
CAV Verification Mentoring Workshop 2017

SMT Solving

Alberto Griggio
Fondazione Bruno Kessler – Trento, Italy

The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable)
combination of theories , is there an assignment
to the free variables that makes the formula true?

 Example:

The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable)
combination of theories , is there an assignment
to the free variables that makes the formula true?

 Example:

Linear Integer
Arithmetic (LIA)

The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable)
combination of theories , is there an assignment
to the free variables that makes the formula true?

 Example:

Linear Integer
Arithmetic (LIA)

Equality (EUF)

The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable)
combination of theories , is there an assignment
to the free variables that makes the formula true?

 Example:

Linear Integer
Arithmetic (LIA)

Equality (EUF) Arrays (A)

The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable)
combination of theories , is there an assignment
to the free variables that makes the formula true?

 Example:

Why SMT?

 logic as language for various applications in formal methods
(and more)

 Modeling

 Verification

 Planning / scheduling

 Synthesis

 …

 Need efficient, automated reasoning techniques

 SMT is a “sweet spot” between expressiveness and efficiency

 SMT solvers as backend “workhorse” engines of many
(verification) techniques and tools

SMT: some history

The “early days”

 The Simplify theorem prover [Detlefs, Nelson, Saxe]

 The grandfather of SMT solvers

 Efficient decision procedures

 Equality logic + extensions (Congruence Closure)

 Linear arithmetic (Simplex)

 Theory combination (Nelson-Oppen method)

 Quantifiers (E-matching with triggers)

 Inefficient boolean search

SMT: some history - 2

The SAT breakthrough

 late '90s - early 2000: major progress in SAT solvers

 CDCL paradigm: Conflict-Driven Clause-Learning DPLL

 Grasp, (z)Chaff, Berkmin, MiniSat, ...

 combine strengths of model search and proof search
in a single procedure

 Model search: efficient BCP and variable selection heuristics

 Proof search: conflict analysis, non-chronological backtracking,
clause learning

 Smart ideas + clever engineering “tricks”

SMT: some history - 3

From SAT to SMT

 exploit advances in SAT solving for richer logics

 Boolean combinations of constraints over (combinations of)
background theories

 The Eager approach (a.k.a. “bit-blasting”)

 Encode an SMT formula into propositional logic

 Solve with an off-the-shelf efficient SAT solver

 Pioneered by UCLID

 Still the dominant approach for bit-vector arithmetic

SMT: some history - 4

The Lazy approach and DPLL(T) (2002 – 2004)

 (non-trivial) combination of SAT (CDCL) and T-solvers

 SAT-solver enumerates models of boolean skeleton of formula

 Theory solvers check consistency in the theory

 Most popular approach (e.g. Barcelogic, CVC4, MathSAT,
SMTInterpol, Yices, Z3, VeriT, ...)

 Yices 1.0 (2006)

 The first efficient “general-purpose” SMT solver

 Z3 1.0 (2008)

 > 3000 citations, most influential tool paper at TACAS

SAT with CDCL (aka DPLL)

CDCL(F)
 A = [], dl = 0
while (true)
 if (unit_propagation(F, A))
 if (!all_assigned(F, A))
 lit = pick_lit(F, A)
 dl++
 A = A + (lit, -)
 else return SAT
 else
 lvl, cls = analyze(F, A)
 if (lvl < 0) return UNSAT
 else
 backtrack(F, A, lvl)
 learn(cls)
 dl = lvl

Proof
Search

Model
Search

Trail of
assignments
(lit, reason)

SAT with CDCL (aka DPLL)

CDCL(F)
 A = [], dl = 0
while (true)
 if (unit_propagation(F, A))
 if (!all_assigned(F, A))
 lit = pick_lit(F, A)
 dl++
 A = A + (lit, -)
 else return SAT
 else
 lvl, cls = analyze(F, A)
 if (lvl < 0) return UNSAT
 else
 backtrack(F, A, lvl)
 learn(cls)
 dl = lvl

Proof
Search

Model
Search

Trail of
assignments
(lit, reason)

Propositional resolution

C1 _ p C2 _ :p
C1 _ C2

The lazy approach to SMT

 A theory T is a set of structures (D, I) over a signature :

 D a domain for variables

 I an interpretation for function symbols

The lazy approach to SMT

 A theory T is a set of structures (D, I) over a signature :

