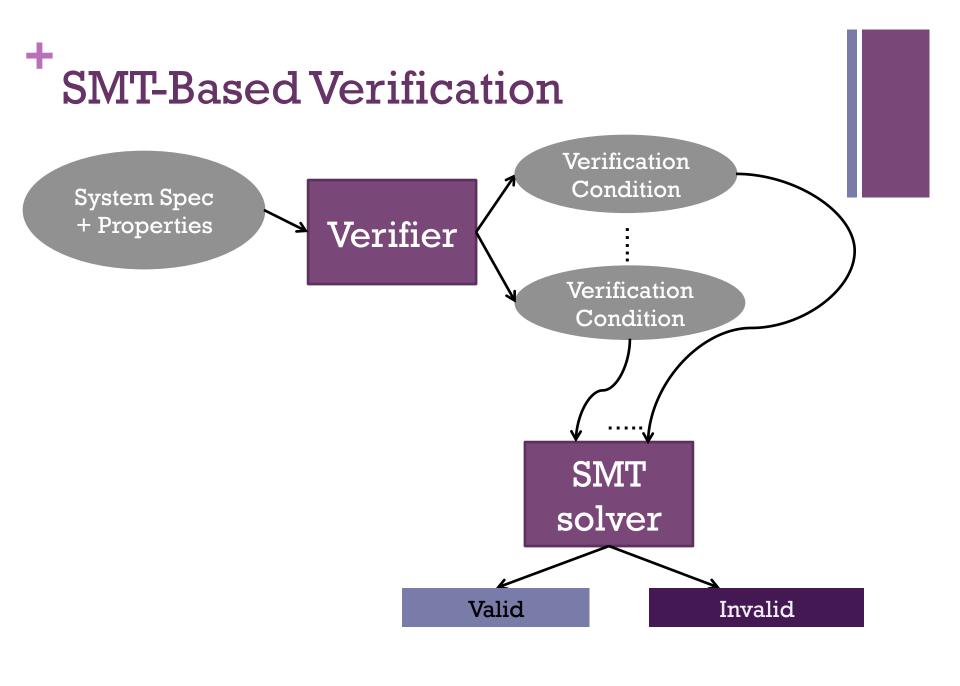
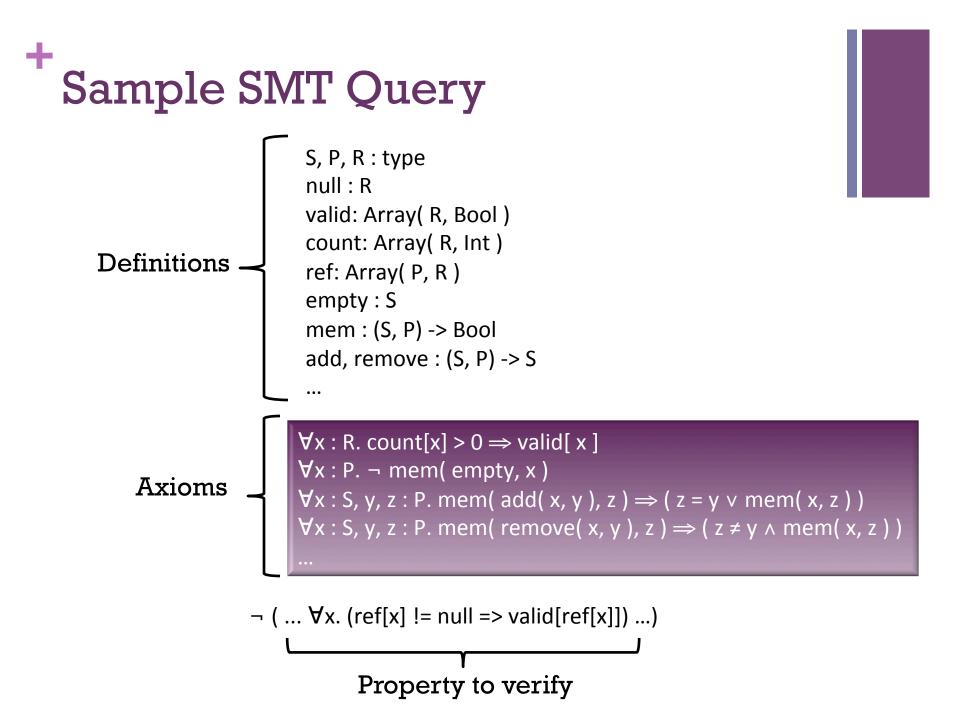
+

