

CAV Verification Mentoring Workshop 2017

SMT Solving

Alberto Griggio Fondazione Bruno Kessler – Trento, Italy

Given a (quantifier-free) FOL formula and a (decidable) combination of theories $\mathcal{T}_1 \cup \ldots \cup \mathcal{T}_m$, is there an assignment to the free variables x_1, \ldots, x_n that makes the formula true?

Example:

$$\varphi \stackrel{\text{def}}{=} (x_1 \ge 0) \land (x_1 < 1) \land ((f(x_1) = f(0))) \rightarrow (\mathsf{rd}(\mathsf{wr}(P, x_2, x_3), x_2 + x_1) = x_3 + 1))$$

Given a (quantifier-free) FOL formula and a (decidable) combination of theories $\mathcal{T}_1 \cup \ldots \cup \mathcal{T}_m$, is there an assignment to the free variables x_1, \ldots, x_n that makes the formula true?

Given a (quantifier-free) FOL formula and a (decidable) combination of theories $\mathcal{T}_1 \cup \ldots \cup \mathcal{T}_m$, is there an assignment to the free variables x_1, \ldots, x_n that makes the formula true?

Given a (quantifier-free) FOL formula and a (decidable) combination of theories $\mathcal{T}_1 \cup \ldots \cup \mathcal{T}_m$, is there an assignment to the free variables x_1, \ldots, x_n that makes the formula true?

Given a (quantifier-free) FOL formula and a (decidable) combination of theories $\mathcal{T}_1 \cup \ldots \cup \mathcal{T}_m$, is there an assignment to the free variables x_1, \ldots, x_n that makes the formula true?

Example:

$$\begin{split} \varphi \stackrel{\text{def}}{=} (x_1 \geq 0) \land (x_1 < 1) \land \\ ((f(x_1) = f(0)) \rightarrow (\mathsf{rd}(\mathsf{wr}(P, x_2, x_3), x_2 + x_1) = x_3 + 1)) \\ \text{LIA} \models (x_1 = 0) \\ \text{EUF} \models f(x_1) = f(0) \\ \text{A} \models \mathsf{rd}(\mathsf{wr}(P, x_2, x_3), x_2) = x_3 \\ \text{Bool} \models \mathsf{rd}(\mathsf{wr}(P, x_2, x_3), x_2 + x_1) = x_3 + 1 \\ \text{LIA} \models \bot \end{split}$$

- Iogic as language for various applications in formal methods (and more)
 - Modeling
 - Verification
 - Planning / scheduling
 - Synthesis
- Need efficient, automated reasoning techniques
 - SMT is a "sweet spot" between expressiveness and efficiency
 - SMT solvers as backend "workhorse" engines of many (verification) techniques and tools

The "early days"

- The Simplify theorem prover [Detlefs, Nelson, Saxe]
 - The grandfather of SMT solvers

Efficient decision procedures

- Equality logic + extensions (Congruence Closure)
- Linear arithmetic (Simplex)
- Theory combination (Nelson-Oppen method)
- Quantifiers (E-matching with triggers)

Inefficient boolean search

The SAT breakthrough

- Iate '90s early 2000: major progress in SAT solvers
- CDCL paradigm: Conflict-Driven Clause-Learning DPLL
 - Grasp, (z)Chaff, Berkmin, MiniSat, ...
- combine strengths of model search and proof search in a single procedure
 - Model search: efficient BCP and variable selection heuristics
 - Proof search: conflict analysis, non-chronological backtracking, clause learning
- Smart ideas + clever engineering "tricks"

From SAT to SMT

- exploit advances in SAT solving for richer logics
 - Boolean combinations of constraints over (combinations of) background theories
- The Eager approach (a.k.a. "bit-blasting")
 - Encode an SMT formula into propositional logic
 - Solve with an off-the-shelf efficient SAT solver
 - Pioneered by UCLID
 - Still the dominant approach for bit-vector arithmetic

The Lazy approach and DPLL(T) (2002 – 2004)

- (non-trivial) combination of SAT (CDCL) and T-solvers
 - SAT-solver enumerates models of boolean skeleton of formula
 - Theory solvers check consistency in the theory
 - Most popular approach (e.g. Barcelogic, CVC4, MathSAT, SMTInterpol, Yices, Z3, VeriT, ...)

