
SMT-based verification of Hybrid Systems∗

Alessandro Cimatti and Sergio Mover and Stefano Tonetta
FBK-irst, I38050, Trento, Italy

Abstract

Hybrid automata networks (HAN) are a powerful formalism
to model complex embedded systems. In this paper, we sur-
vey the recent advances in the application of Satisfiability
Modulo Theories (SMT) to the analysis of HAN. SMT can
be seen as an extended form of Boolean satisfiability (SAT),
where literals are interpreted with respect to a background
theory (e.g. linear arithmetic). HAN can be symbolically rep-
resented by means of SMT formulae, and analyzed by gen-
eralizing to the case of SMT the traditional model checking
algorithms based on SAT.

Introduction
Complex Embedded Systems (CES) consist of software and
hardware components that operate autonomous devices in-
teracting with the physical environment. CES are composed
of many heterogeneous components, interacting with ex-
ternal environments, and deal with continuous and discrete
dynamics. They are increasingly used in many industrial
sectors (e.g. automotive, aerospace, consumer electronics,
communications, medical and manufacturing), to carry out
highly complex and often critical functions.

The lifecycle of CES is also very complex. On the one
side, we have the off-line phase, which includes require-
ments analysis, functional verification, and safety assess-
ment, and that is directed to ensuring that the system will
operate correctly once deployed. For example, when de-
signing the control layer for a mobile rover, we may want to
carry out some safety assessment (e.g. guarantee that it will
be able to operate even in presence of single or even multi-
ple faults), or some diagnosability analysis (e.g. to guaran-
tee that its sensors will be sufficient to detect all unexpected
events).

On the other side, we have the operation phase, which
may include low-level tasks such as closed-loop control of
physical devices, but also higher level activities such as plan-
ning, execution monitoring, FDIR (fault detection, isolation,
and recovery), and replanning. Each of them is a challenge
on its own. For example, the activities of a mobile rover

∗This paper was invited as a “What’s Hot” paper to the
AAAI’12 Sub-Area Spotlights track.
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

must be planned according to strict timing and resource re-
quirements, and the information conveyed by the sensors
can be used to diagnose whether any (or which) fault has
occurred.

The off-line and operation phases are tightly intertwined:
for instance, the description of the rover used to analyzed the
control algorithms during design could be used for planning
or for diagnosis in operation. In order to avoid gaps between
the two phases, it is important to ensure consistency between
the models of the system used off-line and in operation, and
to be able to interpret the actual executions on the models.

Model checking (Clarke, Grumberg, and Peled 2001)
provides a comprehensive formal framework (and also a
technological basis) for such tasks (Cimatti, Pecheur, and
Cavada 2003; Bozzano et al. 2011). Symbolic model check-
ing (McMillan 1993) is limited to a Boolean representation
case, and leverages on Boolean inference engines such as Bi-
nary Decision Diagrams (Bryant 1986) and, more recently,
SAT solvers (Biere et al. 1999). Unfortunately, a Boolean
representation is often insufficient to represent many impor-
tant features of CES, such as activities with duration, and
resource constraints and consumption.

Networks of communicating Hybrid Automata (HAs)
(Henzinger 1996) are increasingly used as a formal frame-
work to model discrete and continuous components and their
interaction: local activities of each component amount to
transitions local to each hybrid automaton; communications
and other events that are shared between/visible for various
components are modeled as synchronizing transitions of the
automata in the network; the elapse of time is modeled as
shared, delay transition.

In this paper, we survey the recent advances in the appli-
cation of Satisfiability Modulo Theories (SMT) to the anal-
ysis of HAN. SMT can be seen as an extended form of
Boolean satisfiability (SAT), where literals are interpreted
with respect to a background theory (e.g. linear arithmetic).

In terms of expressiveness, the SMT language provides
a natural symbolic representation for the HAN: in addition
to the Boolean part, used to represent the discrete parts of
the automata, the theory description provides for a represen-
tation of the evolution of timed and continuous variables.
In terms of the verification techniques, the approach allows
for a direct extension of the SAT-based model checking al-
gorithms, fully leveraging the advanced features of modern

SMT solvers, such as incrementality, unsatisfiable core ex-
traction, and interpolation. The SMT-based approach has
been found particularly effective on networks of linear hy-
brid automata with large number of components and simple,
and often non-deterministic, dynamics. Specialized tech-
niques have been conceived for these cases, taking into ac-
count the structure of the network and the specific analyses
at hand, e.g. scenario validation.