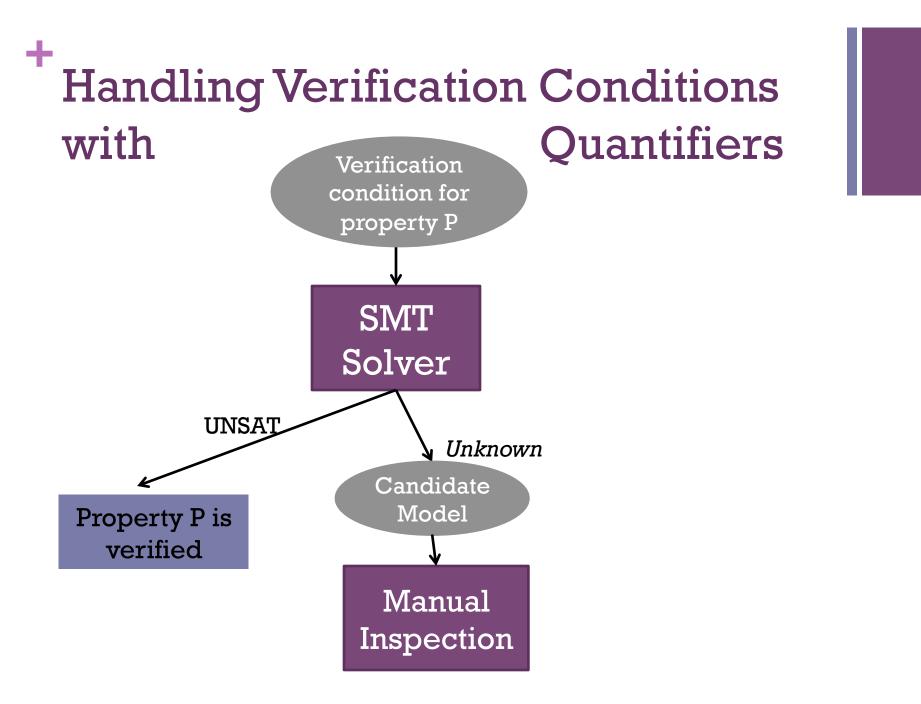
Finite Model Finding in SMT

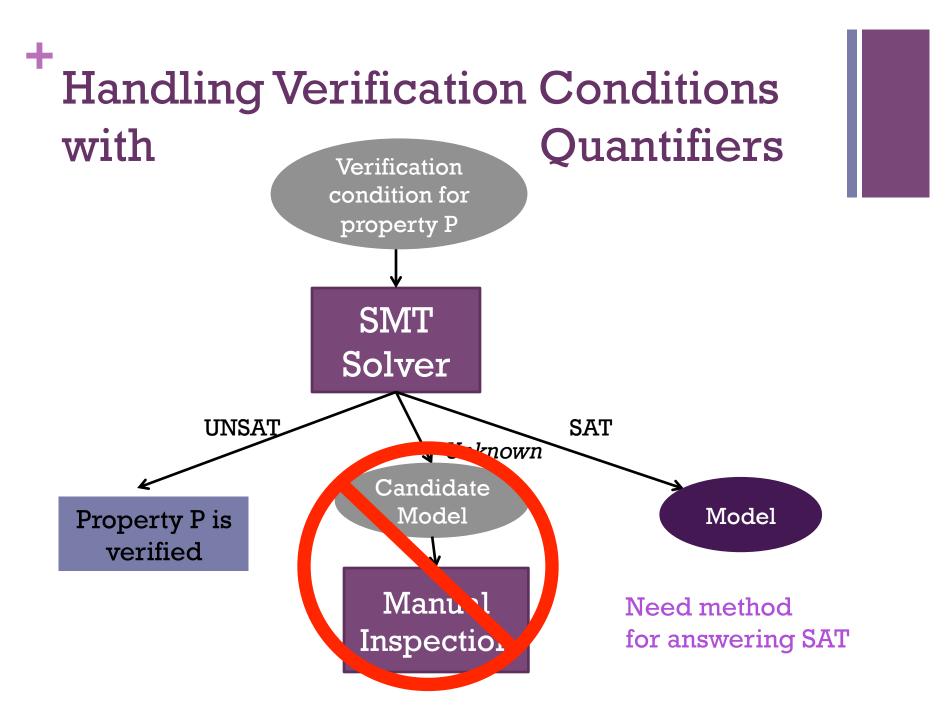
¹ The University of Iowa

² Intel Corporation









+ Quantifiers in SMT

- Quantifiers and theories do not play well together
- Current approaches: instantiation
 - 1. generate ground instances of quantified input formulas
 - 2. check their satisfiability
 - 3. repeat

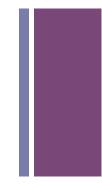
Quantifier Instantiation

Setting:

Main questions:

- Which instances of Q do we add to G?
- When can we answer SAT?

 $\square Q = \{ \text{quantified formulas} \} \quad (\{\forall x. f(x) = g(x) + 4, ...\} \}$ • $G = \{\text{ground formulas}\}$ ($\{f(a) = b \lor f(a) = c, c+1 = b\}$)



Main Instantiation Approaches

Pattern-Based

Determine instantiations heuristically

- Based on matching terms in Q with (ground) terms in G
- Usually unable to answer SAT

Model-Based

- Construct from a model of G a candidate model M for Q
- Look for instances of Q that are falsified by M
- Can answer SAT by determining absence of such instances

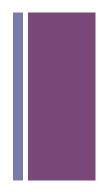
+ This Work: Finite Model Finding

- Main Idea
 - Generate finite candidate model:
 - model that treats the uninterpreted sorts as finite domains
 - Instantiate exhaustively over domain elements
 - Answer SAT if exhaustive instantiation admits same model

This Work: Finite Model Finding

- Applicable when universal quantifiers range only over
 - uninterpreted sorts
 - finite built-in sorts (finite datatypes, bit
 vectors, ...)
- Practical when
 - relatively small models exist
 - redundant instances are avoided

- A finite model finding method fully integrated into the DPLL(T) architecture
