
SMT Workshop 2013
11th International Workshop on Satisfiability Modulo Theories

Helsinki, Finland, July 8th and 9th, 2013

Affiliated with the 16th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2013)

http://smt2013.fbk.eu

Informal Proceedings

Preface

This volume contains the papers presented at the eleventh edition of the International Workshop on Sat-
isfiability Modulo Theories (SMT-2013). The workshop was held on July 8th and 9th, 2013, in Helsinki,
Finland, in association with the Sixteenth International Conference on on Theory and Applications of
Satisfiability Testing (SAT 2013).

The Workshop is certainly the main annual event of the SMT community, where both researchers
and users of SMT technology can meet and discuss new theoretical ideas, implementation and evaluation
techniques, and applications.

Like in previous editions of the workshop, this year we invited submissions in three categories: ex-
tended abstracts, to present preliminary reports of work in progress; original papers, to describe original
and mature research; and presentation-only papers, to provide additional access to important develop-
ments, recently published or submitted elsewhere, that SMT Workshop attendees may be unaware of. We
received 12 papers. Each submission was reviewed by three program committee members. Due to the
quality of and interest in the submissions, and in keeping with the desire to encourage presentation and
discussion of works in progress, we were able to accept all contributions for presentation at the work-
shop: 5 original papers, 4 extended abstracts/works in progress, and 3 presentation-only papers. The
program included also two invited talks, by Sylvain Conchon from Université Paris-Sud and Thomas
Sturm from the Max Planck Institüt für Informatik or Saarbrücken.

We would like to thank the authors, the invited speakers, the program committee and the reviewers
for their work and contributions to the workshop. We thank also the SAT organizers for their support
and for hosting the workshop, and the EasyChair team for the availability of the EasyChair Conference
System.

June 2013 Roberto Bruttomesso and Alberto Griggio

SMT 2013 Informal Proceedings

Table of Contents

Invited talks

Cubicle: Design and Implementation of an SMT based Model Checker for Parameterized Systems . 4
Sylvain Conchon

Effective Quantifier Elimination and Decision - Theory, Implementations, Applications,
Perspectives . 5

Thomas Sturm

Original papers

Efficiently Solving Bit-Vector Problems Using Model Checkers . 6
Andreas Fröhlich, Gergely Kovásznai and Armin Biere

A Difference Logic Formulation and SMT Solver for Timing-Driven Placement 16
Andrew Mihal

Handling Bit-Propagating Operations in Bit-Vector Reasoning . 26
Alexander Nadel

ddSMT: A Delta Debugger for the SMT-LIB v2 Format . 36
Aina Niemetz and Armin Biere

Z34Bio: A Framework for Analyzing Biological Computation . 46
Boyan Yordanov, Christoph M. Wintersteiger, Youssef Hamadi and Hillel Kugler

Extended abstracts and Works in progress

SyMT: finding symmetries in SMT formulas (Extended Abstract: Work in progress) 56
Carlos Areces, David Deharbe, Pascal Fontaine and Ezequiel Orbe

SMT Solvers for Malware Unpacking . 64
Ian Blumenfeld, Roberta Faux, Paul Li and Mark Raugas

Extending Proof Tree Preserving Interpolation to Sequences and Trees . 72
Juergen Christ and Jochen Hoenicke

Reducing the Complexity of Quantified Formulas via Variable Elimination . 87
Aboubakr Achraf El Ghazi, Mana Taghdiri, Mattias Ulbrich and Mihai Herda

Presentation-only

Extending the Theory of Arrays: memset, memcpy and Beyond .
Stephan Falke, Florian Merz and Carsten Sinz

Finite Model Finding in SMT .
Andrew Reynolds, Cesare Tinelli, Amit Goel and Sava Krstić

Compression of Propositional Resolution Proofs by Lowering Subproofs .
Bruno Woltzenlogel Paleo and Joseph Boudou

3

Cubicle: Design and Implementation of an SMT based Model
Checker for Parameterized Systems

Sylvain Conchon
LRI, Université Paris-Sud

sylvain.conchon@lri.fr

Abstract

The automatic verification of safety properties like mutual exclusion or cache coherence for
multi-core or distributed systems is very challenging. Consider for instance that, in the Stanford
FLASH multiprocessor architecture, the transition system describing the cache coherence protocol
has already more than 67 million states when just four processors are in competition. On these
large problems, efficient state-of-the-art model checkers reach their limits in both time and memory
consumption. In particular, all model checkers fail to prove the safety of FLASH for more than
five processes. In this talk, I will present Cubicle, a new SMT based model checker that is able to
automatically prove a protocol like FLASH.

Cubicle is based on the model checking modulo theories (MCMT) framework introduced by
Ghilardi and Ranise. It is used to verify safety properties of array-based systems. This is a syntac-
tically restricted class of parameterized transition systems with states represented as arrays indexed
by an arbitrary number of processes. The kernel of Cubicle is a new symbolic backward reachability
procedure with approximations and backtracking using Satisfiabilty Modulo Theories.

Cubicle is written in OCaml. Its SMT solver is a tightly integrated, lightweight and enhanced
version of Alt-Ergo. Cubicle is available at http://cubicle.lri.fr.

1

Effective Quantifier Elimination and Decision - Theory,
Implementations, Applications, Perspectives

Thomas Sturm
MPI für Informatik, Saarbrücken, Germany

sturm@mpi-inf.mpg.de

Abstract

Effective quantifier elimination procedures for first-order theories provide a powerful tool for
generically solving a wide range of problems based on logical specifications. In contrast to general
first-order provers, quantifier elimination procedures are based on a fixed set of admissible logical
symbols with an implicitly fixed semantics. This admits to make use of sub-algorithms from symbolic
computation. The talk gives an overview of several theories that admit quantifier elimination and for
which there are implementations available in our open-source software Redlog. The focus is on real
quantifier elimination and its applications and on the integers. We are furthermore going to sketch
recent work on an incomplete decision procedure for the existential fragment of the reals, which is
quite different from SMT approaches. It is our hope to stimulate discussions and to contribute to
closing gaps between scientific communities.

1

Efficiently Solving Bit-Vector Problems Using

Model Checkers
Andreas Fröhlich, Gergely Kovásznai, Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria∗

Abstract

Bit-precise reasoning is essential in many applications of Satisfiability Modulo Theories
(SMT). Most approaches for solving quantifier-free fixed-size bit-vector logics (QF BV)
rely on bit-blasting. In previous work, we have shown that bit-blasting is not polyno-
mial in general [19], and later proposed QF BV�1, a class of bit-vector problems that
is PSpace-complete [15]. In this paper, we give examples of how to create (polynomial)
SMV specifications out of QF BV�1 formulas. We then use various model checkers to
solve those problems and give detailed experimental results. Our results show that BDD-
based model checkers outperform current SMT solvers by several orders of magnitude on
our benchmarks. Unrolling and using SAT-based model checking turns out to be the same
as bit-blasting and gives worse results. In addition to this, our approach allows us to easily
generate new challenging benchmarks for SMT solvers as well as for model checkers.

1 Introduction

Bit-precise reasoning over bit-vector logics is important for many practical applications of Satis-
fiability Modulo Theories (SMT), particularly for hardware and software verification. Examples
of state-of-the-art SMT solvers with support for fixed-sized bit-vector logics are Boolector [6],
MathSAT [8], STP [16], Z3 [11], and Yices [12]. All these solvers rely on bit-blasting in order
to translate bit-vector formulas into propositional logic (SAT). The result is then checked by
a SAT solver.

In practice, e.g. in the SMT-LIB [1], the BTOR [7], and the Z3 format, the bit-widths in
bit-vector formulas are encoded as binary, decimal, or hexadecimal numbers, i.e., a logarithmic
encoding is used. In [19], we proved that the encoding of bit-widths affects the complexity of the
decision problem of bit-vector logics. In particular, logarithmic encoding makes the quantifier-
free fragment QF BV NExpTime-complete.1 Thus, bit-blasting is not polynomial in general.
Consider the following example (in SMT2 syntax):

(set-logic QF_BV)

(declare-fun x () (_ BitVec 1000000))

(declare-fun y () (_ BitVec 1000000))

(declare-fun z () (_ BitVec 1000000))

(assert (= z (bvadd x y)))

(assert (= z (bvshl x (_ bv1 1000000))))

(assert (distinct x y))

This formula verifies that for an arbitrary bit-vector x of bit-width one million, there exists
no bit-vector y 6= x with x + y = x � 1. Written to a file, this formula can be encoded with
225 bytes. Using the SMT solver Boolector (even with all rewritings switched on), bit-blasting

∗This work is partially supported by FWF, NFN Grant S11408-N23 (RiSE).
1 In [19], we introduced the notation QF BV1 resp. QF BV2 for QF BV using a unary resp. a logarithmic,

actually without loss of generality, binary encoding. In this paper, QF BV will always refer to the logarith-
mic/binary case.

1

Efficiently Solving Bit-Vector Logics using Model Checkers Fröhlich, Kovásznai, and Biere

produces a circuit of size 129 MB encoded in the actually rather compact AIGER format.
Tseitin transformation results in a CNF in DIMACS format of size 843 MB.

In related work [20], we tried to avoid this growth in size by giving a translation from QF BV
to EPR and then using iProver to solve the problem. In most cases, this approach turned
out to perform worse than Boolector on the original instance. Since QF BV is NExpTime-
complete, it is not clear if it is possible to solve the general case more efficiently. However,
the given example only uses addition, shift by one and equality. In [15], we showed that this
kind of formulas can be expressed by QF BV�1, a subset of QF BV which turned out to be
PSpace-complete. In order to prove this, we gave a polynomial translation from QF BV�1

to Sequential Circuits, similar to the one for linear arithmetic on non-fixed-size bit-vectors
proposed in [22, 23].

In this paper, we show how model checkers can be used to solve fixed-size bit-vector problems
of this class. In contrast to [15] which provided the theoretical background, we now focus
on experimental evaluation and analyze the potential benefits for efficiently solving bit-vector
formulas. First, in Sec. 2, we provide a short overview of our translation as described in [15]
and give some examples to show how we used this concept to convert SMT2 files to SMV. In
Sec. 3, we then describe some benchmarks that we generated to evaluate the performance of
various model checkers compared to state-of-the-art SMT solvers with support for fixed-sized
bit-vector logics. On most of our benchmarks, BDD-based model checkers turn out to be faster
by several orders of magnitude. We provide experimental data and discuss the results in detail.
Finally, in Sec. 4, we conclude the paper and discuss further topics for future work.

2 QF BV�1 to SMV

In [22, 23], the authors gave a polynomial translation for linear arithmetic on non-fixed-size
bit-vectors (QFPAbit) into Sequential Circuits. In contrast to [22, 23], we focus on fixed-
size bit-vectors but share the goal of avoiding the exponential explosion due to explicit state
representation as for example used in MONA [18]. We adapted this translation in [15] to deal
with fixed-size bit-vectors and extended it by various other operators like shift by one and
indexing.

Given a bit-vector formula Φ ∈ QF BV�1 without nested equalities. Let n be a bit-width,

x[n], y[n] denote bit-vector variables, c[n] a bit-vector constant, and t
[n]
1 , t

[n]
2 bit-vector terms only

containing bit-vector variables and bitwise operations. Following [22, 23], we assume w.l.o.g that

Φ only consists of the following types of atoms: t
[n]
1 = t

[n]
2 , x[n] = c[n], and x[n] = y[n] � 1[n]. It

is easy to check that any QF BV�1 formula can be written like this with only a linear growth
in the number of original variables.

We encode each atom in Φ separately into an atomic Sequential Circuit. The encoding itself
is straightforward in most cases. A concrete example translating QF BV to SMV is given after
the theoretic part of this section. Compared to [22, 23], we have to consider the fact that all
bit-vectors have a fixed bit-width.

Let nmax be the maximal bit-width of all bit-vectors in the formula. We construct an
additional Sequential Circuit representing a counter. The counter initially is set to 0 and is
incremented by 1 in each clock cycle. A counter like this can be realized with dlog2(nmax)e
latches, i.e. polynomially in the size of Φ.

Now, for each atomic Sequential Circuit, we add a check whether the value of the counter
reached the bit-width n of the bit-vector variables corresponding to the input streams of the
circuit. Once this is the case, the individual circuit does not change its output value anymore.

2

Efficiently Solving Bit-Vector Logics using Model Checkers Fröhlich, Kovásznai, and Biere

Since nmax ≥ n, this will always hold at some point.2

Finally, after constructing all atomic circuits, their outputs are combined by logical gates
following the Boolean structure of Φ. Other operators, such as addition or indexing, can
either be replaced by shift by one in a preprocessing step or directly encoded into a Sequential
Circuit [15].

We now show the translation for the motivational example given in Sec. 1 to the concrete
SMV-format. First of all, a counter for the bit-width of the variables has to be introduced.
This can be done using logarithmic many variables:

init(counter_bit0) := FALSE;

next(counter_bit0) := counter_bit0 xor (TRUE);

init(counter_bit1) := FALSE;

next(counter_bit1) := counter_bit1 xor (counter_bit0);

...

init(counter_bit19) := FALSE;

next(counter_bit19) := counter_bit19 xor (counter_bit0 & ... & counter_bit18);

We then keep track of whether the counter already reached the value of a certain bit-width.3

This variable later serves as a guard for all atoms containing variables of the given bit-width:

init(counter_gte_1000000) := FALSE;

next(counter_gte_1000000) := counter_gte_1000000 |

(counter_bit0 & counter_bit1 & ... & !counter_bit6 & ... & counter_bit19);

After introducing those helper variables, the actual formula can now be translated. The
distinct operator is first replaced by negation of an equality. The translation to SMV then is
straightforward:

init(atom_equal) := TRUE;

next(atom_equal) := case

counter_gte_1000000 : atom_equal;

TRUE : atom_equal & (x <-> y);

esac;

For translating addition, two atoms have to be introduced since the carry bit has to be
remembered in the next step:

init(atom_add) := TRUE;

next(atom_add) := case

counter_gte_1000000 : atom_add;

TRUE : atom_add & (z <-> (x xor y xor atom_cin));

esac;

init(atom_cin) := FALSE;

next(atom_cin) := case

counter_gte_1000000 : atom_cin;

TRUE : atom_add & ((x & y) | (x & atom_cin) | (y & atom_cin));

esac;

2In contrast to [22], we assume that the input streams for all variables start with the least significant bit.
3The counter bits in the next-statement correspond to the binary representation of n − 1 (i.e. 99999910 =

111101000010001111112 in our example).

3

Efficiently Solving Bit-Vector Logics using Model Checkers Fröhlich, Kovásznai, and Biere

The shift operator can be translated in a very similar way but will not be given here
explicitely to keep the example short. Another way would be to replace (x� 1) by (x+ x) in
the preprocessing step.

Finally, the specification is defined by the logical combination of the individual atoms and
additionally respecting the bit-width:

AG(!counter_gte_1000000 | !atom_add | !atom_shift | atom_equal)

We also implemented our translation including various operators in a tool called bv2smv.
Binaries and source code are available for download at [9].

3 Experiments

We first describe our benchmark sets. We generated six different sets of QF BV formulas in
SMT2 format. All sets of benchmarks consist of 32 instances each and have two attributes:
First, all benchmark sets are not bit-width bounded [15]. Because of this, bit-blasting is known
to be exponential in general. Second, all benchmarks only contain bitwise operators, addition,
subtraction, shift by one, indexing and relational operators. This ensures that a polynomial
translation to SMV exists. The different instances in a particular set of benchmarks only differ
in the bit-width of their variables and constants. The bit-widths n of the individual instances
are of the form n = 2i and n = 1.5 · 2i with i ∈ {5, . . . , 20} for all six sets. All benchmarks will
be submitted to the QF BV category of SMT-LIB.

QF BV/froehlichkovasznaibiere/ndist.a.n: We verify that, for two bit-vector variables
x[n], y[n], it holds that x[n] < y[n] implies (x[n] + 1[n]) ≤ y[n]. The instances are unsatisfiable
and use addition and unsigned less/greater than operators.

QF BV/froehlichkovasznaibiere/ndist.b.n: We give a counter-example (due to over-
flow) to the claim that, for two bit-vector variables x[n], y[n], it holds that (x[n] + 1[n]) ≤ y[n]

implies x[n] < y[n]. The instances are satisfiable and use addition and unsigned less/greater
than or equal operators.

QF BV/froehlichkovasznaibiere/power2bit.n: We verify that, for a bit-vector variable
x[n] = 2j , it is not possible for two different bits to be both set to 1. The instances are
unsatisfiable and use indexing, subtraction, bitwise operators, and (in)equality.

QF BV/froehlichkovasznaibiere/power2eq.n: We verify that, for two bit-vector variables
x[n] = 2j , y[n] = 2k, with a certain identical bit set to 1, the bit-vectors cannot be distinct. The
instances are unsatisfiable and use indexing, subtraction, bitwise operators, and (in)equality.

QF BV/froehlichkovasznaibiere/power2sum.n: We verify that, for two bit-vector vari-
ables x[n] = 2j , y[n] = 2k, with j 6= k, x[n] + y[n] cannot be a power of 2. The instances are
unsatisfiable and use addition, subtraction, bitwise operators, and (in)equality.

QF BV/froehlichkovasznaibiere/shift1add.n: We verify that for an arbitrary bit-vector
x[n], there exists no bit-vector y[n] 6= x[n] with (x[n] + y[n]) = (x[n] � 1). The instances are
unsatisfiable and use addition, shift by one, and (in)equality. The example used throughout the
paper is part of this benchmark family.

Out of the benchmark instances in SMT2 format, we generated SMV instances by using
bv2smv and the flattening tool smvflatten.4 We used the state-of-the-art SMT solvers Boolec-
tor, MathSAT, Z3, and STP on the SMT2 instances, and NuSMV [10] on the corresponding
SMV instances. In order to involve state-of-the-art model checkers like Tip [13] and IImc5 (that

4http://fmv.jku.at/smvflatten/
5http://ecee.colorado.edu/wpmu/iimc/

4

Efficiently Solving Bit-Vector Logics using Model Checkers Fröhlich, Kovásznai, and Biere

uses techniques described in [2, 3]), we also converted all the SMV instances to AIGER format
by using the translation tool smvtoaig that is part of the AIGER distribution.

All our experiments were run on the same cluster and with the same setup as the latest
Hardware Model Checking Competition (HWMCC’12).6 More precisely, we used a 32-node
cluster with Intel Quad Core 2.6 GHz processors and 8 GB RAM. The wall clock time limit
was set to 900 seconds and the memory limit to 7 GB. Each solver had full access to one node
(4 cores).

In total, we used 19 different solvers (resp. configurations) on 6 different benchmark sets
each consisting of 32 instances, yielding a total of 3648 runs. All our results are available on
our web page at [9] together with generation scripts for all benchmarks in SMT2 format and
our tool bv2smv.

Tab. 1 provides an overview of the total number of solved instances and the average runtime
(in seconds) and space requirement (in megabytes) on the solved instances. For BMC solvers,
we used the knowledge that the counters in the generated specifications only allow the atomic
circuits to change their value in the first number of steps equal to the bit-width n of the original
SMT2 formula. We therefore set the bound for unrolling to be equal to n+ 1 and, whenever a
BMC solver reached the bound without timeout or out-of-memory, counted the instance to be
shown unsatisfiable.

The solvers were executed with default settings if not stated otherwise explicitely. However,
in some exceptional cases, we intentionally used some promising or interesting strategies. For
instance, in Tab. 1, Tip-BMC references Tip using BMC-based strategy. Since we expected and
later experienced that BDD-based techniques perform particularly well on our benchmarks, we
intended to test model checkers with BDD-based strategies, those which offer such an option.
Note that NuSMV uses BDD-based forward reachability analysis by default. We also tested
NuSMV with backward reachability analysis, referenced by NuSMV-bw. IImc also offers BDD-
based solving strategy, with both forward resp. backward reachability analysis; we reference
IImc with default settings resp. with BDD-based forward resp. backward reachability analysis
as IImc resp. IImc-BDD-fw resp. IImc-BDD-bw.

S
T
P

B
o
o
l
e
c
t
o
r

M
a
t
h
S
A
T
5

Z
3

I
I
m
c
-
B
D
D
-
b
w

N
u
S
M
V
-
b
w

I
I
m
c
-
B
D
D
-
f
w

I
I
m
c

N
u
S
M
V

B
l
i
m
c
‡

T
i
p
-
B
M
C
‡

A
i
g
b
m
c
‡

T
i
p

solved 147 146 127 123 192 189 185 172 170 147 130 99 93
sat 23 32 13 23 32 29 32 32 27 9 31 21 17

unsat 124 114 114 100 160 160 153 140 143 138 99 78 76
time 206 190 310 171 12 30 79 132 148 233 266 295 496
space 1063 805 587 2180 8 24 9 74 38 95 1142 2073 6

Table 1: Overall results for all solvers

Apart from those in Tab. 1, we tested other models checkers as well, all submitted to
HWMCC’12. We excluded some of them due to uncertain results: (a) Super prove2 and Sim-
ple sat, which employ ABC with improved strategies, produced discrepancies on some satisfiable

6http://fmv.jku.at/hwmcc12/
‡Versions submitted to HWMCC’12.

5

Efficiently Solving Bit-Vector Logics using Model Checkers Fröhlich, Kovásznai, and Biere

instances; (b) PdTrav, on some instances, threw exception about syntactical error in input.

In total, IImc-BDD-bw clearly performs best as it can solve all instances. Backward reacha-
bility analysis seems to produce better results than forward reachability for BDD-based model
checkers in general. While this applies especially to unsatisfiable instances, NuSMV-bw only per-
forms slightly better than NuSMV on the satisfiable ones. Interestingly, Boolector also gives
very good results for the satisfiable instances. As expected, in particular the average space
requirement of all SMT solvers is very large.

Fig. 1, 2, and 3 provide a detailed overview of the runtimes and space requirements of various
solvers on the individual benchmark sets. We chose Boolector and STP representing the SMT
solver class and NuSMV, NuSMV-bw, IImc, IImc-BDD-bw, and Tip-BMC as model checkers. Please
consider that sampling memory is imprecise in case of low runtime, causing noise on the plots
that show memory consumption.

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

ti
m

e

bit-width

Time needed to solve instances of ndista with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

s
p
a
c
e

bit-width

Space needed to solve instances of ndista with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

ti
m

e

bit-width

Time needed to solve instances of ndistb with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

s
p
a
c
e

bit-width

Space needed to solve instances of ndistb with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

Figure 1: Detailed results of the ndist.a and ndist.b benchmark sets.

Fig. 1 shows the results of the solvers on the ndist.a and ndist.b benchmark sets. On
the ndist.a instances, all BDD-based model checkers clearly outperform both SMT solvers
considering time and space. Tip-BMC performs very similar to the SMT solvers. This is not
surprising since unrolling up to a bound equal to the bit-width will in the end produce the same
propositional formula as bit-blasting.

With ndist.b being satisfiable, SMT solvers show better runtimes while still requiring
similar amounts of space. This can be explained by the fact that it is enough to guess the correct
assignment which might be found as a consequence of good heuristics and at the same time

6

Efficiently Solving Bit-Vector Logics using Model Checkers Fröhlich, Kovásznai, and Biere

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

ti
m

e

bit-width

Time needed to solve instances of power2bit with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

s
p
a
c
e

bit-width

Space needed to solve instances of power2bit with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

ti
m

e

bit-width

Time needed to solve instances of power2eq with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

s
p
a
c
e

bit-width

Space needed to solve instances of power2eq with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

Figure 2: Detailed results of the power2bit and power2eq benchmark sets.

could cause the variation in the runtimes of STP. While backward reachability analysis seems
to give a clear advantage on the unsatisfiable benchmark, it only slightly increases performance
on the satisfiable one.

One interesting aspect in Fig. 2 is the fact that STP performs really well on both benchmarks.
We suppose that this is connected to the fact that power2bit and power2eq both use indexing
with relatively small indices. Interestingly, Boolector performs much worse on both instances.
The good performance on this kind of formulas, therefore, does not seem to be a result of
bit-blasting and applying SAT solvers but rather due to some special technique used in STP.

One might notice the typical shape of the runtime curves related to IImc: they start steep,
but above a certain bit-width they show rather moderate ascent. The curves representing space
consumption seem to grow slowly up to a certain point where, after a big jump, space usage
almost seems to be fixed to a constant or, in some cases, even starts to decrease. We think that
this strange behavior is due to the fact that IImc uses several scheduled approaches, such as
IC3 [2], BMC, BDDs, etc. Probably due to the same fact, the IImc curves are even more hectic
on the power2bit benchmark in Fig. 2. During our experiments we also tested IImc with IC3
strategy alone, resulting in timeouts on most instances. Therefore, we assume that above a
certain bit-width IImc with default scheduling switches to BDDs, resulting in moderate ascent
in memory consumption and runtime.

Probably Fig. 3 depicts most properly the distinction between BDD-based approaches and
those which use SAT-based ones. Although SMT solvers and Tip-BMC time out quite soon on

7

Efficiently Solving Bit-Vector Logics using Model Checkers Fröhlich, Kovásznai, and Biere

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

ti
m

e

bit-width

Time needed to solve instances of power2sum with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

s
p
a
c
e

bit-width

Space needed to solve instances of power2sum with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

ti
m

e

bit-width

Time needed to solve instances of shift1add with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

s
p
a
c
e

bit-width

Space needed to solve instances of shift1add with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

Figure 3: Detailed results of the power2sum and shift1add benchmark sets.

both problem sets, and, on the power2sum benchmark, the performance of IImc now is rather
similar, BDD-based model checkers are able to deal even with very large bit-widths.

In general, looking at the runtimes, we can see that SMT solvers can compete well on
instances with smaller bit-width, while BBD-based model checkers start to outperform their
counter-parts with growing bit-width.

This effect becomes even stronger when we look at the space used during solving the for-
mulas. Judging from the graphs, it might even be possible that the space requirement of
BDD-based model checkers is logarithmic compared to that of SMT solvers. This could be
the case due to the fact that SMT solvers apply bit-blasting, which is exponential for bench-
marks that are not bit-width bounded, while our translation does not cause the problems to
leave PSpace. However, this alone is not sufficient. BDD-based model checkers like NuSMV
might create exponential sized BDDs nevertheless. More rigorous arguments or larger empirical
analysis are needed.

4 Conclusion

In this paper, we efficiently solved quantifier-free bit-vector formulas using model checkers.
While state-of-the-art SMT solvers usually apply bit-blasting to solve this kind of formulas,
we already showed in previous work [19] that this can cause an exponential blowup in general.
An approach for polynomially translating QF BV to EPR exists [20] (as well as exponential

8

Efficiently Solving Bit-Vector Logics using Model Checkers Fröhlich, Kovásznai, and Biere

ones [14, 17]), but solving the resulting formulas also suffers from the NExpTime-completeness
of EPR [20, 21]. Building on previous complexity results [15], however, we know that restricting
QF BV to only allowing bitwise operators, shift by one, addition, subtraction, multiplication
by constant, relational operators and indexing leads to PSpace-completeness of the resulting
logic. This allows us to polynomially translate bit-vector formulas to Sequential Circuits and
use model checkers for reachability analysis.

In order to show the potential benefit of our approach, we created a set of benchmarks and
used it to compare the performance of various model checkers on the translated instances to
the one of current SMT solvers on the original files. We showed that on most of our problems,
state-of-the-art model checkers like IImc and even older ones, such as NuSMV, performed better
by several orders of magnitude considering runtime as well as space.

Our results also showed that BDD-based model checking techniques perform much better
than SAT-based model checkers. This probably is the case because of the similarity between
BMC and bit-blasting, and gives reason to investigate especially BDD-based solving techniques
further.

Some of the best results were achieved by NuSMV. Considering the fact that NuSMV has
seen relatively little development during the last years compared to current SMT solvers, this
could lead to even better results if it is possible to improve the underlying techniques.

One of the main reasons we assume to be responsible for the good performance of model
checkers on our benchmarks, is their better fit to the PSpace-nature of this problem class.
Still, the resulting BDDs can of course be exponential in general.

While we did not pay special attention to the variable ordering during our translation,
we ran NuSMV using -dynamic command, letting it figure out a good variable order during
runtime. We also used the -reorder command to output the optimal variable order found
by NuSMV and to look for patterns in it. When using this variable order in a second run
instead of choosing the order dynamically, the runtimes usually decreased further.7 Maybe our
translation can be adapted using additional information to directly create variable orders that
result in smaller BDDs. In order to do this, it might be interesting to look at the structure of the
instances produced by our translation more closely. Especially the usage of counter definitions
and constraints is similar throughout all formulas.

Sequential optimization techniques, such as those implemented in state-of-the-art model
checkers like ABC [4], are useful even for bounded model checkers which otherwise only rely on
unrolling. It is an interesting question whether it is possible to lift these techniques from model
checking to bit-vector reasoning in combination or as a preprocessing step before bit-blasting.

Finally, only one model checker could solve all of our instances for the largest bit-widths.
Constructing this kind of formulas, therefore, offers an easy way to provide challenging bench-
marks for state-of-the-art SMT solvers and model checkers at the same time. For better solvers
and future challenges, the difficulty of a problem can be adjusted by simply increasing the
bit-width of the original SMT formula.

As a related classification problem, it will be interesting to investigate the complexity of
Presburger arithmetic on fixed-size bit-vectors.8 While the corresponding decision problem is
known to be NP-complete for non-fixed-size bit-vectors, it is not clear whether we still remain
in NP when considering fixed-size bit-vectors and whether translations as proposed in [5] are
polynomial if a logarithmic encoding is used for the bit-widths.

7This is not included in our results since we did not analyze it in detail yet.
8The benchmark sets ndist.a and ndist.b are in this class.

9

Efficiently Solving Bit-Vector Logics using Model Checkers Fröhlich, Kovásznai, and Biere

References

[1] Clark Barrett, Aaron Stump, and Cesare Tinelli. The smt-lib standard: Version 2.0. In Proceedings
of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh, UK), 2010.

[2] Aaron R. Bradley. Sat-based model checking without unrolling. In Proc. VMCAI’11, pages 70–87,
2011.

[3] Aaron R. Bradley, Fabio Somenzi, Zyad Hassan, and Yan Zhang. An incremental approach to
model checking progress properties. In Proc. FMCAD’11, pages 144–153, 2011.

[4] Robert K. Brayton and Alan Mishchenko. Abc: An academic industrial-strength verification tool.
In Proc. CAV’10, pages 24–40, 2010.

[5] Raik Brinkmann and Rolf Drechsler. Rtl-datapath verification using integer linear programming.
In Proc. ASP-DAC’02, 2002.

[6] Robert Brummayer and Armin Biere. Boolector: An efficient smt solver for bit-vectors and arrays.
In TACAS, volume 5505 of LNCS, pages 174–177. Springer, 2009.

[7] Robert Brummayer, Armin Biere, and Florian Lonsing. BTOR: bit-precise modelling of word-level
problems for model checking. In Proc. BPR’08, pages 33–38, 2008.

[8] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, and Roberto Sebas-
tiani. The MathSAT SMT solver. In Proc. CAV’08, pages 299–303, 2008.

[9] bv2smv project page. Website. http://fmv.jku.at/bv2smv/.

[10] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and
A. Tacchella. Nusmv version 2: An opensource tool for symbolic model checking. In Proc. CAV02,
2002.

[11] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver. In Proc. ETAPS’08, pages
337–340, 2008.

[12] Bruno Dutertre and Leonardo de Moura. The Yices SMT solver. Tool paper at
http://yices.csl.sri.com/tool-paper.pdf, August 2006.

[13] Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving. Electronic
Notes in Theoretical Computer Science, 89(4):543–560, 2003.

[14] Moshe Emmer, Zurab Khasidashvili, Konstantin Korovin, and Andrei Voronkov. Encoding in-
dustrial hardware verification problems into effectively propositional logic. In FMCAD’10, pages
137–144, 2010.

[15] Andreas Fröhlich, Gergely Kovásznai, and Armin Biere. More on the complexity of quantifier-free
fixed-size bit-vector logics with binary encoding. In Proc. CSR’13 (to appear), 2013.

[16] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and arrays. In Computer
Aided Verification (CAV ’07), Berlin, Germany, July 2007. Springer-Verlag.

[17] Zurab Khasidashvili, Mahmoud Kinanah, and Andrei Voronkov. Verifying equivalence of memories
using a first order logic theorem prover. In FMCAD’09, pages 128–135, 2009.

[18] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. Mona implementation secrets. In
Proc. CIAA’00, pages 182–194, 2000.

[19] Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. On the complexity of fixed-size bit-vector
logics with binary encoded bit-width. In Proc. SMT’12, pages 44–55, 2012.

[20] Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. Bv2epr: A tool for polynomially trans-
lating quantifier-free bit-vector formulas into epr. In Proc. CADE’13 (to appear), 2013.

[21] Harry R. Lewis. Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci.,
21(3):317–353, 1980.

[22] Andrej Spielmann and Viktor Kuncak. On synthesis for unbounded bit-vector arithmetic. Tech-
nical report, EPFL, Lausanne, Switzerland, February 2012.

[23] Andrej Spielmann and Viktor Kuncak. Synthesis for unbounded bit-vector arithmetic. In Proc. IJ-
CAR’12, volume 7364 of LNCS, pages 499–513, 2012.

10

A Difference Logic Formulation and SMT Solver for
Timing-Driven Placement

Andrew Mihal

Tabula Inc., Santa Clara CA 95054, USA
amihal@tabula.com

Abstract

This paper presents a difference logic constraint satisfaction formulation and a custom SMT solver
for programmable logic detailed placement problems. This problem domain is characterized by a
large solution space with high space and time costs for generating constraints. To handle these prob-
lems efficiently, our solver features a dynamic clause generation callback interface to allow clauses
to be added on demand during the search. The formulation and the solver both utilize concepts from
static timing analysis to handle timing constraints. We show that the SMT approach provides better
runtime and better quality of results than our previous Boolean SAT encoding.

1 Introduction
Semiconductor design automation tools have long made use of Boolean SAT for logic optimization, ver-
ification, test generation, and routing [13,10,5,15,21]. SAT-based placement has attracted less research
interest. In the context of programmable logic, placers assign components from a netlist graph onto
discrete sites on a programmable fabric. The result must satisfy a variety of constraints such as timing
and routability. Devadas described placement via SAT-based bipartitioning in [4] but concluded that
SAT solvers of the time were not yet powerful enough to solve more general 2-D placement problems.