Yices 1.0 (2006)

The first efficient "general-purpose" SMT solver

Z3 1.0 (2008)

> 3000 citations, most influential tool paper at TACAS

SAT with CDCL (aka DPLL)

SAT with CDCL (aka DPLL)

- A theory T is a set of structures (D, I) over a signature Σ :
 - D a **domain** for variables
 - I an interpretation for function symbols $I(f): D^n \mapsto D$

- A theory T is a set of structures (D, I) over a signature Σ :
 - D a **domain** for variables
 - I an interpretation for function symbols $I(f): D^n \mapsto D$
- Deciding the satisfiability of φ modulo \mathcal{T} can be reduced to deciding \mathcal{T} -satisfiability of **conjunctions (sets) of constraints**
 - Can exploit efficient decision procedures for sets of constraints, existing for many important theories
- Naive approach: convert φ to an equivalent φ' in disjunctive normal form (DNF), and check each conjunction separately
- Main idea of lazy SMT: use an efficient SAT solver to enumerate conjuncts without computing the DNF explicitly

Offline lazy SMT

```
F = CNF\_bool(\varphi)
while true:
  res, M = check_SAT(F)
  if res == true:
     M' = to_T(M)
     res = check_T(M')
     if res == true:
        return SAT
     else:
        F += !M
  else:
     return UNSAT
```

A basic approach

A basic approach

A basic approach

- DPLL(T): Online approach to lazy SMT
- Tight integration between a CDCL-like SAT solver ("DPLL") and the decision procedure for T ("T-solver"), based on:
 - Early pruning
 - T-driven backjumping and learning
 - T-solver incrementality
 - T-propagation
- Separation of concerns
 - efficient boolean reasoning via CDCL
 - only conjunctions of constraints in T-solvers
- Modular architecture
 - reasonably easy to change SAT solver or add other theories

DPLL(T)


```
DPLL-T(F)
 A = [], dl = 0
 while (true)
    conflict = FALSE
    if (unit_propagation(F, A) &&
        theory_propagation(F, A))
       if (!all_assigned(F, A))
         lit = pick_lit(F, A), dl++
         A = A + (lit, -)
       else if (theory_check(F, A))
         return SAT
       else conflict = TRUF
    else conflict = TRUE
    if (conflict)
      lvl, cls = theory_analyze(F, A)
      if (1v1 < 0) return UNSAT
      else
         backtrack(F, A, lvl)
         learn(cls)
         dl = lvl
```


- Invoke T-solver on intermediate assignments, during the CDCL search
 - If unsat is returned, can backtrack immediately
- Advantage: can drastically prune the search tree
- Drawback: possibly many useless (expensive) T-solver calls

- When unsat, T-solver can produce reason for inconsistency
 - **T-conflict set**: inconsistent subset of the input constraints
- T-conflict clause given as input to the CDCL conflict analysis
 - Drives non-chronological backtracking (backjumping)
 - Can be learned by the SAT solver
- The less redundant the *T*-conflict set, the more search is saved
 - Ideally, should be minimal (irredundant)
 - Removing any element makes the set consistent
 - But for some theories might be expensive to achieve
 - Trade-off between size and cost

- With early pruning, T-solvers invoked very frequently on similar problems
 - Stack of constraints (the assignment stack of CDCL) incrementally updated
- Incrementality: when a new constraint is added, no need to redo all the computation "from scratch"
- Backtrackability: support cheap (stack-based) removal of constraints without "resetting" the internal state

Crucial for efficiency

Distinguishing feature for effective integration in DPLL(T)