- An efficient candidate model representation [CADE'13]
- A simple but powerful notion of instance redundancy [CADE'13]



A finite model finding method fully integrated into the DPLL(T) architecture

An efficient candidate model representation [CADE'13]

A simple but powerful notion of instance redundancy [CADE'13]

+ Implementation

Fully functional implementation in CVC4

- A number of alternative configurations:
 - **cvc4** (no finite model finding)
 - **cvc4+f** (finite model finding with regions)
 - **cvc4+f-r** (finite model finding without regions)

+ Experimental Evaluation

Benchmarks

- Derived from real verification examples from Intel
- Both SAT and UNSAT
 - SAT benchmarks generated by removing necessary assumptions
- Many theories:
 - EUF, arithmetic, arrays, algebraic data types
- Quantifiers only over uninterpreted sorts

+ Experimental Results

Sat	german		refcount		agree		apg		bmk	
	(45)		(6)		(42)		(19)		(37)	
	solved	time	solved	time	solved	time	solved	time	solved	time
cvc3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
yices	2	0.02	0	0.0	0	0.0	0	0.0	0	0.0
z3	45	1.1	1	7.0	0	0.0	0	0.0	0	0.0
cvc4	2	0.00	0	0.00	0	0.0	0	0.0	0	0.0
cvc4+f	45	0.3	6	0.1	42	15.5	18	200.0	36	1201.5
cvc4+f-r	45	0.3	6	0.1	42	18.6	15	364.3	34	720.4

Unsat	german		refcount		agree		apg		bmk	
	(145)		(40)		(488)		(304)		(244)	
	solved	time	solved	time	solved	time	solved	time	solved	time
cvc3	145	0.4	40	0.2	457	6.8	267	77.0	229	76.2
yices	145	1.8	40	7.0	488	1475.4	304	35.8	244	25.3
z3	145	1.9	40	0.9	488	10.6	304	12.2	244	5.3
cvc4	145	0.1	40	0.2	484	6.8	304	11.2	244	2.9
cvc4+f	145	0.8	40	0.4	476	3782.1	298	2252.5	242	1507.0
cvc4+f-r	145	0.4	40	0.2	475	1574.3	294	3836.0	240	1930.5

