c , with lower bound −1 ≤ d − c , proving the the abstract loop 

3  We might also diverge and/or exhaust resources in various intermediate steps (e.g. in checking Sj ⊧ 𝜙j or 
during refinement).
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terminates. The algorithm uses the ranking function to get a well-founded relation. We 
refer to [12] for the details of the encoding of the ranking function in the liveness-to-safety 
reduction: intuitively, the encoding relaxes the loop condition used in L2S (see Sect. 3.4.2), 
so that abstract loops that satisfy at least a well founded relation are not considered as vio-
lation for the LTL property.

7.2 � The K‑Zeno algorithm

The K-liveness algorithm is sound and complete for finite-state systems (i.e., the implica-
tion in (7) holds also in the other direction) although, in practice, the algorithm is effec-
tive only for proving liveness, rather than finding a violation. The K-liveness algorithm 
is sound, however not complete, to prove liveness properties for infinite-state systems. 
In an infinite-state system the bound K may not be a specific natural number but instead 
may depend on the system variables (the bound K is a function of the state variables of 
the transition system S). For example, consider an infinite-state system S with an integer 
parameter p ≥ 0 where the condition f can be visited at most p times. In such system the 
property S ⊧ FG¬f  holds, but K-liveness would never prove that since for all K ∈ ℕ , there 
exists a value of p ≥ 0 such that S ⊧ p > K . In practice, once we fix the value of K to an 
natural number to check S ⊧ #(f ) ≤ K , the path where p = K + 1 is sufficient to show that 
S  ⊧ #(f ) ≤ K.

The above limitation of K-liveness also affects the analysis of infinite-state systems with 
paths where the value of a variable diverges. We obtain infinite-state transition systems 
with such diverging paths when we encode timed automata [47] and hybrid automata [72],4 
two formalisms that model respectively real-time systems and control systems. Both for-
malisms do not exclude fair Zeno paths, infinite paths of the system where the real time 
does not diverge. We call non-Zeno paths all the infinite paths where time diverges. How-
ever, the fairness verification problem for timed and hybrid automata does not consider 
such Zeno paths, since they unrealistically assume that an infinite number of computa-
tion steps can happen in a finite amount of time [72]. K-liveness would not prove liveness 
properties when naïvely applied to the transition system S encoding of a timed or hybrid 
automaton that contains Zeno paths where the fairness condition f holds. In fact, for every 
possible value of K, the transition system would have an infinite path where the real time 
variable does not diverge and where the the condition f holds. This means that, for any 
choice of K, we would have that S  ⊧ #(f ) ≤ K.

The K-Zeno [13] algorithm applies a transformation to the transition system S to con-
sider only occurrences of the fairness condition f on paths where time diverges. In such 
transformation the algorithm uses a new transition system S� that introduces a bound � on 
the real time elapsed between two consecutive occurrences of the fairness condition f. In 
this way, the system only considers occurrences of the condition f that happen on a non-
Zeno path. The liveness verification problem that considers only non-Zeno paths where f 
may hold is then:

(20)∃K ⋅ S × S𝛽 ⊧ #(f ) ≤ K

4  See [73–76] for details about possible encoding of timed and hybrid systems as infinite-state transition 
systems.
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The specific construction of the transition system S� depends on the kind of system to 
verify. For example, if the system is a timed automaton (without parameters), the bound 
� can be just a constant (the maximum constant in the model or 1). The transition sys-
tem S� may have to capture a symbolic bound �(X) that is a function of the state variables 
X, instead of being just a constant, when analyzing more general classes of systems (e.g., 
hybrid automata). The work in [13] shows that there exists a monitor S�(X) that guarantees 
a complete reduction in the case of initialized with bounded non-determinism parametric 
hybrid automata (i.e., if S ⊧ FG¬f  then ∃K.S × S𝛽(X) ⊧ #(f ) ≤ K).