 D a domain for variables

 I an interpretation for function symbols

 Deciding the satisfiability of modulo can be reduced
to deciding -satisfiability of conjunctions (sets) of
constraints

 Can exploit efficient decision procedures for sets of constraints,
existing for many important theories

 Naive approach: convert to an equivalent in disjunctive
normal form (DNF), and check each conjunction separately

 Main idea of lazy SMT: use an efficient SAT solver to
enumerate conjuncts without computing the DNF explicitly

A basic approach

 Offline lazy SMT

F = CNF_bool()
while true:

res, M = check_SAT(F)
if res == true:

M' = to_T(M)
res = check_T(M')
if res == true:

return SAT
else:

F += !M
else:

return UNSAT

A basic approach

 Offline lazy SMT

F = CNF_bool()
while true:

res, M = check_SAT(F)
if res == true:

M' = to_T(M)
res = check_T(M')
if res == true:

return SAT
else:

F += !M
else:

return UNSAT

Boolean
reasoning

A basic approach

 Offline lazy SMT

F = CNF_bool()
while true:

res, M = check_SAT(F)
if res == true:

M' = to_T(M)
res = check_T(M')
if res == true:

return SAT
else:

F += !M
else:

return UNSAT

Boolean
reasoning

Theory
reasoning

A basic approach

 Offline lazy SMT

F = CNF_bool()
while true:

res, M = check_SAT(F)
if res == true:

M' = to_T(M)
res = check_T(M')
if res == true:

return SAT
else:

F += !M
else:

return UNSAT

Boolean
reasoning

Theory
reasoning

Block bad solutions

Efficient SMT

 DPLL(T): Online approach to lazy SMT

 Tight integration between a CDCL-like SAT solver (“DPLL”)
and the decision procedure for T (“T-solver”), based on:

 Early pruning

 T-driven backjumping and learning

 T-solver incrementality

 T-propagation

 Separation of concerns

 efficient boolean reasoning via CDCL

 only conjunctions of constraints in T-solvers

 Modular architecture

 reasonably easy to change SAT solver or add other theories

DPLL(T)

DPLL-T(F)
 A = [], dl = 0

while (true)
 conflict = FALSE
 if (unit_propagation(F, A) &&
 theory_propagation(F, A))
 if (!all_assigned(F, A))
 lit = pick_lit(F, A), dl++
 A = A + (lit, -)
 else if (theory_check(F, A))
 return SAT
 else conflict = TRUE
 else conflict = TRUE
 if (conflict)
 lvl, cls = theory_analyze(F, A)
 if (lvl < 0) return UNSAT
 else
 backtrack(F, A, lvl)
 learn(cls)
 dl = lvl

Early pruning

 Invoke T-solver on intermediate assignments, during the
CDCL search

 If unsat is returned, can backtrack immediately

 Advantage: can drastically prune the search tree

 Drawback: possibly many useless (expensive) T-solver calls

SAT

SAT

SAT

SAT

SAT

SAT

SAT

SAT SAT

SAT SAT

SAT

SAT

SAT

UNSAT

UNSAT

UNSAT UNSAT

UNSAT

UNSAT

UNSAT

UNSATUNSAT

UNSATUNSAT

UNSAT

UNSAT

UNSAT

UNSAT UNSAT

WITH EARLY−PRUNING

WITHOUT EARLY−PRUNING
T−solver calls

T-backjumping and T-learning

 When unsat, T-solver can produce reason for inconsistency

 T-conflict set: inconsistent subset of the input constraints

 T-conflict clause given as input to the CDCL conflict analysis

 Drives non-chronological backtracking (backjumping)

 Can be learned by the SAT solver

 The less redundant the T-conflict set, the more search is
saved

 Ideally, should be minimal (irredundant)

 Removing any element makes the set consistent
 But for some theories might be expensive to achieve

 Trade-off between size and cost

T-solver incrementality

 With early pruning, T-solvers invoked very frequently on
similar problems

 Stack of constraints (the assignment stack of CDCL)
incrementally updated

 Incrementality: when a new constraint is added, no need to
redo all the computation “from scratch”

 Backtrackability: support cheap (stack-based) removal of
constraints without “resetting” the internal state

 Crucial for efficiency

 Distinguishing feature for effective integration in DPLL(T)