The paper is structured as follows. We first survey the
field of SMT, and discuss SMT-based encoding and verifica-
tion of generic infinite-state transition systems represented
in the SMT framework. Then, we present networks of hy-
brid automata, their SMT-based encoding, and several SMT-
based verification techniques, specialized to the analysis of
HANs. Finally, we draw some conclusions and present im-
portant directions for future research.

Satisfiability Modulo Theories
Satisfiability Modulo Theory (SMT) (Barrett et al. 2009)
is the problem of deciding the satisfiability of a first-order
formula with respect to a decidable background theory T .

Example 1 The formula x < y ∧ (x + 3 = z ∨ z > y)
is satisfiable in the theory of Linear Arithmetic on the ra-
tionals (LA(Q)), since x := 5, y := 6, z := 8 is a model for
the formula. LA(Q) interprets x, y, z as rational variables,
3 as a rational constant and +,=, <,> as the correspond-
ing operations and relations over the rationals.

There exist several theories of practical interests: Equal-
ity and Uninterpreted Functions (EUF), Linear Arithmetic
over the reals (LA(Q)) and the integers (LA(Z)), Real
Closed Fields, Difference Logic (DL), Bit Vectors (BV) and
Arrays. Moreover, under certain assumptions theories T1
and T2 may be combined in the theory T1 ∪ T2. We refer
to (Bozzano et al. 2006; de Moura and Bjørner 2008a) for
details on theories and approaches on theory combination.
In the context of Hybrid System verification, the most used
theories are LA(Q) and Real Closed Fields, since in sev-
eral cases they are expressive enough to model continuous
variables and their evolution.

SMT solvers are tools which implement decision proce-
dures for the SMT problem. The most efficient implemen-
tations of SMT solvers use the so-called “lazy approach”,
where a SAT solver is tightly integrated with a T -solver.
The role of the SAT solver is to enumerate the truth assign-
ments to the Boolean abstraction of the first-order formula.
The Boolean abstraction has the same Boolean structure of
the first-order formula, but “replaces” the predicates which
contain T information with fresh Boolean variables. The
Boolean abstraction of the Example 1 is a ∧ (b ∨ c), where
a, b, c are fresh Boolean variables. The T -solver is invoked
when the SAT solver finds a model for the Boolean abstrac-
tion: the Boolean model maps directly to a conjunction of
T atoms, which the T -solver can handle. If the conjunction
is satisfiable also the original formula is satisfiable. Other-
wise the T -solver returns a conflict set which identifies a
reason for the unsatisfiability. Then, the negation of the con-
flict set is learned by the SAT solver in order to prune the
search. Examples of solvers based on the “lazy approach”

are MATHSAT (Bruttomesso et al. 2008), Z3 (de Moura and
Bjørner 2008b), YICES (Dutertre and de Moura 2006) and
OPEMSMT (Bruttomesso et al. 2010).

SMT-solvers often construct models in the case a formula
is satisfiable and proofs if it is unsatisfiable. Proofs are
used to generate additional informations, such as unsatis-
fiable cores and interpolants. An unsatisfiable core for an
unsatisfiable set of clauses is a subset of the clauses which
is still unsatisfiable. See (Cimatti, Griggio, and Sebastiani
2011) for a survey. A Craig Interpolant of two formulas A
and B, with A ∧ B unsatisfiable, is a formula I such that A
implies I , I ∧ B is unsatisfiable and I contains only vari-
ables common to both A and B. Intuitively, an interpolant
is an over-approximation of A “guided” by B. See (Cimatti,
Griggio, and Sebastiani 2010).

Finally, SMT solvers also feature an incremental inter-
face: they are able to tackle sequences of satisfiability prob-
lems efficiently by reusing theory information discovered
during the previous searches. Incrementality is exploited to
improve the performances of several verification algorithms.