T-propagation

- T-solvers might support deduction of unassigned constraints
 - If early pruning check on *M* returns sat, *T*-solver might also return a set *D* of unsassigned atoms such that $M \models_{\mathcal{T}} l$ for all $l \in D$
- **T-propagation:** add each such *l* to the CDCL stack
 - As if BCP was applied to the (*T*-valid) clause $\neg M \lor l$ (*T*-reason)
 - But do not compute the T-reason clause explicitly yet
- Lazy explanation: compute *T*-reason clause only if needed during conflict analysis
 - Like *T*-conflicts, the less redundant the better

 φ^{Bool} $\varphi \stackrel{\mathrm{def}}{=}$ def $c_1: (2x_2 - x_3 > 2) \lor P_1$ $c_2: \neg P_2 \lor (x_1 - x_5 \le 1)$ $c_3: \neg (3x_1 - 2x_2 \le 3) \lor \neg P_2$ $c_4: \neg (3x_1 - x_3 \le 6) \lor \neg P_1$ $c_5: P_1 \lor (3x_1 - 2x_2 \le 3)$ $c_6: (x_2 - x_4 \le 6) \lor \neg P_1$ $c_7: P_1 \lor (x_3 = 3x_5 + 4) \lor \neg P_2$ $c_8: P_2 \lor (2x_2 - 3x_1 \ge 5) \lor$ $(x_3 + x_5 - 4x_1 \ge 0)$

$$= A_1 \lor P_1$$

$$\neg P_2 \lor A_2$$

$$\neg A_3 \lor \neg P_2$$

$$\neg A_4 \lor \neg P_1$$

$$P_1 \lor A_3$$

$$A_5 \lor \neg P_1$$

$$P_1 \lor A_6 \lor \neg P_2$$

$$P_2 \lor A_7 \lor A_8$$

 $M = [\neg A_4, \neg A_1, P_1, A_5, A_6]$

$$\varphi \stackrel{\text{def}}{=} \qquad \varphi^{\text{Bool}} \stackrel{\text{def}}{=} \qquad \qquad \neg A_4 \\ c_1: (2x_2 - x_3 > 2) \lor P_1 \qquad A_1 \lor P_1 \\ c_2: \neg P_2 \lor (x_1 - x_5 \le 1) \qquad \neg P_2 \lor A_2 \\ c_3: \neg (3x_1 - 2x_2 \le 3) \lor \neg P_2 \qquad \neg A_3 \lor \neg P_2 \\ c_4: \neg (3x_1 - x_3 \le 6) \lor \neg P_1 \qquad \neg A_4 \lor \neg P_1 \\ c_5: P_1 \lor (3x_1 - 2x_2 \le 3) \qquad P_1 \lor A_3 \\ c_6: (x_2 - x_4 \le 6) \lor \neg P_1 \qquad A_5 \lor \neg P_1 \\ c_7: P_1 \lor (x_3 = 3x_5 + 4) \lor \neg P_2 \qquad P_1 \lor A_6 \lor \neg P_2 \\ c_8: P_2 \lor (2x_2 - 3x_1 \ge 5) \lor \qquad P_2 \lor A_7 \lor A_8 \\ (x_3 + x_5 - 4x_1 \ge 0) \\ M = \boxed{\neg A_4, \neg A_1, P_1, A_5, A_6} \\ \boxed{\neg (3x_1 - x_3 \le 6)} \qquad (x_3 = 3x_5 + 4) \\ \hline \neg (3x_1 - x_5 \le 10) \\ \hline \neg (x_1 - x_5 \le 1) \equiv \neg A_2$$