Simulated annealing has been used effectively for placement [1], but this technique has disadvan-
tages that can be addressed by a constraint satisfaction approach. Annealers make small perturbations
to an initial placement (e.g. swapping the positions of two components) and accept or reject changes
based on the total delta cost computed by a set of cost functions.

The simplicity of the move set makes it difficult for annealers to solve problems that require a
coordinated change involving many netlist components. Such problems must be solved using a series of
independent moves. The cost functions must be carefully crafted to ensure that partial progress towards
the final goal is seen as gradual improvement. This property can be difficult to arrange, especially if the
problem requires moving unrelated, non-violating components out of the way in order to make room for
the components that are actually violating constraints.

A constraint satisfaction approach can directly address this weakness. Instead of searching for small
changes that gradually approach an acceptable solution, a placer based on constraint satisfaction could
rearrange a large number of components simultaneously such that the result satisfies all of the con-
straints. This strategy has the potential to outperform simulated annealing if it can be made efficient.

Scalability is a major technical obstacle to building a practical placer based on constraint satisfaction.
In order for a sequential circuit to run at a specified clock rate, every state-to-state path in the netlist
must have a total delay less than or equal to the target clock period. The number of such paths can be
exponential in the size of the netlist.

Furthermore, each netlist edge has a number of placement options equal to the product of the number
of candidate sites for the source and sink components. The routing delay between the source and sink
sites on the fabric determines the edge delay, which in turn contributes to the path delays. Computing
all of the fabric routing delays and generating the edge and path constraints is too expensive in runtime
and memory to build a practical placer.

1

Timing-Driven Placement Mihal

To solve this scalability problem, we use a two-part solution. First, concepts from static timing
analysis are used to address the worst-case exponential scaling of path-based timing constraints. This
formulation is presented in Section 3. Second, we use a dynamic clause generation approach to construct
clauses lazily. We find that the solver is able to find a SAT or UNSAT result after exploring only a small
fraction of the total search space, and therefore a majority of the clauses can be omitted entirely. This
technique is presented in Section 4.

In the development of our detailed placer, our first approach was to use a purely Boolean formula-
tion and solve it using a regular SAT solver. We explain this translation in Section 5 and discuss the
shortcomings that motivated moving to an SMT solver that accepts difference logic constraints directly.

In Section 6, we present a custom difference logic SMT solver for the detailed placement prob-
lem domain. This solver specifically handles dynamic clause generation and the types of difference
logic constraints that arise from our formulation of timing constraints based on static timing analysis.
Section 7 gives experimental results comparing the difference logic formulation to our original purely
Boolean SAT formulation. We also show the runtime improvement from dynamic clause generation. To
get started, the next section briefly introduces the detailed placement problem for programmable logic.

2 Programmable Logic Detailed Placement
Programmable logic devices are implementation platforms for digital electronics that offer low up-front
design costs and bypass the complexities of nanometer-scale transistor design. The general idea is that
a prefabricated chip can be configured to implement any desired digital circuit by setting programmable
bits on the chip.

Figure 1 shows an array of n-input lookup tables interconnected by a rich network of multiplexers.
Each lookup table can implement any combinational function of n inputs by programming the 2n bits
of memory contained therein. Lookup tables are connected together by programming memory bits that
drive the select signals of the multiplexers. A modern device may contain more than one million such
lookup tables and often includes other resources such as flip-flops and memories. Kuon et al. [11]
provide a survey of modern architectures.

Engineers create a design for implementation on programmable logic by writing a register-transfer
level circuit description in Verilog or VHDL. A suite of design automation tools provided by the pro-
grammable logic vendor compiles the design and produces the programmable bit values for the chip.
The compilation process has four major phases: synthesis, global placement, detailed placement, and
routing. Synthesis compiles the circuit description into an optimized netlist of lookup tables. Placement
assigns the lookup tables in the netlist onto lookup tables on the physical chip. Routing configures the
multiplexers so that the connections specified in the netlist are made on the chip. Each phase poses
intriguing optimization challenges. Chen et al. [2] give a broad survey of the techniques commonly
used.

This paper focuses on the detailed placement problem, and specifically on timing optimization.
Detailed placers assume that the netlist already has a placement that satisfies some global optimization
criteria but still has problems of a more local nature that need to be repaired. For example, a global
placer could use an analytical algorithm with a continuous coordinate system and an abstract geometric
model of routing delay. The detailed placer refines this placement by snapping components to overlap-
free discrete placement sites using a more accurate routing delay model based on actual paths through
the interconnect network.

In addition to providing a Verilog or VHDL circuit description, users also specify that the sequential
logic must run at a particular clock frequency. To meet this constraint the placer must ensure that all
state-to-state paths in the netlist are placed such that the worst path delay is less than or equal to the
target clock period τ.

2

Timing-Driven Placement Mihal

LUT LUT LUT

LUT LUT LUT

(a) Array of LUTs

S0 S1

C C

S0 S1

C C

S0 S1

C C

S0 S1

C C

LUT

M
U

X

M
U

X M
U

X

a
b
c

f

abc f
000 C
001 C
010 C
011 C
100 C
101 C
110 C
111 C

M
U

X

(b) Programmable LUT Connections

Figure 1: Generic Programmable Logic Device Architecture

B C

E

A D

F

DAB DBC DCD

DBE

DFE

DEC

DEF

Figure 2: Netlist Annotated With Delays

Figure 2 shows a netlist with several such paths: ABCD, ABECD, ABEF, FEF, and FECD. Each
path has one or more edge delays (e.g. DAB) that are dependent on the placement sites for the netlist
components. The components on path ABCD, for example, must be placed in a way that satisfies the
constraint DAB + DBC + DCD ≤ τ.

Paths that fail timing must be repaired by moving components to reduce routing delays or by using
retiming to move logic across state elements. The detailed placer can assume that the global placer has
already performed global delay optimization under an abstract model of routing delay. When the paths
are reassessed using actual routing delays, some may violate timing. It is expected that only a minority
of paths will require repair and that components will only have to move a relatively short distance away
from their starting locations.

A complete placer has to consider other optimization criteria such as placement legality and routabil-
ity. Our experimental results are based on our complete system which includes these issues, but we focus
only on the timing constraints in this paper.

3 Problem Formulation
In this section we describe how concepts from static timing analysis can be used to efficiently encode
path-based timing constraints. We begin with variables that encode the placement of netlist components

3

Timing-Driven Placement Mihal

onto sites. The Boolean variable VAX has the meaning that component A is placed on site X. These
placement variables can be arranged into a sparse matrix where the components are the rows and the
sites are the columns as follows:

W X Y Z · · ·
A VAW VAX VAY

B VBX VBY

C VCY VCZ
...

. . .

(1)

For each row in the matrix, an exactlyOne constraint (a standard atMostOne cardinality constraint
combined with a standard Boolean clause) is added to ensure that each component gets a placement.
For each column in the matrix, an atMostOne constraint is added to prevent placement overlaps.

Timing constraints for netlist edges follow this pattern:

(VAX ∧ VBY)→ (DAB = dXY) (2)

This formula says that if netlist component A is placed on site X and component B is placed on site
Y , then the delay on netlist edge AB is equal to the routing delay between sites X and Y . We assume
there exists a timing model of the target architecture which provides these dXY numbers. The number
of clauses for each edge is equal to the product of the number of candidate sites for the source and sink
components.

Timing constraints for netlist state-to-state paths follow this pattern:

DAB + DBC + DCD + . . . ≤ τ (3)

To avoid making a constraint of this type for every path in the netlist, we rewrite equations 2 and
3 using concepts from static timing analysis. Static timing analysis computes an arrival time and a
required time at each component in the netlist graph [9]. The arrival time is the maximum path length to
state elements backwards through the transitive fanin of a component. This value represents the time it
takes from the beginning of the clock cycle for the data to propagate through the circuit and to become
valid at the output of the component. The arrival time at the output of a state element is defined to be
zero.

The required time is the clock period τ minus the maximum path length to state elements forwards
through the transitive fanout of a component. This value is the latest time at which the component output
can become valid and still make it to the downstream state elements before the end of the clock cycle.
The required time at the input of a state element is defined to be τ.

The slack of a component is the required time minus the arrival time. A component with negative
slack is on a path that fails timing. Instead of making a separate timing constraint for each state-to-state
path in the netlist, one can simply constrain each netlist component to have non-negative slack with a
clause ArrA ≤ ReqA.

The arrival time ArrA and required time ReqA are defined in terms of the immediate fanin and fanout
components:

ArrA = max
fanin Fi

(ArrFi + DFiA) (4)

ReqA = min
fanout Fo

(ReqFo − DAFo) (5)

Using these formulas, Equation 2 can be rewritten as:

4

Timing-Driven Placement Mihal

(VAX ∧ VBY)→ (ArrB − ArrA ≥ dXY)
∧ (ReqA − ReqB ≤ −dXY)

(6)

The result is a difference logic formulation. The only non-Boolean variables are the arrival and
required times ArrA and ReqA for each netlist component.

This formulation does not require enumerating all state-to-state paths and avoids the worst-case
exponential number of constraints. However, the number of constraints of the form of Equation 6 still
grows with the product of the number of placement options for the source and sink components for each
netlist edge. This is still an impractically large number of constraints. We address this scalability issue
using dynamic clause generation.

4 Dynamic Clause Generation
Observe that the placement variable matrix (1) is mostly false due to the exactlyOne constraint on each
row. Also, each clause (VAX∧VBY)→ (. . .) starts with two negative literals (VAX+VBY + . . .). A majority
of the clauses are therefore trivially satisfied during the search.

Furthermore, the detailed placer is responsible for repairing only local constraint violations and does
not attempt to make global changes to the initial placement. It is expected that only a minority of netlist
components will have to be moved to accomplish this task. The solver is likely to find a SAT or UNSAT
solution after attempting only a small fraction of the placement options VAX for each component.

Therefore, while all of the clauses are theoretically necessary for correctness, in practice most of
them do not affect the search. We can take advantage of this fact to reduce the working size of the
problem. Clauses of the form (VAX +VBY + . . .) can be left out until the search actually enters a subspace
where VAX and VBY are both true.

Our solver provides a callback method decisionCallback that is invoked after assigning a placement
variable VAX = T and after all unit propagations have completed without conflicts. The placer adds
clauses starting with (VAX + . . .) during this callback. All fanin and fanout components of A are checked
to see if they are placed in the solver state at the time of the callback. Then clauses related to fanin edges
FiA and fanout edges AFo are generated.

The solver then processes the incoming clauses and makes its internal state consistent using a min-
imal amount of backtracking when necessary. The search can then continue in the subspace under
VAX = T as normal. The resulting behavior is the same as if the dynamic clauses had always been
present, but with substantial runtime savings since most clauses are never generated.

Our approach is complementary to the two-watched-literal technique [14] in that it addresses clause
generation runtime and memory footprint in addition to search runtime. Quantitative results are given
in Section 7.

4.1 Related Dynamic Approaches
Eén and Sörensson describe a dynamic clause generation approach in [7] wherein the solver is restarted
with additional clauses after a complete solution has been produced and examined. Our approach adds
clauses while the solver is running and not only between invocations of an incremental solver.

The Lynx SAT solver includes a similar callback method for adding clauses after each propagation
step [8]. That callback method examines the solver trail and adds clauses that conflict with the current
assignment. In comparison, our approach allows clauses that do not conflict with the current assignment
to be added as well.

5

Timing-Driven Placement Mihal

Ohrimenko et al. [18] describe a purely Boolean encoding of difference logic constraints that in-
cludes lazy clause generation to reduce the number of Boolean clauses created for difference logic
propagation. Our approach performs dynamic clause generation on a coarser level of abstraction. This
is possible due to the natural subdivisions of the problem space and the low likelihood of actually
searching the majority of these subspaces.

5 Boolean Formulation
Our first approach to constructing a detailed placer based on constraint satisfaction was to convert the
difference logic timing constraints into a purely Boolean SAT problem [12]. We then added support
for dynamic clause generation to MiniSAT version 1.12b to solve the instances [6]. This formulation is
briefly described here because it is used as a baseline for measuring the benefits of our difference logic
SMT solver.

The Boolean formulation uses a small-domain encoding variation due to Ohrimenko et al. [18]. The
key idea is to define Boolean variables that represent upper and lower bounds on the difference logic
variables instead of exact values of the variables. This approach is a natural fit for modeling arrival and
required times and detecting negative slack.

For each netlist component A we create a number line subdivided into T discrete values representing
times within the clock period τ. Each subdivision has an associated non-decision Boolean variable EAt.
When true, this variable has the meaning that ReqA ≤ t τT . When false, this variable indicates that
ArrA > t τT .

The clauses shown in Equation 6 are then rewritten using these Boolean variables:

(VAX ∧ VBY)→
∧

t

(EAt → EBdt+∆e) where ∆ = dXY
T
τ

(7)

If the solver makes placement decisions that result in an arrival time becoming larger than a required
time at any netlist component, then some variable EAt will be assigned to both true and false. Timing
violations are therefore detected as ordinary Boolean conflicts.

A major drawback of the purely Boolean encoding of timing constraints is the quantization of time.
Arrival and required times must be rounded conservatively to discrete number line variables EAt. On a
long state-to-state path through the netlist, these rounding errors accumulate and over-constrain the prob-
lem. This is especially problematic when the target clock period τ approaches the maximum frequency
supported by the target architecture. The conservative rounding forces the placer to find a solution that
exceeds the actual target, but the architecture does not have interconnect routes that are fast enough.
Consequently, placements that would actually be acceptable are rejected. The quantization of time can
be partially addressed by increasing the number of subdivisions T , but this additional accuracy comes
at the cost of increasing the number of clauses in the formulation.

The Boolean encoding is also computationally expensive. Boolean constraint propagation is used
to mimic difference logic constraint propagation (e.g. addition and comparison of numerical variables).
Both of these drawbacks can be addressed by using a difference logic SMT solver instead of a Boolean
SAT solver.

6 A Dynamic Difference Logic Solver
Since dynamic clause generation is an essential component of our approach, we constructed a custom
difference logic SMT solver instead of using a publicly available solver. Our design decisions for im-

6

Timing-Driven Placement Mihal

plementing the solver are influenced by our experience building static timing analysis tools and prior
work on DPLL(T) SMT solvers and difference logic solvers [3, 20, 16, 17].

The general software architecture of our solver follows MiniSAT but is entirely new code. Boolean
literals are encoded as positive integers, with even numbers used for positive literals and odd numbers
for negated literals. Difference logic literals are encoded as negative integers, with even numbers used
for lower bounds and odd numbers used for upper bounds: The difference logic portions of the solver
use floating-point math.

· · · -4 -3 -2 -1 0 1 2 3 · · ·
· · · (DL1 ≥) (DL1 ≤) (DL0 ≥) (DL0 ≤) B0 B0 B1 B1 · · · (8)

The placer creates one difference logic variable for each netlist component and one difference logic
variable for each netlist edge. The solver is informed which variables represent components and which
represent edges, and is also provided the graph connectivity of these variables. This graph structure is
used during the propagation phase to perform t-propagations and deduce t-consequences.

Netlist edge delay clauses are of the form:

(VAX ∧ VBY)→ (DAB ≥ dXY) (9)

Propagation
The propagation phase is divided into three parts which are executed in priority order. First, all Boolean
unit propagations are made until nothing else can be propagated. If any conflicts are encountered, the
solver performs conflict analysis and nonlinear backtracking as in MiniSAT.

After Boolean unit propagations are finished, the solver performs all difference logic propagations
in a single batch t-propagation step. This is the “lazy” approach described in [3].

The difference logic propagation mirrors the arrival and required time propagation used in static
timing analysis. If any netlist component has a new lower bound, an update is scheduled to recompute
lower bounds on all of its fanout components. Similarly, any component with a new upper bound
schedules upper bound updates for all of its fanin components. A new lower bound on a netlist edge
schedules lower bound updates on fanout components and upper bound updates on fanin components.

Upper and lower bounds are propagated forwards and backwards throughout the netlist graph until
the system converges or until the Bellman-Ford iteration limit is reached which indicates that a positive-
weight cycle has been discovered. If such a cycle is found or if at any time some difference logic variable
has a lower bound greater than its upper bound, the propagation phase stops and the solver proceeds to
conflict analysis.

The result of the difference logic propagation phase is that all netlist components have updated
arrival and required times that are consistent with the known netlist edge delays. The propagation also
computes new upper bounds on the delays of edges:

(ArrA ≥ a ∧ ReqB ≤ b)→ (DAB ≤ b − a) (10)

The solver uses these upper bounds to rule out future placement decisions that would result in edge
delays that are too large. This feedback is one example of how t-consequences guide the Boolean part
of the search.

Finally, after all Boolean and difference logic propagations have completed, the solver performs
dynamic clause generation. The decisionCallback function is called for all new Boolean variables that
have been assigned since the last round of dynamic clause generation. The placer adds clauses that are
now relevant to the search.

7

Timing-Driven Placement Mihal

The strict priority order of Boolean propagation, difference logic propagation, and dynamic clause
generation reflects the runtime cost of each of these steps. The solver attempts to find conflicts using
existing clauses before asking the placer to add new clauses. Thus no computation is wasted when the
solver is destined to backtrack out of the current subtree. Also, the solver attempts to discover conflicts
resulting from Boolean propagations before performing a more expensive t-propagation step.

Conflict Analysis
Conflicts are analyzed and learned clauses are generated using the 1-UIP approach as in MiniSAT. For
each difference logic variable, the solver maintains two stacks of {value, reason, level} tuples that store
monotonically tightening upper and lower bounds on the variable’s value. These stacks are searched
to find the earliest decision level at which a difference logic literal became true or false. The matching
stack entry contains the reason data necessary to build the implication graph and construct the 1-UIP
learned clause.

The reason for a difference logic literal to be true or false can be one of two possibilities. If the
literal was assigned as a result of a clause becoming unit, the reason field will refer to that clause. The
conflict analysis algorithm can then continue unwinding that clause.

If the literal was assigned during difference logic propagation, the reason field will refer to a pair
of difference logic node and edge literals that are responsible for the propagated value. For example,
consider a netlist edge AB with delay DAB = 10.0 and source node A with ArrA ≥ 20.0. The difference
logic propagation would enqueue ArrB ≥ 30.0. If that literal is later involved in a conflict, the reason
will appear to be the clause (ArrA ≥ 20.0 + DAB ≥ 10.0 + ArrB ≥ 30.0). This clause is not in the clause
database. It is a temporary object that is made so that the conflict analysis algorithm can unwind clausal
implications and t-consequences identically.

7 Results
To measure the improvement of the difference logic formulation over the purely Boolean formulation,
we ran a series of experiments placing netlists from the OpenCores database [19] using both formula-
tions. Our custom difference logic solver is used in both cases. The purely Boolean problems use the
formulation described in Section 5 which uses no difference logic variables.

These results are based on the complete detailed placement tool. In addition to the timing constraints
described in this paper, our placer also considers placement legalization constraints and routability con-
straints. The decision variables are also more extensive than described here. The placer is able to explore
lookup table pin permutations and alternative routing paths for netlist edges between the same source
and sink component sites. Retiming can also be applied to move logic across state elements.

A search-and-repair strategy is used that breaks the entire placement problem into smaller subprob-
lems that each try to repair a specific timing violation. Each subproblem contains a subset of the netlist
with approximately 100 components in the neighborhood of a timing violation. This subproblem size is
sufficient to solve complex violations that require coordinated motion of dozens of components in order
to repair. Each SAT result repairs not only the targeted timing violation but also other violations that
are coincidentally included in the neighborhood. The placer creates and solves a series of subproblems
until all of the timing violations in the netlist have been repaired.

The runtime and frequency numbers in Table 1 are normalized to the Boolean formulation results
and represent the total runtime of the tool. The difference logic formulation achieves higher frequency
placements due to the increased accuracy of representing delays using floating point numbers in the
solver. The pessimistic rounding required by the Boolean formulation over-constrains the problem.
In some cases, the difference logic formulation is able to find a placement that achieves the highest

8

Timing-Driven Placement Mihal

Boolean Formulation Difference Logic Formulation
Design Comps Runtime Freq Bvars Clauses RT Match RT Best Freq Bvars DLvars Clauses
mancala 287 1.0 1.0 146k 393k 0.47 5.09 1.29 13k 160 60k
rs enc 1373 1.0 1.0 189k 59k 0.60 0.68 1.03 23k 467 55k
aeMB 3066 1.0 1.0 285k 233k 1.26 2.16 1.07 24k 411 81k
sha256 3283 1.0 1.0 283k 489k 0.71 1.01 1.03 28k 470 132k
aes 5236 1.0 1.0 233k 94k 0.57 0.79 1.03 29k 510 80k
warp 5560 1.0 1.0 283k 729k 0.66 11.20 1.71 24k 375 88k
r2000sc 5807 1.0 1.0 294k 238k 0.93 7.34 1.32 26k 398 86k
minimips 5855 1.0 1.0 231k 252k 0.39 1.03 1.07 27k 425 91k
fpu double 10300 1.0 1.0 327k 126k 0.38 0.48 1.05 32k 327 78k

Table 1: Boolean Formulation vs. Difference Logic Formulation

Boolean Formulation Difference Logic Formulation
Dynamic No Dynamic Dynamic No Dynamic

Design Comps Runtime Clauses Runtime Clauses Runtime Clauses Runtime Clauses
mancala 287 1.0 393k 13.8 76590k 0.40 60k 12.2 28545k
rs enc 1352 1.0 59k 12.7 1029k 0.30 55k 48.2 16487k
aeMB 3045 1.0 233k 8.7 20116k 0.58 81k 15.7 20531k

Table 2: Average Instance Runtime and Clause Count

frequency possible on the fabric. This happens when the entire critical path in the netlist is placed using
the shortest possible fabric connections.

For the difference logic formulation, the table lists an RT Match result that indicates how long it
took to attain the same frequency as the Boolean formulation, and a RT Best runtime for the maximum
achieved frequency. The difference logic formulation is able to attain an equivalent result in less runtime,
and goes on to achieve frequencies that are out of reach of the Boolean formulation.

The difference logic formulation is also more efficient in the number of clauses and variables. Table 1
lists the average number of clauses and variables over all of the subproblems in each netlist, which are
about the same size independent of the total netlist size. In the Boolean formulation, equation 7 expands
into a large number of clauses that mimic arrival and required time propagation. These are unnecessary
in the difference logic formulation, as are the Boolean variables used to represent quantized times.

Table 2 shows the average per-instance runtime and clause count with and without the dynamic
clause generation technique. Due to the long runtimes, results are shown only for small netlists. For
both the Boolean and difference logic formulations, dynamic clause generation leads to approximately
an order of magnitude reduction in runtime for constructing and solving each instance.

8 Conclusion
Programmable logic detailed placement is a challenging problem domain that has not been previously
solved with a constraint satisfaction approach. Using the techniques described in this paper, our formu-
lation can be solved efficiently and used to construct a practical placement tool.

One of the keys to making the approach scalable is to take advantage of the natural subdivisions
of the problem space and the fact that the solver is able to determine a SAT or UNSAT result without
visiting a majority of the subspaces. This characteristic makes the problem domain amenable to on-
demand dynamic clause generation. Other problem domains with the same characteristic should be able
to enjoy the same benefits.

The SMT-based placer is currently deployed in a production placement tool at Tabula. It replaces
the purely Boolean formulation that was solved with a version of MiniSAT extended to support dynamic

9

Timing-Driven Placement Mihal

clause generation. That approach, in turn, replaced a placement tool based on simulated annealing. The
constraint satisfaction approaches have provided considerable runtime and quality benefits and we are
encouraged to explore this technology further.

References
[1] Vaughn Betz and Jonathan Rose. VPR: A new packing, placement, and routing tool for FPGA research. In

Intl. Workshop on Field Programmable Logic and Applications, pages 213–222, 1997.
[2] Deming Chen, Jason Cong, and Peichen Pan. FPGA design automation: A survey. Foundations and Trends

in Electronic Design Automation, 1(3):195–330, November 2006.
[3] Scott Cotton and Oded Maler. Fast and flexible difference constraint propagation for DPLL(T). In 9th Intl.

Conference on Theory and Applications of Satisfiability Testing, pages 170–183, August 2006.
[4] Srinivas Devadas. Optimal layout via Boolean satisfiability. In IEEE International Conference on Computer-

Aided Design, pages 294–297, November 1989.
[5] Rolf Drechsler, Stephan Eggersglüß, Görschwin Fey, and Daniel Tille. Test Pattern Generation using Boolean

Proof Engines. Springer, 2009.
[6] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In 6th International Conference on Theory and

Applications of Satisfiability Testing, pages 502–518, 2003.
[7] Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving. In First International

Workshop on Bounded Model Checking, volume 89, pages 543–560, 2003.
[8] V. Ganesh, C. W. O’Donnell, M. Soos, S. Devadas, M. C. Rinard, and A. Solar-Lezama. Lynx: A program-

matic SAT solver for the RNA-folding problem. In Intl. Conf. on SAT, pages 142–155, June 2012.
[9] T. I. Kirkpatrick and N. R. Clark. PERT as an aid to logic design. IBM Journal of Research and Development,

10(2):135–141, 1966.
[10] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai. Robust Boolean reasoning for equivalence checking and

functional property verification. IEEE Trans. on CAD, 21(12):1377–1394, December 2002.
[11] Ian Kuon, Russell Tessier, and Jonathan Rose. FPGA architecture: Survey and challenges. Foundations and

Trends in Electronic Design Automation, 2(2):135–253, February 2008.
[12] Andrew Mihal and Steve Teig. A constraint satisfaction approach for programmable logic detailed placement.

In 16th Intl. Conf. on Theory and Applications of Satisfiability Testing, pages 208–223, July 2013.
[13] Alan Mishchenko, Robert Brayton, Jie-Hong Roland Jiang, and Stephen Jang. SAT-based logic optimization

and resynthesis. In International Workshop on Logic and Synthesis, pages 358–364, May 2007.
[14] Matthew Moskewicz, Conor Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff: Engineering an

efficient SAT solver. In Design Automation Conference, pages 530–535, 2001.
[15] Gi-Joon Nam, Karem Sakallah, and Rob Rutenbar. Satisfiability-based layout revisited: Detailed routing of

complex FPGAs via search-based Boolean SAT. In Intl. Symposium on FPGAs, pages 167–175, 1999.
[16] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories: From an abstract Davis-

Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM, 53(6):937–977, 2006.
[17] Robert Nieuwenhuis and Albert Oliveras. DPLL(T) with exhaustive theory propagation and its application to

difference logic. In 17th International Conference on Computer Aided Verification, July 2005.
[18] Olga Ohrimenko, Peter Stuckey, and Michael Codish. Propagation via lazy clause generation. Constraints,

14(3):357–391, September 2009.
[19] Various. OpenCores open source hardware IP cores, April 2013. http://opencores.org.
[20] C. Wang, F. Ivančić, M. Ganai, and A. Gupta. Deciding separation logic formulae by SAT and incremen-

tal negative cycle elimination. In Proc. of the 12th Intl. Conference on Logic for Programming, Artificial
Intelligence, and Reasoning, pages 322–336, 2005.

[21] R. Glenn Wood and Rob Rutenbar. FPGA routing and routability estimation via Boolean satisfiability. IEEE
Transactions on VLSI, 6(2), June 1998.

10

Handling Bit-Propagating Operations in

Bit-Vector Reasoning

Alexander Nadel

Intel Corporation, P.O. Box 1659, Haifa 31015, Israel
alexander.nadel@intel.com

Abstract

Our aim is to improve bit-vector reasoning in modern SMT solvers. We enhance bit-
vector preprocessing by introducing algorithms that explicitly handle an important class
of bit-vector operations which we call bit-propagating. Such operations fulfill the following
property: each output bit is either a bit of one of the inputs or a constant (0 or 1). We
identified ten bit-propagating operations in the SMT-LIB 2.0 language; these operations
are encountered frequently in practice. Our algorithms seek to improve the run-time of
SMT solvers by simplifying the problem that is eventually provided to the underlying SAT
solver. Empirical evaluation of our algorithms reveals a performance boost across a variety
of SMT-LIB benchmark families.

1 Introduction

Bit-vector (abbr., BV) reasoning is widely used in practice. Over 48% out of more than 93,000
benchmarks in SMT-LIB [4] are either plain BV benchmarks or combine the BV theory with the
theory of arrays (where 33% are plain BV benchmarks) [1]. Bit-vector reasoning is supported
by a variety of solvers, such as Boolector [7], STP [12], Mathsat [8] and others. In the eager
approach to BV solving (used by Boolector and STP, for example), the solver preprocesses the
word-level formula, then translates the simplified formula to Conjunctive Normal Form (CNF)
and solves it with a SAT solver. In this paper we identify an important class of BV operations
and propose an efficient way of handling them in the preprocessor. We restrict further discussion
in this paper to eager SMT solvers applied to solving bit-vector benchmarks that conform to
the QF BV logic syntax [2]. However, our results are applicable whenever BV reasoning is
required.

The central notion of our paper is that of a bit-propagating operation. A bit-propagating
operation fulfills the following property: each output bit is either a bit of one of the inputs
or a constant 0 or 1 (a more precise definition appears in Section 3.1). We identified 10 bit-
propagating operations amongst the 38 operations over bit-vectors supported in QF BV (that
is, the union of the 35 operations in the Fixed Size BitVectors theory and the 3 operations in
the Core theory). The two basic bit-propagating operations are concat and extract, while
the others comprise two rotation operations, repeat, and three shift operations (we consider
the shift operations to be bit-propagating only when the shift is by a constant). A full list
of bit-propagating operations is provided in Fig. 1. We found that bit-propagating operations
appear frequently in practice. See Table 1 for more details.

As an example of a bit-propagating operation, consider the shift left operation bvshl. As-
sume that a bit-vector variable of width 4 v =

[
v[3], v[2], v[1], v[0]

]
(v[0] is the least significant

bit) is shifted by the constant 3. The result would be v =
[
v[0], 0, 0, 0

]
. Clearly, our property

holds: bits 0 through 2 of the output are constants, while bit 3 of the output is bit 0 of the
input.

1

Handling Bit-Propagating Operations in Bit-Vector Reasoning Nadel

We assume that the SMT solver maintains a directed acyclic graph to represent the input
formula, where each node correponds to either a bit-vector constant, an input bit-vector vari-
able, or an internal bit-vector variable created as a result of applying an operation. We call a
variable bit-propagating if it was created as a result of applying a bit-propagating operation.

The main observation behind our work is that given a nested application of bit-propagating
operations, the bits of the resulting variable can always be expressed in terms of bits of non-
bit-propagating variables and the constants 0 and 1. For example, assume that the following
variables were created in the order specified, with the width being 4 bits for every variable
except v3:

1. v1 := bvadd(u1, u2) (bit-vector addition of two previously declared variables)

2. v2 := bvshl(v1, 1) (a shift by a constant)

3. v3 := extract(v2, 3, 2) (extracting bits 2 through 3)

Both v2 and v3 can be expressed in terms of the bits of v1 and the constant 0. More

specifically, we have v2 =
[
v

[2]
1 , v

[1]
1 , v

[0]
1 , 0

]
and v3 =

[
v

[2]
1 , v

[1]
1

]
.

Our main idea is of associating each newly created variable with the so-called Bit-Propagating
Normal Form (BPNF) which expresses the variable in terms of bits of non-bit-propagating
variables and constants. BPNFs of all the variables are stored in a hash table. We propose a
succint representation for BPNF in Section 3.1.

The idea of associating a normal form with bit-vector expressions over concat and extract

operations is well known [9, 6, 5]. In particular, the concatenation normal form [6], detailed
in [11], is largely similar to our BPNF. The added value of our proposal is that it extends
the normal form to variables created with eight additional operations available in the modern
SMT-LIB 2.0 language and integrates the normal-form-based reasoning into a modern SMT
solver.

One advantage of maintaining a BPNF is that one can avoid creating new variables when bit-
vector variables with identical BPNFs are created through different sequences of bit-propagating
operations. Let us continue our example:

4. v4 := repeat(v1, 2)

5. v5 := extract(v4, 6, 5)

We have v4 =
[
v

[3]
1 , v

[2]
1 , v

[1]
1 , v

[0]
1 , v

[3]
1 , v

[2]
1 , v

[1]
1 , v

[0]
1

]
and v5 =

[
v

[2]
1 , v

[1]
1

]
. Hence v5 is identical

to v3. Imagine that the SMT solver is required to create an internal variable coresponding to
the operation extract(v4, 6, 5). After calculating the BPNF and looking in the BPNF hash
table, the solver can conclude that a new internal variable is not required, since v3 can be used
instead.

Another advantage of maintaining a BPNF is that when the formula is translated to CNF,
we create new CNF variables only for non-bit-propagating word-level variables, since we can
express all bits of the bit-propagating variables in terms of constants and bits of non-bit-
propagating variables. Hence, maintaining BPNFs is expected to reduce the number of CNF
variables and clauses, thus simplifying the problem for the SAT solver.

An alternative way of refraining from creating new CNF variables for the outputs of bit-
propagating operations would simply be to reuse CNF variables during the bit-blasting stage.
In our example, in order to represent v3 in CNF, one could use the CNF variables created

2

Handling Bit-Propagating Operations in Bit-Vector Reasoning Nadel

to represent v
[2]
1 and v

[1]
1 .1 However, such an approach would not have the first advantage of

maintaining a normal form we mentioned, that is, creating only one actual word-level vari-
able for variables with identical BPNFs created through different sequences of bit-propagating
operations. Our proposal has this advantage over any approach based on hashing individual
bits.

We implemented our algorithms in Intel’s new eager BV solver Hazel, whose architecture is
largely similar to that of Boolector and STP, and tested their usefulness on benchmark families
from SMT-LIB [3]. We show that applying our algorithms results in a performance boost across
a variety of SMT-LIB families. We also show that on these families, Hazel is usually faster than
the state-of-the-art academic solvers.

In what follows, Section 2 contains preliminaries. Section 3 describes the core algorithms
we propose. Experimental results are provided in Section 4. Section 5 concludes our paper.

2 Preliminaries

We need to define notions related to the basics of BV reasoning.

Definition 1 (Bit, Bit-Vector Variable, Constant). A bit is a Boolean variable (it can be inter-
preted as 0 or 1). A bit-vector variable v of width |v| is a sequence v =

{
v[|v|−1], . . . , v[1], v[0]

}
,

where v[i] is a bit for each |v| > i ≥ 0. The set of all bit-vectors is denoted by B. A constant is
a bit-vector variable, whose every bit is interpreted as 0 or 1. The set of all constants is denoted
by C.