T-propagation

 T-solvers might support deduction of unassigned constraints

 If early pruning check on M returns sat, T-solver might also return
a set D of unsassigned atoms such that for all

 T-propagation: add each such l to the CDCL stack

 As if BCP was applied to the (T-valid) clause (T-reason)

 But do not compute the T-reason clause explicitly yet

 Lazy explanation: compute T-reason clause only if needed
during conflict analysis

 Like T-conflicts, the less redundant the better

Example

Example

Example

Example

Example

Example

Conflict analysis →
compute

T-reason for

Modern SMT functionalities

Many built-in theories and combinations

 Equality, arithmetic (linear, some non-linear), bit-vectors,
arrays, floats, datatypes, …

 Quantifiers

Much more than just satisfiability checking

 Model generation (less obvious than it seems)

 Incremental interface (push/pop, assumptions)

 Model enumeration

 Quantifier elimination

 Proofs, unsat cores, interpolants

T-solver for Equality (EUF)

 Polynomial time O(n log n) congruence closure procedure

 Fully incremental and backtrackable (stack-based)

 Supports efficient T-propagation

 Exhaustive for positive equalities

 Incomplete for disequalities

 Lazy explanations and conflict generation

 Typically used as a “core” T-solver

Example

Example

Example

Example

Example

Example

Example

Example

get_conflict():

Example

get_conflict():

Example

get_conflict():

Example

get_conflict():

Example

get_conflict():

Example

get_conflict():

Example

get_conflict():

Example

get_conflict():

Quantifiers in DPLL(T)

 SMT solvers mostly deal with quantifier-free problems

 Often good compromise between expressiveness and efficiency

 A key factor for the success of SMT

 Yet, in practice it is useful to incorporate some support for
quantifiers

 Examples:

 Support user-provided axioms/assertions

 Axiomatisation of extra theories w/o built-in support

Quantifiers in DPLL(T)

 Assumption: formulas of the form
 quantifier-free

 Can always remove existentials by Skolemization

 Main idea: handle quantifiers via axiom instantiation

 Pick a quantified clause , heuristically instantiate its
variables with quantifier-free terms , and add the
generated clauses to the SAT solver

 terminate when unsat is detected

Quantifiers in DPLL(T)

 Assumption: formulas of the form
 quantifier-free

 Can always remove existentials by Skolemization

 Main idea: handle quantifiers via axiom instantiation

 Pick a quantified clause , heuristically instantiate its
variables with quantifier-free terms , and add the
generated clauses to the SAT solver

 terminate when unsat is detected

 Problems:

 how to choose the relevant instances to add?

 how to detect satisfiable formulas?

E-matching

 Discover relevant instances using the EUF congruence
closure graph (E-graph)

 Given an axiom , an E-graph , a trigger and a
substitution from vars to ground terms:

 is relevant exists such that

 E-matching: for each axiom with trigger

 generate all substitutions s.t.

 generate the axiom instances

 reason modulo equivalence classes in

 discard substitutions that are equivalent modulo

E-matching

 Discover relevant instances using the EUF congruence
closure graph (E-graph)

 Given an axiom , an E-graph , a trigger and a
substitution from vars to ground terms:

 is relevant exists such that

 E-matching: for each axiom with trigger

 generate all substitutions s.t.

 generate the axiom instances

 reason modulo equivalence classes in

 discard substitutions that are equivalent modulo

user-provided or syntactically
determined from

E-matching

 Advantages:

 Integrates smoothly with DPLL(T)

 Fast and efficient at finding “shallow” proofs in big formulas

 A typical scenario in SMT-based verification

 However, various drawbacks:

 Can never say sat, but is not even refutationally complete

 Instance generation might get out of control

 ...

Model-based Instantiation

 Idea:

 build a model for

 check if satisfies the quantified axioms

 If yes, return sat
otherwise, generate an instance that blocks the bad model

Model-based Instantiation

 Idea:

 build a model for

 check if satisfies the quantified axioms

 If yes, return sat
otherwise, generate an instance that blocks the bad model

 How:

 Use a symbolic representation for , using lambda-terms

 Example:

Model-based Instantiation

 Idea:

 build a model for

 check if satisfies the quantified axioms

 If yes, return sat
otherwise, generate an instance that blocks the bad model

 How:

 Use a symbolic representation for , using lambda-terms

 Example:

 Check unsatisfiability of with SMT

 Example:

Complete Instantiation

 No hope for a complete procedure in general

 FOL without theories is only semi-decidable...