 $\neg A_{A}$

 $\varphi \stackrel{\mathrm{def}}{=}$ φ^{Bool} $\stackrel{\text{def}}{=}$ $c_1: (2x_2 - x_3 > 2) \lor P_1$ $A_1 \vee P_1$ $c_2: \neg P_2 \lor (x_1 - x_5 \le 1)$ $\neg P_2 \lor A_2$ $\neg A_3 \lor \neg P_2$ $c_3: \neg (3x_1 - 2x_2 < 3) \lor \neg P_2$ $c_4: \neg (3x_1 - x_3 < 6) \lor \neg P_1$ $\neg A_4 \lor \neg P_1$ $c_5: P_1 \lor (3x_1 - 2x_2 < 3)$ $P_1 \vee A_3$ $c_6: (x_2 - x_4 \le 6) \lor \neg P_1$ $A_5 \vee \neg P_1$ $c_7: P_1 \lor (x_3 = 3x_5 + 4) \lor \neg P_2$ $P_1 \vee A_6 \vee \neg P_2$ $c_8: P_2 \lor (2x_2 - 3x_1 > 5) \lor$ $P_2 \vee A_7 \vee A_8$ $(x_3 + x_5 - 4x_1 > 0)$

$$\neg A_{1}$$

$$P_{1}^{(c_{1})}$$

$$A_{5}^{(c_{6})}$$

$$A_{6}$$

$$\neg A_{2}^{(\mathcal{T})}$$

$$\neg P_{2}^{(c_{2})}$$

 $M = [\neg A_4, \neg A_1, P_1, A_5, A_6, \neg A_2, \neg P_2]$

 φ^{Bool} $\varphi \stackrel{\mathrm{def}}{=}$ $\stackrel{\text{def}}{=}$ $c_1: (2x_2 - x_3 > 2) \lor P_1$ $A_1 \vee P_1$ $c_2: \neg P_2 \lor (x_1 - x_5 \le 1)$ $\neg P_2 \lor A_2$ $c_3: \neg (3x_1 - 2x_2 \le 3) \lor \neg P_2$ $\neg A_3 \lor \neg P_2$ $c_4: \neg (3x_1 - x_3 \le 6) \lor \neg P_1$ $\neg A_4 \lor \neg P_1$ $c_5: P_1 \lor (3x_1 - 2x_2 \le 3)$ $P_1 \vee A_3$ $A_5 \vee \neg P_1$ $c_6: (x_2 - x_4 \le 6) \lor \neg P_1$ $c_7: P_1 \lor (x_3 = 3x_5 + 4) \lor \neg P_2 \qquad P_1 \lor A_6 \lor \neg P_2$ $c_8: P_2 \lor (2x_2 - 3x_1 \ge 5) \lor$ $P_2 \vee A_7 \vee A_8$ $(x_3 + x_5 - 4x_1 \ge 0)$

$$M = [\neg A_4, \neg A_1, P_1, A_5, A_6, \neg A_2, \neg P_2]$$

$$\neg A_{4}$$

$$\neg A_{1}$$

$$P_{1}^{(c_{1})}$$

$$A_{5}^{(c_{6})}$$

$$\neg A_{2}^{(\mathcal{T})}$$

$$\neg P_{2}^{(c_{2})}$$

$$\varphi \stackrel{\text{def}}{=} \qquad \varphi^{\text{Bool}} \stackrel{\text{def}}{=} \qquad \qquad \neg A_4 \\ \neg A_1 \lor P_1 \\ c_2 : \neg P_2 \lor (x_1 - x_5 \le 1) \qquad \neg P_2 \lor A_2 \\ c_3 : \neg (3x_1 - 2x_2 \le 3) \lor \neg P_2 \qquad \neg A_3 \lor \neg P_2 \\ c_4 : \neg (3x_1 - x_3 \le 6) \lor \neg P_1 \qquad \neg A_4 \lor \neg P_1 \\ c_5 : P_1 \lor (3x_1 - 2x_2 \le 3) \qquad P_1 \lor A_3 \\ c_6 : (x_2 - x_4 \le 6) \lor \neg P_1 \qquad A_5 \lor \neg P_1 \\ c_7 : P_1 \lor (x_3 = 3x_5 + 4) \lor \neg P_2 \qquad P_1 \lor A_6 \lor \neg P_2 \\ c_8 : P_2 \lor (2x_2 - 3x_1 \ge 5) \lor \qquad P_2 \lor A_7 \lor A_8 \\ (x_3 + x_5 - 4x_1 \ge 0) \qquad M = [\neg A_4, \neg A_1, P_1, A_5, A_6, \neg A_2, \neg P_2, A_8] \\ \neg (3x_1 - x_3 \le 6) \qquad \neg (x_1 - x_5 \le 1) \\ \neg (-x_3 + 3x_5 \le 3) \qquad (x_3 + x_5 - 4x_1 \ge 0)$$