We will sometimes refer to bit-vector variables as either bit-vectors or variables. We consider
bits to be bit-vectors of width 1. We denote by 0w a constant of width w whose every bit is 0.

It is not hard to check that the domain of every operation supported in QF BV is a cross
product of one, two or three bit-vectors (we consider variables of sort Bool to be bit-vectors
of width 1) and zero, one or two natural numbers, while the range comprises a bit-vector. We
denote by N the set of natural numbers (including 0), and by bits(v) the set of all bits of a
bit-vector v. Formal definitions of a bit-propagating operation and a bit-range follow.

Definition 2 (Bit-Propagating Operation). An operation ω : B × B × . . .B︸ ︷︷ ︸
1≤k≤3

×N ×N × . . .×N︸ ︷︷ ︸
0≤l≤2

→

B is bit-propagating if for every application of ω: ω(vk ∈ B, . . . , v1 ∈ B, xl ∈ N , . . . , x1 ∈ N) =
u ∈ B, for every |u| > i ≥ 0 it holds that u[i] ∈ {0, 1} ∪ bits(vk) ∪ . . . ∪ bits(v2) ∪ bits(v1) and
that u[i] can be computed at the time the operation is applied.

Definition 3 (Bit-Range). Let v be a bit-vector of width n. Then for every n > i ≥ 0 and
n > j ≥ i, the sequence v[j:i] =

{
v[j], . . . , v[i+1], v[i]

}
is a bit-range of v.

Fig. 1 provides the set of all bit-propagating operations in the SMT-LIB 2.0 language.
The shift operations in the language (bvshl–shift left, bvlshr–logical shift right, and bvashr–
arithmetic shift right) support shifting by an arbitrary bit-vector. However, we consider shifts
to be bit-propagating only when the shift is by a constant, since otherwise the match between
the output and the input bits is not known at the time the operation is applied. Hence, in
Fig. 1, the shift operations receive a natural number as their second parameter. Note that
all the operations can be expressed in terms of one or more applications of extract and/or

1Unfortunately, we are not aware of any publications containing details of bit-blasting algorithms applied by
SMT solvers. To the best of our knowledge, some SMT solvers re-use CNF variables while handling the extract

and concat operations during bit-blasting, but not the other eight bit-propagating operations we identified.

3

Handling Bit-Propagating Operations in Bit-Vector Reasoning Nadel

1. concat(v1 ∈ B, v2 ∈ B) =
{
v

[|v1|−1]
1 , . . . , v

[1]
1 , v

[0]
1 , v

[|v2|−1]
2 , . . . , v

[1]
2 , v

[0]
2

}

2. extract(v ∈ B,m ∈ N , l ∈ N) = v[m:l], where |v| > m, l ≥ 0 and m ≥ l

3. repeat(v ∈ B, s ∈ N) = concat(repeat(v, s − 1), v) for s > 1; repeat(v ∈ B, 1) = v;
repeat(v, 0) is undefined

4. zero extend(v ∈ B, s ∈ N) = concat(0s, v) for s > 0; zero extend(v, 0) = v

5. sign extend(v ∈ B, s ∈ N) = concat(repeat(v[|v|−1], s), v) for s > 0;
sign extend(v, 0) = v

6. bvshl(v ∈ B, s ∈ N) = concat(extract(v, |v| − 1 − s, 0), 0s) for |v| > s > 0; bvshl(v ∈
B, 0) = v; bvshl(v, s ≥ |v|) = 0|v|

7. bvlshr(v ∈ B, s ∈ N) = concat(0s, extract(v, |v| − 1, s)) for |v| > s > 0; bvlshr(v ∈
B, 0) = v; bvlshr(v, s ≥ |v|) = 0|v|

8. bvashr(v ∈ B, s ∈ N) = concat(repeat(v[|v|−1], s), extract(v, |v| − 1, s)) for |v| > s > 0;
bvashr(v ∈ B, 0) = v; bvashr(v, s ≥ |v|) = repeat(v[|v|−1], s)

9. rotate left(v ∈ B, s ∈ N) = concat(extract(v, (|v| − 1 − s)%|v|, 0), extract(v, |v| −
1, (|v| − s)%|v|)) for s : s%|v| 6= 0; rotate left(v, s) = v for s : s%|v| = 0

10. rotate right(v ∈ B, s ∈ N) = concat(extract(v, (s − 1)%|v|, 0), extract(v, |v| −
1, s%|v|)) for s : s%|v| 6= 0; rotate right(v, 0) = v for s : s%|v| = 0

Figure 1: Bit-Propagating Bit-Vector Operations in the SMT-LIB 2.0 Language (% stands for
the modulo operation)

concat. Note also that all the bit-propagating operations are equally applicable to bit-vector
variables and constants.

3 Handling Bit-Propagating Operations

In this section we describe our algorithms for handling bit-propagating operations. Subsec-
tion 3.1 introduces the Bit-Propagating Normal Form (BPNF), while subsection 3.2 shows how
to take advantage of BPNFs to boost the performance of the SMT solver.

3.1 Bit-Propagating Normal Form

We start with a definition of a segment, where a variable is bit-propagating if it was created as
a result of applying a bit-propagating operation.

Definition 4 (Segment). A segment is either: (1) a bit-range of a non-bit-propagating variable,
or (2) a constant. The set of all segments is denoted by S.

Bit-propagating variables can be expressed in terms of sequences of segments. Consider

the example presented in Section 1. We would have: v2 =
[
v

[2:0]
1 , 01

]
, v3 = v5 =

[
v

[2:1]
1

]
and

4

Handling Bit-Propagating Operations in Bit-Vector Reasoning Nadel

v4 =
[
v

[3:0]
1 , v

[3:0]
1

]
.

To define the standard form we need to make sure that adjacent segments are merged. For
example, consider the variable v created by the following operation v = concat(v[3:2], v[1:0]).
The variable v could be expressed as any one of the following sequences of segments: r1 =[
v[3:2], v[1:0]

]
, or r2 =

[
v[3:3], v[2:0]

]
, or r3 =

[
v[3:0]

]
. The last representation is the one that is

desirable as the normal form. We formalize merge-related notions.

Definition 5 (Mergeable and Non-Mergeable Segments). Let s2, s1 ∈ S be two segments. The
segments s2 and s1 (provided in that particular order) are mergeable iff one of the following
conditions holds, otherwise they are non-mergeable:

1. Both s2 and s1 are constants, that is s2, s1 ∈ C

2. Both s2 and s1 are bit-ranges, such that s2 = v[k:j+1] and s1 = v[j:i]

Definition 6 (Merge). Let s2, s1 ∈ S be two segments. The merge operation !(s2, s1) returns
a sequence of one or two segments as follows:

1. If s2 and s1 are non-mergeable, !(s2, s1) = [s2, s1]

2. If s2 and s1 are mergeable and are constants, !(s2, s1) = [concat(s2, s1)]

3. If s2 = v[k:j+1] and s1 = v[j:i] are mergeable and are bit-ranges, !(s2, s1) =
[
v[k:i]

]

In our latest example (provided just before Def. 5), merging the two segments of r1 and
merging the two segments of r2 results precisely in r3 for both cases. We are now ready to
introduce the Bit-Propagating Normal Form.

Definition 7 (Bit-Propagating Normal Form (BPNF)). Given a bit-vector or a constant t ∈
B ∪ C, the bit-propagating normal form (BPNF) Φ(t) =

[
φt|Φ(t)|−1 ∈ S, . . . , φt1 ∈ S, φt0 ∈ S

]
is

a sequence of one or more segments, where for every |Φ(t)| − 2 > i ≥ 0, it holds that φti+1 and
φti are non-mergeable.

In our example, we have Φ(v) = r3. Before presenting an algorithm for calculating the
BPNF, we need some more definitions. We denote the number of bits in a segment s ∈ S by
|s|.
Definition 8 (Sub-segment). Let s ∈ S be a segment and i, j be numbers, such that |s| > j, i ≥ 0
and j ≥ i. Then the sub-segment s[j:i] is a new segment defined as follows:

1. If s is a constant
{
s|s|−1, . . . , s1, s0

}
, s[j:i] = {sj , . . . , si+1, si}

2. If s = v[k:l] is a bit-range, s[j:i] = v[j+l:i+l] (assuming k ≥ j + l)

It is not difficult to verify that a sub-segment is a segment. We will sometimes need to refer
to the segment in Φ(v) of a bit of a given variable v[i] and the bit corresponding to v[i] in its
segment.

Definition 9 (Segment Number, Segment Bit). Let v[i] be the i’s bit of v. Let s ≥ 0 be the

largest number, such that i ≥ σ, where σ =

s−1∑

j=0

|φvj |. Then, the segment number sn(v[i]) and

the segment bit sb(v[i]) are defined as follows: sn(v[i]) = s; sb(v[i]) = i− σ.

5

Handling Bit-Propagating Operations in Bit-Vector Reasoning Nadel

1. For a constant c: Φ(c) = [c].

2. For a non-bit-propagating variable v: Φ(v) =
[
v[|v|−1:0]

]
.

3. For a bit-propagating variable v = concat(v1, v2): Φ(v) =
[
φv2|Φ(v2)|−1, . . . , φ

v2
2 , φ

v2
1

]
◦

!(φv20 , φ
v1
|Φ(v1)|−1) ◦

[
φv1|Φ(v1)|−2, . . . , φ

v1
1 , φ

v1
0

]

4. For a bit-propagating variable v = extract(u,m, l):

Φ(v) =

[
φ
u[sb(u[m]),0]
sn(u[m])

, φusn(u[m])−1
, . . . , φusn(u[l])+1

, φ
u
[
|φu

sn(u[l])
|−1,sb(u[l])

]

sn(u[l])

]

5. For a bit-propagating variable v created by neither concat nor extract, create Φ(v) by
reducing the operation to applications of concat and extract as presented in Fig. 1.

Figure 2: Algorithm for calculating the Bit-Propagating Normal Form (BPNF) for a variable
v. The operator ◦ stands for concatenation of sequences.

For example, given v2 =
[
v

[2:0]
1 , 01

]
, we have sn(v

[0]
2) = 0; sn(v

[1]
2) = sn(v

[2]
2) = sn(v

[3]
2) = 1;

sb(v
[0]
2) = 0; sb(v

[1]
2) = 0; sb(v

[2]
2) = 1; sb(v

[3]
2) = 2.

In our approach, the SMT solver creates the BPNF for each new constant, input variable
and internal variable representing the result of an operation. The algorithm for calculating
the BPNF is provided in Fig. 2. Calculating the BPNF for constants, non-bit-propagating
variables, and variables associated with the extract operation is straightforward. Finding the
BPNF for concat requires concatenating the BPNFs of the two operands, where the BPNFs
of the new neighbour pair are merged. Due of space limitations, we omit the proof that the
algorithm in Fig. 2 returns a BPNF.

3.2 Implementation

In this section we show how to take advantage of BPNFs to speed-up the SMT solver.

Hashing BPNFs. To ensure that variables with the same BPNF are not created more than
once, we maintain a hash table with all the current BPNFs and their corresponding variables.
Whenever an operation is applied by the user, the solver creates a BPNF for a variable repre-
senting that operation (an actual variable is not created at this stage). If the BPNF appears
in the hash table, its corresponding variable is returned to the user, otherwise a new variable
is created and returned to the user, and the hash table is updated accordingly. The overhead
of creating and maintaining the hash table is negligible in practice.

Using BPNFs for Translating to CNF. A major goal in introducing BPNFs is decreasing
the number of CNF variables and clauses. This is achieved by never introducing any CNF
variables or CNF clauses to represent bit-propagating variables and operations. Instead, to
represent a bit-propagating variable v in CNF, we use the CNF variables that represent the
non-bit-propagating variables that appear in v’s BPNF.

6

Handling Bit-Propagating Operations in Bit-Vector Reasoning Nadel

User-Given Threshold on the Number of Segments. Maintaining too many segments
in a BPNF might inflate the memory and lead to a performance degradation (at least in theory),
because the algorithm for calculating BPNFs in Fig. 2 is linear in the number of segments. Hence
we allow the user to impose a threshold, T , on the maximal number of segments permitted
in a BPNF. If the number of segments for a variable v is greater than T , the variable will
be considered to be a non-bit-propagating variable by the algorithm. Hence its BPNF will
contain v[|v|−1:0], and the soundness of the SMT solution with respect to the corresponding
bit-propagating operation will be ensured by bit-blasting that operation to CNF. We analyze
the empirical impact of experimenting with different T values in Section 4.

Rewriting assert-based variable definitions. The SMT-LIB 2.0 language allows the user
to build formulas in various ways. One of the common ways to create a new variable corre-
sponding to a new operation is to use the declare-fun command to create a fake input variable
and then to assert (using the assert command) that the new variable is, in fact, the result of
an operation over existing variables. For example, the following sequence creates a new variable
v that is defined to be repeat(u, 2):

i. (declare-fun u () (BitVec 32)); ii. (declare-fun v () (BitVec 64)); iii. (assert (=
v (repeat u 2)).

Such a way of creating variables is incompatible with our algorithm for calculating BPNFs,
since our algorithm would consider variables bound to operations to be non-bit-propagating
input variables. In our example, instead of figuring that Φ(v) is

[
u[31:0], u[31:0]

]
, the algorithm

would consider v to be a non-bit-propagating input variable with Φ(v) =
[
v[63:0]

]
. To overcome

this problem, the preprocessor must identify such cases and rewrite them into a BPNF-friendly
dag-oriented representation. In our example, rewriting the last assert command into the
following form solves the problem: (define-fun v () (BitVec 64) (repeat u 2)).

The preprocessing algorithm for carrying out such rewriting is straghtforward. Its complex-
ity is linear in the size of the problem, and the overhead is still low. Moreover, such an algorithm
can be seen as a particular case of term substitution [11], which in any event is implemented in
modern solvers and is known to be useful for BV reasoning [11, 10].

Constant Propagation. Constant propagation is known to boost the performance of SMT
solvers, and hence it is commonly used [11, 10]. It is essential to make sure that constant prop-
agation is applied to take full advantage of BPNF-based algorithms over three shift operations,
because there exist cases where the second operands of shift operations are not constants orig-
inally, but become constants after constant propagation. Recall that our algorithms consider
shifts to be bit-propagating operations only when the second parameter is a constant.

4 Experimental Results

We carried out a number of experiments over SMT-LIB benchmark families from the QF BV
category to demonstrate the usefulness of our algorithms.

In the first experiment, we measured the proportion of bit-propagating operations in all the
families (with the exception of the mcm family, whose benchmarks do not always conform to
QF BV syntax). The results are displayed in Table 1. One can see that for 37 families, the
proportion of bit-propagating operations is at least 5%.

In our second (and main) experiment we ran Hazel over these 37 families (with the excep-
tion of all the sub-families of sage except app10 and app6, since they have a huge number of

7

Handling Bit-Propagating Operations in Bit-Vector Reasoning Nadel

benchmarks) with different T values. Recall from Section 3.2 that T is a user-given threshold
value that limits the number of segments allowed in a BPNF. Note that our BPNF-based algo-
rithms are disabled when T = 0. Recall also that Hazel is Intel’s new eager BV solver. For the
experiments we used machines running Intelr Xeonr processors with 3Ghz CPU frequency
and having 32Gb of memory. The time-out for all the experiments was 600 sec. Table 2 shows
the results for all the families where Hazel’s cumulative run-time was more than 1 second for at
least one configuration. Benchmarks where all the configurations timed-out are not considered
in the table. The time-out value was added to the run-time when a memory-out occured.

One can see that our algorithms result in a performance boost in the case of 14 families.
More specifically, for these families there exists at least one configuration of Hazel with T 6= 0
that outperforms the configuration with T = 0. The speed-up is at least 30% for eight of the
families. The performance boost is especially significant for the top three families. The family
spear/openldap v2.3.35 can only be solved when our algorithms are applied and T is high
enough. The family pipe can only be solved with the configuration T = 10, while we observe
a solid performance boost of over 2x for the family brummayerbiere for non-0 configurations.
The choice between T = 10 and T = 1000 is family-specific, while an additional experiment
has shown that increasing T from 1000 to 100000 does not change the performance.

Table 3 shows the number of word-level operations before bit-blasting the formula to CNF,
as well as the number of CNF clauses and CNF variables for the configuration with T = 0.
It also shows the ratio by which these numbers are reduced for configurations with T = 10
and T = 1000 as compared to the configuration with T = 0. The main conclusions to be
drawn from the table are as follows. First, the number of word-level operations is only slightly
reduced or not reduced at all, while the number of CNF clauses and variables is usually reduced
considerably. This hints that the contribution to performance of BPNF-based translation to
CNF is higher than that of BPNF hashing. Second, in most cases, the reduction in the number
of CNF clauses and variables translates to a performance boost. However, this correlation is
not absolute. Consider the family brutomesso/core, where our algorithms exhibited their worst
performance. The number of clauses and variables was considerably reduced for that family.
The reason for the lack of correlation in this case is apparently related to the sensitivity of
SAT solver heuristics to the problem representation. We leave the study of this phenomenon
to future reasearch.

Finally, to demonstrate that Hazel can compete with academic state-of-the-art SMT solvers,
we ran Hazel against the latest versions of Boolector [7] (version 1.5.118), STP [12] (version
1373M), and Mathsat 5 [8] (with the configuration applied at the SMT’12 competition) over
the eight families where use of our algorithms resulted in a performance boost of at least 30%.
See Table 4 for the results. Hazel outperforms the academic solvers on all but one family. In
our experiments, model generation was enabled for all the solvers. When model generation is
disabled, the only significant change in run-time is for Boolector over the family uclid/catchconv,
where the run-time is reduced to 702 seconds. Hazel is still much faster on this family.

5 Conclusion

Our goal was to improve bit-vector reasoning in modern SMT solvers. We identified a family of
ten bit-propagating bit-vector operations in the SMT-LIB 2.0 language that fulfill the following
property: each output bit is either a bit of one of the inputs or a constant (0 or 1). We demon-
strated that bit-propagating operations are encountered frequently in SMT-LIB benchmarks.
We proposed dedicated algorithms for handling such operations during SMT preprocessing and
confirmed their empirical usefulness over a variety of SMT-LIB benchmark families.

8

Handling Bit-Propagating Operations in Bit-Vector Reasoning Nadel

Table 1: The number of benchmarks and the proportion of bit-propagating operations are provided per
each SMT-LIB family in the QF BV category. The families are sorted, in descending order, according
to the proportion of bit-propagating operations. The sub-families of asp are not shown since the
proportion is zero for all asp benchmarks.

Family # Proportion Family # Proportion
uclid/tcas 2 0.61 calypto 23 0.56
sage/app11 611 0.5 bruttomesso/core 672 0.49
bench ab 285 0.44 sage/app10 51 0.42
bruttomesso/lfsr 240 0.38 brummayerbiere2 65 0.37
uum 8 0.36 crafted 21 0.35
check 5 0.35 sage/app6 245 0.34
sage/app12 5784 0.29 wienand-cav2008/Booth 6 0.25
pipe 1 0.25 stp samples 426 0.24
sage/app2 1417 0.22 check2 6 0.21
sage/app7 8663 0.19 brummayerbiere 52 0.17
sage/app5 1103 0.16 sage/app9 3301 0.16
sage/app8 2756 0.16 sage/app1 2676 0.14
spear/openldap v2.3.35 8 0.14 galois 4 0.14
bruttomesso/simple processor 64 0.13 uclid contrib smtcomp09 7 0.13
spear/inn v2.4.3 219 0.08 wienand-cav2008/Commute 6 0.08
spear/wget v1.10.2 42 0.08 spear/samba v3.0.24 1386 0.08
wienand-cav2008/Distrib 6 0.07 uclid/catchconv 414 0.07
spear/xinetd v2.3.14 2 0.06 stp 1 0.05
brummayerbiere3 79 0.05 spear/zebra v0.95a 9 0.048
rubik 7 0.04 spear/cvs v1.11.22 29 0.03
brummayerbiere4 10 0.02 dwp formulas 332 0.01
asp (23 sub-families) 501 0 gulwani-pldi08 6 0
tacas07 5 0 VS3 11 0

Table 2: The impact of BPNF-based algorithms. We show the run-time of Hazel in seconds correspond-
ing to 3 different T values (0, 10, 1000), the speedups of configurations with T 6= 0 over configuration
with T = 0, and the number of solved instances corresponding to the 3 different T values. The results
are sorted by the maximal speed-up over the configuration with T = 0. Best run-times are highlighted.

Run-time in Seconds Time Ratio Solved Instances
Family Hzl 0 Hzl 10 Hzl 103 10/0 103/0 Hzl 0 Hzl 10 Hzl 103

spear/openldap v2.3.35 1800 600 19 3.000 96.774 5 7 8
pipe 600 155 600 3.872 1.000 0 1 0
brummayerbiere 1649 709 711 2.326 2.321 40 41 41
wienand-cav2008/Booth 43 26 26 1.643 1.626 2 2 2
uum 18 12 12 1.535 1.534 2 2 2
brutomesso/simple processor 374 266 266 1.404 1.405 64 64 64
uclid contrib smtcomp09 226 200 169 1.130 1.340 7 7 7
uclid/catchconv 9 8 7 1.115 1.312 414 414 414
brummayerbiere3 2921 2600 2885 1.123 1.012 42 42 42
brutomesso/lfsr 8039 7435 7439 1.081 1.081 230 227 227
spear/samba v3.0.24 3516 3359 3433 1.047 1.024 1386 1386 1386
spear/inn v2.4.3 624 607 708 1.027 0.880 219 219 219
stp 11 10 11 1.023 1.000 1 1 1
spear/wget v1.10.2 308 319 306 0.966 1.006 42 42 42
brummayerbiere2 719 801 799 0.899 0.901 32 33 33
calypto 213 254 253 0.838 0.843 11 11 11
brutomesso/core 19355 24307 24307 0.796 0.796 933 925 925

6 Acknowledgments

The author would like to thank Paul Inbar for editing the paper and the anonymous reviewers
whose valuable comments helped the author improve it.

References

[1] Clark Barrett, Morgan Deters, Leonardo Mendonça de Moura, Albert Oliveras, and Aaron Stump.
6 Years of SMT-COMP. J. Autom. Reasoning, 50(3):243–277, 2013.

9

Handling Bit-Propagating Operations in Bit-Vector Reasoning Nadel

Table 3: Hazel Statistics. The overall number of word-level operations, CNF clauses, and CNF
variables are displayed for the configuration with T = 0 (’M’ stands for millions). The reduction ratio
of these parameters to the corresponding parameter for the configuration with T = 0 is displayed for
the configurations with T = 10 and T = 1000. The families are sorted as in Table 2.

0: Data Summary 10: Reduction Ratio 1000: Reduction Ratio
Family Ops Clss Vars Ops Clss Vars Ops Clss Vars

spear/openldap v2.3.35 12469 3.86M 0.93M 1.0236 1.0986 1.2593 1.0236 1.1012 1.2661
pipe 1048 0.19M 92478 1.0029 2.7350 2.9764 1.0640 3.2986 3.6959
brummayerbiere 35351 14.5M 6.86M 1.0012 1.2373 1.2994 1.0012 1.2381 1.3004
wienand-cav2008/Booth 542 13471 3393 1 1.5158 1.3218 1 1.5199 1.3280
uum 1076 12605 5932 1 1.3812 1.3873 1 1.3812 1.3873
brutomesso/simple processor 41736 1.66M 0.58M 1 1.3726 1.6326 1 1.3726 1.6326
uclid contrib smtcomp09 46156 1.84M 0.61M 1.0057 1.0584 1.0906 1.0068 1.0720 1.1125
uclid/catchconv 5.03M 63.5M 34.8M 1.0002 1.0711 1.0619 1.0002 1.0748 1.0631
brummayerbiere3 24289 2.46M 0.83M 1 1.0144 1.0137 1 1.0169 1.0175
brutomesso/lfsr 0.8M 71.9M 28.7M 1 1.2367 1.3153 1.0038 1.2399 1.3188
spear/samba v3.0.24 9.4M 993M 338M 1 1.0322 1.0480 1 1.0380 1.0568
spear/inn v2.4.3 0.11M 216M 46.4M 1.0048 1.0024 1.0055 1.0067 1.0040 1.0071
stp 0.32M 5.2M 3.39M 1 1.0025 1.0021 1 1.0025 1.0021
spear/wget v1.10.2 15364 85.8M 19.6M 1 1.0006 1.0013 1.0017 1.0053 1.0019
brummayerbiere2 62564 71.9M 12.8M 1 1.3639 1.0038 1 1.3639 1.0038
calypto 11786 0.74M 0.29M 1.0448 1.3839 1.4321 1.0448 1.3963 1.4375
brutomesso/core 6.49M 106M 40.9M 1.0111 1.3442 1.4920 1.0370 1.3788 1.5262

Table 4: Comparing Hazel to Boolector, Mathsat, and STP. Best run-times are highlighted.
Run-time in Seconds Solved Instances

Family Btr Mst STP Hzl 10 Hzl 103 Btr Mst STP Hzl 10 Hzl 103

spear/openldap v2.3.35 1924 1200 1204 600 19 5 6 6 7 8
pipe 325 600 600 155 600 1 0 0 1 0
brummayerbiere 907 4994 736 709 711 41 36 40 41 41
wienand-cav2008/Booth 21 19 45 26 26 2 2 2 2 2
uum 16 29 15 12 12 2 2 2 2 2
brutomesso/simple processor 1908 22488 5156 266 266 64 29 59 64 64
uclid contrib smtcomp09 783 268 770 200 169 7 7 7 7 7
uclid/catchconv 9015 201 19 8 7 414 414 414 414 414

[2] Clark Barrett, Aaron Stump, and Cesare Tinelli. QF BV Logic.
http://smtlib.cs.uiowa.edu/logics/QF BV.smt2, 2010.

[3] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2010.

[4] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version 2.0. In
A. Gupta and D. Kroening, editors, Proceedings of the 8th International Workshop on Satisfiability
Modulo Theories (Edinburgh, UK), 2010.

[5] Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. A decision procedure for bit-vector
arithmetic. In DAC, pages 522–527, 1998.

[6] Nikolaj Bjørner and Mark C. Pichora. Deciding Fixed and Non-fixed Size Bit-vectors. In TACAS,
pages 376–392, 1998.

[7] Robert Brummayer and Armin Biere. Boolector: An Efficient SMT Solver for Bit-Vectors and
Arrays. In TACAS, pages 174–177, 2009.

[8] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Sebastiani. The
MathSAT5 SMT Solver. In TACAS, pages 93–107, 2013.

[9] David Cyrluk, M. Oliver Möller, and Harald Rueß. An Efficient Decision Procedure for the Theory
of Fixed-Sized Bit-Vectors. In CAV, pages 60–71, 1997.

[10] Anders Franzén. Efficient Solving of the Satisfiability Modulo Bit-Vectors Problem and Some
Extensions to SMT. Dissertation, University of Trento, 2010.

[11] Vijay Ganesh, Sergey Berezin, and David L. Dill. A Decision Procedure for Fixed-Width Bit-
Vectors. Technical report, Computer Science Department, Stanford University, April 2005.

[12] Vijay Ganesh and David L. Dill. A Decision Procedure for Bit-Vectors and Arrays. In CAV, pages
519–531, 2007.

10

ddSMT: A Delta Debugger for the

SMT-LIB v2 Format∗

Aina Niemetz and Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

http://fmv.jku.at/

Abstract

Delta debugging tools automatically minimize failure-inducing input and enable effi-
cient localization of erroneous code. In particular when debugging complex verification
backends such as SMT solvers, delta debuggers provide an effective debugging approach
where other debugging techniques are infeasible due to the input formula size. In this
paper, we present ddSMT, a delta debugger for the SMT-LIB v2 format, which supports all
SMT-LIB v2 logics and in particular handles macros and scopes defined by the commands
push and pop. We introduce its architecture and describe its workflow in detail.

1 Introduction

Delta debugging algorithms [1, 5, 6, 7, 9] based on the algorithms introduced in [8, 10] typically
minimize failure-inducing input by omitting parts irrelevant to the original erroneous behaviour.
The resulting simplified failure-inducing input represents a minimal configuration in the sense
that all of its possible subsets are necessary to cause the test to fail. Sat Modulo Theories
(SMT) solvers serve as a backend for various applications in the field of e.g. deductive software
verification, model checking and automated test generation. These applications heavily rely on
the correctness of the underlying SMT solver – a highly complex tool, where debugging faulty
behaviour becomes increasingly difficult with respect to the input formula size and structure.
Rather than manually tracing error paths in order to find the actual error location, delta
debugging provides means to automatically minimize input for failing SMT solvers and enables
solver developers to localize failure-inducing code in a time efficient manner. Further, as shown
in [5], delta debugging in combination with fuzz testing is a particularly effective approach to
uncover bugs in SMT solvers.

In 2009, deltaSMT, a delta debugger for quantifier-free logics of the previous SMT-LIB [3]
version1 developed by our group has been presented in [5]. It is tailored to the SMT-LIB v1
language, hence incompatible with SMT-LIB v2 [4], which is a major upgrade of its prede-
cessor. Further, deltaSMT does not employ the original delta debugging algorithm proposed in
[8], but exploits the hierarchical structure of the input formula similar to the hierarchical delta
debugging approach described in [9]. Representing the input formula as a directed acyclic graph
(DAG), deltaSMT tries to simplify nodes in a breadth first search (BFS) manner. Nodes are sub-
stituted one-by-one, depending on their sort, with either constant 0, constant 1, or one of their
children. Unfortunately, this substitution approach is also one of the limitations of deltaSMT,
as in the worst case, too many node-by-node substitution attempts (no matter if successful or
unsuccessful) have a negative impact on the overall runtime. Further, we encountered various
cases, where deltaSMT was struggling or even unable to simplify certain input files.

∗This work was partially funded by the Austrian Science Fund (FWF) under NFN Grant S11408-N23 (RiSE).
1http://smtlib.cs.uiowa.edu/papers/format-v1.2-r06.08.30.pdf

1

ddSMT: A Delta Debugger for the SMT-LIB v2 Format A.Niemetz and A.Biere

1 (set-logic UFNIA)

2 (declare-sort sort1 0)

3 (declare-fun x () sort1)

4 (declare-fun y () sort1)

5 (assert (= x y))

6 (push 1)

7 (define-sort sort2 () Bool)

8 (declare-fun x () sort2)

9 (declare-fun y () sort2)

10 (assert (and (as x Bool) (as y Bool)))

11 (assert (! (not (as x Bool)) :named z))

12 (assert z)

13 (pop 1)

14 (assert (forall ((z Int)) (exists ((zz Int)) (= z zz))))

15 (check-sat)

16 (get-value ((let ((x 1) (y 1)) (= x y))))

17 (exit)

Figure 1: A simple example in SMT-LIB v2 format.

More recently and independently, an update of deltaSMT for SMT-LIB v2 by Pablo Federico
Dobal and Pascal Fontaine has been released2. This version does not provide full SMT-LIB v2
support but syntactically extends the original tool for SMT-LIB v2 compliance, but without
support for important new SMT-LIB v2 features such as quantifiers or push and pop commands.
Note that in the following, we will refer to this update of deltaSMT as deltaSMT2.

In this paper we present ddSMT, a delta debugger for the SMT-LIB v2 format. It supports
all SMT-LIB v2 logics. It is not based on deltaSMT, but tries to overcome its limitations with a
different algorithmic approach, which we will introduce in detail in the following.

2 The Delta Debugger ddSMT

The delta debugger ddSMT is a tool for minimizing failure-inducing input in SMT-LIB v2 format
based on the exit code of a given command (typically a call to an SMT solver) when executed on
that input. It is implemented in Python 3 and not only supports all SMT-LIB v2 logics, but in
particular handles macros (command define-fun), named annotations (attribute :named), and
scopes defined by the commands push and pop. The tool is intended to be easy to maintain and
extend and further provides a dedicated, modular and standalone SMT-LIB v2 parser, which
particularly should be useful for prototyping other (Python) tools working on the SMT-LIB v2
language.

2.1 Architecture

One of the challenges introduced in v2 of the SMT-LIB language is the addition of the commands
push and pop, which enables scoping of assertions, and sort and function declarations. Hence,
SMT-LIB v2 distinguishes between local scoping of sorted variables and variable bindings (as
defined by forall, exists and let terms) and global scoping as defined by the commands push
and pop. Note that in the following, if distinction is needed, we refer to locally defined scopes
as term-level scopes, and globally defined scopes as command-level scopes. Further note that
ddSMT does not distinguish between actual functions and variables (or uninterpreted constants

2http://www.verit-solver.org/veriT-toolsDownload.php

2

ddSMT: A Delta Debugger for the SMT-LIB v2 Format A.Niemetz and A.Biere

Scope

Level: 0
Type: command-level
Sorts: Bool, Int, sort1
Funs: =, and, not, x, y
commands: 1, 2, 3, 4, 5, 6, 14, 15, 16, 17

Scope

Level: 1
Type: term-level (forall)
Funs: z

Scope

Level: 1
Type: command-level
Sorts: sort2
Funs: x, y, z
commands: 7, 8, 9, 10, 11, 12, 13

Scope

Level: 2
Type: term-level (exists)
Funs: zz

Scope

Level: 1
Type: term-level (let)
Funs: x, y

Figure 2: The basic internal structure of ddSMT given the Example in Figure 1.

in first order terminology) explicitly. Hence, in the following, if we do not make an explicit
distinction, function may refer to either of them.

Internally the tool represents the given SMT-LIB v2 input as a tree of scopes. Each scope
maintains a nesting level, a set of nested scopes, and a set of functions. Command-level scopes
additionally maintain a set of commands and a set of sorts. Note that this structure enables a
visibility handling of sorts and functions similar to related techniques in compiler construction,
where a sorts (resp. functions) cache provides access to currently visible sorts (resp. functions)
in constant time.

Example 1. To illustrate the basic internal structure of ddSMT as described above, consider the
input file given in Fig. 1. As shown in Fig. 2, it defines two command-level scopes (the root
scope at level 0 and the scope defined by given push and pop commands at level 1), and three
term-level scopes defined by given forall, exists and let terms, respectively.

All sorts and functions defined at theory level are treated as being defined at level 0. Further,
named annotations (attribute :named) are internally handled as if additionally a correspond-
ing function definition had been given (in this particular case: (define-fun z () Bool (not

x))). Commands are maintained by the scope they appear in, with a push command as the
last command before a new scope is opened, and a pop command as the last command before
the current scope is closed. Note that for better readability, we refer to the resp. commands in
Fig. 2 by the line number they appear in Fig. 1.