7.3 � Beyond lasso‑shaped counterexamples

In finite-state systems, if an LTL property is false, there is always a counterexample path 
(i.e. a witness) for it which is ultimately periodic (i.e. in a lasso-shaped form). When deal-
ing with the infinite-state case, this is no longer the case, as in general in an infinite-state 
system a false LTL property might admit no lasso-shaped witness. Therefore, in order to 
effectively find counterexamples for LTL properties in infinite-state systems, it is necessary 
to look for ways to encode a more general class of infinite traces.

This problem has been investigated extensively in the context of software (non)termi-
nation. In that setting, closed recurrence sets [77] are used to represent a witness for the 
nontermination of some software program. A closed recurrence set consists of a reachable 
set of states that is disjoint from the end states and inductive with respect to a left-total 
transition relation that underapproximates the transition relation of the program. The set 
represents at least one infinite execution for the program: (i) its reachability ensures that 
there is some finite execution of the program ending in some state within the set; (ii) since 
the set is also inductive, we know that no transition starting from within the set can reach a 
state outside of it and (iii) the left-total transition relation ensures that there always exists at 
least one successor state satisfying also the transition relation of the program.

However, in the more general context of counterexamples for full LTL properties, recur-
rent sets are not sufficient, as a counterexample trace has the additional requirement of 
being fair, i.e. it needs to visit some fair state infinitely often. Unless the set underapproxi-
mates the fair states, without additional information, we cannot conclude that the infinite 
executions described by the closed recurrence set are fair.

In order to solve this problem, we have recently generalised the notion of recurrence set 
to take fairness conditions into proper account [78]. We split the closed recurrence set into 
two components S and D, such that D is a subset of the fair states. The union of S and D 
must satisfy the same conditions described above for closed recurrence sets and, in addi-
tion, the left-total transition relation must not allow for infinite sequences of S states: every 
state in S must reach a state in D in a finite number of steps. Moreover, in order to aid the 
automatic discovery of such generalised recurrence sets, we split the monolithic problem 
described above into two orthogonal directions: by segmenting the infinite paths into finite 
paths and decomposing the system with respect to some partitioning of the symbols.

More precisely, we segment the fair paths into a concatenation of finite paths: we split S 
into multiple regions such that each region represents a set of finite paths that must eventu-
ally reach the following region. Notice that, while each path in a region must be finite, there 
might be no upper bound to their length: a region can represent an infinite number of finite 
paths with increasing lengths. We call each segment funnel and their concatenation repre-
senting the fair paths funnel-loop. In addition, we decompose the system by partitioning 
its symbols. Each component, called E-component (for existential component), describes 
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the behavior of a subset of the symbols while assuming some properties about the others. 
These properties represent the conditions that are necessary for this behavior to be enabled 
and we need to prove that such conditions are ensured by some other component.

With this partitioned representation, which we have proven to be both sound and rela-
tively complete, we have then developed a search procedure, based on a combination of 
invariant checking with abstraction, bounded model checking and SMT-based synthesis via 
quantified reasoning, that is capable of identifying funnel-loops in an automatic manner 
[78], with an implementation that significantly outperforms the state of the art on a wide 
class of benchmarks.

Example 10  Consider the fair transition system:

The system admits fair paths that are not lasso-shaped. For example, one such path is the 
following (where the states show the values for the variables c, n, o, and k is an integer 
constant):

We can represent the paths above using a funnel as defined in [78], which intuitively 
defines an underapproximation of the original system that contains only fair paths. The 
funnel is defined as having a source region S ∶= (o > 0 ∧ n > o) (which is a subset 
of the initial states of the system), a destination region D ∶= (o > 0 ∧ o < n ∧ c = 0) 
(which is a subset of S consisting of fair states), connected by a transition relation 
T ∶= (c < n ∧ c