$$\varphi \stackrel{\text{def}}{=} \varphi^{\text{Bool}} \stackrel{\text{def}}{=} \\ c_{1}: (2x_{2} - x_{3} > 2) \lor P_{1} \qquad A_{1} \lor P_{1} \\ c_{2}: \neg P_{2} \lor (x_{1} - x_{5} \le 1) \qquad \neg P_{2} \lor A_{2} \\ c_{3}: \neg (3x_{1} - 2x_{2} \le 3) \lor \neg P_{2} \qquad \neg A_{3} \lor \neg P_{2} \\ c_{4}: \neg (3x_{1} - x_{3} \le 6) \lor \neg P_{1} \qquad \neg A_{4} \lor \neg P_{1} \\ c_{5}: P_{1} \lor (3x_{1} - 2x_{2} \le 3) \qquad P_{1} \lor A_{3} \\ c_{6}: (x_{2} - x_{4} \le 6) \lor \neg P_{1} \qquad A_{5} \lor \neg P_{1} \\ c_{7}: P_{1} \lor (x_{3} = 3x_{5} + 4) \lor \neg P_{2} \qquad P_{1} \lor A_{6} \lor \neg P_{2} \\ c_{8}: P_{2} \lor (2x_{2} - 3x_{1} \ge 5) \lor \qquad P_{2} \lor A_{7} \lor A_{8} \\ (x_{3} + x_{5} - 4x_{1} \ge 0) \\ M = [\neg A_{4}, \neg A_{1}, P_{1}, A_{5}, A_{6}, \neg A_{2}, \neg P_{2}, A_{8}] \\ \neg (3x_{1} - x_{3} \le 6) \qquad \neg (x_{1} - x_{5} \le 1) \\ \neg (-x_{3} + 3x_{5} \le 3) \qquad (x_{3} + x_{5} - 4x_{1} \ge 0) \\ \end{array}$$

Many built-in theories and combinations

- Equality, arithmetic (linear, some non-linear), bit-vectors, arrays, floats, datatypes, ...
- Quantifiers

Much more than just satisfiability checking

- Model generation (less obvious than it seems)
- Incremental interface (push/pop, assumptions)
- Model enumeration
- Quantifier elimination
- Proofs, unsat cores, interpolants

- Polynomial time O(n log n) congruence closure procedure
- Fully incremental and backtrackable (stack-based)
- Supports efficient T-propagation
 - Exhaustive for positive equalities
 - Incomplete for disequalities
- Lazy explanations and conflict generation
- Typically used as a "core" T-solver

$$[(f(x,y) = x), (h(y) = g(x)), (f(f(x,y),y) = z), \neg(g(x) = g(z))]$$

$$[(f(x,y) = x)], (h(y) = g(x)), (f(f(x,y),y) = z), \neg(g(x) = g(z))]$$

$$[(f(x,y) = x)], (h(y) = g(x)), (f(f(x,y),y) = z), \neg(g(x) = g(z))]$$

$$[(f(x,y) = x), (h(y) = g(x)), (f(f(x,y),y) = z), \neg(g(x) = g(z))]$$

$$[(f(x,y) = x), (h(y) = g(x)), (f(f(x,y),y) = z), \neg (g(x) = g(z))]$$

$$[(f(x,y) = x), (h(y) = g(x)), (f(f(x,y),y) = z), \neg (g(x) = g(z))]$$

$$[(f(x,y) = x), (h(y) = g(x)), (f(f(x,y),y) = z), \neg (g(x) = g(z))]$$

$$[(f(x,y) = x), (h(y) = g(x)), (f(f(x,y),y) = z), \neg (g(x) = g(z))]$$

get_conflict():