Times in seconds timeout = 600s

+ Our Method: Overview

- Wish to find reasonably small models
 - Impose cardinality constraints on uninterpreted sorts
 - Try models with domains of size 1, 2, 3, ...
- •What this requires:
 - Control to DPLL(T) search for postulating cardinalities
 - Solver for EUF + cardinality constraints
 - Instantiation strategy for avoiding redundant instances

+ EUF + Cardinality Constraints

Extend EUF solver to handle (propositional) atoms of the form:

$|S| \leq k$

Meaning: cardinality of sort S is at most k

Consider wlog only term-generated models

ie, domain of S is an equivalence relation over ground terms

DPLL(T) for EUF + CC

Idea: try to find models of size 1, 2, 3, ...

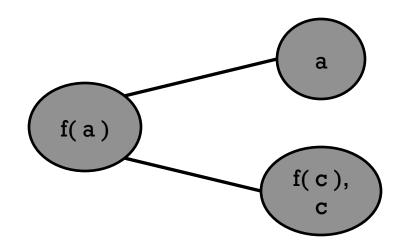
• Choose $(|S| \leq 1)^d$ as first decision literal

If fail, then try $(|S| \leq 2)^d$, etc.

 $\neg |\mathbf{S}| \leq 1$ $(|\mathbf{S}| \leq 1)^d$ $(|\mathbf{S}| \leq 2)^d$ $\neg |S| \leq 2$ Search for models of size=1 $(|\mathbf{S}| \leq 3)^d$ $\neg |S| \leq 3$ If none exist, search for models of size = 2etc.

+ EUF + Cardinality Constraints

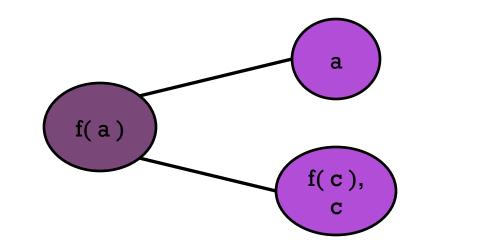
- For each sort S, maintain disequality graph $G_{s} = (V, E)$
 - V are equivalence classes of ground terms of sort S
 - E represent disequalities between terms in those classes
- Example. $f(a) \neq a, f(a) \neq c, f(c) = c$ becomes:



EUF + Cardinality Constraints

• Consider sort S with cardinality constraint $|S| \le k$

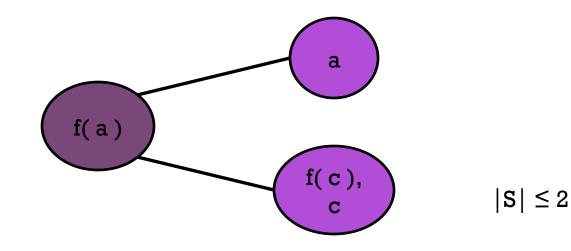
- Check if G_s is k-colorable
 - If *not*, then we have a conflict ($C \Rightarrow \neg |S| \le k$)
 - C explanation of sub-graph of G_S that is not k-colorable
 - Otherwise, then we *cannot* be sure a model of size k exists:
 - merging eq classes may have consequences for the theory



 $|S| \leq 2$

+ EUF + Cardinality Constraints

- Solution: explicitly shrink model
- Use splitting on demand:
 - Add lemma ($a = c \lor a \neq c$) and explore the branch a = c first
 - If successful, # of equivalence classes is reduced by one
 - If unsuccessful,
 - a theory conflict/backtrack will occur
 - may or may not involve cardinality constraints