SMT-based Verification of FOTS
A first-order transition system (FOTS) symbolically repre-
sents an infinite state system using first-order logic formu-
las. Symbolic representation is well known and is also used
in verification tools (Cimatti et al. 2002; Bensalem et al.
2000). A FOTS is a tuple S = 〈V,W, I, Z, T 〉. V is the set
of state variables of the system. A single state of the system
is identified by an assignment to all the variables in V . W
is the set of “input variables” which define the labels of the
transitions of the system. I is a first-order formula over vari-
ables in V which identifies the set of the initial states of S. Z
is a first-order formula over variables in V which identifies
the set of invariant states of S. Intuitively, states that are not
in Z are not part of the reachable states of S. T is the tran-
sition relation of the system. It is a first-order formula over
variables in V ,W and V ′. T relates the variables which rep-
resent the current state of the system, V , with the variables
V ′, which represent the state of the system after the transi-
tion (i.e. V ′ = {v′|v ∈ V }). Also the input variables W
are taken into account in the transition relation. Input vari-
ables are assigned when performing a transition and models
external inputs from the environment. Paths are concatena-
tions of transitions starting from an initial state. A state q is
reachable in S if there is a path in S that ends in q.
Example 2 Consider S = 〈V,W, I, Z, T 〉, where V :=
{B, x}, W := {R}, I := B ∧ x = 0, Z := x ≤ 10,
T := (R → I) ∧ (¬R → (B ↔ ¬B ∧ x′ = x + 1)).
The initial state of the system is q0 = 〈B, x = 0〉. In every
state the system non-deterministically performs a transition
back to q0, if R is true, or a transition where the value of
B is negated and x is incremented by 1. Note that, without
the invariant Z, the transition system would have an infinite
number of reachable states. Fig. 1 shows an explicit repre-
sentation of the transition system.

Bounded Model Checking Bounded Model Checking
(BMC) (Biere et al. 1999) is a technique that finds a vio-
lation of a property φ in a transition system S. The main

〈B, x = 0〉 〈¬B, x = 1〉 . . . 〈¬B, x = 10〉

R

¬R ¬R

R

¬R

R

Figure 1: Explicit state representation of S from Example 2

idea of BMC is to explore all the paths of the system S up to
a bounded number of steps k. Thus, BMC finds a violation
for φ if there is a path which witnesses the violation in at
most k steps. Otherwise, BMC certifies that the property φ
is not violated in all the paths of the systems of length k.

The set of all paths of k steps and the violation condi-
tion of φ are encoded in a formula, BMC(k). The formula
BMC(k) is satisfiable iff there exists a path of length k from
the initial state of S to a state where φ does not hold. For fi-
nite state systems BMC(k) is a propositional formula, thus
it can be checked using a SAT solver. The BMC approach
lifts to infinite state systems, using an SMT solver to check
the satisfiability of the first-order formula BMC(k).

Despite its incompleteness, BMC demonstrated its prac-
tical usefulness to find bugs for finite and infinite states sys-
tems (Audemard et al. 2002; 2005; Sorea 2002).

K-induction K-induction (Sheeran, Singh, and Stålmarck
2000) is a technique that proves that if a set of states is not
reachable in k steps, then it is not reachable at all. On the
lines of the induction principle, it consists of a base step,
which solves the bounded reachability problem with a given
bound k, and an inductive step, which concludes that k is
sufficient to solve the (unbounded) reachability problem.
Both cases are reduced to checking the unsatisfiability of
first-order formulas.

For finite-state systems there exists a bound k which en-
sures the termination of k-induction. However, typically
this is not the case for infinite state systems. A possi-
ble approach (de Moura, Rueß, and Sorea 2003) consists
of strengthening the inductive condition. Another vi-
able approach is to integrate abstraction techniques with k-
induction (Tonetta 2009).

Interpolation-based model checking The main idea of
interpolation-based model checking (McMillan 2003) is to
partition an unsatisfiable BMC encoding in two formulas,
a prefix and a suffix which share only a single time frame.
Since the encoding is unsatisfiable, the algorithm computes
the interpolant of the prefix and the suffix: the interpolant is
an overapproximation of the states reachable with the prefix
and is inconsistent with the suffix. The operation is iterated
to compute an overapproximation of the reachable states. A
different algorithm (Vizel and Grumberg 2009) exploits the
notion of interpolation sequence, which lead to the creation
of different overapproximations. Interpolation-based model
checking can be applied to infinite state systems (McMillan
2005). However, termination is not guaranteed.