$$[(f(x,y) = x), (h(y) = g(x)), (f(f(x,y),y) = z), \neg (g(x) = g(z))]$$

get_conflict():

$$[(f(x,y) = x), (h(y) = g(x)), (f(f(x,y),y) = z), \neg (g(x) = g(z)))]$$

get_conflict():

$$[(f(x,y) = x), (h(y) = g(x)), (f(f(x,y),y) = z), \neg (g(x) = g(z)))]$$

$$[(f(x,y) = x), (h(y) = g(x)), (f(f(x,y),y) = z), \neg (g(x) = g(z)))]$$

$$[(f(x,y) = x), (h(y) = g(x)), (f(f(x,y),y) = z), \neg (g(x) = g(z)))]$$

$$[(f(x,y) = x), (h(y) = g(x)), (f(f(x,y),y) = z), \neg (g(x) = g(z)))]$$

$$[(f(x,y) = x), (h(y) = g(x)), (f(f(x,y),y) = z), \neg (g(x) = g(z)))]$$

- SMT solvers mostly deal with quantifier-free problems
 - Often good compromise between expressiveness and efficiency
 - A key factor for the success of SMT
- Yet, in practice it is useful to incorporate some support for quantifiers
 - Examples:
 - Support user-provided axioms/assertions $\forall i, j. (i \leq j) \rightarrow (rd(a, i) \leq rd(a, j))$ "a is sorted"
 - Axiomatisation of extra theories w/o built-in support

 $\begin{aligned} &\forall x. p(x, x) & \forall x, y, z. p(x, y) \land p(y, z) \rightarrow p(x, z) \\ &\forall x, y. p(x, y) \land p(y, x) \rightarrow x = y \end{aligned}$

- Assumption: formulas of the form $\psi \wedge \bigwedge_j \forall \vec{x}.D_j(\vec{x}) \psi$ quantifier-free
 - Can always remove existentials by Skolemization $\forall x. \exists y. \varphi(x, y) \mapsto \forall x. \varphi(f_y(x)), f_y \text{ fresh}$

Main idea: handle quantifiers via axiom instantiation

Pick a quantified clause $\forall \vec{x}. D(\vec{x})$, heuristically instantiate its variables with quantifier-free terms $\vec{t_1} \dots \vec{t_k}$, and add the generated clauses $\{D(\vec{t_1}) \dots D(\vec{t_k})\}$ to the SAT solver

terminate when unsat is detected

Assumption: formulas of the form $\psi \wedge \bigwedge_j \forall \vec{x}.D_j(\vec{x}) \psi$ quantifier-free

Can always remove existentials by Skolemization $\forall x. \exists y. \varphi(x, y) \mapsto \forall x. \varphi(f_y(x)), f_y \text{ fresh}$

Main idea: handle quantifiers via axiom instantiation

- Pick a quantified clause $\forall \vec{x}. D(\vec{x})$, heuristically instantiate its variables with quantifier-free terms $\vec{t_1} \dots \vec{t_k}$, and add the generated clauses $\{D(\vec{t_1}) \dots D(\vec{t_k})\}$ to the SAT solver
- terminate when unsat is detected

Problems:

- how to choose the relevant instances to add?
- how to detect satisfiable formulas?