 ...and in fact undecidable with (some) theories (e.g. LIA)

 However, many decidable fragments exist

 With suitable instantiation strategies, model-based techniques
can be applied effectively

Current trends and future challenges

Beyond solving: Optimization Modulo T

 Find a model for that is optimal wrt. some cost function

 Boolean cost functions

 DPLL(T) with “increasingly strong” theories

 Make part of the theory, strengthen with
when an upper bound is found

 Can encode MaxSMT problems
 DPLL(T + Costs)

 A T-solver for the “theory of costs”
 Can encode MaxSMT and Pseudo-Boolean modulo Theories

 Linear cost functions

 DPLL(T + LP optimization)

 Optimization via linear programming (simplex)
 cost minimization embedded inside the CDCL search

Beyond DPLL(T)

 Modular integration of DPLL(T) can be harmful sometimes

 “Rigid” interface between theory and boolean

 Restricted by syntax of the input formula

 Example [Jovanovic]:

Beyond DPLL(T)

 Modular integration of DPLL(T) can be harmful sometimes

 “Rigid” interface between theory and boolean

 Restricted by syntax of the input formula

 Example [Jovanovic]:

Beyond DPLL(T)

 Modular integration of DPLL(T) can be harmful sometimes

 “Rigid” interface between theory and boolean

 Restricted by syntax of the input formula

 Example [Jovanovic]:

Beyond DPLL(T)

 Modular integration of DPLL(T) can be harmful sometimes

 “Rigid” interface between theory and boolean

 Restricted by syntax of the input formula

 Example [Jovanovic]:

Beyond DPLL(T)

 Model constructing approaches

 Lift CDCL architecture to operate directly over the theory

MCSAT(F)
 A = [], dl = 0

while (true)
 if (theory_unit_rule(F, A))
 if (!all_assigned(F, A))
 var, value = pick_assignment(F, A)
 dl++
 A = A + (var = value, -)
 else return SAT
 else
 lvl, cls = theory_analyze(F, A)
 if (lvl < 0) return UNSAT
 else
 backtrack(F, A, lvl)
 learn(cls)
 dl = lvl

Beyond DPLL(T)

 Model constructing approaches

 Lift CDCL architecture to operate directly over the theory

MCSAT(F)
 A = [], dl = 0

while (true)
 if (theory_unit_rule(F, A))
 if (!all_assigned(F, A))
 var, value = pick_assignment(F, A)
 dl++
 A = A + (var = value, -)
 else return SAT
 else
 lvl, cls = theory_analyze(F, A)
 if (lvl < 0) return UNSAT
 else
 backtrack(F, A, lvl)
 learn(cls)
 dl = lvl

Theory reasoning

Trail of
variable
assignments

Abstract CD(C)L

 Can we go further?

 Abstract CD(C)L

 CDCL-like search over abstract domains

 Based on fixpoint characterization of model search and conflict
analysis

 Applicable to any abstract domain (satisfying some conditions)

 Not just formulas
 E.g. CDCL-like analysis of programs

SMT in automated reasoning

 SC2: SMT Checking meets Symbolic Computation

 EU project to make the two communities talk to each other

 Focus on hard arithmetic theories

 Integration with first-order theorem provers

 E.g. the Avatar architecture

 Integration with higher-order theorem provers

 Incorporate higher-order features, induction

 E.g. the Matryoshka project

 Parallelization / exploiting multi cores and clusters

SMT in verification

 Provide more than just a yes/no answer

 Models, proofs, interpolants, incremental interface, ...

 Good support for “easy” theories, not so much for “harder”
ones

 Synthesis via SMT

 SMT-based quantifier elimination

 Other special-purpose techniques for handling quantifiers

 E.g. EF-SMT

 Constrained Horn Clauses

 Model checking as a (quantified) SMT problem

Conclusions

 SMT is a key technology with many important applications

 Verification (of course)

 But also more (e.g. planning, scheduling, synthesis, optimization)

 Well-estabilished core, but still many open research directions

 Relatively few people working on it!

 ⇒ lots of good opporunities

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