� = c + 1 ∧ n
� = n ∧ o

� = o) ∨ (c ≥ n ∧ o
� = n ∧ c

� = 0 ∧ n
� = n + 1) , which is 

an underapproximation of the transition relation of the system ensuring that eventually D 
must be reached when starting from S.5

8 � The nuXmv model checker

All the techniques and algorithms described in the previous sections have been imple-
mented in nuXmv  [16], a state-of-the-art symbolic model checker for both finite- and 
infinite-state synchronous fair transition systems. nuXmv is the successor of NuSMV [17], 
the popular symbolic model checker for finite-state systems which was conceived in 1999 
within a joint cooperation of the CMU group of Ed Clarke and FBK.6 In some sense, there-
fore, nuXmv carries on the legacy of Ed Clarke and his message of combining theoretical 
results with strong practical applications.

From a technical standpoint, nuXmv  integrates, extends and complements the func-
tionalities of NuSMV  with multiple functionalities to facilitate its deployment in sev-
eral operational industrial and research settings. For finite-state systems, it complements 
the basic verification techniques available in NuSMV with a family of new state-of-the-
art SAT-based techniques, including interpolation and IC3. For infinite-state systems, 

⟨{c, n, o},⊤, (n > o) ∧ ((c < n ∧ c� = c + 1 ∧ n� = n ∧ o� = o) ∨ (c ≤ n ∧ o� = n)), c = 0⟩.

{0, 1, 0}, {1, 1, 0}, {0, 2, 1}, {1, 2, 1},… , {k − 1, k, k − 1}, {k, k, k − 1}, {0, k + 1, k},…

5  The details are omitted for simplicity. We refer to [78] for a full definition of funnels and their properties.
6  At that time Istituto Trentino di Cultura.
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nuXmv  extends the NuSMV  language with new data types, namely integers, reals and 
unbounded arrays. Figure 6 shows the nuXmv specification for the transition system and 
property from Example 4. The example shows how the nuXmv language can express infi-
nite state transition systems, specifying the variables (VAR declarations), the initial condi-
tion (INIT declaration), and the transition relation (TRANS) declaration. Notice that the 
nuXmv  input language is way richer, allowing to specify, for example, modules, fairness 
constraints, and timed transition systems [79]. nuXmv  provides advanced SMT-based 
model checking techniques and implements all the abstraction-based approaches discussed 
in the previous sections (including several explicit computation techniques, e.g., [60–62]). 
Moreover, it complements these algorithms with other functionalities whose description is 
out of scope of this paper. The interested reader can refer to [16] for detailed discussion of 
all the functionalities provided by nuXmv.

nuXmv has been used in a wide range of applications, both at academic and at industrial 
level, in different application domains including avionics, railways, automotive, space, and 
biological (e.g. [24, 31, 32, 80–84].) Finally, nuXmv is also the back-end of several other 
tools, including the Kratos [85] software model checker, the RATSY [86] tool for tempo-
ral logic synthesis, the OCRA [22] platform for contract-based verification, the xSAP [87] 
for model-based safety assessment, and the HyCOMP [20] model checker for the verifica-
tion of hybrid systems.

9 � Conclusions

In this paper we presented a retrospective on the verification of infinite-state transition sys-
tems expressed symbolically in SMT. This line of work was substantially influenced by 
the work of Ed Clarke, based on the ideas on SAT-based model checking and abstraction 
refinement. At the methodological level, Clarke always underlined the importance of devel-
oping strong tools and applying them in practical case studies, being enthusiastic about the 
work on the NuSMV model checker. This paved the way to the development of the nuXmv 
model checker, and its applications to practical industrial case studies.

Challenges for future research include devising effective verification and falsification 
algorithms and tools for more expressive classes of VMT problems: parameterized systems 
expressed in the quantified theory of arrays [88], timed and hybrid systems [40], sequential 
and concurrent software, recurrent neural networks, and the closed-loop combination of 
physical systems and control software.

Fig. 6   nuXmv listing for the tran-
sition system of Example 4
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