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Sample SMT Query 

Definitions 

Property to verify 

Axioms 

S,	
  P,	
  R	
  :	
  type	
  
null	
  :	
  R	
  
valid:	
  Array(	
  R,	
  Bool	
  )	
  
count:	
  Array(	
  R,	
  Int	
  )	
  
ref:	
  Array(	
  P,	
  R	
  )	
  
empty	
  :	
  S	
  
mem	
  :	
  (S,	
  P)	
  -­‐>	
  Bool	
  
add,	
  remove	
  :	
  (S,	
  P)	
  -­‐>	
  S	
  
…	
  

∀x	
  :	
  R.	
  count[x]	
  >	
  0	
  ⇒	
  valid[	
  x	
  ]	
  
∀x	
  :	
  P.	
  ¬	
  mem(	
  empty,	
  x	
  )	
  
∀x	
  :	
  S,	
  y,	
  z	
  :	
  P.	
  mem(	
  add(	
  x,	
  y	
  ),	
  z	
  )	
  ⇒	
  (	
  z	
  =	
  y	
  ∨	
  mem(	
  x,	
  z	
  )	
  )	
  
∀x	
  :	
  S,	
  y,	
  z	
  :	
  P.	
  mem(	
  remove(	
  x,	
  y	
  ),	
  z	
  )	
  ⇒	
  (	
  z	
  ≠	
  y	
  ∧	
  mem(	
  x,	
  z	
  )	
  )	
  
…	
  

¬	
  (	
  ...	
  ∀x.	
  (ref[x]	
  !=	
  null	
  =>	
  valid[ref[x]])	
  …)	
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with                                Quantifiers 
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Quantifiers in SMT 

n Quantifiers and theories do not play well 
together  

n Current approaches: instantiation 
1.  generate ground instances of quantified 

input formulas 
2.  check their satisfiability 
3.  repeat 



+
Quantifier Instantiation 

n Setting: 
n Q = {quantified formulas}	
  	
  	
  	
  	
  	
  	
  	
  (	
  {∀x.	
  f(x)	
  =	
  g(x)	
  +	
  4,	
  	
  …}	
  	
  	
  	
  	
  	
  	
  	
  	
  )	
  
n G = {ground formulas}            (	
  {f(a)	
  =	
  b	
  ∨	
  f(a)	
  =	
  c,	
  	
  c+1	
  =	
  b}	
  )	
  

n Main questions: 
n Which instances of Q do we add to G? 
n When can we answer SAT? 
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Main Instantiation Approaches 

n Pattern-Based 
n Determine instantiations heuristically 
n Based on matching terms in Q with (ground) 

terms in G 
n Usually unable to answer SAT 

n Model-Based 
n Construct from a model of G a candidate model M 

for Q 
n Look for instances of Q that are falsified by M 
n Can answer SAT by determining absence of such 

instances 
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This Work: Finite Model Finding 

n Main Idea 
n Generate finite candidate model:  
n model that treats the uninterpreted sorts 

as finite domains 
n Instantiate exhaustively over domain 

elements 
n Answer SAT if exhaustive instantiation 

admits same model 
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This Work: Finite Model Finding 

n Applicable when universal quantifiers 
range only over 
n uninterpreted sorts 
n finite built-in sorts (finite datatypes, bit 

vectors, …) 

n Practical when 
n relatively small models exist 
n redundant instances are avoided 
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Contribution 

n A finite model finding method fully 
integrated into the DPLL(T) architecture 

n An efficient candidate model 
representation [CADE’13] 

n A simple but powerful notion of instance 
redundancy [CADE’13] 
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Implementation 

n Fully functional implementation in CVC4  

n A number of alternative configurations: 
n cvc4           (no finite model finding) 
n cvc4+f       (finite model finding with regions) 
n cvc4+f-r    (finite model finding without regions) 
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Experimental Evaluation 