Abstraction Abstraction has been widely used in the anal-
ysis of infinite-state systems. Predicate abstraction (Graf
and Saı̈di 1997) computes a finite-state abstraction of a sys-
tem, which can be analyzed using finite state verification
techniques. SMT solvers have been used for the computa-
tion of predicate abstraction (Lahiri, Nieuwenhuis, and Oliv-
eras 2006). An alternative approach integrates Binary Deci-
sion Diagrams (BDDs) with SMT techniques to compute the
abstraction (Cimatti et al. 2010).

Hybrid Automata Network
Hybrid Automata (Henzinger 1996) (HA) are a well known
framework used in formal verification to model the discrete
and the continuous evolution of hybrid systems.

HA extends a finite state machine (FSM) with continu-
ous components, modeled using real-valued variables. Each
state of the FSM, called location, defines the so called flow
conditions, which describe with differential equations the
evolution of the continuous variables over time. For exam-
ple, the flow condition ẋ = v, v̇ = a, ȧ = 2 describes an
uniformly accelerated motion. Each location also defines
invariant conditions over continuous variables, which must
be satisfied whenever the system is inside the location. The
discrete transitions of a HA defines how the system changes
the current location. Each transitions is associated to a jump
condition: it is a formula over the continuous variables at
the current and at the next step, which describes the guards
and the effects of the transition. Moreover, transitions are
labeled with a symbol to enable synchronizations among au-
tomata. We call Σ the set of events which label transitions.

A state of the HA is a tuple 〈qi, si〉, where qi is a location
and si is an assignment to the continuous variables. A run
σ = 〈q0, s0〉

a1→ . . .
an→ 〈qn, sn〉 of a HA is a sequence of

states that the HA can visit. The first state satisfies the initial
condition of theHA, while all the states satisfy the invariant
condition of the corresponding location. Each state 〈qi, si〉
moves to the next state 〈qi+1, si+1〉 either with a discrete or
a continuous transition, depending on the event ai: if ai ∈ Σ
then there is a discrete transition, otherwise ai ≥ 0 means
that there is a continuous transition where the time elapsed is
equal to ai. A discrete transition is fired if its jump condition
is satisfied. A continuous transition updates the continuous
variables according to the flow condition in the current lo-
cation and the amount of time elapsed, while it keeps the
location unchanged.
Example 3 Figure 2 shows the HA for a rod component
in a nuclear reactor. A possible run of the automa-
ton is σ = 〈Ready, x = 0〉 3−→ 〈Ready, x = 3〉 Add−−→
〈In, x = 0〉 3−→ 〈In, x = 3〉 Remove−−−−−→ 〈Recover, x = 0〉 16−→
〈Recover, x = 16〉 τ−→ 〈Ready, x = 16〉.

A Linear HA (LHA) is an HA where all the conditions
are Boolean combinations of linear inequalities and the flow
conditions contain variables in Ẋ only.

Real hybrid systems are constituted by several compo-
nents. A Network of Hybrid Automata H = H1 ‖ . . . ‖ Hn

is a set of HA. Each automaton Hi of the network moves
asynchronously with transitions labeled with a local event

Ready

ẋ ∈ [0.9, 1.1]

true

x = 0

In

ẋ ∈ [0.9, 1.1]

x ≤ 5.9

Recover

ẋ ∈ [0.9, 1.1]

x ≤ 16

true/Add/x′ := 0

true/Remove/x′ := 0

x ≥ 16/τ/x′ := x

Figure 2: Rod component of a nuclear reactor.

(i.e. a symbol which is only in the alphabet Σi). Instead,
automata synchronize on transitions labeled with a shared
event (i.e. a symbol which is contained in the alphabet of
more automata). Synchronization is used to model the com-
munication between the automata of the network. There ex-
ist other formalisms to compose HAs such as Hybrid I/O
Automata (Lynch, Segala, and Vaandrager 2003).