In our example, the root scope maintains the predefined sorts Bool and Int, as well as
the user-defined sort sort1. It further declares the predefined functions =, and and not, and
the user-defined functions x and y (both of sort sort1). The command-level scope at level
1 maintains the user-defined sort sort2, and further declares functions x and y (both of sort
sort2) and the named annotation z (of sort Bool). The term-level scope defined by forall at
level 1 declares variable z of sort Int, whereas its nested term-level scope defined by exists at
level 2 declares variable zz of sort Int. Finally, the term-level scope defined by let at level 1
declares variables x and y of sort Int.

3

ddSMT: A Delta Debugger for the SMT-LIB v2 Format A.Niemetz and A.Biere

Command-Level
Scope Substitution

Command
Substitution

Term Substitution

Constant 0

Bit Vector

Fresh Variables

(bvor (bv0 1) term) (bvand (bv1 1) term)

Integer

Constant 0 Fresh Variables

Real

Constant 0 Fresh Variables

let

Boolean

Constant false (or false term)

Constant true (and true term)

Fresh Variables

store

ite (left child) ite (right child)

Figure 3: The general workflow and delta debugging phases of ddSMT .

4

ddSMT: A Delta Debugger for the SMT-LIB v2 Format A.Niemetz and A.Biere

2.2 General Workflow

The SMT-LIB v2 input is simplified by eliminating command-level scopes and commands, and
substituting terms with simplified expressions. Note that eliminating scopes resp. commands
refers to substituting nodes by None (the Python null object). In contrast to deltaSMT, ddSMT
does not employ a hierarchical delta debugging approach on a BFS and node-by-node sub-
stitution base, but tries to exploit the strength of the original delta debugging algorithm (a
divide-and-conquer strategy) as follows.

As illustrated in Fig. 3, ddSMT works in rounds, where each round is divided into several
substitution phases. In each phase, nodes are first filtered and collected by a specific charac-
teristic (e.g. nodes with a bit vector sort), and then substituted using a modified version of the
original delta debugging algorithm as described in Fig. 8. The individual substitution phases
are described as follows.

Command-level scope substitution Starting with the nested scopes of the root scope,
command-level scopes are eliminated level-wise, in BFS manner, until a fixpoint is reached.

Command substitution After the command-level scope substitution phase, any command
in any of the remaining command-level scopes irrelevant to the original failure-induced be-
haviour except the set-logic and exit commands, which are mandatory for starting and termi-
nating SMT-LIB v2 scripts, is eliminated (while preserving the order of remaining commands)
until a fixpoint is reached. Note that in the initial round, in order to prevent lots of likely un-
successful test runs when eliminating e.g. declare-fun commands previous to term substitution,
ddSMT considers assert commands only.

Further note that ddSMT does not ensure that the resulting simplified output is legal in the
sense that e.g. variables must be declared previous to being used – the elimination of commands
is solely tied to the exit code of the given command. This usually does not pose a problem
though, as this kind of syntactically invalid input should be treated accordingly by a tool
working on the SMT-LIB v2 language. In case the above behaviour poses a problem, e.g. when
debugging parser related faulty behaviour, this can be easily handled by appropriate wrapper
scripts (e.g. to check on specific solver output).

Term substitution Internally, ddSMT represents SMT-LIB v2 terms as DAGs with exactly
one root. The SMT-LIB v2 format defines three commands with terms as arguments: assert,
define-fun and get-value. Commands of each of these kinds are handled separately, with define-
fun commands being processed prior to assert and get-value commands in order to prevent
redundant substitution work due to the fact that functions defined via define-fun are usually
referenced in assert and get-value commands multiple times. For each of these sets of com-
mands, term substitution replaces terms w.r.t. their resp. sort (and other characteristics) in
several steps as indicated in Fig. 3 until a fixpoint is reached. Note that individual steps
(e.g. substitution of bit vector terms with constant 0) are defined by the characteristics of both
the terms to be substituted and the substitution itself. Further note that steps depending on
the SMT-LIB v2 logic in use are skipped if inapplicable (e.g. the substitution of Real terms
with constant 0 or fresh variables if given logic is not a Reals logic). The individual steps are
described as follows.

Initially, and depending on the SMT-LIB v2 logic in use, first bit vector, then Int, then
Real terms are substituted with constant 0 and fresh variables, respectively. Additionally, if
given formula is defined over the theory of Fixed Size Bit Vectors, terms of the form (bvor (

5

ddSMT: A Delta Debugger for the SMT-LIB v2 Format A.Niemetz and A.Biere

bv0 1) term) and (bvand (bv1 1) term) are replaced by their resp. child term. Next, let
terms are replaced by their child term. After that, Boolean terms are substituted by constant
false, constant true, and fresh variables, respectively. Subsequently, terms of the form (or

false term) and (and true term) are replaced by their resp. child term. If the logic in use
is an array logic, store terms are replaced by their child array terms. Finally, ite terms are
substituted with their left and right child, respectively.

Note that in those steps of the term substitution phase, where terms are replaced with a
simpler expression rather than one of their child terms (e.g. substituting Boolean terms with
constant false), constant terms are skipped. Further note that each step of the term substitution
phase (e.g. substituting bit vector terms with constant 0) is performed until a fixpoint is reached.

If any of the above substitution phases succeeded, i.e. if in any of the above phases, scopes,
commands or terms have been eliminated or replaced successfully, ddSMT tries to iteratively
simplify the current configuration even further until a fixpoint is reached.

Example 2. Continuing Ex. 1, consider the input file given in Fig. 1 and an executable failing
on this input by not providing support for get-value commands as simulated by the Shell script
given in Fig. 4. The input file is simplified by ddSMT in two rounds as follows.

In round one, first all redundant command-level scopes are eliminated. In this case, the scope
defined by the push and pop commands in line 6 and 13 is redundant. The resulting simplified
input is depicted in Fig. 5a. Next, all commands irrelevant to the failure-induced behaviour
are successfully eliminated. As mentioned earlier, in the first round command substitution only
considers assert commands. Hence, commands 5 and 6 (but not command 7, which is a check-sat
command) are eliminated. The resulting simplified input is depicted in Fig. 5b. After command
substitution, ddSMT subsequently performs term substitution on argument terms of define-fun,
assert and get-value commands, in the order specified. As the current simplified input (as
depicted in Fig. 5b) only contains a single get-value command, term substitution for define-fun
and assert commands is skipped and the argument term of the get-value command at line 6 is
the only one to be processed as follows. The original input in Fig. 1 is defined over the theory of
Ints (but not over the theory of Fixed Size Bit Vectors or Reals), hence all bit vector and Reals
related steps are skipped. The let expression in line 6 contains two non-constant Int terms, x
and y, which are first (and successfully) replaced by constant 0. The resulting simplified input
is depicted in Fig. 6a. As no more non-constant Int terms remain, subsequent substitution
with fresh variables is skipped. Next, the let term is successfully replaced by its child term
(due to the fact that all occurrences of its variable bindings have been substituted by constant
0, previously). The resulting simplified input is depicted in Fig. 6b. Finally, the remaining
non-constant Boolean term (= 0 0) is successfully replaced by constant false. As depicted
in Fig. 6c, in the current simplified input the only remaining term (in the argument term of
the get-value command at line 6) is a Boolean constant. Hence, all further term substitution
steps operating on Boolean and ite terms are skipped and the first round concludes with the
simplified input depicted in Fig. 6c.

In round two, the only successful substitution phase is command substitution, where com-
mands 2, 3, and 4 are eliminated. The final result is depicted in Fig. 7.

2.3 substitute: The Delta Debugging Core Algorithm

The core of the actual delta debugging in ddSMT is the substitution algorithm described in Fig. 8.
Command-level scopes and commands are substituted with None, whereas terms, depending

6

ddSMT: A Delta Debugger for the SMT-LIB v2 Format A.Niemetz and A.Biere

1 #!/ bin/sh

2 if [‘grep -c "\<get -value\>" $1‘ -ne 0]; then exit 1 fi

3 exit 0

Figure 4: A simple Shell script simulating an executable failing on the input given in Fig. 1.

1 (set-logic UFNIA)

2 (declare-sort sort1 0)

3 (declare-fun x () sort1)

4 (declare-fun y () sort1)

5 (assert (= x y))

6 (assert (forall ((z Int)) (exists ((zz Int)) (= z zz))))

7 (check-sat)

8 (get-value ((let ((x 1) (y 1)) (= x y))))

9 (exit)

(a) The simplified input after command-level scope substitution.

1 (set-logic UFNIA)

2 (declare-sort sort1 0)

3 (declare-fun x () sort1)

4 (declare-fun y () sort1)

5 (check-sat)

6 (get-value ((let ((x 1) (y 1)) (= x y))))

7 (exit)

(b) The simplified input after subsequent command substitution.

Figure 5: The input of Fig. 1 during the first substitution round in Ex. 2.

1 (set-logic UFNIA)

2 (declare-sort sort1 0)

3 (declare-fun x () sort1)

4 (declare-fun y () sort1)

5 (check-sat)

6 (get-value ((let ((x 1) (y 1)) (= 0 0))))

7 (exit)

(a) The result of substituting non-constant Int terms with constant 0.

1 (set-logic UFNIA)

2 (declare-sort sort1 0)

3 (declare-fun x () sort1)

4 (declare-fun y () sort1)

5 (check-sat)

6 (get-value ((= 0 0)))

7 (exit)

(b) The result of substituting the let term
with its child term.

1 (set-logic UFNIA)

2 (declare-sort sort1 0)

3 (declare-fun x () sort1)

4 (declare-fun y () sort1)

5 (check-sat)

6 (get-value (false))

7 (exit)

(c) The result of substituting the remaining
Boolean term with constant false.

Figure 6: Continuing from Fig. 5, all three simplified inputs are the result of individual steps
of term substitution in the first round.

7

ddSMT: A Delta Debugger for the SMT-LIB v2 Format A.Niemetz and A.Biere

1 (set-logic UFNIA)

2 (check-sat)

3 (get-value (false))

4 (exit)

Figure 7: The final result of simplifying the input of Fig. 1 in Ex. 2 after the second substitution
round. In round two, commands 2, 3, and 4 are eliminated during command substitution.

1 def substitute (subst_fun , superset):

2 granularity = len(superset)

3 while granularity > 0:

4 nsubsets = len(superset) / granularity

5 subsets = split(superset , nsubsets)

6 for subset in subsets:

7 nsubsts = 0

8 for item in subset:

9 if not item.is_substituted ():

10 item.substitute_with(subst_fun(item))

11 nsubsts += 1

12 if nsubsts == 0:

13 continue

14
15 dump (tmpfile)

16
17 if test ():

18 dump(outfile)

19 subsets.delete(subset)

20 else:

21 # reset substitutions of current subset

22 restore_previous_state ()

23 superset = subsets.flatten ()

24 granularity = granularity / 2

Figure 8: The core substitution algorithm in ddSMT in Python-style pseudo code.

on their sort, are replaced by constant 0, false, true, fresh variables, or one of their children,
respectively. Each substitution phase utilizes substitute as follows. Given a substitution
function subst fun and a set of nodes filtered by some specific filter criteria (e.g. nodes with
a bit vector sort) as superset, this set is gradually split into nsubsts subsets, where the
granularity, i.e. the number of items, of each subset initially starts at len(superset). Note
that this basically means that in a first attempt, all nodes of superset will be substituted. For
each subset of these subsets, all items are substituted by the application of the substitution
function subst fun to the resp. item before issuing the original command (usually a call to
an SMT solver) on the current configuration. If this (so called) test run succeeds, i.e. if the
exit code of the current run matches the exit code of the original configuration, the current
simplified input is stored for immediate reuse in outfile. Otherwise, all substitutions of the
current subset are reset and we continue with the next subset.

Note that previously substituted nodes will be skipped. This is due to the fact that superset
initially contains either the original node (if it is yet to be substituted) or its most current
substitution.

8

ddSMT: A Delta Debugger for the SMT-LIB v2 Format A.Niemetz and A.Biere

T
S

Fi
le
s Red. [%] Time [s] Runs Mem. [MB]

avg min max avg min max avg min max avg min max
de

lta
S

M
T

1 2 0 0 0 257 14 500 4051 655 7446 113 108 117
2 95 94.0 0 99.9 49 0.1 1738 599 5 7296 111 33 153
3 5 66.6 0 93.8 12 3 34 608 262 1297 107 76 126
4 53 99.6 98.8 99.9 8 0.6 20 463 4 852 128 52 142
5 - - - - - - - - - - - - -

dd
S

M
T

1 2 90.0 83.9 96.0 44 9 79 1412 782 2041 13 10 16
2 95 94.7 68.2 99.9 92 0.1 1594 1499 2 3790 15 10 24
3 5 80.4 66.8 87.2 23 14 35 1533 1171 1764 11 10 12
4 53 99.8 99.3 99.9 57 1 246 431 13 1240 28 15 42
5 5 97.4 95.7 98.3 12 5 16 247 215 371 39 10 59

Table 1: Comparison between deltaSMT (for SMT-LIB v1) and ddSMT on test sets (TS) 1 to
5. Test set 1 to 4 are randomly generated bit vector formulas originally given in SMT-LIB v1,
test set 5 contains non-quantifier-free test cases for CVC4. Red. denotes the overall reduction in
percent of the original file size, Time denotes the overall runtime in seconds, and Mem. denotes
the maximum resident set size in MB.

3 Experimental Evaluation

Our delta debugger ddSMT has recently been released3 under version 3 of the General Public
License (GPLv3)4 and is currently still a work in progress. Its parser is tested on the complete
SMT-LIB v2 benchmark set (available at [3]) and the delta debugger itself has been tested on
a wide range of crafted instances and SMT-LIB v2 benchmarks using simple shell scripts in
place of actual solver calls in order to achieve a wider distribution over the SMT-LIB v2 logics.
Additionally, ddSMT has further been applied to actual failure inducing test cases encountered
during the development of our solver Boolector5, as well as the open source SMT solver CVC46,
a joint effort between the NYU and the University of Iowa.

As of May 23rd 2013, deltaSMT2, which we understand to be still work in progress, does not
produce legal intermediate output for bit vector logics and is thus not able to simplify any of the
test cases available for Boolector. Further, deltaSMT2 does not support non-quantifier-free logics
such as AUFLIA or AUFLIRA and is hence not applicable to any of the test cases available
for CVC4. Unfortunately, it was therefore not possible to evaluate the overall performance of
ddSMT in comparison to deltaSMT2 . Instead, we translated quantifier-free SMT-LIB v1 input
to SMT-LIB v2 and run deltaSMT-0.2 and ddSMT-0.96-beta on various sets of test cases (TS)
as indicated in Table 1. Test sets 1 to 4 are randomly generated bit vector formulas originally
given in SMT-LIB v1 and serve as test cases for Boolector, whereas test set 5 contains non-
quantifier-free SMT-LIB v2 test cases for CVC4. Input reduction (Red.) is given in percent of
the file size of the original input file, Time denotes the wall clock runtime in seconds, and Mem.
indicates the maximum resident set size per run in MB. All experiments were performed on a
3.4 GHz Intel Core i7-2600 machine with 16GB RAM, running a 64 Bit Arch Linux OS.

Overall and even though the bit vector test cases where originally given in SMT-LIB v1
(i.e. they do not employ SMT-LIB v2 features such as e.g. push and pop commands, which
could be fully exploited by ddSMT), our first results look promising. Even for test cases, where
deltaSMT failed to simplify given input at all, ddSMT successfully achieved reductions by at least
81.1% of the original input file size. Note that except for the test cases denoted in Table 1,

3http://fmv.jku.at/ddsmt
4http://www.gnu.org/licenses
5http://fmv.jku.at/boolector
6http://cvc4.cs.nyu.edu

9

ddSMT: A Delta Debugger for the SMT-LIB v2 Format A.Niemetz and A.Biere

we currently still miss real test cases in SMT-LIB v2 logics other than QF BV, QF AX and
QF AUFBV. We therefore would like to encourage the SMT community to actually use ddSMT
and thus further its development, and appreciate any comments, suggestions or bug reports.

4 Conclusion

In this paper, we introduced our delta debugger ddSMT, a tool for minimizing failure-inducing
input in SMT-LIB v2 format. It supports all SMT-LIB v2 logics and in particular handles
macros, named annotations, and scopes defined by the commands push and pop. Especially in
combination with fuzz testing, ddSMT provides an effective approach to find and localize bugs
in tools working on the SMT-LIB v2 language.

Recently, model-based delta-debugging (and fuzzing) in the context of testing and debugging
verification backends was reported to be more effective than file based delta-debugging [2], in
particular in combination with option resp. configuration fuzzing. Even though the delta-
debugger ddSMT presented in this paper does not work on the API level of an SMT solver
directly, we believe that the “programmatic nature” of the SMT-LIB v2 format using commands
allows ddSMT to be equally effective.

In future work we will compare the effectiveness of API level delta-debugging with the
approach presented in this paper. We further plan to evaluate ddSMT in combination with
fuzzing SMT-LIB v2 input with command-level scopes.

We want to thank Morgan Deters for providing actual test cases for the SMT solver CVC4.

References

[1] Cyrille Artho. Iterative Delta Debugging. In Hana Chockler and Alan J. Hu, editors, Haifa Veri-
fication Conference, volume 5394 of Lecture Notes in Computer Science, pages 99–113. Springer,
2008.

[2] Cyrille Artho, Armin Biere, and Martina Seidl. Model-based testing for verification backends. In
Proc. 7th Intl. Conf. on Tests & Proofs (TAP’13), LNCS, page 17 pages. Springer, 2013. To be
published.

[3] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2010.

[4] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version 2.0. In Aarti
Gupta and Darti Kroening, editors, Proceedings of the 8th International Workshop on Satisfiability
Modulo Theories (Edinburgh, UK), 2010.

[5] Robert Brummayer and Armin Biere. Fuzzing and Delta-Debugging SMT Solvers. In Proc. 7th
Intl. Workshop on Satisfiability Modulo Theories (SMT’09), page 5. ACM, 2009.

[6] Robert Brummayer and Matti Järvisalo. Testing and debugging techniques for answer set solver
development. TPLP, 10(4-6):741–758, 2010.

[7] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated Testing and Debugging of SAT
and QBF Solvers. In Ofer Strichman and Stefan Szeider, editors, SAT, volume 6175 of Lecture
Notes in Computer Science, pages 44–57. Springer, 2010.

[8] Ralf Hildebrandt and Andreas Zeller. Simplifying failure-inducing input. In ISSTA, pages 135–145,
2000.

[9] Ghassan Misherghi and Zhendong Su. HDD: hierarchical Delta Debugging. In Leon J. Osterweil,
H. Dieter Rombach, and Mary Lou Soffa, editors, ICSE, pages 142–151. ACM, 2006.

[10] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input. IEEE
Trans. Software Eng., 28(2):183–200, 2002.

10

Z34Bio: An SMT-based Framework for

Analyzing Biological Computation

Boyan Yordanov, Christoph M. Wintersteiger, Youssef Hamadi and Hillel Kugler

Microsoft Research, Cambridge, UK,
http://research.microsoft.com/z3-4biology

Abstract

The basic principles governing the development and function of living organisms remain
only partially understood, despite significant progress in molecular and cellular biology
and tremendous breakthroughs in experimental methods. The development of system-level,
mechanistic, computational models has the potential to become a foundation for improving
our understanding of natural biological systems, and for designing engineered biological
systems with wide-ranging applications in nanomedicine, nanomaterials and computing.
We describe Z34Bio (Z3 for Biology), a unified SMT-based framework for the automated
analysis of natural and engineered biological systems. Z34Bio enables addressing important
biological questions, and studying models more complex than previously possible. The
framework provides a formalization of the semantics of several model classes used widely
for biological systems, which we illustrate through the treatment of chemical reaction
networks and Boolean networks. We present case-studies which we make available as
SMT-LIB benchmarks, to enable comparison of different analysis techniques, and towards
making this new domain accessible to the formal verification community.

1 Introduction

Many mechanisms and properties of biological systems remain only partially understood, thus
limiting our understanding of natural living systems and processes. Recently, advanced ex-
perimental techniques have enabled the rational design and construction of biological systems,
delineating a branch of biology as an engineering discipline, with potential applications in
nanomedicine, nanomaterials and computing. However, understanding the system-level behav-
ior of organisms or designing ones with specific behavior remains a major challenge for the
engineering and the reverse engineering of biological systems.

Computational modeling, together with methods enabling the automated analysis of realis-
tic models for diverse biological queries, can help address these challenges and tackle important
questions related to biological computation - the information processing within living organisms.
Along this direction, we introduce Z34Bio (Z3 for Biology) as a framework that allows flexi-
ble and scalable analysis of biological models using Satisfiability Modulo Theories (SMT)-based
procedures. The framework provides a formalization of the semantics of several widely used for-
malisms in biological modeling, which we illustrate through the treatment of chemical reaction
networks (CRNs) and Boolean networks (BNs), as well as combinations thereof. These for-
malisms are useful for describing DNA computing circuits (as well as more general biochemical
mechanisms within natural systems) and biological interaction networks such as gene regulation
networks (GRNs). We formalize the semantics of CRNs and BNs as transition systems, which
we represent and analyze symbolically using SMT to allow flexible and convenient encoding of
(possibly infinite-state) biological models.

The richness of the various SMT logics also allows us to express a range of important
biological properties that are not easily captured by other specification formalisms. For instance,

1

Z34Bio: A Framework for Analyzing Biological Computation Yordanov, Wintersteiger, Hamadi, Kugler

we are able to formalize and study certain mass-conservation properties and the effect of gene
knockouts on system dynamics. The availability of efficient decision procedures for some SMT
logics such as uninterpreted functions and bit vectors (UFBV) with quantifiers [26] provides
a foundation for the analysis of such questions, even for large and complex systems. While
the Z3 theorem prover [9] is used in Z34Bio, arbitrary SMT solvers can be substituted in the
framework through the SMT-LIB input language. In [28] we showed how SMT-based methods
can be applied to engineered biological systems, and, more specifically, in DNA computing
and synthetic biology. Here we present a framework supporting this approach accompanied
by an online tool, extend it to allow modeling and reasoning about biological computation
within living systems via Boolean networks, and provide support for hybrid models, composed
of CRNs and BNs. We outline a number of case-studies illustrating the analysis of engineered
DNA circuits and genetic regulatory networks (GRNs), which we curate and make available as
SMT-LIB benchmarks, with the goal of improving the evaluation of existing SMT algorithms,
helping in the development of new methods, and making this auspicious application domain
more accessible to the SMT community.

2 Chemical Reaction Networks and Boolean Networks

In the field of DNA computing, which aims at engineering and understanding forms of computa-
tion performed by biological material (e.g., reacting DNA strands), chemical reaction networks
(CRNs) serve as models of circuits [25, 19]. More generally, CRNs are often used to describe
a number of natural and engineered biochemical mechanisms. Here, we study such systems
with single-molecule resolution, abstracting from the exact reaction kinetics (rates), thereby
approximating probabilistic systems by non-deterministic ones. While certain information is
not captured in this representation of the behavior of a CRN, it is a useful level of detail for
various studies of DNA circuits, including cases where functional correctness is under investi-
gation. Where studies of natural biological systems are concerned, this is often also a useful
abstraction, when the rates of certain reactions are unknown and a precise measurement in a
wet-lab is challenging.

We treat a CRN as a pair (S,R) of species (different DNA strands) and reactions where a
reaction r ∈ R is a pair of multisets r = (Rr, Pr) describing the reactants (inputs) and products
(outputs) of r with their stoichiometries (the numbers of participating strands). We formalize
the behavior of a CRN as the transition system T = (Q,T) where a state q ∈ Q is a multiset
of species, where q(s) indicates how many strands of s are available in a state q, and T is the
transition relation defined as T (q, q′) ↔ ∨

r∈R[on(r, q) ∧ ∧s∈S q
′(s) = q(s) − Rr(s) + Pr(s)],

where on(r, q) is true if in state q there are enough molecules of each reactant of r for it to fire.
The complementarity of DNA sequences, dictated by the binding of Watson-Crick DNA

base pairs (A-T and G-C), provides a mechanism for engineering chemical reaction networks
using DNA. In this approach, various single and double-stranded DNA molecules are designated
as chemical species. The binding, unbinding and displacement reactions possible between the
complementary DNA domains (subsequences) of these species form the desired CRN structure.
When specific computational operations are implemented using such a strategy, the resulting
system is called a DNA circuit (see [19] and the references therein for additional details on the
formalization and design of DNA circuits).

Figure 1 (left panel) shows a simple DNA circuit implementing a logical AND gate. The
system is represented as a CRN with seven different species (A, B, C, Gate, GateA, GateB, GateAB)
and four reactions, two of which are reversible as indicated by the bi-directional arrows. Species
A and B represent the two system inputs, species Gate is the actual AND gate, and species C

2

Z34Bio: A Framework for Analyzing Biological Computation Yordanov, Wintersteiger, Hamadi, Kugler

Figure 1: A simple DNA circuit implementing a logical AND gate. For each species
(Gate,A,B,GateA,GateB,GateAB,C), domains labeled by 1, . . . , 4 represent different DNA se-
quences, while complementary sequences are denoted by ∗ (e.g. domains 1 and 1∗ are comple-
mentary). The binding of complementary domains and the subsequent displacement of adjacent
complementary sequences determines the possible chemical reactions (r0, . . . , r5) between the
DNA species (left panel). The DNA circuit is represented as a transition system (right panel)
where a state captures the number of molecules from each species and the initial state is high-
lighted using a thick black border. For this system, a state can be reached where no additional
reactions are possible (shown with a red border), where computation terminates. For a single
molecule of species Gate, the output C is produced at the end of the computation if and only if
both input species A and B are present, which captures the required logical AND behavior.

is the output (all other species are intermediates). A state of the system captures the number
of available molecules from each DNA species, which change as reactions take place, leading to
the transition system representation in Figure 1 (right panel).

In some applications, it is sufficient to describe species more coarsely, using a small number
of discrete levels of activity. This has proven to be a most useful abstraction, especially for
analyzing the dynamics of species within gene regulatory networks (GRNs) [17] e.g. during
the life-cycle of a cell or an organism. Unlike the biological engineering applications described
above, the focus here is on understanding natural systems, and often only the species’ presence
or absence or the activity or inactivity of genes is tracked. A Boolean network is a popular
representation of a GRN, which is given as a pair (S,F) of species and a set of update functions.
We capture the behavior over time in the transition system T = (Q,T) where Q = B|S|
and q(s) ∈ B indicates the presence or absence of s. The system’s dynamics are defined
by F , which is a set of functions, one for each species, i.e., fs ∈ F , fs : B|S| → B where
the synchronous1 transition relation T (q, q′)↔

(∧
s∈S q

′(s) = fs(q)
)

results in a deterministic,
deadlock-free system. Despite the apparent simplicity of such models, they are tremendously
useful in practice, because often we do not know the quantitative interactions within the system,
and a precise measurement of levels of activation in a wet-lab experiment is challenging.

Z34Bio supports a natural combination of CRN and BN models, allowing for “localized”
abstractions, e.g., to simplify the analysis of parts of a system that do not require a model on
the single-molecule level. These parts may be abstracted by a BN; Figure 3 shows an example
of such a combined model, using the CRN component from Figure 1 and the Boolean network

1This means all species update at each time step, asynchronous updates are also supported by our framework,
but not described here.

3

Z34Bio: A Framework for Analyzing Biological Computation Yordanov, Wintersteiger, Hamadi, Kugler

Figure 2: A Boolean network representing three
species D,E, and F. The Boolean update functions
are represented graphically (left panel) using pointed
arrows (positive interaction), T-arrows (negative in-
teraction), and the logical combination of inputs (e.g.
the next state of species F is given by F ′ = D ∨ E).
The Boolean network is represented as a transition
system (right panel) where all nodes are updated syn-
chronously. This representation reveals that the sys-
tem does not stabilize in a single state but instead
reaches a cycle where the values of species D and F
oscillate.

component from Figure 2 (modified to allow the interaction between the two components).
In Z34Bio, we encode a BN as a single bit-vector, which leads to a compact representation,
provides convenient bit-wise and arithmetic operations, while efficient decision procedures even
when quantifier are used (SMT BV and UFBV), are also available [26]. We use integers to
encode CRNs due to their potentially unbounded numbers of strands (or molecules) where
this is required. When this is so, we first use Z34Bio in an attempt to prove the validity of
mass-conservation constraints, providing us with bounds on the integer representation, thereby
allowing the use of bit-vector encodings of appropriate size without sacrificing precision.

3 Analysis Strategies

The basic analysis strategy of Z34Bio is inspired by well-known model checking and deduc-
tive verification algorithms, most prominently Bounded Model Checking (BMC) and inductive
invariants. We describe system behavior as constraints over a set of symbolic, finite paths of
the transition system T . A path is denoted as τ = {q0, . . . , qK−1} where

∧K−2
i=0 T (qi, qi+1) and

τ [k] = qk denotes the (symbolic) state at step k. Initial conditions of the system are described
symbolically through constraints. Once all constraints describing the model as well as the prop-
erty of interest are included, we encode them to a series of SMT queries, which allow us to find
a model and to instantiate the abstract paths to concrete ones, or to report an unsatisfiable
specification.

We use standard logical operations to construct formulas and enforce them for states. This
allows us to find states with certain characteristics as (counter-) examples or prove their absence,
and to test reachability and (certain) temporal properties over paths. For instance, stability and
oscillations are studied in terms of paths with specific features. A cycle of length K is a path τ
where |τ | = K, T (τ [K−1], τ [0]) and no other states are repeated, and a fixed point is a cycle of
length K = 1. For non-deterministic systems such as CRNs, a cycle τ may be stable or unstable
resulting in persistent or (possibly) transient behavior, which is tested using a path τ ′ of length

2, such that ∀τ ′.(∧K−2
i=0 (τ [i] = τ ′[0])→ (τ [i+ 1] = τ ′[1]))∧ ((τ [K−1] = τ ′[0])→ (τ [0] = τ ′[1])),

unsatisfiability of which indicates transient behavior.
General system analysis in the case of biology also includes the analysis of existing systems

that occur in nature. While for some applications this can be viewed as the estimation of
black-box behavior, typically, biologists propose models of natural behavior which are meant to
explain observations made in labs and allow predicting the outcome of new experiments. As the
models grow, the task of refuting a model, or verifying that a model indeed explains all known

4

Z34Bio: A Framework for Analyzing Biological Computation Yordanov, Wintersteiger, Hamadi, Kugler

Figure 3: A screen shot illustrating the use of Z34Bio. A model (combined CRN and BN)
and a specification (a mass-conservation property) are defined (1). When the “play” button is
pressed, the model is visualized (Boolean, chemical and shared species are drawn as diamonds,
ovals, and octagons, resp.). Interesting states and trajectories fulfilling the specification are
found and displayed (2).

observations to a satisfying degree becomes harder. At the same time, the parts of the behavior
of the models which are not covered by observations remain doubtful and it is imperative that
new experiments for testing such models are performed to finally refine the theory. Therefore,
the task of analyzing a biological model does not only include the establishment of invariants
of such systems and studying their normal behavior, but also the investigation of perturbations
and changes to the system behavior.

One instance of such a task is the analysis of gene knockouts, i.e., the analysis of the system
where one or more of the genes are permanently (or temporarily) disabled. Gene knockouts can
occur naturally by acquiring a certain mutation in a gene, or induced by various experimental
methods while studying model organisms (e.g., fruit fly, worm). To automate the process of
finding knockouts that effect a certain biological phenomena, and lead to interesting behavior,
we augment the definition of a BN to include the bit-vector ko ∈ B|S|, where ko(s) ∈ B
indicates whether species s has been knocked out, in which case it is always inactive. Additional
constraints, (e.g., on the cardinality of ko) and properties regarding the desired behavior are
specified and the missing information (specific gene knockouts) is obtained from the underlying
SMT solver. To close the loop back to the biological science, note that “interesting” behavior
in this type of analysis means that either a new experiment is suggested (when the system
behaves in an unpredicted way), or that a problem in the model is identified because the model
does not explain previous observations (where some gene may have been knocked out during a
wet-lab experiment).

4 Applications

We implemented Z34Bio as an online analysis tool [29], providing basic user-interface and visu-
alization capabilities (Figure 3). Analysis problems can be exported as SMT-LIB benchmarks

5

Z34Bio: A Framework for Analyzing Biological Computation Yordanov, Wintersteiger, Hamadi, Kugler

0.1

1

10

100

1000

10000

100000

2 4 6 8 10

T
im

e
[s

ec
]

Circuit Size

BitVec‘

+
+

+
+

+

+
BitVec

× ×
×

×
×

×
Int‘

∗ ∗
∗ ∗

∗

∗
Int

2

2 2
2

2

2

0.1

1

10

100

1000

10000

2 4 6 8 10

T
im

e
[s

ec
]

Circuit Size

BitVec‘

+
+

+
+

+

+
BitVec

×
× × ×

×

×
Int‘

∗
∗ ∗ ∗

∗

∗
Int

2
2 2 2

2

2

Figure 4: Computation times for the identification of traces of lengths up to K = 100 in the
flawed transducer circuits such that a “good” state (left panel) or a “bad” state (right panel) is
reached (note the difference in scales). BitVec‘ and BitVec (resp. Int‘ and Int) indicate a bit-
vector (resp. integer) encoding with or without the additional mass-conservation constraints.
Results from [28].

and processed offline. To illustrate some potential applications, we present a set of case-studies
which are provided as benchmarks or can be explored interactively online. More details about
these examples as well as additional challenging benchmarks are also available on our web-
site [30]. The experimental results are obtained using the Z3 solver directly on the SMT-LIB
benchmarks. All computation is performed on 2.5 Ghz Intel L5420 CPUs with a 2GB memory
limit per benchmark.

The transducer DNA circuits described in [19, 28] are designed to convert all molecules
of some chemical input to some output molecules (for an example of the structure of these
models, see Figure 5). Computation terminates when a state with no possible reactions is
reached but certain reactive species must also be fully consumed. First, we prove that a set of
mass-conservation constraints hold for these systems, which capture the property that DNA is
not created or degraded but only converted between species. Then, we use these constraints
to prove that no “bad” terminal states (where reactive species remain) are possible for correct
transducer circuits, but such states can be found for “faulty” designs. Finally, we show that
“good” (resp. both “good” and “bad”) states are reachable for correct (resp. “faulty”) circuits
using Bounded Model Checking [28]. Computational results from [28] shown in Figure 4, show
that models take non-trivial runtimes, but are in a feasible range. The tradeoff between using
bitvectors or integer representation is an interesting aspect for further exploration, as it seems
each performs better for different models, sizes, and queries.