E-matching

- Discover relevant instances using the EUF congruence closure graph (E-graph)
- Given an axiom $\forall \vec{x}.D(\vec{x})$, an E-graph *E*, a *trigger* $p(\vec{x})$ and a *substitution* θ from vars to ground terms:
 - $D(\vec{x})\theta$ is relevant \Leftrightarrow exists $t \in E$ such that $E \models (t = p(\vec{x})\theta)$
- **E-matching:** for each axiom $\forall \vec{x}. D_i(\vec{x})$ with trigger $p_i(\vec{x})$
 - generate all substitutions θ_i^j s.t. $E \models (t = p_i(\vec{x})\theta_i^j), t \in E$
 - generate the axiom instances $D_i(\vec{x})\theta_i^j$
 - \blacksquare reason modulo equivalence classes in E
 - \blacksquare discard substitutions that are equivalent modulo E

E-matching

- Discover relevant instances using the EUF congruence closure graph (E-graph)
- Given an axiom $\forall \vec{x}.D(\vec{x})$, an E-graph *E*, a *trigger* $p(\vec{x})$ and a *substitution* θ from vars to ground terms:
 - $D(\vec{x})\theta$ is relevant \Leftrightarrow exists $t \in E$ such that $E \models (t = p(\vec{x})\theta)$
- **E-matching:** for each axiom $\forall \vec{x}. D_i(\vec{x})$ with trigger $p_i(\vec{x})$
 - generate all substitutions θ_i^j s.t. $E \models (t = p_i(\vec{x})\theta_i^j), t \in E$
 - generate the axiom instances $D_i(\vec{x})\theta_i^j$
 - \blacksquare reason modulo equivalence classes in E
 - \blacksquare discard substitutions that are equivalent modulo E

user-provided or syntactically determined from $D_i(\vec{x})$

E-matching

Advantages:

- Integrates smoothly with DPLL(T)
- Fast and efficient at finding "shallow" proofs in big formulas
 - A typical scenario in SMT-based verification
- However, various drawbacks:
 - Can never say **sat,** but is **not** even **refutationally complete**
 - Instance generation might get out of control

• Idea:
$$\varphi \stackrel{\text{\tiny def}}{=} \psi \wedge \bigwedge_i (\forall \vec{x}.D_i(\vec{x}))$$

 \blacksquare build a model M for ψ

• **check** if M satisfies the quantified axioms $\bigwedge_i (\forall \vec{x}. D_i \vec{x})$

If yes, return sat otherwise, generate an instance that blocks the bad model

• Idea:
$$\varphi \stackrel{\text{\tiny def}}{=} \psi \wedge \bigwedge_i (\forall \vec{x}.D_i(\vec{x}))$$

- ${\mbox{-}}$ build a **model** M for ψ
- **check** if M satisfies the quantified axioms $\bigwedge_i (\forall \vec{x}. D_i \vec{x})$
 - If yes, return sat otherwise, generate an instance that blocks the bad model

How:

Use a symbolic representation for M, using lambda-terms

• Example: $(f(a) = 1) \land (a > b) \land (f(b) > f(a) + 1)$ $M \stackrel{\text{def}}{=} \{a \mapsto 1, b \mapsto 0, f \mapsto \lambda x. \text{ite}(x = 0, 3, \text{ite}(x = 1, 1, 0))\}$

• Idea:
$$\varphi \stackrel{\text{\tiny def}}{=} \psi \wedge \bigwedge_i (\forall \vec{x}.D_i(\vec{x}))$$

- ${\mbox{-}}$ build a **model** M for ψ
- **check** if M satisfies the quantified axioms $\bigwedge_i (\forall \vec{x}. D_i \vec{x})$
 - If yes, return sat otherwise, generate an instance that blocks the bad model

How:

• Use a **symbolic representation** for M, using lambda-terms

• Example: $(f(a) = 1) \land (a > b) \land (f(b) > f(a) + 1)$ $M \stackrel{\text{def}}{=} \{a \mapsto 1, b \mapsto 0, f \mapsto \lambda x. \text{ite}(x = 0, 3, \text{ite}(x = 1, 1, 0))\}$