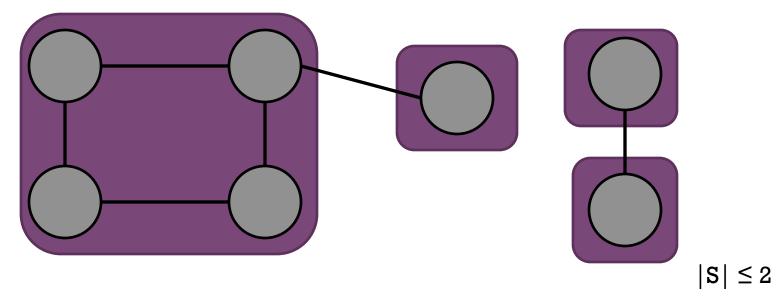
+ EUF + Cardinality Constraints

Good heuristics for EUF+CC solver must be:

- able to recognize efficiently when G_S is not kcolorable
- good at suggesting merges
- Solution: use a region-based approach
 - Partition G_S into regions with high edge density
 - Advantages:
 - Likely to find (k+1)-cliques
 - Can suggest relevant merges

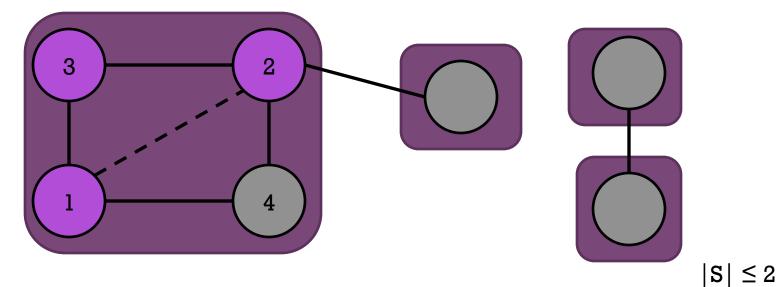
Region-Based Approach

Partition the graph G_s into regions



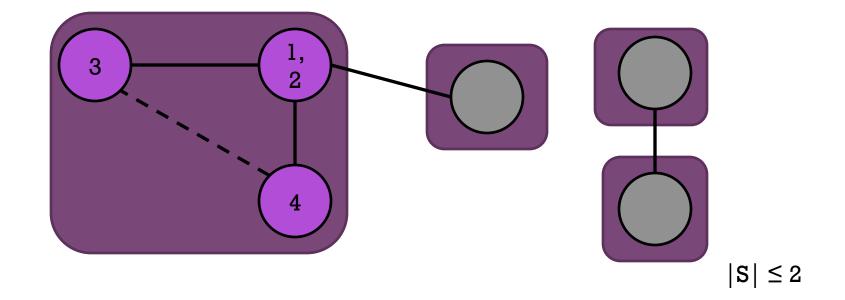
Maintain the invariant:

- Any (k+1)-clique is completely contained in a region
- Thus, we only need to search for cliques locally to regions
 - Regions with \leq k nodes can be ignored



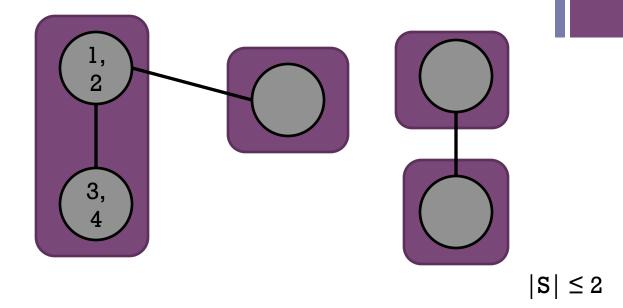
• Within each region with size > k :

- Maintain a watched set of k+1 nodes
 - If these nodes form a clique, report a conflict
 - Otherwise, split on equalities over unlinked nodes



■ Continue merging nodes until all regions have ≤ k nodes

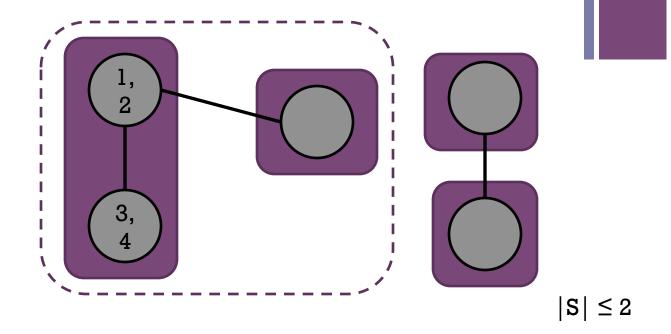
Region-Based Approach



• All regions have \leq k terms

- k-colorability is guaranteed
- However, still unsure a model of size k exists
 - again, due to theory consequences