Besides the set of transducer circuits, we also applied our method to analyze a design of a
DNA circuit that computes the square root of a 4-bit number [23, 4], which is one of the largest
DNA computation circuits constructed experimentally. This system is designed to compute the
square root of a number represented using DNA species. Our results indicate that the described
methods can be applied to analyze functional correctness of systems of such complexity with
large numbers of copies of the circuit operating in parallel.

Understanding the effects of gene knockouts on the dynamics of gene networks is an impor-
tant biological question. Such GRN perturbations are often caused by mutations leading to a

6

Z34Bio: A Framework for Analyzing Biological Computation Yordanov, Wintersteiger, Hamadi, Kugler

Figure 5: A chemical reaction network derived from a transducer DNA circuit.

number of diseases, while experimental techniques for introducing specific gene knockouts are
also available, providing a strategy for the comparison of model predictions and experimental
observations. For synchronous Boolean network models, stabilization is possible only when a
fixed point exists, while oscillations are possible when a cycle of length K > 1 exists. We used
bounded model checking to identify cycles of length up to K = d (the recurrence diameter) and,
while such a procedure is generally expensive, a short diameter is characteristic of some biologi-
cal models. This is the case for the Boolean network models collected in [11] and the large-scale
regulatory and metabolic network reconstruction studied in [24] (Table 1); for an example of
the structure of such models, see Figure 6, which illustrates part of a fruit fly’s GRN. A model’s
diameter also provides interesting information about the underlaying biological system, since it
captures properties related to its response time.

To search for gene knockouts that influence stability, we first introduce the parameter ko
and investigate how this affects the diameters d′. Next we find paths that originate in the same
state but change the stability/oscillatory behavior depending on ko, providing the target set
of knockouts (genes that must be knocked out to achieve the required behavior). Results in
Table 1 show that we can effectively identify single and double mutations that effect system
dynamics, and the method can be effective also for larger cardinality, providing a powerful way
to investigate gene knockouts which is currently very challenging utilizing simulation methods.
Overall, our framework has proven to be powerful enough to tackle important biological models,
suggesting that SMT-based methods have the potential to play a significant role in this emerging
field. Significant advances are still needed to allow biologists to analyze some of the systems
they study, and we hope this work will inspire additional progress and development of methods
towards this goal.

7

Z34Bio: A Framework for Analyzing Biological Computation Yordanov, Wintersteiger, Hamadi, Kugler

Figure 6: Boolean network model of Drosophila melanogaster’s segment polarity genes. (Part
of a fruit fly’s gene regulatory network.)

Model name |S| K d Behavior Time d’ Single knockouts Time Double knockouts time

arabidopsis 15 10 10 stabil 0.12 10 LFY, SEP (2) 0.12 {EMF1,SEP},... (19) 2.17
budding yeast 12 18 18 stabil 0.20 18 none 0.5 none 0.5

drosophila 52 34 34 stabil 2.7 43 HH2 (1) 114.96 {SLP3,HH3},... (42) 929.1
fission yeast 10 6 6 stabil 0.09 6 none 0.1 none 0.08
mammalian 10 7 11 both 0.07 13 Rb,Cdc20,...(7) 0.75 {CycE,CycB},...(41) 2.997

tcr 40 6 18 both 0.26 22 CD8,CD45,...(9) 14.6 {CD45,IKK},... (345) 379.1
t helper 23 11 11 stabil 0.12 17 none 0.34 none 0.31

met. regulation 693 7 7 stabil 35.05 8 none 1154.4 none 1094.8

Table 1: Stability analysis and gene knockout identification for the Boolean network models
from [11] and [24]. |S| is the number of species, d is the diameter (d′ is the diameter when
knockouts are allowed), K is the length of the shortest cycle when one exists or K = d otherwise,
and all times are in sec. Only some of the identified single and double knockouts are shown
(total numbers in parentheses).

5 Related work and Future Directions

The simulation of biological models is now supported by many specialized tools (e.g. Sim-
Biology by MathWorks), and has been used as an analysis strategy, for example, in [24] but
is inherently incomplete and expensive for certain problems. As an alternative, the applica-
tion of formal methods in the context of biology has already attracted attention [3], providing
completeness and more rigorous formalizations of properties. For example, besides simulation
capabilities, Biocham [13] allows the analysis of rule-based models [7] using temporal logics with
numerical constraints, while deriving control strategies for large Boolean networks using CTL
specifications and the NuSMV model checker is described in [20].

Such expressivity is not always sufficient - to capture notions of system stability an extension
is introduced in Anelope [1]. Stability has also been studied through dedicated BDD-based

8

Z34Bio: A Framework for Analyzing Biological Computation Yordanov, Wintersteiger, Hamadi, Kugler

(GINsim [21]), SAT-based (BNS [11]) and modular (BMA [2]) algorithms for Boolean networks
and their generalizations. Probabilistic model checking was used in [19] to study DNA circuits
with properties involving probabilities and time, while Petri-nets analysis methods [15] also
serve to study chemical reaction networks and therefore DNA circuits. Synthesis methods
are developed in GNBox [6] based on Constraint Logic Programming (CLP) to uncover genetic
network models from incomplete information while SMT-based approaches have been applied
to computer-aided chemical synthesis planning [12] and scenario-based modeling in biology [18].

When a sufficient number of molecules is present, species concentrations can be described as
continuous values ((e.g. using (non-linear) ODEs) [8]. Such systems, as well as other infinite-
state, continuous and hybrid models used in biology, can be encoded into SMT directly but
might require expensive (or incomplete) decision procedures. As an alternative, (conservative)
finite transition system abstractions can be constructed (e.g. as in [27]), enabling the analysis
and integration of infinite state systems within the framework described here. The application
of formal methods to Petri Nets [5], which also describe chemical reaction networks, has been
studied extensively and can provide useful analysis procedures, which can then be extended to
other formalisms we consider through their common representation. Chemical reaction networks
have also been studied at steady state using flux balance analysis (FBA) [22].

The available analysis tools often focus on a specific class of models and specifications, while
so far the expressivity of SMT has not been fully exploited to allow a more general framework.
By doing so, we handle logical, temporal and numerical constraints and can express certain
stability properties, while the model-finding capabilities of SMT solvers enable us to seamlessly
synthesize parts of the model. A number of extensions can be introduced immediately in our
current framework (e.g. to capture more general genetic network models) but novel SMT
procedures are required for others e.g. to allow analysis for probabilistic properties when
chemical kinetics are considered [14, 16, 10].

Analysis of biological models is related to hardware and software verification in general.
Due to the special nature of biological models it is often the case that traditional verification
tools do not perform well on models of these systems, as they are highly concurrent and non-
deterministic. A more thorough investigation of the differences between models in biology,
software and hardware, especially on standardized realistic models (e.g., through established
SMT-LIB benchmarks which we initiate here) poses an interesting challenge for future work.

References

[1] Gustavo Arellano, Julián Argil, Eugenio Azpeitia, Mariana Beńıtez, Miguel Carrillo, Pedro
Góngora, David A. Rosenblueth, and Elena R. Alvarez-Buyllaa. “Antelope”: a hybrid-logic model
checker for branching-time Boolean GRN analysis. BMC Bioinformatics, 12(1):490, 2011.

[2] David Benque, Sam Bourton, Caitlin Cockerton, Byron Cook, Jasmin Fisher, Samin Ishtiaq amd
Nir Piterman, Alex Taylor, and Moshe Y. Vardi. BMA: Visual tool for modeling and analyzing
biological networks. In CAV, volume 7358 of LNCS, pages 686–692. Springer, 2012.

[3] Miguel Carrillo, Pedro a Góngora, and David a Rosenblueth. An overview of existing modeling
tools making use of model checking in the analysis of biochemical networks. Frontiers in plant
science, 3(July):155, January 2012.

[4] Harish Chandran, Nikhil Gopalkrishnan, Andrew Phillips, and John Reif. Localized hybridization
circuits. DNA Computing and Molecular Programming (DNA17), pages 64–83, 2011.

[5] C. Chaouiya. Petri net modelling of biological networks. Briefings in Bioinformatics, 8(4):210–219,
2007.

9

Z34Bio: A Framework for Analyzing Biological Computation Yordanov, Wintersteiger, Hamadi, Kugler

[6] Fabien Corblin, Eric Fanchon, and Laurent Trilling. Applications of a formal approach to decipher
discrete genetic networks. BMC Bioinformatics, 11(1):385, 2010.

[7] Vincent Danos, Jérôme Feret, Walter Fontana, and Jean Krivine. Abstract interpretation of
cellular signalling networks. In VMCAI, pages 83–97, 2008.

[8] H. de Jong. Modeling and Simulation of Genetic Regulatory Systems: A Literature Review.
Journal of Computational Biology, 9(1):67–103, 2002.

[9] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS, 2008.

[10] Christian Dehnert, Joost-Pieter Katoen, and David Parker. SMT-based bisimulation minimisation
of markov models. In VMCAI, volume 7737 of LNCS, pages 28–47. Springer, 2013.

[11] Elena Dubrova and Maxim Teslenko. A SAT-Based Algorithm for Finding Attractors in Syn-
chronous Boolean Networks. IEEE/ACM TCBB, 8:1393–1399, 2011.

[12] Rolf Fagerberg, Christoph Flamm, Daniel Merkle, and Philipp Peters. Exploring chemistry using
SMT. In PPCP, LNCS, pages 900–915. Springer, 2012.

[13] Franois Fages and Sylvain Soliman. Formal cell biology in BIOCHAM. In FMCSB, 2008.

[14] Martin Fränzle, Holger Hermanns, and Tino Teige. Stochastic satisfiability modulo theory: A
novel technique for the analysis of probabilistic hybrid systems. In HSCC, 2008.

[15] Monika Heiner, David Gilbert, and Robin Donaldson. Petri nets for systems and synthetic biology.
FMCSB, 5016:215–264, 2008.

[16] David Henriques, João Martins, Paolo Zuliani, André Platzer, and Edmund M. Clarke. Statistical
model checking for markov decision processes. In QEST, pages 84–93. IEEE Computer Society,
2012.

[17] S A Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal
of Theoretical Biology, 22(3):437–467, 1969.

[18] H. Kugler, C. Plock, and A. Roberts. Synthesizing Biological Theories. In Proc. 23rd Int. Conf.
on Computer Aided Verification (CAV’11), volume 6806, pages 579–584, 2011.

[19] Matthew Lakin, David Parker, Luca Cardelli, Marta Kwiatkowska, and Andrew Phillips. Design
and analysis of DNA strand displacement devices using probabilistic model checking. J. R. Soc.
Interface, 9(72):1470–85, July 2012.

[20] Christopher James Langmead and Sumit Kumar Jha. Symbolic approaches for finding control
strategies in Boolean networks. J. BCB, 7(2):323–338, 2009.

[21] Aurélien Naldi, Denis Thieffry, and Claudine Chaouiya. Decision diagrams for the representation
and analysis of logical models of genetic networks. In CMSB, 2007.

[22] J.D. Orth, I. Thiele, and B.O. Palsson. What is flux balance analysis? Nat Biotech, 28(3), 2010.

[23] Lulu Qian and Erik Winfree. Scaling up digital circuit computation with DNA strand displacement
cascades. Science, 332(6034):1196–201, June 2011.

[24] Areejit Samal and Sanjay Jain. The regulatory network of E. coli metabolism as a Boolean
dynamical system exhibits both homeostasis and flexibility of response. BMC Systems Biology,
2(1):21, 2008.

[25] Georg Seelig, David Soloveichik, David Yu Zhang, and Erik Winfree. Enzyme-free nucleic acid
logic circuits. Science, 314(5805):1585–8, 2006.

[26] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo de Moura. Efficiently solving quan-
tified bit-vector formulas. In FMCAD, pages 239–246, 2010.

[27] B. Yordanov and C. Belta. Formal analysis of discrete-time piecewise affine systems. IEEE
Transactions on Automatic Control, 55(12):2834–2840, 2010.

[28] Boyan Yordanov, Christoph M. Wintersteiger, Youssef Hamadi, and Hillel Kugler. SMT-based
analysis of biological computation. In NFM, volume 7871 of LNCS, pages 78–92. Springer, 2013.

[29] Z34Bio. Online at http://rise4fun.com/Z34Biology.

[30] Z34Biology project website. http://research.microsoft.com/en-us/projects/z3-4biology/.

10

SyMT: finding symmetries in SMT formulas

Work in progress

Carlos Areces1, David Déharbe2, Pascal Fontaine3 and Ezequiel Orbe1∗

1 FaMAF, U. Nacional de Córdoba (Argentina)
2 Universidade Federal do Rio Grande do Norte, (Brazil)

3 Inria, U. of Lorraine (France)

Abstract

The QF UF category of the SMT-LIB test set contains many formulas with symmetries,
and breaking these symmetries results in an important speedup [8]. This paper presents
SyMT, a tool to find and report symmetries in SMT formulas. SyMT is based on the
reduction of the problem of detecting symmetries in formulas to finding automorphisms in
a graph representation of these formulas. The output of SyMT may be used to improve
SMT formulas to enforce the SMT solver to examine only one assignment out of many
symmetric ones. We show that the classic propositional symmetry breaking technique can
be lifted to SMT and yields a generic technique to break the symmetries found by SyMT.

Experiments on a large part of the SMT-LIB show that symmetries are pervasive in
most categories.

1 Introduction

Consider a propositional formula ϕ(p, q) with propositional variables p and q, and symmetric
by permutation of p and q. Propositional symmetry breaking [12] eliminates symmetry, e.g. by
adding clause p ⇒ q, since there is a Boolean model of ϕ(p, q) if and only if there is a model
such that p⇒ q. Searching for models such that p ∧ ¬q is unnecessary. Such transformation is
a sound reduction of the search space for the SAT-solver.

Now, consider the first-order formula ϕ(f(a) = f(b), a = b) with the standard interpretation
of equality. It is clear that there exists no model such that f(a) 6= f(b)∧ a = b holds, although
f(a) = f(b) ∧ a 6= b is satisfiable; if ϕ(p, q) has only models such that exactly one proposition
in {p, q} is true, ϕ(f(a) = f(b), a = b) ∧ (f(a) = f(b) ⇒ a = b) is unsatisfiable. This
simple example shows it is not sound to break symmetry of an SMT formula based on the
symmetry of its propositional structure alone. Essentially the problem is that the abstraction
does not take the theory into account. However, we show in the paper that it is sound to break
symmetries stemming from permutation of uninterpreted symbols, similarly to what is done for
propositional logic.

Previous results show [8] that exploiting symmetries in SMT formulas can lead to an im-
pressive decrease in the size of the search space, and thus to a considerable increase in efficiency.
Techniques described in [8] are, however, highly heuristic and vulnerable to formula rewriting.
Graph automorphism detection algorithms [11, 9, 10] have been used to find symmetries in
propositional formulas. Based on such techniques we developed SyMT, a tool to find and re-
port symmetries in SMT formulas. In essence, the tool rewrites the SMT formula into a graph
while preserving the syntactic symmetries. The resulting graph is suitable for input to graph

∗This work has been partially supported by the European Union Seventh Framework Programme under grant
agreement no. 295261 (MEALS), and by CNPq/INRIA project SMT-SAVeS, and CNPq grant 573964/2008-4
(National Institute of Science and Technology for Software Engineering—INES).

isomorphism tools; in particular, there is no ordering on nodes’ children. The output of SyMT
provides to users the information they need to rewrite their SMT formulas so that they have no
symmetries and are easier to solve. Such transformation is highly heuristic and domain-specific
and it is the SMT user that is in the best position to realize it. In future work, we however
plan to design of concrete generic symmetry breaking heuristics, that would provide further
indication to users about how they can improve their formulas.

Outline. We first give a formal basis for symmetry breaking in SMT, then present our SyMT
tool for detecting symmetries in SMT formulas. Section 3 also introduces the translation from
SMT formulas to graphs. Some statistics on symmetry detection on a large part of the SMT-
LIB [5] are given. They clearly show that (1) graph automorphism algorithms scale for SMT
formulas, and (2) the SMT-LIB contain many highly symmetric formulas.

2 Symmetries in SMT

We assume knowledge of basic notions of permutation group theory, such as generators and
cyclic forms. We use the standard notions of multi-sorted logic, term, formula, and interpreta-
tion commonly used in the context of SMT. A theory is a set of interpretations. Consider a finite
set S of uninterpreted symbols (for constants, functions or predicates), and a bijective function
σ on S, that maps every symbol to a symbol of the same sort (i.e., arity and sorts of arguments
and image should match). Function σ extends naturally to terms and formulas, and tσ denotes
σ applied to term or formula t, just like a higher-order substitution would, considering symbols
in S as variables. σ can also be applied on an interpretation I to yield interpretation Iσ similar
to I except that Iσ[s′] = I[s] whenever sσ = s′. The identity function is denoted σI .

We say that σ is a symmetry for formula ϕ if ϕσ is syntactically equal to ϕ up to satisfiability
preserving rewritings, e.g. using commutativity of some interpreted symbols. Notice that if σ
is a symmetry for ϕ, so is any of its powers σi, and in particular σ−1 is also a symmetry of
ϕ since there exists n such that σn = σI . The case where σ is its own inverse (σ2 = σI) is
a particular, though extremely frequent, case. It occurs when there is a group that contains
all permutations of elements in a subset of S. In our experiments on the SMT-LIB test bed,
we have observed that most symmetry groups found have a set of generators that are their
own inverse; in the following we will only consider such symmetries. Let us thus consider a
symmetry σ such that σ2 = σI for a formula ϕ. For every interpretation I of ϕ we have
Iσ[ϕ] = I[ϕ] (using straightforward structural induction). Consider now a set of atoms (not
necessarily simple propositional variables) p1, . . . pn and their image q1 = p1σ, . . . qn = pnσ.
If ϕ is satisfiable in a model M then there exists a model of ϕ that furthermore satisfies the
following formulas for i ∈ {1..n}:

ψi =def

(∧

1≤j<i

pj ≡ qj
)
⇒ (pi ⇒ qi).

This model is indeed eitherM orMσ. Assume k is the smallest value for whichM[pk] 6=M[qk],
and consider ψk. IfM[pk] = ⊥ andM[qk] = > thenM satisfies ψk, as well as all ψi with i 6= k.
Now, if M[pk] = > and M[qk] = ⊥ then Mσ is a model of ϕ such that Mσ[pi] =Mσ[qi] for
i < k and Mσ[pk] = > and Mσ[qk] = ⊥. The model Mσ of ϕ thus satisfies ψi for i ∈ {1..n}.

It is well known (see, e.g., [12]) that the formulas ψi can serve to break symmetry for
propositional formulas. The above shows that this extends to SMT. This leaves out, however,
many choices for the set of atoms pi: the insight of the SMT user is usually necessary to make
the best choice.

3 SyMT Implementation

SyMT is a command line tool implemented in C that detects symmetries in SMT formulas,
taking into account the commutativity of conjunction, disjunction, addition, multiplication and
equality. Given an input SMT formula, SyMT proceeds by creating a colored graph from it
and then uses a graph automorphism component to detect the generators of the automorphism
group of the colored graph. In particular, SyMT uses Saucy 3.0 [10] as the graph automorphism
component. Integration with Saucy is done via Saucy’s C API. SyMT also provides simplifica-
tion capabilities on the input formulas, some of which involve using theory reasoning (and thus
may unfortunately fail on large instances). Simplification of the input formula is important be-
cause it may uncover hidden symmetries and remove trivial symmetries, e.g., symmetries that
do not involve uninterpreted symbols. Simplifications include simple rewriting, simplification
of entailed literals, and some normalization of terms and formulas.

Example 1. The command line and output of SyMT on a formula of the QF UF category of
SMT-LIB is as follows:

./SyMT --enable-simp smt-lib2/QF UF/NEQ/NEQ004 size4.smt2

(p7 p9)(c12 c13)

(c 3 c 1)

(c 2 c 1)

(c 0 c 1)

SyMT finds four generators for the symmetry group, and prints them in cyclic form. There
is the full group of permutations for constants c_0, c_1, c_2, c_3, generated by the last three
generators, as well as a further symmetry that permutes unary predicate symbols p7 and p9, as
well as constant symbols c12 and c13. This last symmetry was not detected with the heuristic
techniques of [8].

Reduction to the colored graph automorphism problem is the most successful technique for
detecting symmetries in propositional formulas in clausal form, primarily due to the availabil-
ity of efficient tools to detect graph automorphisms (e.g., [11, 9, 10]) that are fast and easy
to integrate. Several reductions from propositional formulas to colored graphs have been pro-
posed [6, 7, 1], all based on the same idea: to use the formula to construct a colored graph
whose automorphism group is isomorphic to the symmetry group of the formula. Also, exten-
sions to other logics, e.g., QBF [3] and modal logics [2], have been proposed, further showing
the applicability of this technique. Nevertheless, as far as we know, there is no extension of this
technique to the case of SMT formulas.

We now present the reduction algorithm to colored graphs for SMT formulas. The reduction
is as a two-stage process. First, SyMT constructs the syntax direct acyclic graph of the formula
with some additional nodes. Second, colors are introduced, to avoid spurious symmetries.
Colors are represented as natural numbers. Let ϕ be an SMT formula. The colored graph G(ϕ)
is constructed recursively as follows (= and other predicates, and propositions are considered
as functions and constants ranging over Booleans):

• Graph Construction:

1. For each symbol, add a unique symbol node.

2. For each (constant or propositional) term without argument, the root node is the
symbol node introduced above.

3. For each term f(t1, . . . , tn) of arity n > 0,

(a) Add a root node for f(t1, . . . , tn). Add an edge from the root node to the
(unique) symbol node for f .

(b) If the function is commutative (e.g. ∧, ∨, ≡, =, +, ∗), add an edge from the root
node to the root node of ti (i ∈ {1..n}). Quantifiers, as commutative operators,
are handled similarly (coloring discriminates the matrix).

(c) If the function is not commutative:

i. For each argument ti, add an argument node and an edge from this node to
the root node of ti.

ii. Add an edge from the argument node of ti to the argument node of ti+1 (1 ≤
i < n). These edges represent the ordering of the arguments in f(t1, . . . , tn).

iii. Add an edge from the root node to the argument node of t1.

• Graph Coloring:

1. Argument nodes are assigned a specific, unique color.

2. Uninterpreted symbol nodes and root nodes are assigned a color based on their sort
(Boolean being considered as any other sort).

3. Each interpreted symbol node is assigned a unique color.

Example 2. Consider formula ϕ = p(f(a, b)) ∨ p(f(b, a)) ∨ p(g(a, b)) ∨ p(g(b, a)), where p is
a unary predicate symbol and f, g, a and b are uninterpreted symbols. The associated colored
graph, G(ϕ), is shown in Figure 1 (colors are represented by numeric labels and node shapes in
the figure).

Theorem 1. Let ϕ be an SMT formula and G(ϕ) the colored graph constructed from it. Then,
every automorphism of the graph G(ϕ) is a symmetry of the formula ϕ.

Proof sketch: This follows directly by structural induction and from the following observations:

- The graph G(ϕ) is the syntax directed acyclic graph of ϕ plus additional nodes.

- For terms, f(t1, . . . , tn) of arity > 0, the coloring of nodes, and the combination of root
nodes and symbol nodes ensures that only symbols nodes of the same sort (i.e., same arity
and same argument sorts) and with the same number of occurrences can be permuted.

- For terms without arguments (constants and predicates), the coloring of symbol nodes
and the existence of argument nodes ensures that only symbols of the same sort and
occurring the same number of times in the same argument positions can be permuted.

Finally, to reconstruct a formula symmetry from a graph automorphism, we just need to restrict
the graph automorphism to symbol nodes.

Notice that the converse of Theorem 1 is not true: the proposed graph construction does
not find all the symmetries of the input formula. For example, consider the formula ϕ =
f(a, b) ∧ g(c, d) where a, d are of some sort and b, c of another sort (with appropriate sorts for
f and g. The permutation σ = (f g)(a c)(b d) is a symmetry of ϕ. Nevertheless, we can not
detect it in the graph G(ϕ). This is due to the fact that symbol nodes are colored based on
the symbol sort, and this prevent the automorphism component from detecting permutations
involving symbols of different sorts. Nevertheless, from a practical point of view, symmetries
involving symbols of different sorts are rather unnatural and do not arise often.

11, or

1

1 1 1 1

0 0 0 09, p

8 8 8 8

0 0 0 0

10, f 10, g

0 0 0 0

8, a 8, b

Generator 1: (a b)
Generator 2: (f g)

Figure 1: Graph representation of p(f(a, b)) ∨ p(f(b, a)) ∨ p(g(a, b)) ∨ p(g(b, a)).

4 Symmetries in SMT-LIB

We test SyMT against 19 categories1 from SMT-LIB [5] to investigate the existence of sym-
metries and evaluate the efficiency of our tool. All tests are run on an Intel Xeon X3440 with
16GB, using the four cores simultaneously and we report the cumulative core time (roughly
4 times the CPU time). Three different configurations of SyMT were tested. Configuration 1
has no simplification: the formula is parsed and converted to a graph for automorphism de-
tection. Configuration 2 uses trivial syntactic simplifications. Configuration 3 enables stronger
simplifications, using an SMT engine, e.g., simplification of atoms implied by unit clauses. Con-
figuration 2 may fail (with no symmetry reported) because the simplification algorithm used is
not linear with respect to the input formula. However it often reveals symmetries hidden by
irrelevant garbage easily removed by the simplification procedure. Configuration 3 is likely to
fail on very large formulas, but again, it may reveal hidden symmetries. Simplification some-
times reduces a formula to false, in which case no symmetry is reported. The timeout (relevant
for configuration 2 and, foremost, for configuration 3) is set to 30 seconds.

Among the 19 analyzed categories, three (LRA, QF UFLRA, QF UFNRA) do not reveal
symmetries with SyMT. Of the only five formulas in UFLRA, one has symmetries. The oth-
ers 15 categories presented a significant number of symmetries in at least one of the tested

1Bit vectors are not supported by our parser.

Category #Inst #Sym[1] #Sym[2] #Sym[3] #Sym[P] Avg[GS] Time

AUFLIA 6480 6212 6231 5941 6258 134.00 378.79

AUFLIRA 19917 15779 16475 12500 16476 1.08 9.13

AUFNIRA 989 985 985 923 985 1.00 0.41

QF AUFLIA 1140 2 71 77 78 1.00 0.72

QF AX 551 22 22 22 22 1.00 0.37

QF IDL 1749 348 526 683 756 12745.43 327.95

QF LIA 5938 728 1172 524 1200 104.55 486.19

QF LRA 634 73 150 208 210 110.49 29.06

QF NIA 530 169 169 168 169 5.92 3.92

QF NRA 166 9 43 43 43 1.00 0.23

QF RDL 204 0 0 24 24 0.00 10.13

QF UF 6639 250 3638 375 3638 44.00 34.58

QF UFIDL 431 19 175 186 189 1.00 2.70

QF UFLIA 564 0 198 198 198 0.00 0.45

UFNIA 1796 1062 1061 1058 1070 47.08 543.26

Table 1: Symmetries in SMT-LIB

configurations. Table 1 summarizes the results obtained for these 15 categories. For each cate-
gory we report the number of instances (#Inst), the number of instances that have symmetries
for the various simplification configurations (#Sym[1], #Sym[2] and #Sym[3]), the number of
instances that have symmetries in at least one of the configurations (#Sym[P]), the average
logarithm in base 2 of the size of the symmetry group (Avg[GS]) for Configuration 1, and the
total time in seconds required to analyze all the instances (Time) also for Configuration 1. It is
clear from Table 1 that the SMT-LIB has many highly symmetric formulas, in most categories.
The cumulative time required to build the graph and detect the symmetries is negligible in
all categories. We do not output the times for other configurations since there are timeouts
and time is dominantly spent in the simplification modules, so these numbers give little insight
about symmetry detection itself. The above experiments are using Saucy as the graph iso-
morphism detection engine. We also investigated Bliss as an alternative, with similar results.
Unfortunately, this alternative is currently unavailable for users because of license issues.

The current tool fails to find some symmetries in the QF UF category although they are
discovered with the heuristic techniques from [8]. We are investigating the issue.

5 Conclusions and future work

We presented SyMT, a tool to detect symmetries in SMT formulas. SyMT is based on the
reduction of the symmetry detection problem to graph automorphism detection. We presented
the corresponding graph construction algorithm and showed that symmetry detection scales on
SMT formulas by providing experimental results on executions of the tool on many SMT-LIB
categories. We also showed that propositional symmetry breaking can be lifted to the SMT
case, which provides a simple symmetry breaking mechanism for SMT.

In future work we will address the issue of symmetry breaking. We want to study the
structures of symmetry groups found by SyMT. A deeper understanding of these structures
may provide useful information to develop generic symmetry breaking mechanisms. We also
believe that, to fully exploit the presence of symmetries in formulas, ad hoc, application-tailored,

heuristics are also necessary. We will use SyMT to mine the SMT-LIB to find symmetries, and
we will devise appropriate heuristics integrated into an SMT symmetry breaking pre-processor.
We expect this will result in a significant speed up for solving the formulas in the repository,
since our experiments show symmetries are pervasive in many SMT test sets. We plan to carry
out a similar analysis on the TPTP library [13].

We are aware that symmetry breaking is essentially heuristic, and a compilation of ad hoc
heuristics would not be a silver bullet: the expertise of the user is generally the best approach
to break symmetries. The current version of SyMT already provides the SMT users with a
simple, yet powerful, tool to detect symmetries.

The tool and its source are available for download under the BSD License at http://www.

veriT-solver.org/SyMT. It uses the Saucy 3.0 source code, distributed under its own specific
license.

Acknowledgements: We thank Stephan Merz for interesting discussions, Cesare Tinelli for
encouraging to investigate further symmetries in SMT, and the anonymous reviewers for their
comments. We are very grateful to the Saucy developers for their tool.

References

[1] F. Aloul, A. Ramani, I. Markov, and K. Sakallah. Solving difficult instances of Boolean satisfiability
in the presence of symmetry. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 22(9):1117–1137, 2003.

[2] C. Areces, G. Hoffmann, and E. Orbe. Symmetries in modal logics: A coinductive approach. In
Proc. of the 7th Workshop on Logical and Semantic Frameworks, with Applications (LSFA 2012),
Rio de Janeiro, September 2012.

[3] G. Audemard, B. Mazure, and L. Sais. Dealing with symmetries in quantified Boolean formulas.
In Proc. of SAT’04, pages 257–262, 2004.

[4] Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli. Satisfiability modulo the-
ories. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, chapter 26, pages
825–885. IOS Press, February 2009.

[5] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2010.

[6] J. Crawford. A theoretical analysis of reasoning by symmetry in first-order logic. In Proc. of AAAI
Workshop on Tractable Reasoning, pages 17–22, 1992.

[7] James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy. Symmetry-breaking pred-
icates for search problems. In Luigia Carlucci Aiello, Jon Doyle, and Stuart Shapiro, editors, KR,
pages 148–159. Morgan Kaufmann, 1996.

[8] David Déharbe, Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel Paleo. Exploiting sym-
metry in SMT problems. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, CADE,
volume 6803 of LNCS, pages 222–236. Springer, 2011.

[9] Tommi Junttila and Petteri Kaski. Engineering an efficient canonical labeling tool for large and
sparse graphs. In David Applegate, Gerth Brodat, Daniel Panario, and Robert Sedgewick, editors,
Proc. of the 9th Workshop on Algorithm Engineering and Experiments and the 4th Workshop on
Analytic Algorithms and Combinatorics. SIAM, 2007.

[10] Hadi Katebi, Karem Sakallah, and Igor Markov. Conflict anticipation in the search for graph
automorphisms. In Nikolaj Bjørner and Andrei Voronkov, editors, LPAR, volume 7180 of LNCS,
pages 243–257. Springer, 2012.

[11] B. McKay. Nauty user’s guide. Technical report, Australian National University, Computer Science
Department, 1990.

[12] Karem Sakallah. Symmetry and satisfiability. In Armin Biere, Marijn Heule, Hans van Maaren, and
Toby Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications, pages 289–338. IOS Press, 2009.

[13] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and CNF
Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

SMT Solvers for Malware Unpacking

(Extended Abstract)

Ian Blumenfeld, Roberta Faux, Paul Li and Mark Raugas

CyberPoint International, Baltimore, Maryland, U.S.A.
iblumenfeld@cyberpointllc.com, rfaux@cyberpointllc.com, pli@cyberpointllc.com,

mraugas@cyberpointllc.com

Abstract

In order to perform in-depth malware analysis, reverse engineers must first overcome
advanced packing methods employed by malware authors. We investigated using an SMT
solver for undoing some of the code obfuscation used by a particular packer. In this note
we describe the issues, our approach, and preliminary results.

1 Introduction

The analysis of malicious packed binaries is a challenging problem in the world of cyber security.
Some of the more advanced packers employ code virtualization and obfuscation techniques to deter the
malware analyst from comprehending the packed malware. This note describes an application of SMT
solvers to this problem, and presents some preliminary results against one particular packer.

SMT solvers have previously been applied to the unpacking problem. Rolles ([8], [9], [10] has de-
scribed using an automated theorem prover to verify an optimization-based code deobfuscator written
against a commercial virtualizing packer. We investigated using the SMT solver itself as the deobfusca-
tor. While this approach is currently much slower than optimization-based methods, we believe there
is still some value in it.

As packers employ more complex obfuscation techniques, SMT solvers may be better able to handle
them than syntax-based methods. For example, if a future version uses complicated linear arithmetic
for code obfuscation, an LA theory solver could be very useful. Another benefit of using an SMT solver
is that any improvements to the solver are automatically incorporated into our system.

Our experiments were done against sample programs that were packed with Themida, a commer-
cially available virtualizing packer [7]. However, we expect that our approach will be applicable to
other virtualizing packers such as VMProtect [3] and Enigma [1].

2 The Packer Problem

A major challenge facing malware analysts is the existence of “packed” binaries. Having their origins in
simple compression or encryption, binary packers employ a wide array of techniques to deter automated
and manual analysis. A wide variety of advanced packers are available to authors of both malware and
legitimate software.