Benchmarks 
n Derived from real verification examples from Intel  
n Both SAT and UNSAT 
n SAT benchmarks generated by removing 

necessary assumptions 
n Many theories:   
n EUF, arithmetic, arrays, algebraic data types 

n Quantifiers only over uninterpreted sorts 



+
Experimental Results 

Times in seconds     timeout = 600s 

Sat german refcount agree apg bmk

(45) (6) (42) (19) (37)
solved time solved time solved time solved time solved time

cvc3 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
yices 2 0.02 0 0.0 0 0.0 0 0.0 0 0.0
z3 45 1.1 1 7.0 0 0.0 0 0.0 0 0.0
cvc4 2 0.00 0 0.00 0 0.0 0 0.0 0 0.0
cvc4+f 45 0.3 6 0.1 42 15.5 18 200.0 36 1201.5
cvc4+f-r 45 0.3 6 0.1 42 18.6 15 364.3 34 720.4

Unsat german refcount agree apg bmk

(145) (40) (488) (304) (244)
solved time solved time solved time solved time solved time

cvc3 145 0.4 40 0.2 457 6.8 267 77.0 229 76.2
yices 145 1.8 40 7.0 488 1475.4 304 35.8 244 25.3
z3 145 1.9 40 0.9 488 10.6 304 12.2 244 5.3
cvc4 145 0.1 40 0.2 484 6.8 304 11.2 244 2.9
cvc4+f 145 0.8 40 0.4 476 3782.1 298 2252.5 242 1507.0
cvc4+f-r 145 0.4 40 0.2 475 1574.3 294 3836.0 240 1930.5

Fig. 3: Results for DVF benchmarks. All runtimes are in seconds.

solve all but two, and most of them in less than a second. By comparing cvc4+f against
cvc4+f-r, we see that the region-based approach for recognizing cliques is beneficial,
particularly for the harder classes where the latter configuration solves fewer bench-
marks within the timeout. The model sizes found for these benchmarks were relatively
small, only a handful had a model with sort cardinalities larger than 4. To our knowl-
edge, our model finder is the only tool capable of solving these benchmarks.

For the unsatisfiable benchmarks, Yices and Z3 can solve all of them, with Z3 being
much faster in some cases. Interestingly, all of these benchmarks are solved in less than
3s by either cvc4 (plain CVC4) or cvc4+f, indicating that a combination of the two is
advantageous in general. We observe that cvc4+f is orders of magnitude slower than the
SMT solvers on these benchmarks. This is, however, to be expected since it is geared
towards finding models, and applies exhaustive instantiation with increasingly large car-
dinality bounds, which normally delays the discovery that the problem is unsatisfiable
regardless of those bounds.

5 Conclusion and Further Work

We presented a method for endowing DPLL(T )-based SMT solvers with finite model
finding capabilities for quantified SMT formulas with quantifiers ranging over free
sorts. The method relies on a novel and efficient sub-solver for finite cardinality con-
straints that is fully integrated in the overall SMT solver. Our experimental results with
benchmarks generated from a variety of verification applications show that our model
finding approach is superior to current quantifier instantiation methods in SMT in the
case of satisfiable inputs.

Future work will focus on identifying suitable fair execution strategies that guaran-
tee finite model completeness for problems with multiple free sorts. We are also plan to
investigate further approaches for finding models of formulas with quantifiers ranging
also over built-in domains such as the integers.

15
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Our Method: Overview 

n Wish to find reasonably small models 
n Impose cardinality constraints on uninterpreted sorts 
n Try models with domains of size 1, 2, 3, ... 

n What this requires: 
n Control to DPLL(T) search for postulating cardinalities 
n Solver for EUF + cardinality constraints 
n Instantiation strategy for avoiding redundant instances 
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EUF + Cardinality Constraints 

n Extend EUF solver to handle (propositional) 
atoms of the form: 

⎪S⎪ ≤ k 
n Meaning: cardinality of sort S is at most k 

n Consider wlog only term-generated 
models 
n  ie, domain of S is an equivalence relation over ground 

terms 
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DPLL(T) for EUF + CC 

n Idea: try to find models of size 1, 2, 3, …  
n  Choose (⎪S⎪ ≤ 1)d  as first decision literal 

n  If fail, then try (⎪S⎪ ≤ 2)d , etc. 

 
(⎪S⎪ ≤ 1)d  ¬⎪S⎪ ≤ 1 

Search for  
models  

of size=1 

If none exist, 
search for  

models  
of size=2 

etc. 