SMT-based Verification of HAN
SMT-based Encoding The SMT-based verification of a
Hybrid Automata Network H is enabled by encoding H in
a FOTS N . Each automaton Hi of H is translated into an
equivalent FOTS Si. Then, the network H is encoded in S,
which adds the synchronization constraints imposed by H.
In the following, we describe the encoding of a network of
linear hybrid automata with disjoint sets of continuous vari-
ables.

The current location of Hi is encoded with a set of
Boolean variables while the continuous variables are en-
coded with real-valued variables. The initial states and the
invariants of Hi are encoded into the first-order formulas
Ii and Zi. An additional discrete variable εi encodes the
transition events Σ ∪ {T, S}, where T and S are two fresh
events. The first determines when Si performs a continuous
evolution, while the latter determines when Si stutters (i.e.
when Si does not move). The first-order formula Ti encodes
that the value of εi is chosen non-deterministically and that
εi = a implies the encoding of the discrete transition la-
belled with a in Hi.

In a continuous transition, loci does not change, while
the continuous variables change according to the flow con-
ditions. A real variable δi encodes the amount of time
elapsed. A constraint δi ≥ 0 ensures that such amount is
positive. Since the flow conditions are linear (i.e. of the form∑
aj · ẋj ./ b, where aj , b ∈ R, xj ∈ X, ./∈ {<,≤,=})

the evolution of the continuous variables xj is encoded with
the constraint εi = T →

∑
aj · (x′j − xj) ./ b · δi. Note

that we are assuming that the invariants Zi are convex so
that they hold along the continuous transition.

The FOTS N = 〈V,W, I, Z, T 〉 which encodes H is de-
fined as V =

⋃
i Vi; W =

⋃
iWi; I =

∧
i Ii; Z =

∧
i Zi;

T =
∧
i Ti ∧ SYNC, where SYNC is a synchronization con-

straint. For every couple of FOTS Si, Sj and for every
shared event a of Si and Sj , SY NC forces that every time
Si moves with a transition labelled with a, also Sj moves

with a transition labelled with a. Moreover, note that the
event T is common to all the FOTS.

The encoding presented so far follows the standard
“global time” semantics of HAN (Henzinger 1996). Several
verification algorithms are enabled by a different semantics,
called “local time” semantics (Bengtsson et al. 1998). In
the “local time” semantics the T event is a local event. This
means that the real time in two FOTS evolves independently.
Each FOTS Si stores the amount of time elapsed from the
beginning of the run in a continuous variable TIMEi. The
consistency of the network is ensured by a modified version
of the SYNC constraints: when Hi and Hj synchronize on
the same event a, their local times, TIMEi and TIMEj must
be the same. Moreover, TIMEi and TIMEj must be the same
at the end of a run.

Verification Techniques BMC encodings for Timed Au-
tomata, a restricted class of hybrid automata useful to rep-
resent real-time systems, have been presented in (Audemard
et al. 2002; Sorea 2002).

(Audemard et al. 2005) generalizes the encoding to Lin-
ear Hybrid Automata. The approach is similar to the one
outlined in Section . (Ábrahám et al. 2005) focus on op-
timizations of the BMC encoding. The authors of (Bu et
al. 2010) exploit the “local time” semantics in their BMC
encoding: traces of the system are obtained by composing
traces of the local automata, and superimposing compatibil-
ity constraints resulting from the synchronizations.

BMC has also been extended to classes of hybrid au-
tomata more expressive than LHA. The authors of (Fränzle
and Herde 2007) implements a SMT-solver based on interval
constraint propagation, rather than on the “lazy” approach.
The works in (Eggers et al. 2011; Ishii, Ueda, and Hosobe
2011) extend the SMT framework to deal natively with Or-
dinary Differential Equations (ODEs).

K-induction has been applied to the verification of safety
properties for real-time and hybrid systems. Real-time sys-
tems are verified using k-induction with a manual strength-
ening in (Steiner and Dutertre 2010). Both the automatic
strengthening of k-induction (de Moura, Rueß, and Sorea
2003) and the abstract k-induction approach (Tonetta 2009)
have been tested on LHA benchmarks.

The technique presented in (Cimatti et al. 2009) computes
a predicate abstraction for a network of Hybrid Automata
exploiting the structure of the HAN.