2.1 Virtualization

The use of virtualizing packers is becoming increasingly common [11]. A virtualizing packer obfuscates
sections of binary code by translating them into bytecode streams that are executed by a custom
interpreter routine (“virtual processor”, or “VM”) embedded within the packed file [6]. The software
author has various ways to select portions of his code to virtualize, for instance by inserting special
macros into his source code. Typically each virtual instruction type is executed by a separate subroutine
of the virtual processor. We refer to these subroutines as handlers. To analyze a virtualized section of

1

di spatch :
lodsb ; l oads the next by t e in t o AL,

; then advances the by tecode po in t e r ESI
add al , bl ; by tecode ob f u s ca t i on
xor al , 0xe8 ;
add al , 0x47 ;
sub bl , al ;

movzx eax , al ; zero−extend the hand ler index
jmp [edi+eax ∗4] ; jump to hand ler

; in most cases the end o f the
; hand ler jumps back to ” d i s pa t ch ”

Listing 1: Deobfuscated dispatch routine

code, it may be necessary to understand how the bytecode is parsed by the virtual processor, and the
functionality of each handler.

For our experiments, we focused on Themida’s “CISC VM.” In this case a main dispatch routine
reads one byte from the bytecode stream, uses that to calculate an index into a table of approximately
170 handler addresses, and then jumps to the appropriate handler. In most cases the end of the handler
jumps back to the dispatch routine. To deter “disassembly” of the bytecode instructions, the code of
the VM (including the handlers) would be obfuscated in a randomized manner, and the order of the
handers in the table randomized, in a per-file basis.

The obfuscation is done using a pattern-based approach that repeatedly rewrites (“de-optimize”)
single instructions into more complicated but equivalent sequences of instructions in a randomized
fashion [11]. For instance, push EAX may be converted into either

sub ESP, 4

mov [ESP], EAX

or

push 0x1d9fa093

mov [ESP], EDX

mov [ESP], EAX

By repeating this process many times, a relatively short snippet of x86 can be transformed into a much
longer sequence of instructions whose functionality is no longer apparent.

2.2 Obfuscation Constants

In the Themida CISC VM, the main dispatch routine as well as about 15% of the handlers use an
additional “obfuscation constants” technique to make the process of disassembling bytecode into virtual
instructions more difficult.

Listing 1 shows the dispatch routine (after deobfuscation) in a particular packed file. Instead of
using a byte from the bytecode stream directly as the handler index, the byte is first passed through
an obfuscation function involving four randomly selected arithmetic operations (selected out of the set
{add, sub, xor}), two numeric constants, and the “state” register EBX, following the general pattern
above. The exact operations and constants will not be obvious in the obfuscated code. (The original
obfuscated version of the dispatch routine is shown in Appendix A.)

Note that the value of EBX is updated by the process, so the the exact operations and constants
need to be determined in order to statically disassemble a bytecode stream (i.e. determine the sequence
of handlers).

handler push imm32 :
lodsd ; copy four b y t e s from bytecode

; stream in to EAX, then increment
; the by tecode po in t e r ESI by 4

xor eax , ebx ; o b f u s ca t i on opera t i ons and cons tan t s
xor eax , 0 xdeadbeef
sub eax , 0 xcafebabe
xor ebx , eax

push eax ; hand ler body

Listing 2: A handler using two 32-bit obfuscation constants

Most handlers that take an immediate argument also use this technique. For example, the handler
that pushes a 32-bit constant onto the stack might look like Listing 2 in a particular file (after removing
x86 obfuscation).

In this case “lodsd” (load dword) is used instead of “lodsb” (load byte), and the obfuscation pattern
now involves the 4-byte registers EAX and EBX. (There is also a “lodsw” variety involving AX and
BX.) Again, the choice of operations and constants will not be obvious from looking at the obfuscated
x86 code for the handler. However, they will need to be determined before we can statically disassemble
the next bytecode instruction (since EBX is affected).

3 Methodology

Our general methodology was to locate obfuscated handlers in sample packed files, and attempt to
identify each one by comparing it with a list of reference specifications. The list of reference handlers
was compiled through a combination of outside literature and manual analysis aided by a custom
symbolic rewriter. To compare an unknown handler against a reference handler, both are symbolically
executed and the resulting machine states compared.

We now describe our method in more detail.

3.1 The Toolchain

In order to execute the handlers, we implemented a simple symbolic simulator written in Haskell,
heavily relying on the open-source SBV (SMT-Based Verification) library [5]. SBV provides a Haskell
API that works for several SMT solvers, specifically Z3, Yices, CVC4, and Boolector. It also supports
generating SMT-LIB2 output for use with solvers that are not directly supported.

Using SBV, we are able to set up a data type representing the state of a machine that operates on
symbolic values. We use a flat memory model implemented as function from 32-bit symbolic bit vectors
to symbolic bytes. SBV updates the function as values are stored to it. The registers are simply a
static length array of symbolic bit vectors, with specific array offsets corresponding to the x86 registers
EAX, EDX, etc. The emulator transforms the machine state according to instructions written in a
small custom intermediate language (IL). Our IL is RISC-like and resembles LLVM [2].

We wrote a translator that disassembles the handlers’ x86 binary instructions and translates them
into our IL. The disassembly process involved following unconditional jumps (inserted to complicate
analysis), and then recognizing when the translator has reached the end of the handler (since the jump
back into the dispatch routine initially looks just like the other jumps). Although the handlers and
obfuscation patterns used only a restricted subset of the possible x86 instructions (e.g. no floating point
operations were used), the translation of the required x86 instructions was quite labor intensive.

For our solver, we primarily used CVC4 [4], because it has a convenient API through the Haskell
SBV library; it performed well in comparison with other solvers; and its license permits commercial
use

3.2 Generating Equations

Once we have translated our unknown handler and a candidate reference handler into our IL, we apply
them to a common initial symbolic machine state and then compare specific portions of the resulting
final states using the SMT solver (through SBV). In both preparing the initial state and selecting which
part of the final states to compare, it was helpful to be familiar with general properties of the Themida
handlers.

For instance, many of the handlers that access memory do so in a small number of specific ways
relative to the initial register values. For example, a subset of handlers reference memory via EDX,
e.g. “push dword [EDX]”. When preparing the initial machine state for this reference handler, we can
start with zero memory and store a symbolic value x at the location addressed by the (either symbolic
or concrete) initial EDX value value of EDX). However, to capture the semantics of other handlers it
was useful to initialize memory using an uninterpreted function from symbolic 32-bit words to symbolic
bytes. For example, consider the handler

d i spatch :
lodsd ; l oad 4 b y t e s at e s i i n t o eax ,

; then increment e s i by 4

op1 eax , ebx ; unknown o b f u s c a t i o n p a t t e r n
op2 eax , const1 ;
op3 eax , const2 ;
op4 eax , ebx ;

push dword [eax]

Listing 3: Unknown obfuscation operations

with four unknown operations in {add, sub, xor} and two unknown 32-bit constants. In this case the
address of the memory read is not known a priori in terms of the initial machine state.

After symbolic emulation, we compare only certain registers and regions of memory that are most
likely to be (meaningfully) affected by most of the handlers. Indeed, a side effect of the extra obfuscation
code is to overwrites the area of the stack before the terminal stack pointer with garbage data, so we
had to take care to exclude that area of memory from our comparison. In effect, the obfuscated version
of the handler is not quite equivalent to the original version. For example, the obfuscated version of
the reference handler

pop eax
push [eax]

almost always pushes the same value on the stack as the original version—except when the source
address of the push happens to be in the area affected by the obfuscation.

Similarly, knowledge of the reference handlers helps us set constraints on program inputs to avoid
pointer aliasing problems. Besides using the stack, the handlers typically address memory at a small
offset from EDI, ESI, or EDX, so we make sure those initial values are at a safe distance away from
ESP (either by concretizing or adding symbolic constraints).

In addition, we were able to use the SMT solver to recover the unknown obfuscation operations
and constants described in Section 2.2. For example, consider an obfuscated handler shown in Figure 3
in deobfuscated form, with four unknown obfuscation operations and two constants. Originally, to
compare this handler against a particular reference handler, we take the fixed portion of the reference

handler and prepend it with each potential obfuscation pattern (choice of operations), using symbolic
values as the constants. In each case we then set the inputs to some concrete values, and try to solve
for a satisfying model for the constants. When we find a solution, we perform a secondary check on the
specific obfuscation pattern and constant values, using symbolic values for the initial machine state.
Later, noting that EBX not used by the constant portion of most of the reference handlers, we were
able to speed up the identification process by first solving for the obfuscation pattern and constants
independently of the reference handler, by comparing EBX and nothing else, and then looping over the
possible reference handlers once the obfuscation pattern and constants have been identified.

4 Experimental Results

We have tested our techniques on a simple “Hello world” program packed with Themida. For each
handler in the packed code, we try to identify it, by running an equivalence test against each file in a
list of reference specifications. This list of reference handlers were identified by using a combination
of a simple rewriter and manual analysis. For handlers that made use of an obfuscation constant as
in Section 2.2, we first identified the obfuscating operations and constants and then compared to each
handler using this technique.

We ran tests single threaded on a 2.26 GHz Intel Xeon processor. However the problem equivalence
checking against each item in a list in embarrassingly parallelizable, and for different cases could run
multi-threaded against different sections of the list to improve speed in the trivial way.

Our packed program contained 139 handlers that did not make use of obfuscation constants. We
gave these a timeout period of 30 seconds for each comparison. Of these, our techniques successfully
identified 124 of them, about 89%. Most of these finished in under 30 seconds whereas the longest
successful identification took about 11 minutes. The remaining 15 failed to match any of the reference
handlers. Figure 1 shows the timings for the 124 successful cases.

Figure 1: Time to identify simple handlers

In the case of handlers that made use of bytecode stream obfuscation we first performed a prelimi-
nary test to determine the obfuscation operations and constants. We timed these results. Afterward,
we ran a secondary test, looping over the appropriate set of reference handlers once we determine
the correct operations and constants. Once a matching handler was found, we stopped trying further
patterns. The results from this are summarized in Figures 2 and 3.

Type No. handlers No. w/ solved patterns No. matched

8-bit const. 13 11 10
16-bit const. 1 1 1
32-bit const. 15 12 12

Figure 2: Identifications of bytecode obfuscation patterns and handlers

Type Median time to solve pattern Median time to match

8-bit const. 102.11 s 63.28 s
16-bit const. 184.01 s 67.06 s
32-bit const. 91.39 s 52.59 s

Figure 3: Times to find bytecode obfuscation patterns and handlers

In the case of these handlers, the timings showed a large amount of variability. Identifying patterns
and constants could take as little as just over a minute to as much as just over an hour. Identifications
of the actual handler showed an even larger range, from about 8 seconds to just over an hour. Almost
all fell close to the range of the medians given in Figure 3.

5 Conclusions

Certain x86 operations such as division occasionally resulted in comparisons that would run for a long
time. We would like to investigate whether we may get a speedup by modeling the operation using an
interpreted function symbol rather than using the more precise arithmetic model.

In the future, we plan to compare results using various SMT solvers. Initially our efforts have
focused on using CVC4 however, Boolector has excellent performance on logical, bit-level operations
which may be more effective on specific handlers. Additionally, as packers continue to evolve, one
might expect the incorporation of API calls involving floating point operations. With the advent of Z3
currently implementing floating point arithmetic, it should be possible to add a floating point support
to our capability.

The techniques described in this note should be applicable to other virtualizing packers. Constraint
solving has traditionally been used in functional programming, yet there are a growing number of
applications in malware analysis. As has been pointed out previously [10], SMT solvers are becoming
a powerful tool for reverse engineers.

A Obfuscated dispatch routine

lodsb

xor al, bl

sub esp, 0x4

mov [esp], ebp

mov [esp], ebx

mov bl, 0x6c

shr bl, 0x7

xor bl, 0x70

xchg bl, ch

xchg ch, bh

not bh

xor ch, bh

xor bh, ch

xor ch, bh

xchg bl, ch

add bl, 0xde

push ecx

mov cl, 0xe3

shr cl, 0x7

xor cl, 0x6d

push eax

mov al, 0xa1

inc al

add al, 0xf2

add al, 0x72

xor cl, al

pop eax

dec cl

add cl, 0x1

xor cl, 0x63

add al, 0xfa

sub al, cl

sub al, 0xfa

pop ecx

add al, bl

push dword 0x15fb

mov [esp], ecx

mov ch, 0x68

push edx

push ecx

mov cl, 0xce

xchg cl, bh

not bh

xchg cl, bh

add cl, 0x5e

shl cl, 0x6

sub cl, 0x97

mov dh, cl

pop ecx

sub ch, dh

pop edx

not ch

sub ch, 0xaf

add ch, 0x48

push eax

mov al, 0xea

push ecx

mov cl, 0xba

xor al, cl

pop ecx

sub ch, al

pop eax

add al, ch

pop ecx

pop ebx

push word 0x235e

mov [esp], dx

push edx

mov edx, esp

push ecx

mov [esp], ebp

mov ebp, 0x4

add edx, ebp

mov ebp, [esp]

add esp, 0x4

sub edx, 0x4

xor edx, [esp]

xor [esp], edx

xor edx, [esp]

pop esp

mov [esp], ebx

push eax

push ecx

mov cl, 0xc5

mov al, cl

pop ecx

sub esp, 0x4

mov [esp], edx

mov dh, al

push ecx

mov ch, dh

mov bl, ch

pop ecx

push dword [esp]

pop edx

add esp, 0x4

pop eax

mov dh, bl

push dword [esp]

mov ebx, [esp]

add esp, 0x4

add esp, 0x4

add al, dh

mov dx, [esp]

add esp, 0x2

push ax

mov al, 0xfd

add bl, al

pop ax

sub bl, 0x5e

add bl, 0x1a

sub bl, al

push ecx

mov ch, 0x1a

sub bl, ch

pop ecx

push ecx

mov ch, 0x90

shr ch, 0x8

add ch, 0xff

push eax

push edx

mov dh, 0x4d

shl dh, 0x8

dec dh

not dh

or dh, 0x54

push cx

mov ch, 0xda

sub dh, 0x2b

sub dh, ch

push ebx

push ecx

mov cl, 0x7b

push eax

mov al, 0x63

dec al

not al

sub al, 0xed

mov bl, al

pop eax

add bl, cl

pop ecx

add dh, bl

pop ebx

pop cx

mov ah, dh

pop edx

and ch, ah

push dword [esp]

pop eax

push ebx

mov ebx, esp

add ebx, 0x4

add ebx, 0x4

push ebx

push dword [esp+0x4]

pop ebx

pop dword [esp]

pop esp

neg ch

add ch, 0x92

sub ch, 0xba

add bl, ch

pop ecx

push ax

mov al, 0xfd

sub bl, al

pop ax

movzx eax, al

jmp dword near [edi+eax*4]

References

[1] The Enigma Protector. http://enigmaprotector.com.

[2] The LLVM compiler infrastructure. http://llvm.org.

[3] VMProtect Software. http://vmpsoft.com.

[4] C. Barrett and C. Tinelli, CVC4: the smt solver. http://cvc4.cs.nyu.edu/web/.

[5] L. Erkok, SMT based verification: Symbolic haskell theorem prover using SMT solving. http:

//hackage.haskell.org/package/sbv, 2013.

[6] P. Ferrie, Anti-unpacker tricks, CARO Workshop, 2008.

[7] Oreans Technologies, Themida. http://www.oreans.com/themida.php.

[8] R. Rolles, The case for semantics-based methods in reverse engineering, RECON, 2012.

[9] , Finding bugs in VMs with a theorem prover, round 1. Rolf Rolles Blog, http://www.

openrce.org/blog/view/1963/, January 2012.

[10] J. Vanegue, S. Heelan, and R. Rolles, Smt solvers for software security. USENIX Workshop
on Offensive Technologies, 2012.

[11] Z. J. Wang, Virtual machine protection technology and AV industry, 2010. Microsoft Malware
Protection Center.

Extending Proof Tree Preserving Interpolation to
Sequences and Trees (Work In Progress)
Jürgen Christ

Albert-Ludwigs-Universität Freiburg
christj@informatik.uni-freiburg.de

Jochen Hoenicke
Albert-Ludwigs-Universität Freiburg

hoenicke@informatik.uni-freiburg.de

Abstract

We present ongoing work to extend proof tree preserving interpolation to inductive sequences and
tree interpolants. We present an algorithm to compute tree interpolants inductively over a resolution
proof. Correctness of the algorithm is justified by the concept of partial tree interpolants and the
appropriate definition of a projection function for conjunctions of literals onto nodes of the tree. We
observe great similarities between the interpolation rules for binary interpolation and those for tree
interpolation.

1 Introduction

Craig interpolation is widely used in model checking [6, 13, 15]. Instead of binary interpolation [5], these
techniques use inductive sequences or trees of interpolants. Tree interpolants arise from model-checking
recursive and concurrent programs in a natural way. An execution of the program with procedures can be
represented as a nested trace, where the statement after a procedure call has two predecessors, the return
statement of the called procedure and the procedure call itself. To reason about correctness in a modular
way requires combining the function summary with the intermediate assertion before the procedure call.
This leads naturally to a tree-like structure [11, 12]. Tree interpolants are also useful to approximate
function summaries for incremental update checking [17].

Similarly modular reasoning about concurrent programs need interference free proofs or assume-
guarantee reasoning. The proof of an intermediate assertions can depend on the previous assertion of
the same thread and the guarantees provided by the other threads. Thus, an unfolding of the parallel
program has again a tree-like shape. Other uses of interpolants in model-checking are data-flow graph
based method [8] which compute tree interpolants for an unfolded data-flow tree.

Although tree interpolants are widely used, only a few tools are able to produce them without the
need for repeated applications of binary interpolation to different interpolation problems. The techniques
used by these tools to ensure correctness of inductive sequences and trees of interpolants is not well
documented.

In this paper, we extend the recently proposed technique of proof tree preserving interpolation [3, 4]
to compute inductive sequences and trees of interpolants. The key idea of this technique is to define
partial interpolants in the context of mixed literals that cannot be assigned to a partition of the input
problem. This is achieved by introducing auxiliary variables and defining a projection function that
splits mixed literals using auxiliary variables. We extend the projection function to trees of formulae and
the notion of partial interpolants to partial tree interpolants. This allows us to compute tree interpolants
inductively over the proof tree and is an essential step towards the correctness proof of the algorithm.

We show that tree interpolants can be computed for every node separately provided that some pre-
cautions are met for leaf interpolation. We give a rule that allows for inductively computing partial tree
interpolants over a given proof. We observe that this rule for tree interpolation is identical to applying
the rule from [3] for binary interpolation for every node separately.

1

Extending Proof Tree Preserving Interpolation to Sequences and Trees Christ and Hoenicke

Related Work. Only a few publications describe how to compute tree interpolants. Gupta et al. [10]
describe how to solve a set of recursion-free Horn clauses over the theories of uninterpreted functions
and linear real arithmetic. This corresponds directly to the tree interpolation problem for a conjunctive
formula that does not contain negated equalities. They have stricter syntactic restrictions for the partial
solutions and a rule for combining these, which is similar to our combination rule for partial interpolants.
Our algorithm computes the same solutions when working on this fragment, however, we allow more
input problems and our method is complete even for linear integer arithmetic.

The interpolating version of Z3 (iZ3) [1] can extract tree interpolants although there is no publication
describing how it computes tree interpolants. iZ3 poses additional restrictions on the occurrence of
symbols in the input and treats every non-constant function symbol as global symbol. In contrast to the
method presented in this paper, iZ3 cannot interpolate linear real arithmetic and is incomplete on linear
integer arithmetic.

2 Notation

We assume the usual notation and terminology of many sorted first-order logic. We consider the quantifier-
free fragments of the theory of uninterpreted functions with atoms of the form s1 = s2 for two terms s1
and s2, and linear arithmetic over integer and reals. To allow for quantifier-free interpolation of integer
arithmetic, we extend the signature with the functions

⌊ ·
k

⌋
for all integers k ≥ 2. By Qε we denote the

rational numbers including an infinitesimal part [7], i. e., Qε =Q∪{c−ε | c ∈Q}. We assume that the
literals of linear arithmetic are normalised to the form ∑i ciai ≤ c where ai are constant symbols, ci ∈ Z,
and c ∈ Z (for integers) or c ∈ Qε (for reals). We use t ≤ c− ε to denote t < c. Note that in linear
arithmetic the negation of an atom ¬t ≤ c can be expressed as −t ≤−c− ε .

For formulae we use the symbols F and I (for interpolants). By symb(F) we denote the set of non-
logical symbols occurring in F . We denote constant symbols by a,b, terms by s, t, numerical constants
by c, variables by x, and set-valued variables by X . By I[F] we denote a formula that contains the sub-
formula F only positively. By I(t) we denote a formula that contains a term t. Given two clauses `∨C1
and ¬`∨C2 (called antecedents), the resolution rule

`∨C1 ¬`∨C2

C1∨C2

concludes C1∨C2. In the context of SMT, a resolution proof is a derivation of the empty clause ⊥ from
the input clauses, theory lemmas, and theory combination clauses using only the resolution rule.

3 Proof Tree Preserving Interpolation

A binary interpolation problem consists of a pair of formulae (A,B). An interpolant exists if A∧B is
unsatisfiable and the theory admits interpolation. An interpolant I satisfies (i) A |= I, (ii) B∧ I is unsat-
isfiable, and (iii) symb(I) ⊆ symb(A)∩ symb(B). In this section we briefly review proof tree preserving
interpolation [4]. This technique extends the interpolation algorithms given by Pudlák [16] and McMil-
lan [14] to mixed literals, i. e., literals containing symbols occurring only in formula A and symbols
occurring only in formula B. For a given binary interpolation problem (A,B), proof tree preserving inter-
polation algorithms define two projection functions for every literal `. The first projection, ` � A, projects
the literal onto A, the second, ` � B projects onto B. The algorithms from Pudlák and McMillan define
the projection functions for non-mixed literals and require the invariant `↔ (` � A)∧ (` � B). Usually,
one of the projections is ` and the other is >. The projection is extended to conjunctions of literals.

2

Extending Proof Tree Preserving Interpolation to Sequences and Trees Christ and Hoenicke

If ` is mixed, we cannot split the literal into two conjuncts such that the first conjunct only contains
symbols occurring in A and the second conjunct only contains symbols occurring in B. We extended
the projection function to mixed literals by introducing auxiliary variables. The invariant satisfied by
our projection function is the existential closure `↔ ∃x. ((` � A)∧ (` � B)) of the invariant above. For
example, the mixed literal a ≤ b may be split into a ≤ x and x ≤ b using the auxiliary variable x. The
auxiliary variable is used to connect the projections to the A and B part, similarly (but orthogonal) to
Nelson-Oppen theory combination.

To compute an interpolant from a resolution proof, we compute partial interpolants for every node
in the resolution proof: Given a clause C in the resolution proof of A∧B, a partial interpolant IC is an
interpolant for (A∧ (¬C � A),B∧ (¬C � B)). Computation of partial interpolants differs between input
clauses, theory lemmas, and results of resolution steps.

Since input clauses do not contain mixed literals, we can use the usual syntactic rules to compute
partial interpolants [14]. Unfortunately, for theory lemmas the situation is different. These lemmas
are the source of mixed literals in SMT proofs and, hence, need special procedures to compute partial
interpolants. We compute an interpolant for (¬C � A,¬C � B), i. e., an interpolant of the theory conflict
(the negation of the theory lemma) projected onto A and B. The conflict is interpolated using a theory
specific interpolator. Note that the auxiliary variables introduced during projection of mixed literals may
occur in the interpolant.

The algorithms from Pudlák and McMillan give rules to compute a partial interpolant for the conse-
quence of a resolution step given partial interpolants for the antecedents. The resulting partial interpolant
is either a conjunction, a disjunction, or a multiplexer depending on whether the pivot literal occurs only
in A, only in B, or in both. We extend these rules to handle mixed literals. The partial interpolants for
clauses containing mixed literals contain the auxiliary variables introduced by the projection function
only in specific syntactically restricted sub-formulae. The structure of these formulae makes it possible
to remove the auxiliary variable once the corresponding mixed literal is the pivot of a resolution step.
Details are out of the scope of this paper and can be found in [3, 4]. In this paper we will give slightly
different syntactic restrictions in Section 5.4 and define the interpolation rules in Section 5.5.

4 Tree Interpolation

A tree interpolation problem is specified by a (directed) tree T = (V,E) where V is a set of nodes,
E ⊆ V ×V is a set of edges (pointing from child to parent node), and L : V → Formula is a labelling
function that assigns a formula to every node in the tree. With st(v) := {w | (w,v) ∈ E∗} (where E∗ is
the reflexive transitive closure of E) we denote the set of nodes in the subtree with the root v. A solution
to the tree interpolation problem exists if the conjunction

∧
v∈V L(v) is unsatisfiable and the theories

involved support interpolation. A labelling function I : V → Formula is called a tree interpolant [1] for
T and L if the following properties hold:

1. I(vr)≡⊥ where vr is the root of T ,

2. (
∧

(w,v)∈E I(w))∧L(v) |= I(v) for all v ∈V ,

3. for every node v, all symbols in I(v) occur both inside the subtree rooted at v and outside this
subtree, i. e., symb(I(v))⊆ (

⋃
w∈st(v) symb(L(w)))∩ (⋃w′ /∈st(v) symb(L(w′))).

By lca(v,w), we denote the least common ancestor of v and w, i. e., the first common node in the
tree that is encountered when traversing the tree towards the root from v and w. Obviously, for any pair
of nodes v and w, the least common ancestor lca(v,w) is unique. Every non-empty set of nodes has a
unique least common ancestor, which can be computed by repeatedly applying the binary lca function.

3

Extending Proof Tree Preserving Interpolation to Sequences and Trees Christ and Hoenicke

We define for every node v ∈ V the set of symbols symb(v), that we could add to L(v) without
changing the symbol condition in the definition of tree interpolants. For a symbol a occurring in two
nodes v1,v2 ∈V , i. e., a ∈ symb(L(v1))∩ symb(L(v2)), we add a to symb(v) for every node v on the path
from v1 or v2 to their least common ancestor lca(v1,v2).

Lemma 1. Replacing symb(L(w)) with symb(w) does not change Condition 3. of tree interpolants. In
particular

⋃

w∈st(v)

symb(L(w)) =
⋃

w∈st(v)

symb(w) and
⋃

w′ /∈st(v)

symb(L(w′)) =
⋃

w′ /∈st(v)

symb(w′).

Inductive Sequences and Tree Interpolation

Given a sequence of n formulae F1, . . . ,Fn such that
∧n

i=1 Fi is unsatisfiable, an inductive sequence of
interpolants is a sequence of n+1 formulae I0, . . . , In such that (i) I0 ≡>, (ii) In ≡⊥, (iii) Ii−1∧Fi |= Ii

for 1 ≤ i ≤ n, and (iv) symb(Ii)⊆ (
⋃i

j=1 symb(Fj))∩ (
⋃n

j=i+1 symb(Fj)) for 1 ≤ i ≤ n. Such a sequence
can be computed either by repeatedly computing interpolants according to condition (iii), or by carefully
extracting all n+1 interpolants for this sequence from one proof.

Theorem 1 (Sequence Interpolation is Tree Interpolation). Inductive sequences of interpolants are a
special case of tree interpolants.

Since we can recast a sequence interpolation problem as a tree interpolation problem we will only
extend proof tree preserving interpolation to tree interpolation. The extension to sequences is left to the
reader.

5 Adapting Proof Tree Preserving Interpolation to Tree Interpolation

To adapt proof tree preserving interpolation to tree interpolation we have to adapt the projection function
used in binary interpolation to trees. Furthermore, we have to show that the interpolating resolution
rules are still valid, i. e., that the interpolants computed by these rules satisfy the properties of partial
tree interpolants. Throughout this section, let T = (V,E) and L be a tree interpolation problem and
v,vc,vp ∈V be nodes in the tree.

The projection function ` � v projects a literal ` onto the node v ∈V of the tree defining the interpo-
lation problem. As in [4], we introduce auxiliary variables x for mixed literals `. For tree interpolation,
we introduce a fresh variable for each node v ∈ V where the literal is mixed. The auxiliary variables
introduced for a node are shared with the parent node; for each edge (vc,vp) ∈ E, the projection ` � vp

also contains the auxiliary variables of node vc. The projection of a literal ` with the auxiliary variables
~x must satisfy two conditions. First, the conjunction of the projections of a literal ` onto every node in
the tree

∧
v∈V ` � v is equivalent to `, i. e.,

` ⇐⇒ ∃~x.
∧

v∈V

` � v where~x is the set of auxiliary variables introduced for `.

Second, ` � v must only contain theory symbols, symbols from symb(v), and the auxiliary variables
introduced for ` and v or the children of v.

Our algorithm computes a tree interpolant from the resolution proof by computing a partial tree
interpolant for every clause C occurring in the proof tree. Partial tree interpolants are defined using the
projection function as follows.

4

Extending Proof Tree Preserving Interpolation to Sequences and Trees Christ and Hoenicke

Definition 1 (Partial Tree Interpolant). A partial tree interpolant for a clause C is a tree interpolant for
T and L′ where L′(v) = L(v)∧ (¬C � v) for v ∈V .

Obviously, a partial tree interpolant of the empty clause is a tree interpolant of T and L. Note that
for an intermediate clause C a partial tree interpolant I may contain the auxiliary variables of the literals
occurring in the clause C. To be more precise, for a node v ∈ V the interpolant I(v) may contain the
auxiliary variables introduced for ` and v.

5.1 Adapting Propositional Interpolation Algorithms

In this section we show how the rules for propositional interpolation [16, 14] can be adapted to tree
interpolation. Since we only consider the propositional case, we assume no literal is mixed. In this case
we do not introduce any auxiliary variables. The projection ` � v is either ` or> and there must be at least
one node v ∈V with ` � v = `. These conditions guarantee ` ⇐⇒ ∧

v∈V ` � v. McMillan’s and Pudlák’s
algorithm only differ in the projection function. For Pudlák’s algorithm we set ` � v = ` if and only if
` ∈ symb(v). For McMillan’s algorithm we set ` � v = ` only for the least common ancestor of the nodes
v ∈V with ` ∈ symb(v).

Tree interpolants will be computed recursively over the resolution proof of the conjunction of the
labels of the tree. As in the binary case, we devise special rules to compute partial tree interpolants for
leaves of the proof tree. We compute partial tree interpolants for the resolution steps using the following
rule.

`∨C1 : I1 ¬`∨C2 : I2

C1∨C2 : I3 , where I3(v) =





I1(v)∨ I2(v) if ` � v′ => for all v′ /∈ st(v)
I1(v)∧ I2(v) if ` � v′ => for all v′ ∈ st(v)
(I1(v)∨ `)∧
(I2(v)∨¬`)

otherwise

The rule above can be interpreted as applying Pudlák’s resp. McMillan’s algorithm for each node
separately. The condition ` � v′ = > for all v′ /∈ st(v) means that the literal does not occur outside the
subtree of v, i. e., the literal is A-local if we see the subtree of v as the A partition of a binary interpolation
problem. Likewise the condition ` � v′ => for v′ ∈ st(v) means that the literal is B-local. If neither is the
case, the literal is shared.

Lemma 2. The rule above is correct, i. e., if I1 is a partial tree interpolant of `∨C1 and I2 a partial tree
interpolant of ¬`∨C2, then I3 is a partial tree interpolant of C1∨C2.

5.2 Occurrences of Symbols and Scope of Mixed Literals

An SMT proof may involve literals that are not in the original input formulae. These literals may be
mixed, i. e., they contain symbols from different nodes. Let ` be a literal with symb(`) = {a1, . . . ,an}.
If for a node v, some symbols occur only inside the subtree rooted at v and some symbols occur only
outside the subtree, we say that the literal ` is mixed in v. We denote with mixed(`) the set of all nodes v
such that ` is mixed in v.

For a symbol a we overload lca and denote with lca(a) the least common ancestor of all nodes v ∈V
with a ∈ symb(v). By the definition of symb(v) for v ∈V we have a ∈ symb(lca(a)) and a /∈ symb(v) for
v /∈ st(lca(a)). For every symbol a, lca(a) is the unique node such that all occurrences of a are in the
subtree of this node and a occurs in the node itself. Having a ∈ symb(lca(a)) is the main reason why we
defined symb(v) in this way.

If a literal ` is mixed in some nodes we denote by mixedparent(`) the least common ancestor of
nodes that have a child where ` is mixed. Then we can exactly characterise the set mixed(`) as follows:

5

Extending Proof Tree Preserving Interpolation to Sequences and Trees Christ and Hoenicke

Lemma 3. Let ` be a literal that is mixed in some nodes and contains the symbols a1, . . . ,an. Then

mixed(`) = {v ∈V | ∃i. 1≤ i≤ n. lca(ai) ∈ st(v) and mixedparent(`) is a proper ancestor of v}

5.3 Extending Projection

We now extend the projection functions to cope with mixed literals. For every literal ` and every node
v j ∈mixed(`), an auxiliary variable x j is introduced. The projection ` � v is chosen such that it is correct
with respect to the following definition.

Definition 2. Let � be a projection function. The projection function is correct, iff for all literals `:

` ⇐⇒ ∃~x.
∧

v∈V

` � v

where~x = {x j | v j ∈mixed(`)} is the set of all auxiliary variables introduced for the literal `.

5.3.1 Mixed Equalities

We start by giving the projection function for an equality literal ` :≡ a1 = a2. By Lemma 3, every node
vp ∈mixed(`) lies on a path between lca(ai) and mixedparent(`) (for some i ∈ {1,2}). The ai is unique,
since vp is not mixed if lca(ai) ∈ st(vp) for both i = 1,2. For each node vp ∈mixed(`) we introduce an
auxiliary variable xp that captures the value of this ai. The projection of ` achieves this by fixing the
value xp of a mixed node vp to the value xc of the (uniquely defined) child vc that lies on the path to the
unique lca(ai), or to the value of ai if vp = lca(ai). The projection of the node mixedparent(`) ensures
that a1 = a2 by making the auxiliary variables of the corresponding children equal.

a1 = a2 � vp =





xc1 = xc2 if (vc1 ,vp),(vc2 ,vp) ∈ E and vc1 ,vc2 ∈mixed(`)

ai = xc if (vc,vp) ∈ E, vc ∈mixed(`), and lca(ai) = vp

xc = xp if (vc,vp) ∈ E, vc,vp ∈mixed(`)

ai = xp if lca(ai) = vp, vp ∈mixed(`) for some i ∈ {1,2}
> otherwise

In the first two cases, we observe that a1,a2 occur inside the subtree of vp. Hence, vp is not mixed but has
at least one mixed child. By Lemma 3, vp =mixedparent(`). Usually, this means that there are exactly
two child nodes vc1 and vc2 in which ` is mixed, one an ancestor of lca(a1) and one an ancestor of lca(a2)
(first case). However, it is also possible that vp = lca(ai) for one of the two symbols a1, a2 (second case).
In both cases, the corresponding projection ensures that a1 = a2.