(⎪S⎪ ≤ 2)d  ¬⎪S⎪ ≤ 2 

(⎪S⎪ ≤ 3)d  ¬⎪S⎪ ≤ 3 
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EUF + Cardinality Constraints 

n For each sort S, maintain disequality graph GS = ( V, E ) 
n  V are equivalence classes of ground terms of sort S 

n  E represent disequalities between terms in those classes 

n Example.  f( a ) ≠ a, f( a ) ≠ c, f( c ) = c  becomes: 

 

f( a ) 

a 

f( c ), 
c 
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EUF + Cardinality Constraints 

n  Consider sort S with cardinality constraint ⎪S⎪ ≤ k 

n  Check if GS is k-colorable 

n  If not, then we have a conflict ( C ⇒ ¬⎪S⎪ ≤ k ) 

n  C explanation of sub-graph of GS that is not k-colorable 

n  Otherwise, then we cannot be sure a model of size k exists: 

n  merging eq classes may have consequences for the theory 

f( a ) 

a 

f( c ), 
c 

⎪S⎪ ≤ 2 
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EUF + Cardinality Constraints 
n  Solution: explicitly shrink model  

n  Use splitting on demand: 
n  Add lemma ( a = c ∨ a ≠ c ) and explore the branch a = c  first 

n  If successful,  # of equivalence classes is reduced by one 

n  If unsuccessful, 

n  a theory conflict/backtrack will occur 

n  may or may not involve cardinality constraints 

⎪S⎪ ≤ 2 

f( a ) 

a 

f( c ), 
c 
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EUF + Cardinality Constraints 

n Good heuristics for EUF+CC solver must be: 
n able to recognize efficiently when GS is not k-

colorable 
n good at suggesting merges 

n Solution: use a region-based approach 
n Partition GS into regions with high edge density 
n Advantages: 
n Likely to find (k+1)-cliques 
n Can suggest relevant merges 
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Region-Based Approach 
n Partition the graph GS into regions 

 

n Maintain the invariant: 
n  Any (k+1)-clique is completely contained in a region 

n Thus, we only need to search for cliques locally to regions 
n  Regions with ≤ k nodes can be ignored 

⎪S⎪ ≤ 2 
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Region-Based Approach 
 

 

n Within each region with size > k : 
n  Maintain a watched set of k+1 nodes 

n  If these nodes form a clique, report a conflict 
n  Otherwise, split on equalities over unlinked nodes 

3 2 

1 4 

⎪S⎪ ≤ 2 
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Region-Based Approach 
 

n Continue merging nodes until all regions have ≤ k 
nodes 

3 
1,
2 

4 

⎪S⎪ ≤ 2 
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Region-Based Approach 

 

 

n All regions have ≤ k terms 
n  k-colorability is guaranteed 

n  However, still unsure a model of size k exists 

n  again, due to theory consequences 

 

1,
2 

3,
4 

⎪S⎪ ≤ 2 
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Region-Based Approach 
 

 

 

n Must shrink the model explicitly 
n  Combine regions based on heuristics 

n  For example, # links between regions 

1,
2 

3,
4 

⎪S⎪ ≤ 2 
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Region-Based Approach 
 

 

n Continue merging regions and nodes until we have 
until ≤ k nodes overall 
n  Then we have minimal model for sort S 

1,2, 
… 

3,4,
… 

⎪S⎪ ≤ 2 
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EUF + CC Summary 

n For ⎪S⎪≤ k, maintain a node partition into regions 
n  At weak effort check, 

n  if any (k+1)- cliques exist, report them as conflicts clauses 

n  At strong effort check,  

n  if # representatives for sort S ≤ k 

n  return SAT 

n  else if there is any region R, ⎪R⎪ > k 

n  split on an equality between nodes in R 

n  else  

n  combine regions, repeat strong effort check 

n Both checks are constant time 
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Finite Model Finding 

n Use DPLL(T) to guide search to small models 

n Why small models? 
n Easier to test against quantifiers 
n Assuming model is small,  
n Instantiate quantifiers exhaustively over domain 
n If model does not change,  
n it satisfies quantified formulas, can answer SAT 
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Instantiation: Example 