Scenario Verification In order to support user validation,
it is very important to check whether a HAN may exhibit be-
haviors that satisfy a certain scenario, specifying some de-
sired or undesired interactions among the components. The
scenario-based verification problem consists of checking if
a network of hybrid automata accepts some desired interac-
tions among the components. In that case, we say that the
scenario is feasible.

A basic language to express such scenarios of interaction
is Message Sequence Charts (MSCs). MSCs are especially
useful for the end users because of their clarity and graph-
ical content. An MSC defines a single (partial-order) inter-
action of the components of a network H = H1|| . . . ||Hn.
For each hybrid automaton Hi, the MSC defines a sequence

GateControllerTrain

Exit

Raise

Lower

Approach

Figure 3: An MSC for the Train-Gate-Controller.

of shared events a1; . . . ; al, called instance. An MSC is
the parallel composition of instances σ1 ‖ . . . ‖ σn. Fig-
ure 3 shows an example of MSC for the HAN described
in (Henzinger 1996). An MSC is feasible in a networkH iff
there exist a run of H such that, for all Hi, the sequence of
shared events obtained projecting the run only on the shared
events of Hi is equal to σi. Roughly speaking, the compo-
nents of H must synchronize following the same sequence
of events described in the MSC. MSCs have been extended
in several ways. A particular variant is Constrained MSC
(CMSC) (Cimatti, Mover, and Tonetta 2011b), which en-
riches a MSC with first-order formulas over the variables
ofH. All the variables used in the constraints refer to a spe-
cific occurrence of an event in the MSC. These constraints
turn out to be very useful and easy to handle with the SMT-
based approach.

The classical approach to scenario-verification is based
on the construction of a monitor that, composed with the
network N , forces N to follow only paths that satisfy the
MSC. It is in spirit similar to the automata-approach to LTL
model checking (Vardi 1995). The SMT-based verification
techniques are applied off the shelf on the resulting FOTS.
The monitor can be an additional component in the net-
work or consist of many components, one for each instance
of the CMSC. Exploiting local-time semantics, the monitor
can also be reduced to follow one interleaving of the partial-
order reduction defined by the CMSC.

The automata-based approach turns out to be ineffi-
cient (Cimatti, Mover, and Tonetta 2011a), since BMC un-
rolls the system for several steps before finding a run which
witnesses the feasibility of the MSC. The approaches pre-
sented in (Cimatti, Mover, and Tonetta 2011a; 2011b) di-
rectly encode the feasibility problem exploiting the structure
of the MSC, rather than using an observer.

The approach in (Cimatti, Mover, and Tonetta 2011a) is
a specialized BMC encoding which focuses on finding if
a MSC is feasible in H. For each automaton Hi, we en-
code the set of paths that are consistent with the instance
σi. In the encoding, the position of the transitions labeled
with a shared event is fixed a-priori. For example, we en-
code a shared events every k steps in the encoding. All the
steps between two shared events encode a local event. In
this way, the formulas are much simpler, since there is less
non-determinism in the choice of the events to be performed.

The local encoding is enabled by adopting the “local time”
semantics. Recall that in the “local time” semantics the con-
tinuous transition is a local event of each transition system
Si. The synchronization constraints are then imposed be-
tween the different local encodings, to ensure that synchro-
nizations happen at the same real time. Note that also the
position of the synchronization constraints is fixed, resulting
in a simplified encoding. The solver is fed with a sequence
of problems with an increasing number of local transitions
between two shared events. Since the formula that encodes
the shared events and the synchronization constraints does
not change from one problem to the other, we exploit the
incrementality of the SMT-solver.

In order to prove that a scenario is unfeasible, we ex-
tended this approach with k-induction (Cimatti, Mover, and
Tonetta 2011b). The base case of k-induction proves that the
scenario is unfeasible in a given number of steps. The induc-
tive case proves, for every sequence of local transition, that
the system cannot reach new states. The approach also ex-
ploits the integration of k-induction with predicate abstrac-
tion (Tonetta 2009). Finally, unsat core and interpolation are
used to provide the user with explanations that help in iden-
tifying the reasons of the unfeasibility.