When ` is mixed in vp, the third or the fourth case applies. Then, for exactly one i ∈ {1,2}, lca(ai)
occurs in the subtree of vp. If already vp = lca(ai), we are in the forth case. Otherwise, the third case
applies and vc is the child containing lca(ai). Both projections ensure that xp = ai for the value ai that
occurs in the subtree of vp. The last case only applies if ` is not mixed in vp and vp 6= mixedparent(`).
The correctness of this projection is proved in the appendix.

The projection of a disequality a1 6= a2 is tricky. Instead of a plain auxiliary variable xp we introduce
a set-valued auxiliary variable Xp for every node vp where the literal is mixed. For such a node vp one
ai (i = 1,2) occurs only in the subtree of vp and the other only outside the subtree. The projections of
the literal enforce that Xp contains the value ai that occurs in the subtree of node vi and does not contain
the other value. It may contain other values different from a1 and a2 when the value of ai cannot be

6

Extending Proof Tree Preserving Interpolation to Sequences and Trees Christ and Hoenicke

expressed using only symbols shared between the subtree of vi and its complement. The projections of
a1 6= a2 are defined as follows.

a1 6= a2 � vp =





Xc1 ∩Xc2 = /0 if (vc1 ,vp),(vc2 ,vp) ∈ E and vc1 ,vc2 ∈mixed(`)

ai /∈ Xc if (vc,vp) ∈ E, vc ∈mixed(`), and lca(ai) = vp

Xc ⊆ Xp if (vc,vp) ∈ E, vc,vp ∈mixed(`)

ai ∈ Xp if lca(ai) = vp, vp ∈mixed(`) for some i ∈ {1,2}
> otherwise

Although the formulae are different, the cases are exactly the same as for equality. The fourth and third
formulae ensure that Xp contains the value ai that occurs in the subtree of vp. With this property, each of
the first two formulae ensures that a1 6= a2.

Despite the definition of the projection function, we do not need set-theoretic reasoning in our solver.
The projections are only used to prove the correctness of the resolution rule and the theory specific
interpolation rules. The theory specific interpolation algorithm is specialised to conflicts arising from
the Congruence Closure algorithm. Such conflicts may only contain a single disequality a1 6= a2 and
a chain of equalities that force the value of a1 and a2 to be equal. For each node vp where this literal
is mixed, we use the usual algorithm [9] to summarise equality chains originating from the subtree of
vp, which gives us a formula of the form ai = s1 ∧ s2 = s3 ∧ ·· · ∧ sn−1 = sn where ai is the symbol
that occurs in the subtree of vp. The projection of the mixed literal to the subtree of vp has the form
ai ∈ Xc1 ∧·· ·∧Xck ⊆ Xp, which can be summarised by ai ∈ Xp. The interpolant returned by our algorithm
is s1 ∈ Xp ∧ s2 = s3 · · · ∧ sn−1 = sn. Note, that if the conflict also contains mixed equalities, the plain
auxiliary variable xp introduced by that equality may occur in a shared terms si.

The syntactic restriction we pose on the partial invariants is that Xp occurs only in a literal s ∈ Xp,
where s is an arbitrary term (not containing a set-valued variable). In particular, s ∈ Xp may occur only
positively. To get a similar notation as in our previous paper [3], we define EQ(Xp,s) :≡ s ∈ Xp. On the
other hand, a variable xp introduced by a mixed equality may occur anywhere in the partial interpolant,
even under a function application or in the s-part of an EQ(Xp,s) term.

5.3.2 Mixed Inequalities

A linear inequality ` :≡ c1a1 + . . .+ cnan ≤ c is a comparison between a sum of n constant symbols ai

multiplied by a constant ci ∈ Z and a constant c ∈Qε for linear real arithmetic or c ∈ Z for linear integer
arithmetic. We introduce an auxiliary variable x j for every v j ∈mixed(`). We define a helper projection
for the sum.

c1a1 + · · ·+ cnan � vp = ∑
c | (vc,vp)∈E∧vc∈mixed(`)

xc + ∑
i | lca(ai)=vp

ciai

Thus, the projection of the sum to vp is the sum of all terms that occur in vp for the last time and the
sum of all auxiliary variables for all mixed child nodes. The projection of ` to the nodes v is defined as
follows.

` � vp =





(c1a1 + · · ·+ cnan � vp)≤ c if vp =mixedparent(`)

(c1a1 + · · ·+ cnan � vp)≤ xp if vp ∈mixed(`)

> otherwise

Again, the introduced auxiliary variable is shared between the node where it was introduced and its
parent node. It is allowed to occur in the partial interpolant of its node but only in the special pattern
LA(s,k,F) :≡ F which must occur positively in the interpolant. Here s is an affine sum of shared terms
and auxiliary variables. Every variable x occurring in F must also appear in s with a positive coefficient

7

Extending Proof Tree Preserving Interpolation to Sequences and Trees Christ and Hoenicke

and F must be monotone in x, i. e., x ≥ x′ =⇒ F(x)→ F(x′). Finally we require that F = ⊥ for s > 0
and F => for s<−k.

The algorithm we present here is a slight improvement of the algorithm in [3]. We could use the
same algorithm but the new one will compute slightly smaller interpolants. The basic difference is that
LA(s,k,F) was defined as s≤ 0∧(s≥−k→ F), while in our new definition we assume that F is already
false for s> 0 and true for s<−k. Also the monotonicity condition of F simplifies the correctness proof
by avoiding the weak and strong interpolant that was needed in our previous paper.

5.4 Interpolation of Theory Lemmas

Our algorithm uses the Congruence Closure algorithm to produce conflicts in the theory of equality. We
can compute the partial tree interpolant separately for every node of the tree. However, we must carefully
assign every literal to a unique node of the tree. Then for every node the A part of the interpolation
problem consists of all literals assigned to a node in the subtree and the B part consists of all other
literals.

Usually an interpolant is computed as the summary of the A paths built from the conflict. In the
presence of function congruence a more elaborated algorithm is needed [9]. This algorithm also works
for mixed equality literals if they are split into their projections. The auxiliary variables can only occur
in the interpolants of the nodes for which the variables were introduced.

However, for a mixed disequality it is not feasible to replace it by the projections of the literals as it
involves new predicates and universally quantified formulae. Instead, they need to be treated separately.
A conflict always involves exactly one disequality that contradicts an equality path. If this disequality is
mixed, there is always an A path of equalities that start at the A part of the mixed disequality and ends at
a shared symbol s. Instead of adding a summary equality, we add the literal X(s), where X is the mixed
predicate that was added for the mixed disequality in the current partition.

For inequalities we apply the algorithm of [3] for each partition to compute the tree interpolant.
Mixed inequalities are replaced by their projections on the nodes of the tree. This sums up all inequalities
that occur in the A part of the interpolation problem, i. e., the subtree of the node v for which we compute
the interpolant. Again we need to ensure that every literal is assigned to a unique node.

Conjecture 1. The computed partial interpolant will fulfil the invariants of partial tree interpolants.

5.5 Extended Interpolation Rules

The interpolation rules for tree interpolants are a straight-forward extension of the interpolation rules
for binary interpolation presented in Section 3. For every resolution step in the resolution proof of
unsatisfiability, we compute for every node v ∈ V an interpolant. If `∨C1 has partial tree interpolant I1
and ¬`∨C2 has partial tree interpolant I2, we can compute a tree interpolant I3 for C1∨C2 by node-wise
computing partial interpolants. For v ∈ V , I3(v) is a combination of the pivot literal ` and the partial
interpolants I1(v) and I2(v) of the antecedents of the resolution step.

The computation of I3(v) from I1(v) and I2(v) is done by the same algorithm as for binary interpola-
tion [3]. If the literal ` is not mixed in v we use the definition from Section 5.1. If the literal is mixed in
v, we use a special interpolation rule mixcomb(`, I1(v), I2(v)) that takes two partial interpolants (i. e., the
labels of the corresponding partial tree interpolants at the node v) and computes a new partial interpolant
for the resolvent. The partial interpolants I1(v) and I2(v) may contain the auxiliary variables introduced
by ` in v, which may not occur in the resulting partial interpolant.

8

Extending Proof Tree Preserving Interpolation to Sequences and Trees Christ and Hoenicke

`∨C1 : I1 ¬`∨C2 : I2

C1∨C2 : I3 , where I3(v) =





I1(v)∨ I2(v) if ` � v′ => for all v′ /∈ st(v)
I1(v)∧ I2(v) if ` � v′ => for all v′ ∈ st(v)
mixcomb(`, I1(v), I2(v)) if v ∈mixed(`)

(I1(v)∨ `)∧
(I2(v)∨¬`)

otherwise

For a mixed equality, our syntactic restriction of interpolants guarantees that the first interpolant is
of the form I1[EQ(X ,s1)] . . . [EQ(X ,sn)], i. e., all occurrences of the auxiliary variable X are in a literal
EQ(X ,si) occurring positively in the formula. The second interpolant I2(x) has no syntactic restric-
tions. The combined interpolant is obtained by replacing each literal EQ(X ,si) in I1 by I2(si), which is
expressed as

mixcomb(a = b, I1[EQ(X ,s1)] . . . [EQ(X ,sn)], I2(x)) :≡ I1[I2(s1)] . . . [I2(sn)].

For an inequality, a partial interpolant of `∨C1 has the shape

I1[LA(c11x1 + s11,k11,F11)] . . . [LA(c1nx1 + s1n,k1n,F1n)].

We use LA1i(x1) as short-hand for LA(c1ix1 + s1i,k1i,F1i) and write the formula above as I1[LA1i(x1)].
Similarly, we write I2[LA2 j(x2)] for a partial interpolant I2[LA21(x2)] . . . [LA2m(x2)] of ¬`∨C2. For each
pair LA1i and LA2 j we compute a formula LA3i j := LA(s3i j,k3i j,F3i j) such that LA3i j ⇐⇒ ∃x. LA1i(x)∧
LA2 j(−x). This is possible since the value of an LA(s,k,F) is only unknown for −k ≤ s(x) ≤ 0. In the
integer case we can enumerate all possible values of x in this interval:

s3i j := c2 js1i + c1is2 j

k3i j := c2 jk1i + c1ik2 j + c1ic2 j

F3i j :≡

⌈
k1i+1

c1i

⌉

∨

i=0

F1i

(⌊−s1i

c1i

⌋
− i
)
∧F2 j

(
i−
⌊−s1i

c1i

⌋)

In the real case the constant k is guaranteed to be either −ε or 0. Thus, there is at most one interesting
value. We use the following definitions.

s3i j := c2 js1i + c1is2 j

k3i j :=

{
k2 j if k1i =−ε
0 if k1i = 0

F3i j :≡





F2 j

(
s1i
c1i

)
if k1i =−ε

s3i j < 0∨
(

F1i

(
− s1i

c1i

)
∧F2 j

(
s1i
c1i

))
if k1i = 0

The partial interpolant of the resolvent C1∨C2 in the mixed case can be expressed as

mixcomb(t ≤ c, I1[LA1i], I2[LA2 j]) :≡ I1[I2[LA311] . . . [LA31m]] . . . [I2[LA3n1] . . . [LA3nm]].

The interpolation rules are exactly the same as for the binary case. The only differences between the
definition above and the one in [3] is a small simplification of the rule for linear arithmetic that would
also be applicable to the binary interpolation case and the exact definition of EQ(X ,s), which is only
needed for the correctness proof and not used in the interpolation algorithm.

Conjecture 2. The extended interpolation rules with the definition of mixcomb for the equality and
inequality literals given above is correct. Thus, if I1 and I2 are partial tree interpolants for the clauses
`∨C1 and ¬`∨C2 respectively, then I3 is a partial tree interpolant for the clause C1∨C2.

9

Extending Proof Tree Preserving Interpolation to Sequences and Trees Christ and Hoenicke

6 Conclusion

We presented our ongoing work to extend proof tree preserving interpolation to tree interpolation, a gen-
eralisation of sequence interpolation. The key ingredients are the extension of the projection functions
to mixed literals by introducing auxiliary variables and predicates, a syntactic restriction of the occur-
rence of these auxiliary symbols in the partial tree interpolants, and a set of rules to compute partial tree
interpolants for resolution steps on mixed literals. The major difficulty with this technique lies in the
correctness proofs that are still part of ongoing work. To our knowledge, this is the first paper to focus
on the problem of extracting tree interpolants from resolution proofs produced by state-of-the-art SMT
solvers. The interpolation technique is implemented in the interpolating SMT solver SMTInterpol [2].

References
[1] iZ3 documentation. http://research.microsoft.com/en-us/um/redmond/projects/z3/old/

iz3documentation.html. Accessed: 2012-10-05.
[2] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: An interpolating SMT solver. In

SPIN’12, pages 248–254. Springer, 2012.
[3] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. Proof tree preserving interpolation. In TACAS’13,

pages 124–138. Springer, 2013.
[4] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. Proof tree preserving interpolation. Reports of SFB/TR

14 AVACS 89, SFB/TR 14 AVACS, February 2013. ISSN: 1860-9821, http://www.avacs.org.
[5] William Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. J.

Symb. Log., 22(3):269–285, 1957.
[6] Klaus Dräger, Andrey Kupriyanov, Bernd Finkbeiner, and Heike Wehrheim. SLAB: A certifying model

checker for infinite-state concurrent systems. In TACAS’10, pages 271–274. Springer, 2010.
[7] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for DPLL(T). In CAV’06, pages

81–94. Springer, 2006.
[8] Azadeh Farzan, Zachary Kincaid, and Andreas Podelski. Inductive data flow graphs. In POPL’13, pages

129–142. ACM, 2013.
[9] Alexander Fuchs, Amit Goel, Jim Grundy, Sava Krstic, and Cesare Tinelli. Ground interpolation for the

theory of equality. In TACAS’09, pages 413–427. Springer, 2009.
[10] Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. Solving recursion-free horn clauses over

LI+UIF. In APLAS’11, pages 188–203. Springer, 2011.
[11] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Nested interpolants. In POPL’10, pages 471–

482. ACM, 2010.
[12] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan. Abstractions from proofs.

In POPL’04, pages 232–244. Springer, 2004.
[13] Kenneth L. McMillan. Interpolation and SAT-based model checking. In CAV’03, pages 1–13. Springer, 2003.
[14] Kenneth L. McMillan. An interpolating theorem prover. Theor. Comput. Sci., 345(1):101–121, 2005.
[15] Kenneth L. McMillan. Lazy abstraction with interpolants. In CAV’06, pages 123–136. Springer, 2006.
[16] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symb.

Log., 62(3):981–998, 1997.
[17] Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. Incremental upgrade checking by means of

interpolation-based function summaries. In FMCAD’12, pages 114–121. IEEE, 2012.

10

Extending Proof Tree Preserving Interpolation to Sequences and Trees Christ and Hoenicke

A Example

We present our algorithm on the tree interpolation problem from Figure 1(a) consisting of four nodes.
In the figure we draw the arrows from children to parent. Each node contains the labelling depicted by
the corresponding figure, i. e., either the input labelling, or a (partial) tree interpolant. The numbers in
Figure 1(a) will be used to identify the individual nodes. The (extended) symbol set symb(v) for each
node is given in Figure 1(b).

4: q 6= r

2: c = d

1: a = c∧q = f (a)

3: d = b∧ f (b) = r

(a) Interpolation Problem

{q,r, f}

{c,d,q, f}

{a,c,q, f}

{d,b,r, f}

(b) Symbol set symb(v) for each node

Figure 1: Tree interpolation problem and symbol set used throughout this section.

A.1 Leaf Interpolation for Equality Theory

We assume the solver for the theory of equalities produces the literal a = b and detects the conflicts
q = f (a)∧ a = b∧ f (b) = r∧ q 6= r and a = c∧ c = d ∧ d = b∧ a 6= b. We show how to derive partial
tree interpolants for these conflicts from the corresponding congruence graphs.

Figure 2(a) gives the projection of the conflict onto the individual nodes. For the literal a = b, which
is mixed in nodes 1, 2, and 3, we introduce the auxiliary variables x1,x2,x3. In Figure 2(b) we show
the corresponding Congruence Closure graph which we already extended by the auxiliary variables.
The horizontal edges denote equalities and are labelled by the node that contains the equality literal. The
vertical arrows denote function application and the dotted edge is a derived congruence. The inequality is
depicted by the top edge. The interpolation algorithm summarises for each node the equalities occurring
in the corresponding subtree. If the equality chain crosses a function application, e. g., q = f (a) and
a = x1, we need to lift the end-point yielding q = f (x1). For Node 4, the (dis-)equality chain spans the
whole cycle and is summarised by ⊥. The resulting partial tree interpolant is given in Figure 2(c).

r 6= q
x2 = x3

x1 = x2

q = f (a)
a = x1

f (b) = r
x3 = b

(a) Interpolation Problem

q f (a)

a x1 x2 x3 b

f (b) r
1 3

1 2 4 3

/
4

(b) Corresponding Congruence Graph

⊥

q = f (x2)

q = f (x1)

f (x3) = r

(c) Partial Tree Interpolant

Figure 2: Interpolating the conflict q = f (a)∧a = b∧ f (b) = r∧q 6= r.

11

Extending Proof Tree Preserving Interpolation to Sequences and Trees Christ and Hoenicke

The second conflict a = c∧ c = d ∧ d = b∧ a 6= b contains the negated literal a 6= b, for which we
introduce set-valued auxiliary variables X1,X2,X3. Figure 3(a) gives the projection of the conflict onto
the individual nodes. The corresponding Congruence Closure graph is given in Figure 3(b). Here, we
split the disequality into the literals a∈ X1, X1⊆ X2, X2∩X3 = /0 and b∈ X3. These literals are sketched in
the figure by dashed edges. The interpolants are computed as usual by summarising the edges belonging
to one subtree. Here, d = c, c = a, a ∈ X1 and X1 ⊆ X2 is summarised by d ∈ X2. The literal X2∩X3 = /0
occurs only in the node mixedparent(a 6= b) and the literal is not mixed in that node. Thus, we never
need to build a summary including this edge. The resulting partial tree interpolant is given in Figure 3(c).

X2∩X3 = /0

c = d
X1 ⊆ X2

a = c
a ∈ X1

d = b
b ∈ X3

(a) Interpolation Problem

a

X1 X2 X3

c d b

2
/
4

1 2 3

1 3

(b) Corresponding Congruence Graph

⊥

d ∈ X2

c ∈ X1

b ∈ X3

(c) Partial Tree Interpolant

Figure 3: Interpolating the conflict a = c∧ c = d∧d = b∧a 6= b.

A.2 Interpolation Rule for Resolution Proof

The theory lemma clauses corresponding to the conflicts in the previous section are combined by the
resolution rule to a new clause.

a = b∨a 6= c∨ c 6= d∨d 6= b a 6= b∨q 6= f (a)∨ f (b) 6= r∨q = r

a 6= c∨ c 6= d∨d 6= b∨q 6= f (a)∨ f (b) 6= r∨q = r

Since the pivot is mixed in nodes 1, 2, and 3, we need to apply mixcomb to combine the partial inter-
polants of these nodes. For equality literals the interpolants have the shape I1[s ∈ X] and I2(x) (in our
case I1[F]≡ F). The resulting interpolant for each node is computed as I1[I2(s)], which basically means
that we just have to replace in the second interpolant xi by the term s, where s ∈ Xi is the first interpolant.
The result is shown in Figure 4.

⊥

d ∈ X2

c ∈ X1

b ∈ X3

(a) Partial Tree Interpolant
of a = b∨ . . .

⊥

q = f (x2)

q = f (x1)

f (x3) = r

(b) Partial Tree Interpolant of
a 6= b∨ . . .

⊥

q = f (d)

q = f (c)

f (b) = r

(c) Partial Tree Interpolant of
resolvent

Figure 4: Applying the interpolation rule for resolution.

12

Extending Proof Tree Preserving Interpolation to Sequences and Trees Christ and Hoenicke

B Proofs, Proof Sketches, and Proof Ideas

B.1 Proof of Lemma 1

Proof. Assume we added a to symb(w) for some w ∈ st(v). For w there are v1,v2 ∈ V with a ∈
symb(L(vi)). At least one of them is a descendent of w, hence there is another node in vi ∈ st(v) with
a ∈ symb(L(vi)). On the other hand, if we added a to symb(w′) for some w′ /∈ st(v). Then again there are
v1,v2 ∈V with a ∈ symb(L(vi)). If both of these nodes would lie in st(v), then v would be a common an-
cestor of v1 and v2 which contradicts w /∈ st(v). Hence there is a node vi /∈ st(v) with a∈ symb(L(vi)).

B.2 Proof for Theorem 1

Proof. Given a sequence interpolation problem F1, . . . ,Fn, construct a tree as follows. Let T = (V,E)
with V = {v0,v1, . . . ,vn}, E = {(vi−1,vi) | 1 ≤ i ≤ n}, L(vi) = Fi for 1 ≤ i ≤ n, and L(v0) = >. Given
a solution I to the tree interpolation problem T = (V,E) and L, a solution to the sequence interpolation
problem is Ii := I(vi).

B.3 Proof Sketch of Lemma 2

Proof Sketch. Fixing a node vp we have to show
∧

(vc,vp)∈E I3(vc)∧ L(vp)∧ (¬C1 ∧¬C2) � vp |= I3(vp)
and can assume that a similar condition holds for I1 and I2. We distinguish three cases.

Case 1. There is an edge (vc,vp) ∈ E with ` � v = > for all v /∈ st(vc). Then I3(vc) = I1(vc)∨ I2(vc)
and I3(vp) = I1(vp)∨ I2(vp). Also for all other edges (v′c,vp) ∈ E, ` � v = > for all v ∈ st(v′c), hence
I3(v′c) = I1(v′c)∧ I2(v′c).

Assume
∧

(vc,vp)∈E I3(vc) holds, then
∧

(vc,vp)∈E I1(vc) or
∧

(vc,vp)∈E I2(vc) hold. Using the induction
hypothesis for I1 and I2 we derive that I1(vp) or I2(vp) hold (note that ` � vp => since vp /∈ st(vc)). Then
I3(vp) holds.

Case 2. Assume ` � v => for all v ∈ st(vp). Then I3(vp) = I1(vp)∧ I2(vp) and I3(vc) = I1(vc)∧ I2(vc)
for all (vc,vp) ∈ E. From

∧
I3(vc) we conclude that

∧
(vc,vp)∈E I1(vc) and

∧
(vc,vp)∈E I2(vc) hold. Using the

induction hypothesis (again ` � vp =>) we derive I1(vp) and I2(vp) thus I3(vp).

Case 3. Otherwise I3(vc) =⇒ (I1(vc)∨`)∧(I2(vc)∨¬`) for all (vc,vp)∈ E since we are not in Case 1.
With the induction hypothesis and ` =⇒ ` � vp we derive from

∧
I3(vc) that (I1(vp)∨ `)∧ (I2(vp)∨¬`)

holds. Since we are not in Case 2, this implies I3(vp).

B.4 Proof of Lemma 3

Proof. We first show

mixed(`)⊆ {v ∈V | ∃i. 1≤ i≤ n. lca(ai) ∈ st(v) and mixedparent(`) is a proper ancestor of v}.

Let v ∈mixed(`). Since ` is mixed in v, there is at least one symbol ai that occurs only inside the subtree
of v. Hence, lca(ai) ∈ st(v) for some i. Moreover, the mixedparent(`) is an ancestor of the parent of v,
hence it is a proper ancestor of v.

For the other direction

mixed(`)⊇ {v ∈V | ∃i. 1≤ i≤ n. lca(ai) ∈ st(v) and mixedparent(`) is a proper ancestor of v}

13

Extending Proof Tree Preserving Interpolation to Sequences and Trees Christ and Hoenicke

take a node v, from the set on the right-hand side. Then there is an i such that lca(ai) ∈ st(v), i. e., ai

occurs only inside the subtree of v. It remains to show that there is another symbol that occurs only
outside the subtree of v. There must be a node w ∈ mixed(`) such that v is not a proper ancestor of w
(otherwise v would be an ancestor of mixedparent(`)).

Case 1: w is an ancestor of v. There is a symbol a j that only occurs outside of the subtree of w. Thus,
this symbol occurs only outside of the subtree of v, so ` is mixed in v.

Case 2: w and v have disjoint subtrees. There is a symbol a j that only occurs inside of w. Thus, this
symbol occurs only outside of the subtree of v, so ` is mixed in v.

B.5 Projection Function is Correct

Lemma 4 (Correctness of the Projection Function). The projection function defined in Section 5.3 is
correct (in the sense of Definition 2.

Proof Sketch. For `≡ a1 = a2, show by induction on vp that

∃{x j|v j ∈ (st(vp)\{vp})∩mixed(`)}.
∧

v j∈st(vp)

` � v j

⇐⇒





> if v j /∈mixed(`) for all v j ∈ st(vp),
ai = xp if vp ∈mixed(`), lca(ai) ∈ st(vp),
a1 = a2 if mixedparent(`) ∈ st(vp).

For `≡ a1 6= a2, show by induction on vp that

∃{X j|v j ∈ (st(vp)\{vp})∩mixed(`)}.
∧

v j∈st(vp)

` � v j

⇐⇒





> if v j /∈mixed(`) for all v j ∈ st(vp),
ai ∈ Xp if vp ∈mixed(`), lca(ai) ∈ st(vp),
a1 6= a2 if mixedparent(`) ∈ st(vp).

For `≡ ∑ciai ≤ c, show by induction on vp that

∃{x j|v j ∈ (st(vp)\{vp})∩mixed(`)}.
∧

v j∈st(vp)

` � v j

⇐⇒





> if v j /∈mixed(`) for all v j ∈ st(vp),

∑lca(ai)∈st(vp) ciai ≤ xp if vp ∈mixed(`),

∑lca(ai)∈st(vp) ciai ≤ c if mixedparent(`) ∈ st(vp).

B.6 Proof Idea for Leaf Interpolation (Conjecture 1)

Proof Idea. For equality conflicts that does not contain a mixed disequality the A paths in the interpolant
of the parent node are the summary of all literals occurring in the subtree. It is thus the summary of the
literals occurring in the parent node and the equalities in the interpolants of the interpolants of the child
nodes. Thus it follows from them.

14

Extending Proof Tree Preserving Interpolation to Sequences and Trees Christ and Hoenicke

For mixed disequality we also summarise the literals s = a, a ∈ X1, and X1 ⊆ X2 to s ∈ X2. When
moving to a mixed parent of a mixed child it is not too difficult to see that when the equality chain is
extended at the front by s′ = s (e. g. in another child node) and the subset chain is extended by X2 ⊆ X3,
that the summary s′ ∈ X3 of the parent node can be derived from these formulae. Finally, when moving
to the node mixedparent(a1 6= a2) we summarise the child interpolants a1 ∈ Xc1 and a2 ∈ Xc2 together
with Xc1 ∩Xc2 = /0 to a1 6= a2.

For inequality conflicts, the interpolant of the parent node is the sum of all inequalities occurring in
the subtree (multiplied with their respective Farkas coefficient). This is just the sum of the interpolants
of the child nodes and the inequalities occurring in the parent node.

B.7 Proof Idea for Extended Interpolation Rule (Conjecture 2)

Proof Idea. If the pivot literal is not mixed, the correctness follows from Lemma 2.
For mixed equality literals we need to do a case split over the four cases of the projection function

(two children are mixed, one child is mixed, both parent and one child is mixed, and only the parent
is mixed). The proof uses the induction hypothesis for I1 and I2. In the induction hypothesis for I1 the
variables Xc and Xp may occur. The trick is now to instantiate the variable Xc by the set {x|Ic

2(x)} and
likewise for Xp. The remaining proof is tedious but straight-forward.

For a mixed inequality literal we need the fact that LA3i j ⇐⇒ ∃x.LA1i(x)∧LA2 j(−x) holds, which
we proved in [4]. The technical difficulty of the proof lies in finding a common x that works for all terms
LA1i(x) and LA2 j(−x) that occur in the interpolants I1 and I2. This can be achieved by choosing the
minimum x for i and the maximum x for j using the monotonicity of LA. Then one can show that if for a
mixed child I1[I2[LA3i j]] holds, there is an x such that I1[LA1i(x)] and I2[LA2 j(−x)] holds (except for one
special case where I2 ≡⊥ that needs to be handled separately). Likewise for a mixed parent I1[LA1i(x)]
and I2[LA2 j(−x)] imply I1[I2[LA3i j]]. Now the remaining proof is straight-forward using the induction
hypothesis.

15

Reducing the Complexity of Quantified

Formulas via Variable Elimination

Aboubakr Achraf El Ghazi, Mattias Ulbrich, Mana Taghdiri and Mihai Herda

Karlsruhe Institute of Technology, Germany
{elghazi, ulbrich, mana.taghdiri}@kit.edu, mihai.herda@student.kit.edu

Abstract

We present a general simplification of quantified SMT formulas using variable elimina-
tion. The simplification is based on an analysis of the ground terms occurring as arguments
in function applications. We use this information to generate a system of set constraints,
which is then solved to compute a set of sufficient ground terms for each variable. Univer-
sally quantified variables with a finite set of sufficient ground terms can be eliminated by
instantiating them with the computed ground terms. The resulting SMT formula contains
potentially fewer quantifiers and thus is potentially easier to solve. We describe how a
satisfying model of the resulting formula can be modified to satisfy the original formula.
Our experiments show that in many cases, this simplification considerably improves the
solving time, and our evaluations using Z3 [9] and CVC4 [1] indicate that the idea is not
specific to a particular solver, but can be applied in general.

1 Introduction

Determining the satisfiability of first-order formulas with respect to theories is of central impor-
tance for system specification and verification. Current Satisfiability Modulo Theories (SMT)
solvers have made significant progress in handling this problem efficiently. SMT solvers such as
CVC4 [1], Yices1 [5], and Z3 [9] successfully address formulas containing quantifiers. They solve
quantified formulas using heuristic quantifier instantiation based on the E-matching instantia-
tion algorithm which was first introduced by Simplify [4]. Although E-matching, because of its
heuristic nature, is not complete, not even refutationally, it is best suited for integration into
the DPLL(T) framework. Some techniques (e.g. [11, 7]) have extended E-matching in order to
make it complete for some fragments of first-order logic.

In spite of all the advances, the presence of quantifiers still poses a challenge to the solvers.
In this paper, we propose a simplification of quantified SMT formulas that can be applied
as a pre-process before calling an SMT solver. Given a (skolemized) SMT formula A, our
simplification returns an equisatisfiable SMT formula A′ with potentially fewer universally
quantified variables. Our simplification approach is syntactic in the sense that it extracts a set
of set-valued constraints from the structure of A whose solution is a set of sufficient ground
terms for every variable. Those variables whose sets of sufficient ground terms are finite can
be eliminated by instantiating them with the computed ground terms. If the resulting formula
A′ is unsatisfiable, A is guaranteed to be unsatisfiable too. However, if A′ has a model, it is
not necessarily a model of A. We describe how any model of A′ can be modified into a model
for A without any significant overhead. This requires a special treatment of the interpreted
functions. Our simplification procedure can also be applied if the logic of the input formula is
not decidable; it can still reduce the number of quantifiers, thus simplifying the proof obligation.

Although our elimination process reduces the number of quantifiers, it may increase the
number of occurrences of the remaining quantified variables (if any) (Appendix A gives an
example). Depending on the complexity of the involved terms, this may introduce additional

1

overhead for the solver. Therefore, in order to apply our simplification as a general preprocessing
step, it is important to balance the number of eliminated variables and the number of newly
introduced variable occurrences. We define a metric that aims for estimating the cost of variable
elimination, and allow the user to provide a threshold for the estimated cost.

We have applied our simplification approach to 201 benchmarks from the SMT competi-
tion 2012 using CVC4 and Z3. The results indicate that in many cases, this simplification
significantly improves the solving time, especially when a cost threshold is applied.

2 Background

This section provides a background on the first-order logic (FOL) (see [12] for more details).
Terms are constructed from variables in V ar, predicate symbols in P and function symbols in
F 1. Predicate and function symbols are given an arity by α : F ∪ P → N. Function symbols
with arity 0 are called constants and are denoted as Con ⊆ F . The set Term of terms and the
set For of formulas are defined inductively as usual. Terms without variables are called ground
terms and denoted as Gr ⊆ Term. The set Gr(t) denotes all the ground terms occurring as
subterms in a term t. We write t[x1:n] to denote that the variables x1, . . . , xn (for short x1:n)
occur in a term t. For an expression t ∈ Term ∪ For, a variable x and a ground term gt,
the expression t[gt/x] substitutes gt for all the occurrences of x in t. We apply substitutions
(aka. instantiations) also to finite sets S of ground terms as t[S/x] := {t[gt/x] | gt ∈ S}. The
Herbrand universe H(A) of a formula A is the set of all ground terms built from A. That
is, all constants occurring in A, are in H(A), and for each function f occurring in A and
gt1, . . . , gtα(f) ∈ H(A), f(gt1, . . . , gtα(f)) ∈ H(A).

A literal is an atomic formula or a negated atomic formula. A clause is a disjunction of
literals. A formula is in clause normal form (CNF) if it is a conjunction (C1 ∧ . . . ∧ Cn) of
clauses where all Ci are quantifier-free and all variables are implicitly universally quantified. We
assume, unless stated otherwise, that all considered formulas are in CNF and all variables are
unique. When required, we refer to clauses and CNFs as sets of literals and clauses, respectively.

A semantical structure (also called a model) M is a tuple (|M |,M), with a non-empty
universe |M |, and a mapping M that defines an interpretation for every symbol in F ∪ P ,
i.e. for f ∈ F , M(f) : |M |α(f) → |M |, and for p ∈ P , M(p) ⊆ |M |α(p). Variables get
their values from a variable assignment function β : V ar → |M |. The interpretation (M,β)(t)
of a term t is defined inductively, and the interpretation of a set of terms S is defined as
(M,β)(S) = {(M,β)(s) | s ∈ S}. For a formula A ∈ For, we use M |= A if M is a satisfying
model (or, for short, a model) of A, i.e. A is true in M. We use |= A if A is universally valid.