n Current assertions:   f( a ) ≠ c,  b ≠ d,  ∀xy. f( x ) ≠ g( y ) 
 

f(a) c 

b d 
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M 

Instantiation: Example 

n Current assertions:   f( a ) ≠ c,  b ≠ d,  ∀xy. f( x ) ≠ g( y ) 

n Find minimal model M  of ground part: 
 

f( a ) 
a 
b 

c 
 
d 
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M 

Instantiation: Example 

n Current assertions:   f( a ) ≠ c,  b ≠ d,  ∀xy. f( x ) ≠ g( y ) 

n Instantiate quantifiers with representatives a, c: 
 

f( a ) 
a 
b 

c 
 
d 

f( a ) g( a ) 

g( c ) f( c ) 
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M 

Instantiation: Example 

f( a ) 
a  b 
f( c ) 

c 
d 

g( a ) 
g( c ) 

Success: 
M satisfies ∀xy. f( x ) ≠ g( y ) 

 
Answer SAT  

 

n Current assertions:   f( a ) ≠ c,  b ≠ d,  ∀xy. f( x ) ≠ g( y ) 

n Try to incorporate new nodes into M 
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Conclusion 

n Finite model finding with DPLL(T) 
n Uses solver for EUF + cardinality constraints 
n Finds minimal models for ground constraints 
n Uses exhaustive instantiation to test quantifiers 

n Practical approach for some classes of 
verification problems 
n Can answer SAT quickly in many cases 
n Competitive with state of the art in SMT 
n Orthogonal to other approaches to quantifiers 
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Further Work 

n Bounded quantification over the integers 

∀x.	
  	
  0	
  ≤	
  x	
  ≤	
  c	
  	
  =>	
  	
  F[x] 

n  Incremental bounds on size of solutions 
over built-in structured types: 
n string length 
n list length  
n tree height 
n … 
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Thanks 
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Results: regions vs no regions 

n ~800 randomly generated graph coloring problems 

n 60s timeout 

.1
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.1 1 10 100

C
V
C
4
+
f

CVC4+f-r
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Results: ours vs Mace approach 

.1

1

10

100

.1 1 10 100

C
V
C
4
+
f

CVC4+mace

n ~800 randomly generated graph coloring problems 

n 60s timeout 
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Example Model from CVC4 

;	
  cardinality	
  of	
  R	
  is	
  2	
  
(declare-­‐sort	
  R	
  0)	
  
;	
  cardinality	
  of	
  P	
  is	
  1	
  
(declare-­‐sort	
  P	
  0)	
  
;	
  cardinality	
  of	
  S	
  is	
  2	
  
(declare-­‐sort	
  S	
  0)	
  
	
  
(define-­‐fun	
  null	
  ()	
  R	
  r2)	
  
(define-­‐fun	
  empty	
  ()	
  S	
  s1)	
  
(define-­‐fun	
  mem	
  ((x1	
  P)	
  (x2	
  S))	
  BOOL	
  	
  

	
  (ite	
  (=	
  x1	
  p1)	
  (ite	
  (=	
  x2	
  s2)	
  true	
  false)	
  false))	
  
(define-­‐fun	
  add	
  ((x1	
  P)	
  (x2	
  S))	
  S	
  s2)	
  
(define-­‐fun	
  remove	
  ((x1	
  P)	
  (x2	
  S))	
  S	
  s1)	
  
(define-­‐fun	
  cardinality	
  ((x1	
  S))	
  Int	
  (ite	
  (=	
  x1	
  s1)	
  0	
  1))	
  
(define-­‐fun	
  count	
  ()	
  (Array	
  R	
  Int)	
  (store	
  count	
  r1	
  0))	
  
(define-­‐fun	
  ref	
  ()	
  (Array	
  P	
  R)	
  (store	
  ref	
  p1	
  r1))	
  
(define-­‐fun	
  valid	
  ()	
  (Array	
  R	
  BOOL)	
  (store	
  valid	
  r1	
  true))	
  
(define-­‐fun	
  destroyr	
  ()	
  R	
  r1)	
  
(define-­‐fun	
  valid1	
  ()	
  (Array	
  R	
  BOOL)	
  (store	
  valid	
  r1	
  true))	
  

Information 
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