Conclusions and Future Directions
In this paper, we have presented an overview of the recent
applications of SMT for the formal verification of Hybrid
Automata Networks. Directions of future work include the
verification of systems with complex, nonlinear dynamics,
and increasing scalability by means of compositional and hi-
erarchical reasoning. For lack of space, we have disregarded
SMT-based approaches to other important functions, such as
safety assessment, planning, monitoring, and diagnosis. Al-
though some of these challenges have been addressed in the
discrete case by means of SAT-based approaches (Rintanen
2011), a full generalization in the case of SMT is the subject
of ongoing research (see for instance (Gregory et al. 2012)).

Acknowledgements
This work benefits from the work of and many discussions
with Marco Roveri, Paolo Traverso, Andrea Micheli, Luca
Bonetti, Gianni Zampedri, Roberto Cavada, Marco Boz-
zano, Alberto Griggio, Iman Narasamdya, Andrei Tchaltsev.

References
Ábrahám, E.; Becker, B.; Klaedtke, F.; and Steffen, M.
2005. Optimizing bounded model checking for linear Hy-
brid Systems. In VMCAI, 396–412.
Audemard, G.; Cimatti, A.; Kornilowicz, A.; and Sebastiani,
R. 2002. Bounded Model Checking for Timed Systems. In
FORTE, 243–259.
Audemard, G.; Bozzano, M.; Cimatti, A.; and Sebastiani, R.
2005. Verifying industrial hybrid systems with MathSAT.
ENTCS 119(2):17–32.
Barrett, C. W.; Sebastiani, R.; Seshia, S. A.; and Tinelli,
C. 2009. Satisfiability modulo theories. In Handbook of
Satisfiability. 825–885.

Bengtsson, J.; Jonsson, B.; Lilius, J.; and Yi, W. 1998. Par-
tial order reductions for timed systems. In CONCUR, 485–
500.
Bensalem, S.; Ganesh, V.; Lakhnech, Y.; Muoz, C.; Owre,
S.; Rue, H.; Rushby, J.; Rusu, V.; Sadi, H.; Shankar, N.;
Singerman, E.; and Tiwari, A. 2000. An Overview of SAL.
In LFM, 187–196.
Biere, A.; Cimatti, A.; Clarke, E. M.; and Zhu, Y. 1999.
Symbolic Model Checking without BDDs. In TACAS, 193–
207.
Bozzano, M.; Bruttomesso, R.; Cimatti, A.; Junttila, T. A.;
Ranise, S.; van Rossum, P.; and Sebastiani, R. 2006. Effi-
cient theory combination via Boolean search. Inf. Comput.
204(10):1493–1525.
Bozzano, M.; Cimatti, A.; Roveri, M.; and Tchaltsev, A.
2011. A comprehensive approach to on-board autonomy
verification and validation. In Walsh, T., ed., Proceedings
of IJCAI-11, 2398–2403.
Bruttomesso, R.; Cimatti, A.; Franzén, A.; and Sebastiani,
A. G. R. 2008. The MathSAT4 SMT solver. In CAV, 299–
303. Springer.
Bruttomesso, R.; Pek, E.; Sharygina, N.; and Tsitovich, A.
2010. The OpenSMT solver. In TACAS, 150–153.
Bryant, R. E. 1986. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Trans. Comp. 35(8):677–691.
Bu, L.; Cimatti, A.; Li, X.; Mover, S.; and Tonetta, S. 2010.
Model checking of Hybrid Systems using shallow synchro-
nization. In FORTE, 155–169.
Cimatti, A.; Clarke, E.; Giunchiglia, E.; Giunchiglia, F.; Pis-
tore, M.; Roveri, M.; Sebastiani, R.; and Tacchella, A. 2002.
NuSMV 2: an opensource tool for symbolic model check-
ing. In CAV, 359–364.
Cimatti, A.; Dubrovin, J.; Junttila, T. A.; and Roveri, M.
2009. Structure-aware computation of Predicate Abstrac-
tion. In FMCAD, 9–16.
Cimatti, A.; Franzén, A.; Griggio, A.; Kalyanasundaram,
K.; and Roveri, M. 2010. Tighter integration of BDDs and
SMT for Predicate Abstraction. In DATE, 1707–1712.
Cimatti, A.; Griggio, A.; and Sebastiani, R. 2010. Effi-
cient generation of craig interpolants in Satisfiability Mod-
ulo Theories. ACM Trans. Comput. Log. 12(1):7.
Cimatti, A.; Griggio, A.; and Sebastiani, R. 2011. Comput-
ing small unsatisfiable cores in Satisfiability Modulo Theo-
ries. J. Artif. Intell. Res. (JAIR) 40:701–728.
Cimatti, A.; Mover, S.; and Tonetta, S. 2011a. Efficient
scenario verification for Hybrid Automata. In CAV, 317–
332.
Cimatti, A.; Mover, S.; and Tonetta, S. 2011b. Proving and
explaining the unfeasibility of Message Sequence Charts for
Hybrid Systems. In FMCAD.
Cimatti, A.; Pecheur, C.; and Cavada, R. 2003. Formal Veri-
fication of Diagnosability via Symbolic Model Checking. In
IJCAI, 363–369. Morgan Kaufmann.
Clarke, E. M.; Grumberg, O.; and Peled, D. 2001. Model
checking. MIT Press.