A theory T is a deductively closed set of formulas. A T -model M is a model that satisfies
all the formulas in T . A formula A ∈ For is satisfiable modulo theory T if there exists a
T -model with M |= A, for short M |=T A. The function symbols that have their semantics
(partially) fixed by T are called interpreted and all others are uninterpreted. If a term contains
an interpreted function which is applied to a variable, we call it an interpreted term, otherwise,
an uninterpreted term. We denote variables by x, y, . . . ; constants by a, b, . . . ; ground terms
by gti; uninterpreted functions by f, g, . . . ; interpreted functions by opi; predicates by p, q, . . . ;
terms by s, t, . . . ; formulas by A,B, . . . ; values by vi; and the considered SMT theory by T .

1We distinguish between functions and predicates only when needed.

(1) c1 6= c2
(2) ∀x | f(x) = f(c1)
(3) ∃z | ∀y | ¬p(y, z)∨ f(y) = c2
(4) ∃z | f(z) = c1

(1) c1 6= c2
(2) ∀x | f(x) = f(c1)
(3) ∀y | ¬p(y, c3)∨f(y) = c2
(4) f(c4) = c1

(1) c1 6= c2
(2) f(c1) = f(c1)
(2) f(c4) = f(c1)
(3) ¬p(c1, c3)∨f(c1) = c2
(3) ¬p(c4, c3)∨f(c4) = c2
(4) f(c4) = c1

(a) (b) (c)

M(c1) = 1,M(c2) = 2,M(c3) = 3,M(c4) = 4

M(f)(v) =





1 if v = 1

1 if v = 4

any value else

M(p)(v, 3) =





false if v = 1

false if v = 4

any value else

(d)

Mπ(c1) = M(c1) = 1,Mπ(c2) = M(c2) = 2,Mπ(c3) = M(c3) = 3,Mπ(c4) = M(c4) = 4

Mπ(f)(v) =

{
M(f)(v) if v ∈ {1, 4}
M(f)(M(c1)) else

= 1 for all v

Mπ(g)(v, c3) =

{
M(g)(v,M(c3)) if v ∈ {1, 4}
M(g)(M(c1),M(c3)) else

= false for all v

(e)

Figure 1: Example. (a) original SMT formula, (b) CNF formula, (c) instantiated formula, (d)
a model for the instantiated formula, and (e) a model for the original formula.

3 Example

Figure 1(a) shows an SMT formula (as a set of implicitly conjoined subformulas) in which c1
and c2 represent constants, f is a unary function, and p is a binary predicate. Figure 1(b)
shows the same formula after conversion to CNF: constants c3 and c4 denote the skolems for
the formulas (3) and (4), respectively. Instead of solving the original formula (denoted by A),
we produce an instantiated formula Ainst in which the x and y variables are instantiated with
certain ground terms. Ainst is given in Figure 1(c) where the numbers correspond to the lines in
the CNF (and original) formula. Formula Ainst has fewer quantifiers than A (in fact, it has zero
quantifiers), and thus is easier to solve. We use vGT (x) to represent the set of ground terms
that is used to instantiate a variable x. Variable x (in Formula 2) refers to the first argument
of f , and thus we instantiate it with all the ground terms that occur in that position, namely
{c1, c4}. We call this the set of ground terms of f for argument position 1, and denote it by
fGT (f, 1). Variable y (in Formula 3), on the other hand, refers to both the first argument of p
and the first argument of f . Therefore, vGT (y) = fGT (p, 1)∪ fGT (f, 1). In order to guarantee
equisatisfiability of Ainst and A, if two functions are applied to the same variable, they should
be instantiated with the ground terms of both functions (see Section 4). Therefore, in this
example, fGT (p, 1) = fGT (f, 1) = {c1, c4} although p is not directly applied to any constants.

The instantiated formula is an implication of the original formula. Hence, if Ainst is un-
satisfiable, A is also unsatisfiable. However, not every model of Ainst satisfies A. But the
instantiation was chosen in such a way that we can modify the models of Ainst to satisfy A.
Figure 1(d) gives a sample model M for Ainst which does not satisfy A. Since in Ainst, f is

only applied to c1 and c4, and p only to (c1, c3) and (c4, c3), M may assign arbitrary values to
f and p applied to other arguments. Although these values do not affect satisfiability of Ainst,
they affect satisfiability of A. Therefore, we modify M to a model Mπ by defining acceptable
values for the function applications that do not occur in Ainst. Figure 1(e) gives the modified
model Mπ that our algorithm constructs. It is easy to show that this model satisfies A.

The basic idea of modifying a model is to fix the values of the function applications that
do not occur in Ainst to some arbitrary value of a function application that does occur in
Ainst. This works well for this example as f and g are uninterpreted symbols and thus their
interpretations are not restricted beyond the input formula. Were they interpreted symbols, this
would be different. As an example, assume that p is the interpreted operator “≤”. In this case,
the original formula A≤ becomes unsatisfiable2, but its instantiation Ainst

≤ stays satisfiable3.
To guarantee the equisatisfiability in the presence of interpreted literals, we require the ground
term sets to contain some terms that make the interpreted literals false. This makes the solver
explore the cases where clauses become satisfiable regardless of the interpreted literals. In this
example, the interpreted literal ¬(y ≤ c3) becomes false if y is instantiated with the ground
term c3− 1. Instantiating A≤ with the ground terms {c1, c4, c3− 1} reveals the unsatisfiability.

4 Sufficient Ground Term Sets

Definition 1. Given a variable x in an SMT formula A (in CNF), a set of ground terms
S ⊆ H(A) is sufficient for x w.r.t a theory T if A and A[S/x] are equisatisfiable modulo T .

A variable x in a formula A can have more than one sufficient set of ground terms. H(A) is
always a sufficient set of ground terms as a result of the Gödel-Herbrand-Skolem theorem which
states that a formula A in Skolem Normal Form (SNF) is satisfiable iff A[H(A)/x] is satisfiable
[12]. But H(A) is usually infinite, and our goal is to determine whether a finite set of sufficient
ground terms exists, and to compute it if one exists. This computation is done by generating
and solving a system of set constraints over sets of ground terms.

Figure 2 presents our (syntactic) rules to generate the set constraints for a formula A in
CNF. The notation t ∈̇C denotes that a term t occurs as a subterm of a clause C. We use
SA to denote the set constraints system that results from applying these rules exhaustively
to all the clauses of A. The constraints range over the sets vGT (x) ⊆ Gr for all variables x
in A. These sets denote the relevant instantiations for the respective variables. Auxiliary sets
fGT (f, i) ⊆ Gr are introduced to denote the set of relevant ground terms for an uninterpreted
function f ∈ F at an argument position i ∈ N. We assume that the theory of integers is part
of the considered T , and that integers are included in the universe of every T -model M, i.e.
Z ⊆ |M |. The integer operators <,≤,+,−,≥, > are fixed with their obvious meanings.

Rule R0 of Figure 2 guarantees that the set of relevant ground terms is not empty for any
variable in A. Rule R1 establishes a relationship between sets of ground terms for variables
and function arguments. Rule R2 ensures that the ground terms that occur as arguments of
a function f are added to the corresponding ground term set of f . Rule R3 states that if a
term t[x1:n] with variables x1:n occurs as the i-th argument of f , then all the instantiations
of t with the respective sets vGT (xi) must be in fGT (f, i). Rule R4 states that our approach
does not currently handle the case where a variable x occurs as an argument of an unsupported

2(2) and (4) imply f(c1) = c1. y ≤ z holds for some pair of integers, thus (3) implies f(y) = c2 for some y.
But f(y) = f(c1) by (2) and so f(c1) = c2 = c1. This contradicts (1).

3A model is M ′(c1) = 1,M ′(c2) = 2,M ′(c3) = 0,M ′(c4) = 4,M ′(f) ≡ 1

R0:
x ∈̇C

vGT (x) 6= ∅ R1:
f(· · · ,

i-th︷︸︸︷
x , · · ·) ∈̇C

vGT (x) = fGT (f , i)
R2:

f(· · · ,
i-th︷︸︸︷
gt , · · ·) ∈̇C

gt ∈ fGT (f , i)

R3:
f(· · · ,

i-th︷ ︸︸ ︷
t[x1:n], · · ·) ∈̇C

t[vGT (x1)/x1, · · · , vGT (xn)/xn] ⊆ fGT (f , i)

R4:
op(· · · , x, · · ·) ∈ C, op 6∈ {=, <,≤, >,≥}

vGT (x) =∞ R5:
op(x, y) ∈ C, op ∈ {=, <,≤, >,≥}

vGT (x) =∞ vGT (y) =∞

R6:
(x ≤ gt) ∈ C

gt+ 1 ∈ vGT (x)
R7:

(x ≥ gt) ∈ C
gt− 1 ∈ vGT (x)

R8:
¬op(x, gt) ∈ C,where op ∈ {≤,≥}

gt ∈ vGT (x)

R9:
¬(x < gt) ∈ C
gt− 1 ∈ vGT (x)

R10:
¬(x > gt) ∈ C
gt+ 1 ∈ vGT (x)

R11:
op(x, gt) ∈ C,where op ∈ {<,>}

gt ∈ vGT (x)

R12:
¬(x = gt) ∈ C
gt ∈ vGT (x)

R13:
(x = gt) ∈ C, x ∈ Z

{gt− 1, gt+ 1} ⊆ vGT (x)
R14:

(x = gt) ∈ C, x /∈ Z
vGT (x) =∞

Figure 2: The syntactic rules for generating the set constraints system (SA).

interpreted function (supported operators are {=, <,≤, >,≥}), thus sets vGT (x) to infinity4

in order to be propagated to other relevant ground term sets. Moreover, we do not handle the
case where a supported interpreted operator has more than one variable argument (rule R5).
The remaining rules infer additional constraints for vGT (x) where x occurs as an argument of
a supported interpreted function. They constrain vGT (x) to contain at least one ground term
that falsifies the corresponding (interpreted) literal.

Let vGTSA denote a collection of finite sets of ground terms which satisfies the constraints
SA. We show that, if finite, vGT (x)SA is a sufficient ground term set for x in A. The variable
x can hence be eliminated by instantiating it with all the ground terms in vGT (x)SA . The
resulting formula A[vGT (x)SA/x] is equisatisfiable to A and does not contain x anymore.

Theorem 1 (Main Theorem). Let x be a variable in A with vGT (x)SA 6= ∞, then A and
A[vGT (x)SA/x] are equisatisfiable.

Proof. If A[vGT (x)SA/x] is unsatisfiable, so is A since the former is an implication of the latter.
If A[vGT (x)SA/x] is satisfiable with a modelM, then we construct a modified modelMπx (as
defined below) and show in lemma 3 that Mπx satisfies A.

Given a model M for the formula A[vGT (x)SA/x], we construct a modified model Mπx

as follows: |Mπx | := |M |. For any constant c ∈ Con, Mπx(c) := M(c). For any inter-
preted operator op, Mπx(op) := M(op). For any uninterpreted function f , Mπx(f)(v1:n) :=
M(f)(πx(f, 1)(v1), · · · , πx(f, n)(vn)), where πx(f, i) is defined as in Eq. 1. Intuitively, if
the ground term set of x does not subsume the ground term set of the ith argument of
f , or if vi is a value that M assigns to a ground term for the ith argument of f , then
Mπx(f)(.., vi, ..) := M(f)(.., vi, ..) Otherwise, πx(f, i) maps vi to a value that M assigns to
some ground term for the ith argument of f . Integers must be mapped to the closest such value
(see the proof of Lemma 1). A ground term set S subsumes a ground term set R, denoted by

4In theory, this infinite set denotes H(A), but we use it as the “unsupported” label that gets propagated to
other relevant sets.

R ⊆̇S, if for every ground term gt1 ∈ R there exists a ground term gt2 ∈ S such that gt1 is a
subterm of gt2.

πx(f, i)(v) =





v if fGT (f, i)SA *̇ vGT (x)SA
v else if v ∈M(fGT (f, i)SA)

v′ ∈M(fGT (f, i)SA) else if v 6∈ Z
v′∈M(fGT (f, i)SA), s.t . |v − v′| is minimal otherwise

(1)

πx(v) =





v if v ∈M(vGT (x)SA)

v′ ∈M(vGT (x)SA) else if v /∈ Z
v′ ∈M(vGT (x)SA), s.t . |v − v′| is minimal otherwise

(2)

We also define πx (as in Eq. 2) to denote the value projection with respect to a variable
x. If vGT (x)SA = fGT (f, i)SA , for instance because x occurs as the ith argument of f , then
πx = πx(f, i). Before showing the proof of lemma 3 used in our main theorem, we introduce
some auxiliary corollaries and lemmas. The proofs of the lemmas can be found in Appendix B.

Corollary 1. If vGT (x)SA 6=∞, then πx(v) ∈M(vGT (x)SA), for all v ∈ |M |.

The following lemmas show that if Mπx does not satisfy a literal l in a CNF formula A, a
modified variable assignment β′ can be found such that M together with β′ does not satisfy l.
Lemma 1 formulates the claim for interpreted literals, and Lemma 2 gives a stronger variant
(with value equality rather than implication) for uninterpreted literals.

Lemma 1. Let x be a variable with vGT (x)SA 6= ∞, M a model, β a variable assignment,
and β′ = λy. if vGT (y)SA ⊆̇ vGT (x)SA then πy(β(y)) else β(y). Then (M,β′) |= l implies
(Mπx , β) |= l for all interpreted literals l in A.

Lemma 2. Let x be a variable with vGT (x)SA 6=∞, M a model, β a variable assignment, and
β′ = λy. if vGT (y)SA ⊆̇ vGT (x)SA then πy(β(y)) else β(y). Then (M,β′)(l) = (Mπx , β)(l) for
all uninterpreted literals l in A.

Lemma 3. Let x be a variable in A with vGT (x)SA 6=∞ and M a model of A[vGT (x)SA/x],
then Mπx is a model of A.

Proof. Let A′ denote A[vGT (x)SA/x]. SinceM is a model of A′, for every variable assignment
β : V ar → |M |, we have (M,β) |= A′. Let β0 be an arbitrary variable assignment. By
corollary 1, we know that πx(β0(x)) = M(gt0) for some ground term gt0 ∈ vGT (x)SA . The
instantiation A[gt0/x] is included in A′ and thus (M,β) |= A[gt0/x] for any β. Let β′0 =
λy. if vGT (y)SA ⊆̇ vGT (x)SA then πy(β0(y)) else β0(y). Assignment β′0 maps x to πx(β0(x)) =
M(gt0) and (M,β′0) |= A[gt0/x], therefore (M,β′0) |= A.
Assuming that A is in CNF, there must be for every clause C in A a literal lC in C with
(M,β′0) |= lC . Using lemma 1 for interpreted and lemma 2 for uninterpreted literals, we know
that also (Mπx , β0) |= lC . Hence, Mπx is a model for lC , C and finally for A.

Algorithm 1: Heuristic detection of expensive variables with respect to a threshold

Data: A : For, Cmax : N
Result: NoElim : Set<V ar>

1 begin
2 NoElim ← {x ∈ vars(A) | vGT (x)SA =∞}
3 repeat
4 for x ∈ vars(A) \NoElim do
5 repFactor ← |scopevars(x) ∩NoElim| = ∅ ? 0 : 1
6 costx ← (

∏
y∈scopevars(x)\NoElim

|vGT (y)SA |) ∗ repFactor

7 if costx > Cmax then
8 select m ∈ scopevars(x) \NoElim s.t. |vGT (m)SA | is maximum
9 NoElim ← NoElim ∪ {m}

10 until NoElim is unchanged;
11 return NoElim

5 Practical Optimizations

5.1 Simulating NNF

Previous section established that if the input formula is in CNF, we can instantiate variables
with their computed sets of sufficient ground terms. Computing such sets, however, does not
require the formula to be in CNF. That is, the constraint system of Figure 2 needs only the
CNF polarity of the literals of the input formula (see rules R6 to R13). Therefore, instead of
actually converting the original formula to CNF, we (1) simulate the NNF (negation normal
form) conversion (without actually changing the formula) to compute polarity, and (2) skolem-
ize all existential quantifiers5. This computation does not introduce any considerable overhead.
It should be noted that conversion to CNF using distribution (as opposed to Tseitin encoding
[13]) has the additional advantage that it minimizes the scope of each variable. This can signif-
icantly improve our simplification approach. Distribution, however, is very costly in practice.
Computing minimal variable scopes without performing distribution is left for future work.

5.2 Limiting Instantiations

Our simplification approach eliminates those variables that have finite sets of sufficient ground
terms by instantiating them with the computed ground terms. In practice, such instantiation
may increase the occurrences of non-eliminable variables (see the example of Appendix A). Our
experiments with Z3 and CVC4 show that this increase in the number of variable occurrences
can considerably increase the solving time, specially for nested quantifiers.

We use Algorithm 1 to estimate and limit the cost of variable elimination based on the
number of variable occurrences that it introduces. The algorithm tries to maximize the number
of eliminated variables while keeping the cost low. Given a formula A and a threshold cost
Cmax, this algorithm returns a set of variables NoElim whose elimination causes the cost to
exceed Cmax. Line 2 initializes the NoElim set to the set of all variables whose sets of sufficient

5If a formula A is not in CNF, the instantiation of a variable x with a set S of ground terms should be
adjusted as A[S/x] := A[

∧
gt∈S

Bx[gt/x]/Bx], where Bx is the smallest subformula containing x.

Benchmarks

R
un

tim
e

in
 s

ec
.

1 201

0
50

10
0

20
0

40
0

60
0

cvc4
sufGT:comp

(a) CVC4, original vs. simplified (complete)

Benchmarks

R
un

tim
e

in
 s

ec
.

1 201

0
50

10
0

20
0

40
0

60
0 Z3

sufGT:comp

(b) Z3, original vs. simplified (complete)

Benchmarks

R
un

tim
e

in
 s

ec
.

1 201

0
50

10
0

20
0

40
0

60
0

cvc4
sufGT:100

(c) CVC4, original vs. simplified (Cmax = 100)

Benchmarks

R
un

tim
e

in
 s

ec
.

1 201

0
50

10
0

20
0

40
0

60
0 Z3

sufGT:100

(d) Z3, original vs. simplified (Cmax = 100)

Figure 3: Experimental results on the benchmarks of the SMT-COMP/AUFLIA-p

ground terms are infinite, and thus will not be eliminated by our approach. Lines 4-9 evaluate
the cost of eliminating a variable x that does not belong to NoElim. Instantiating x with its
sufficient ground terms, in the worst case, replicates all non-eliminable variables (either free or
bound) that appear in the scope of x (denoted by scopevars(x)), where the scope of x is the
body of the quantified formula that binds x. We estimate the cost of eliminating all eliminable
variables in the scope of x by costx. If this number exceeds the given threshold, then a variable
m with the maximum number of instantiations will be marked as non-eliminable. The process
then starts over.

6 Evaluation

We have implemented our approach in a prototype tool and performed experiments on the
SMT-COMP benchmarks of 2012 in the AUFLIA-p/2012 division, using CVC4 (version 1.0)
and Z3 (version 4.1) solvers. We ran both solvers on all benchmarks on an AMD DualCore
Opteron Quad, 2.6GHz with 32GB memory.

For each benchmark, we compare the original runtime of each solver (with no simplification)
against (1) a complete variable elimination, (2) a limited variable elimination where Cmax = 100.
Figures 3a and 3c give the comparison results for CVC4, and Figures 3b and 3d give the results
for Z3. The x-axis of each plot shows the benchmarks, sorted according to the original runtime
of the solvers, and the y-axis gives the runtime in seconds. Time-outs and ‘unknown’ outputs
are represented identically. The time-out limit is 600 seconds.

For CVC4, the complete variable elimination improves the solving time of 37 cases (18%)–
average speedup6 49x–out of which 16 were originally unsolvable, and worsens 55 cases (27%)–
average speedup 0.45. The limited variable elimination, on the other hand, improves 39 cases
(19%)–average speedup 57x–out of which 15 were originally unsolvable, and worsens 32 cases
(15%)–average speedup 0.48. Z3 is known to be highly efficient in the AUFILA division (winner
since 2008); its original runtime on many benchmarks is zero. The complete variable elimination,
however, worsens 70 of these benchmarks (34%)–average speedup 0.38–and improves 11 cases
(5%)–average speedup 10x–out of which one was originally unsolvable. The limited variable
elimination, on the other hand, worsens only 8 cases (4%)–average speedup 0.35–and improves
14 cases (7%)–average speedup 9.4x–out of which one was originally unsolvable.

The main reason for slow down is the introduction of too many variable occurrences when not
all variables are eliminable. Thus, as shown by these plots, for both solvers, the limited variable
elimination produces stronger results7. However, even when all variables are eliminated, it is
still possible that the solving time worsens as the number of instantiations that we produce can
be higher than the number of instantiations that the solver would generate while solving the
quantified formula. Although feasible in theory, this case was never observed in our experiments.

Although variable elimination with a limited cost can result in significant improvements of
solving time, the experiments show that in some cases such as the two new time-outs of Figure
3d, a finer-grained limitation decision is needed. Investigating such cases is left as future work.

7 Related Work

Quantifier elimination in its traditional sense (aka. QE) refers to the property that an FOL
theory T admits QE if for each formula φ, there exists a quantifier-free formula φ′ so that for
all models M, M |=T φ ⇔ φ′. Most applications of QE either provide decision procedures
for fragments of FOL, or only prove their decidability. For example, the decidability proof of
the Presburger arithmetic theory shows that the augmented theory with divisibility predicates
admits QE [6]. Another example is the Fourier-Motzkin QE procedure for linear rational
arithmetic (see [10]). QE is applicable to formulas that are purely in one of the known arithmetic
theories, and eliminates those variables whose enclosing formulas are in a theory that admits
QE. Consequently, it is not suitable as a general, stand-alone simplification for SMT formulas.

Another approach to eliminate quantifiers was proposed in [8] where partial FOL models
are represented as programs. A program generation technique tries to heuristically generate a
program Pi for a quantified formula φi in F := φ1 ∧ . . . ∧ φn such that the proof obligation
[Pi](φ1, . . . , φn ⇒ φi) can be discharged using a theorem prover. If such a program is found,
F is modified to φ′1 ∧ . . . ∧ φ′n (without φi) where φ′j ≡ [Pi]φj . The program generation and
verification loop can be repeated until all quantified formulas are eliminated. Such an approach
is very different from ours and is sound only for satisfiable formulas.

Our work was motivated by [3] and [7] in which quantifiers are eliminated via instantiation.
In [3], a decision procedure is proposed for the Array Property fragment of FOL which supports a

6Speedup = old solving time / new solving time, where 0 second is changed to 0.5 second.
7Detailed information of the benchmarks are available at http://i12www.ira.uka.de/~elghazi/sufGT_smt13_expData/

combination of Presburger arithmetic for index terms, and equality with uninterpreted functions
and sorts (EUF) for array terms. Similar to ours, this work instantiates universally quantified
variables with a finite set of ground terms to generate an equisatisfiable formula. They prove
the existence of such sets for their target fragment. Our approach, however, targets general
FOL and leaves a variable uninstantiated if its set of ground terms is infinite. We believe that
we can successfully handle the Array Property fragment. Experiments are left for future work.

In [7], Model-based Quantifier Instantiation (MBQI) is proposed for Z3. Similar to ours, this
work constructs a system of set constraints ∆F to compute sets of ground terms for instantiating
quantified variables. Unlike us, however, they do not calculate a solution upfront, but instead,
propose a fair enumeration of the (least) solution of ∆F with certain properties. Assuming
such enumeration, one can incrementally construct and check the quantifier-free formulas as
needed8. If ∆F is stratified, F is in a decidable fragment, and termination of the procedure is
guaranteed. Otherwise the procedure can fall back on the quantifier engine of Z3 and provide
helpful instantiation ground terms. Consequently, this technique can only act as an internal
engine of an SMT solver and cannot provide a stand-alone formula simplification as ours does.

Variable expansion has also been proposed for quantified boolean formulas (QBF). In [2], a
reduction of QBF to propositional conjunctive normal form (CNF) is presented where univer-
sally quantified variables are eliminated via expansion. Similar to our approach, they introduce
cost functions, but with the goal of keeping the size of the generated CNF small.

8 Conclusion

We described a general simplification approach for quantified SMT formulas. Based on an anal-
ysis of the ground term occurrences at function applications, we compute sufficient ground term
sets for each universally quantified variable. We proved that instantiating (thus eliminating)
any variable whose computed set is finite, results in an equisatisfiable formula. Elimination of
each variable is independent of the others. Thus we improve the performance of our technique
by restricting the set of eliminable variables: we defined a prioritization algorithm that tries to
maximize the number of eliminable variables while keeping the estimated elimination cost below
a threshold. We evaluated our approach using two configurations and two solvers on a large
subset of the SMT-COMP benchmarks. Our results show that (1) SMT benchmarks contain
many variables that can be eliminated by our technique, (2) our complete variable instantiation
may introduce significant overhead and thus slow down the solvers, (3) instantiation along with
prioritization shows improvement of the solving time and score.

We believe that our technique can provide an easy framework for extending arbitrary SMT
solvers with quantifier support. If we ignore termination and performance related rules when
generating the set constraint system, we will have an incremental and fair procedure for building
ground term sets. Using a finite model checker, like in [7], can then provide a framework for
extending SMT solvers with quantifier support. Investigating this idea is left for future work.

References

[1] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim
King, Andrew Reynolds, and Cesare Tinelli. CVC4. In CAV, pages 171–177, 2011.

8In practice, they guide the quantifier instantiation using model checking which, in turn, uses an SMT solver.

[2] Armin Biere. Resolve and expand. In Proceedings of the 7th international conference on Theory
and Applications of Satisfiability Testing, SAT’04, page 59–70, Berlin, Heidelberg, 2005. Springer-
Verlag.

[3] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable about arrays? In
VMCAI, pages 427–442, 2006.

[4] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program checking.
J. ACM, 52(3):365–473, May 2005.

[5] Bruno Dutertre and Leonardo de Moura. The yices SMT solver. 2006.

[6] Herbert Enderton and Herbert B. Enderton. A Mathematical Introduction to Logic, Second Edition.
Academic Press, 2 edition, January 2001.

[7] Yeting Ge and Leonardo Moura. Complete instantiation for quantified formulas in satisfiabiliby
modulo theories. In CAV, pages 306–320, 2009.

[8] Christoph D Gladisch. Satisfiability solving and model generation for quantified first-order logic
formulas. In FoVeOOS, pages 76–91, 2011.

[9] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In TACAS, pages 337–340,
2008.

[10] William Pugh. The omega test: a fast and practical integer programming algorithm for dependence
analysis. In Supercomputing, pages 4–13, 1991.

[11] Philipp Rümmer. E-matching with free variables. In LPAR, pages 359–374, 2012.

[12] Uwe Schöning. Logic for Computer Scientists. Birkhäuser, January 2008.

[13] G. S. Tseitin. On the complexity of derivation in propositional calculus. In Automation of Rea-
soning, pages 466–483. Springer, 1983.

A Expansion Example

The following example illustrates a case where eliminating one variable can result in increasing
the occurrences of the other variables. This can introduce an overhead for the solver if the
involved terms are complex.

Example 1. Let ∀x | (ψ(x) ∨ ∀y, z | ϕ(x, y, z)) be the input formula, and Sy = {gt1, . . . , gtn}
be a set of sufficient ground terms for the variable y. Suppose that the sets of sufficient ground
terms of x and z are infinite. In this case, instantiating and eliminating y will result in the
formula

∀x | (ψ(x) ∨ ∀z | (ϕ(x, gt1, z) ∧ . . . ∧ ϕ(x, gtn, z)))

which has a higher number of occurrences of the variables x and z.

B Proofs

Corollary 1. If vGT (x)SA 6=∞, then πx(v) ∈M(vGT (x)SA), for all v ∈ |M |.

Proof. The claim follows directly from the definition of πx

Corollary 2. For all gt ∈ Gr(A), Mπx(gt) = M(gt).

Proof. By induction over the structure of gt. If gt ∈ Const , the claim follows directly from
the definition of Mπx . If, without loss of generality, gt := f(t), where f ∈ Fun and t ∈ Gr,
we get by the induction hypothesis, Mπx(f(t)) = Mπx(f)(Mπx(t))

i.h.
=Mπx(f)(M(t)). Now we

have to distinguish between interpreted and uninterpreted functions. If f is interpreted, the
claim follows directly from the definition of Mπx . If f is uninterpreted, we get Mπx(f)(M(t)) =
M(f)(πx(f, 1)(M(t))). Furthermore, we know, because of rule R2 and gt ∈ Gr(A), that t ∈
fGT (f, 1)SA . Now we can use the definition of πx(f, 1) and we get πx(f, 1)(M(t)) = M(t).

For a variable assignment β, a value v ∈ |M | and a variable x ∈ V ar, we use the notation
βvx to denote the modification of β where x is mapped to v.

Lemma 1. Let x be a variable with vGT (x)SA 6= ∞, M a model, β a variable assignment,
and β′ = λy. if vGT (y)SA ⊆̇ vGT (x)SA then πy(β(y)) else β(y). Then (M,β′) |= l implies
(Mπx , β) |= l for all interpreted literals l in A.

Proof. Because of the rules R4 and R6, without loss of generality, we can restrict l to l :=

op(x, gt0) where op ∈ {=, <,≤, >,≥} and β′ to β′ = λy. β
πx(β(x))
x (y). Let us now assume that

(M,β
πx(β(x))
x) |= l and (Mπx , β) 6|= l. For op := " < ", we get from rule R5, gt0 ∈ vGT (x)SA and

from the assumptions the inequality system (β(x) ≥ gt0)∧ (πx(β(x)) < gt0), which implies that
|β(x)− πx(β(x))| is not minimal, since |β(x)− gt0| is strictly smaller. For op ∈ {≤, >,≥}, the
proof is similar to the previous case. For op := " = ", we get from rule R13, {gt0−1, gt0 + 1} ⊆
vGT (x)SA and from the assumptions, the inequality system (β(x) 6= gt0) ∧ (πx(β(x)) = gt0),
which is equivalent to (β(x) ≤ gt0 − 1) ∨ (gt0 + 1 ≤ β(x))) ∧ (πx(β(x)) = gt0) and implies that
|β(x) − gt0| is not minimal, since in the case (β(x) ≤ gt0 − 1), |β(x) − (gt0 − 1)| is strictly
smaller and in the case (gt0 + 1 ≤ β(x)), |β(x)− (gt0 + 1)| is strictly smaller.

Proposition 1 provides a stronger result compared to lemma 1. It better reflects the intuition
behind the rules R5, R7 to R13. They guarantee that if a variable x occurs as an argument
of an interpreted operator, then there is at least one gtl ∈ vGT (x)SA with 6|=T l[gtl/x]. That
is, C[gtl/x] is either valid or its satisfiability is determined by literals other than l. We proved
lemma 1 because it is sufficient for our main theorem, and it has a shorter proof.

Proposition 1. Let C be a clause in A, x a variable in C with vGT (x)SA 6=∞, and M a model
of C[vGT (x)SA/x], then either there exists an uninterpreted literal l ∈ C, where M |= l[gt/x]
for some gt ∈ vGT (x)SA , or there exists a (tautology) subclause C ′ of C whose literals are
interpreted and |=T C ′.

In the following, we use expressions to refer to both terms and formulas. That is, Expr =
Term ∪ For.

Lemma 2. Let x be a variable with vGT (x)SA 6=∞, M a model, β a variable assignment, and
β′ = λy. if vGT (y)SA ⊆̇ vGT (x)SA then πy(β(y)) else β(y). Then (M,β′)(l) = (Mπx , β)(l) for
all uninterpreted literals l in A.

Proof. To prove the claim, we show the statement (M,β′)(l) = (Mπx , β)(l) for all expressions
but variables l ∈ Expr \Var occurring in A using structural induction.

If l is a ground term in A, then the claim follows directly from corollary 2.
Let l = f(t1:n) be a function application in A with f an uninterpreted function. The

evaluations of l are

(Mπx , β)(f(t1:n)) = Mπx(f)((Mπx , β)(t1), . . . , (Mπx , β)(tn))

= M(f)(πx(f, 1)((Mπx , β)(t1)), . . . , πx(f, n)(tn))

(M,β′)(f(t1:n) = M(f)((M,β′)(t1), . . . , (M,β′)(tn))

It suffices to show that πx(f, i)((Mπx , β)(ti)) = (M,β′)(ti) for 1 ≤ i ≤ n. We do this by a case
distinction over the type of the terms ti.

If ti = y is a variable with vGT (y)SA *̇ vGT (x)SA , then β′(y) = β(y). Because of rule R1

we additionally get fGT (f, i)SA *̇ vGT (x)SA , which implies that πx(f, i) is the identity.
If ti = y is a variable with vGT (y)SA ⊆̇ vGT (x)SA , then β′(y) = πy(β(y)). Because of rule

R1 we get vGT (y)SA = fGT (f, i)SA ⊆̇ vGT (x)SA , which implies that πx(f, i) = πy.
If ti is a function application, we assume ti = s[x1:m] for some term s. By induction

hypothesis, πx(f, i)((Mπx , β)(s[x1:m]))
i.h.
= πx(f, i)((M,β′)(s[x1:m])). W.r.t. fGT (f, i)SA , there

is two possible cases to consider:

1) fGT (f, i)SA *̇ vGT (x)SA , then πx(f, i) is the identity and the claim follows directly.
2) fGT (f, i)SA ⊆̇ vGT (x)SA , then because of rule R3 vGT (xi)SA ⊆̇ fGT (f, i)SA ⊆̇ vGT (x)SA , for
all 1 ≤ i ≤ m. This implies that β′(xi) = πxi

(β(xi)) for all 1 ≤ i ≤ m. Using this fact together
with corollary 1, there exists for each xi a ground term gti, with πxi(β(xi)) = M(gti) and
gti ∈ vGT (xi)SA . So we can write, πx(f, i)((M,β′)(s[x1:m])) = πx(f, i)(M(s[gt1:m])). Because
of rule R3 we know that s[gt1:m] ∈ fGT (f, i)SA , and so M(s[gt1:m]) ∈M(fGT (f, i)SA). Finally
the claim follows from the definition of πx(f, i) for values in M(fGT (f, i)SA) and the assumption
that fGT (f, i)SA ⊆̇ vGT (x)SA .

Let l := f(t1:n) be an expression with f an interpreted function. Using the definition
of Mπx for interpreted functions, (Mπx , β)(f(t1:n)) = M(f)((Mπx , β)(t1), . . . , (Mπx , β)(tn)).
Since l is uninterpreted, all tis are non-variables and we can use the induction hypotheses
on them and get, M(f)((Mπx , β)(t1), . . . , (Mπx , β)(tn)) = M(f)((M,β′)(t1), . . . , (M,β′)(tn)).
Now the claim follows directly from the definition of M .