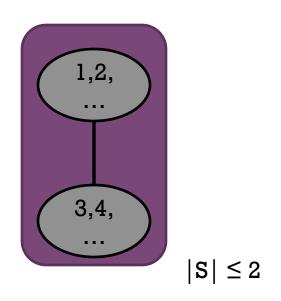
+ Region-Based Approach



Must shrink the model explicitly

- Combine regions based on heuristics
 - For example, # links between regions

Region-Based Approach



- Continue merging regions and nodes until we have until \leq k nodes overall
 - Then we have minimal model for sort S

+ EUF + CC Summary

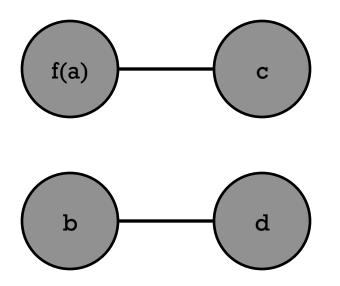
- For $|S| \le k$, maintain a node partition into regions
 - At weak effort check,
 - if any (k+1)- cliques exist, report them as conflicts clauses
 - At strong effort check,
 - if # representatives for sort $S \le k$
 - return SAT
 - else if there is any region R, |R| > k
 - split on an equality between nodes in R
 - else
 - combine regions, repeat strong effort check
- Both checks are constant time

Finite Model Finding

Use DPLL(T) to guide search to small models

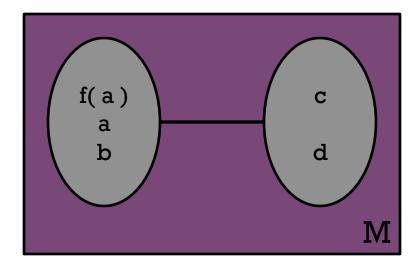
- Why small models?
 - Easier to test against quantifiers
 - Assuming model is small,
 - Instantiate quantifiers exhaustively over domain
 - If model does not change,
 - it satisfies quantified formulas, can answer SAT

• Current assertions: $f(a) \neq c, b \neq d, \forall xy. f(x) \neq g(y)$



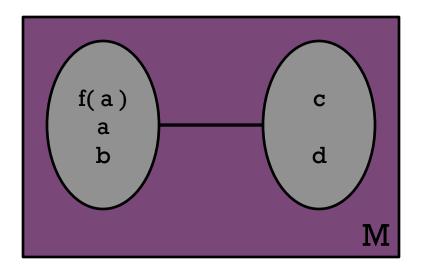
Instantiation: Example

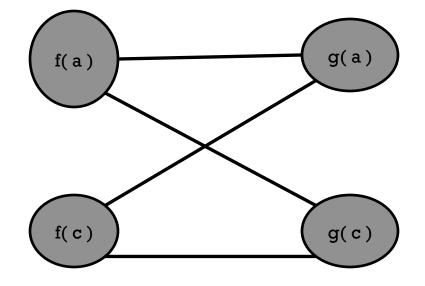
- Current assertions: $f(a) \neq c, b \neq d, \forall xy. f(x) \neq g(y)$
- Find minimal model M of ground part:



Instantiation: Example

- Current assertions: $f(a) \neq c, b \neq d, \forall xy. f(x) \neq g(y)$
- Instantiate quantifiers with representatives a, c:

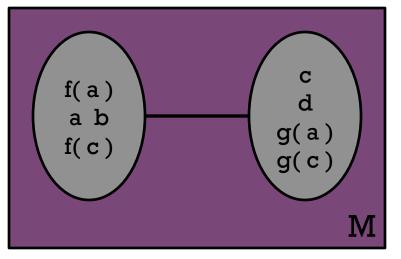




Instantiation: Example

• Current assertions: $f(a) \neq c, b \neq d, \forall xy. f(x) \neq g(y)$

Try to incorporate new nodes into M



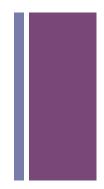
Success:

M satisfies $\forall xy. f(x) \neq g(y)$

Answer SAT

+ Conclusion

- Finite model finding with DPLL(T)
 - Uses solver for EUF + cardinality constraints
 - Finds minimal models for ground constraints
 - Uses exhaustive instantiation to test quantifiers
- Practical approach for some classes of verification problems
 - Can answer SAT quickly in many cases
 - Competitive with state of the art in SMT
 - Orthogonal to other approaches to quantifiers



Bounded quantification over the integers $\forall x. 0 \le x \le c => F[x]$

Incremental bounds on size of solutions over built-in structured types:

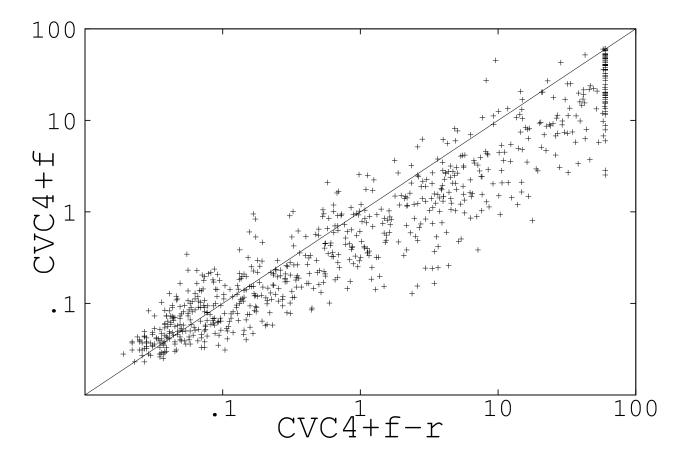
- string length
- list length
- tree height

....

Thanks

+

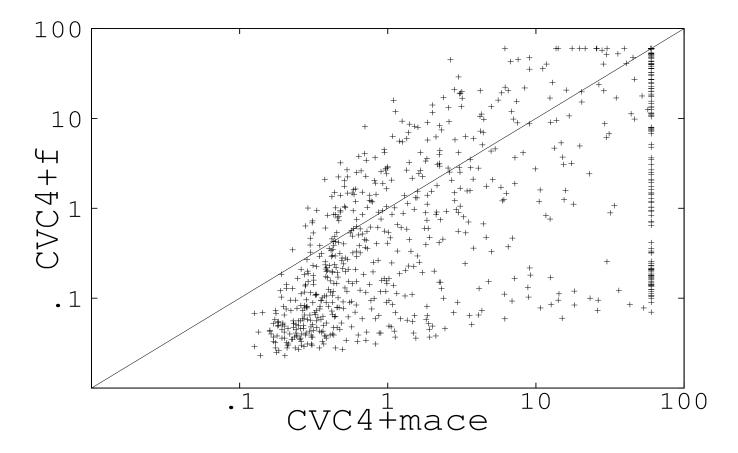
+ Results: regions vs no regions



~800 randomly generated graph coloring problems

60s timeout

Results: ours vs Mace approach



~800 randomly generated graph coloring problems

60s timeout

+ Example Model from CVC4

; cardinality of R is 2 (declare-sort R 0) Information ; cardinality of P is 1 regarding (declare-sort P 0) ; cardinality of S is 2 sorts (declare-sort S 0) (define-fun null () R r2) (define-fun empty () S s1) (define-fun mem ((x1 P) (x2 S)) BOOL (ite (= x1 p1) (ite (= x2 s2) true false) false)) (define-fun add ((x1 P) (x2 S)) S s2) Definitions (define-fun remove ((x1 P) (x2 S)) S s1) (define-fun cardinality ((x1 S)) Int (ite (= x1 s1) 0 1)) of functions (define-fun count () (Array R Int) (store count r1 0)) and (define-fun ref () (Array P R) (store ref p1 r1)) predicates (define-fun valid () (Array R BOOL) (store valid r1 true)) in (define-fun destroyr () R r1) (define-fun valid1 () (Array R BOOL) (store valid r1 true)) model