de Moura, L. M., and Bjørner, N. 2008a. Model-based
Theory Combination. Electr. Notes Theor. Comput. Sci.
198(2):37–49.
de Moura, L. M., and Bjørner, N. 2008b. Z3: An efficient
SMT solver. In TACAS, 337–340.
de Moura, L.; Rueß, H.; and Sorea, M. 2003. Bounded
Model Checking and induction: from refutation to verifica-
tion. In CAV, 14–26.
Dutertre, B., and de Moura, L. M. 2006. A fast Linear-
Arithmetic solver for DPLL(T). In CAV, 81–94.
Eggers, A.; Ramdani, N.; Nedialkov, N.; and Fränzle, M.
2011. Improving SAT Modulo ODE for Hybrid Systems
analysis by combining different enclosure methods. In
SEFM, 172–187.
Fränzle, M., and Herde, C. 2007. HySAT: An efficient proof
engine for Bounded Model Checking of Hybrid Systems.
Formal Methods in System Design 30(3):179–198.
Graf, S., and Saı̈di, H. 1997. Construction of Abstract State
Graphs with PVS. In CAV, 72–83.
Gregory, P.; Fox, M.; Long, D.; and Beck, J. 2012. Plan-
ning Modulo Theories: Extending the planning paradigm.
In Proceedings of ICAPS. AAAI.
Henzinger, T. A. 1996. The theory of Hybrid Automata. In
LICS, 278–292. IEEE CS.
Ishii, D.; Ueda, K.; and Hosobe, H. 2011. An interval-based
SAT modulo ODE solver for model checking nonlinear Hy-
brid Systems. STTT 13(5):449–461.
Lahiri, S. K.; Nieuwenhuis, R.; and Oliveras, A. 2006. SMT
techniques for fast Predicate Abstraction. In CAV, 424–437.
Lynch, N. A.; Segala, R.; and Vaandrager, F. W. 2003. Hy-
brid I/O Automata. Inf. Comput. 185(1):105–157.
McMillan, K. L. 1993. Symbolic model checking. Kluwer.
McMillan, K. L. 2003. Interpolation and SAT-Based Model
Checking. In CAV, 1–13.
McMillan, K. L. 2005. Applications of craig interpolants in
model checking. In TACAS, 1–12.
Rintanen, J. 2011. Planning with Specialized SAT Solvers.
In AAAI. AAAI Press.
Sheeran, M.; Singh, S.; and Stålmarck, G. 2000. Check-
ing safety properties using induction and a SAT-solver. In
FMCAD, 108–125.
Sorea, M. 2002. Bounded Model Checking for Timed Au-
tomata. Electr. Notes Theor. Comput. Sci. 68(5):116–134.
Steiner, W., and Dutertre, B. 2010. SMT-Based Formal
Verification of a TTEthernet Synchronization Function. In
FMICS, 148–163.
Tonetta, S. 2009. Abstract model checking without comput-
ing the abstraction. In FM, 89–105.
Vardi, M. 1995. An automata-theoretic approach to Linear
Temporal Logic. In Banff Higher Order Works., 238–266.
Vizel, Y., and Grumberg, O. 2009. Interpolation-sequence
based model checking. In FMCAD, 1–8.