- Check unsatisfiability of $\neg \forall \vec{x}. D_i(\vec{x})[M(c)/c]$ with SMT
 - Example: $\neg \forall x.(f(x) < x+a)[M(c)/c] \mapsto \exists x. \neg(\text{ite}(x=0,3,\text{ite}(x=1,1,0)) < x+1)$

- No hope for a complete procedure in general
 - FOL without theories is only semi-decidable...
 - ...and in fact undecidable with (some) theories (e.g. LIA)
 - However, many decidable fragments exist
 - With suitable instantiation strategies, model-based techniques can be applied effectively

Current trends and future challenges

Beyond solving: Optimization Modulo T

- Find a model for φ that is **optimal** wrt. some cost function c
- Boolean cost functions $c \stackrel{\text{def}}{=} \sum_i w_i \cdot \text{ite}(P_i, 1, 0)$
 - DPLL(T) with "increasingly strong" theories
 - Make c part of the theory, strengthen with (c < ub) when an upper bound is found
 - Can encode MaxSMT problems
 - DPLL(T + Costs)
 - A T-solver for the "theory of costs"
 - Can encode MaxSMT and Pseudo-Boolean modulo Theories
- Linear cost functions $c \stackrel{\text{def}}{=} \sum_i w_i \cdot x_i$
 - DPLL(T + LP optimization)
 - Optimization via linear programming (simplex)
 - cost minimization embedded inside the CDCL search

- Modular integration of DPLL(T) can be harmful sometimes
 - "Rigid" interface between theory and boolean
 - Restricted by syntax of the input formula

- Modular integration of DPLL(T) can be harmful sometimes
 - "Rigid" interface between theory and boolean
 - Restricted by syntax of the input formula

- Modular integration of DPLL(T) can be harmful sometimes
 - "Rigid" interface between theory and boolean
 - Restricted by syntax of the input formula

- Modular integration of DPLL(T) can be harmful sometimes
 - "Rigid" interface between theory and boolean
 - Restricted by syntax of the input formula

Model constructing approaches

Lift CDCL architecture to operate directly over the theory

```
MCSAT(F)
 A = [], dl = 0
  while (true)
    if (theory_unit_rule(F, A))
       if (!all_assigned(F, A))
         var, value = pick_assignment(F, A)
         d]++
         A = A + (var = value, -)
       else return SAT
    else
      lvl, cls = theory_analyze(F, A)
      if (lvl < 0) return UNSAT
      else
         backtrack(F, A, lvl)
         learn(cls)
         dl = 1vl
```


- Model constructing approaches
 - Lift CDCL architecture to operate directly over the theory

Can we go further?

Abstract CD(C)L

- CDCL-like search over abstract domains
- Based on fixpoint characterization of model search and conflict analysis
- Applicable to any abstract domain (satisfying some conditions)
 - Not just formulas
 - E.g. CDCL-like analysis of programs

SC²: SMT Checking meets Symbolic Computation

- EU project to make the two communities talk to each other
 - Focus on hard arithmetic theories

Integration with first-order theorem provers

E.g. the Avatar architecture

Integration with higher-order theorem provers

- Incorporate higher-order features, induction
- E.g. the Matryoshka project

Parallelization / exploiting multi cores and clusters

Provide more than just a yes/no answer

- Models, proofs, interpolants, incremental interface, ...
 - Good support for "easy" theories, not so much for "harder" ones

Synthesis via SMT

- SMT-based quantifier elimination
- Other special-purpose techniques for handling quantifiers

E.g. EF-SMT

Constrained Horn Clauses

Model checking as a (quantified) SMT problem

Conclusions

- SMT is a key technology with many important applications
 - Verification (of course)
 - But also more (e.g. planning, scheduling, synthesis, optimization)
- Well-estabilished core, but still many open research directions
 - Relatively few people working on it!
 - $\blacksquare \Rightarrow$ lots of good opporunities

Thank You