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Abstract: Altarica is a language used to describe critical systems. In this paper we
present a novel approach to the analysis of Altarica models, based on a translation
into an extended version of NuSMV. This approach opens up the possibility to carry
out functional verification and safety assessment with symbolic techniques. An ex-
perimental evaluation on a set of industrial case studies demonstrates the advantages
of the approach over currently available tools.
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1 Introduction

The dramatic increase in complexity of safety-critical systems in recent years has motivated
a growing interest in model-based techniques for system verification. Such techniques must be
able to verify functional correctness, but also to carry out safety assessment, that is, assess system
behavior in presence of faults [Ba03, ÅBB06, BV10]. In particular, there has been a growing
interest in formal verification tools that can automate the generation of artefacts such as Fault
Trees and Failure Mode and Effects Analysis (FMEA) tables [FSA, BV07, BCK+10].

One of such tools is Cecilia OCAS [BBC+04] – a model-based safety assessment platform de-
veloped by Dassault Aviation, based on the Altarica [Alt, AGPR00] language. Altarica has been
used in past for safety assessment of industrial systems, see, e.g., [BCS02, BBC+04]. Moreover,
OCAS is being used at an industrial level for architectural safety assessment of avionics systems.
For example, the Flight Control System of Falcon 7x aircraft has been certified on the basis of
the OCAS analysis. OCAS is equipped with different model analysis tools, the main ones are a
trace simulator, and a sequence generator to generate minimal cut sets. These tools do not pro-
vide some important verification features. They are neither able to perform an exhaustive space
examination, nor they are able to perform model checking of temporal properties; even reacha-
bility analysis is bounded in depth. Furthermore, developed as an in-house tool, OCAS sequence
generator does not correctly implement language features that are not used within Dassault Avi-
ation. In particular it is unable to adequately explore non-deterministic instantaneous transitions,
potentially leading to incomplete analysis results (although the tool can be configured to provide
a forewarning). Finally, OCAS sequence generator is based on explicit state techniques, hence it
suffers from the state-explosion problem.

In this paper we propose a fully symbolic approach that overcomes these limitations, and
allows for the industrial usage of advanced symbolic verification and safety assessment tech-
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niques. Our approach is based on the translation to an extended version of NuSMV [NuS], and
is tightly integrated with the OCAS environment. NuSMV is a state-of-the art symbolic model
checker providing cutting-edge model checking technologies such as BDD-based [Bry92] and
SAT-based Bounded Model Checking (BMC) [BCCZ99] techniques. It supports both temporal
model checking (CTL and LTL temporal logics) and safety assessment, e.g., Fault Tree Analysis
(FTA) and FMEA, through its add-on NuSMV-SA. NuSMV has been used in several industrial
contexts, for instance for verification and validation of aerospace systems [BCK+10].

More specifically, our contribution is as follows. First, we have isolated a fragment of Altar-
ica in the Dataflow formulation. This choice has been dictated by what is being made available
through the OCAS interface. As the semantics for this fragment is not fully documented, an addi-
tional effort has been required to provide a formal definition for its semantics, by adaptation from
the general definition of [AGPR00], and to validate its correctness with respect to the behavior
shown by OCAS and user expectations. In the course of our work, we have identified model fea-
tures that are not correctly managed in OCAS, clarified their intended semantics, and reflected
it in our tool. Based on the semantics, we have implemented a translator to convert Altarica
models into NuSMV. The translation uses HyDI [CMT11] as an intermediate language. The use
of HyDI proved to be convenient as it provides primitives to deal with networks of automata, and
different mechanisms for synchronizing them. The translator has been incorporated as a plugin,
named the NuSMV/OCAS plugin, into the OCAS environment, and it provides the following
functionalities: invariant checking, temporal model checking, and fault tree generation.

The NuSMV/OCAS plugin has been developed within the MISSA project [MIS] (More Inte-
grated Systems Safety Assessment), an EC-sponsored project involving various research centers
and industries from the avionics sector. We evaluated the plugin on a set of industrial-size case
studies developed in MISSA, and compared it with existing tools available in OCAS. The results
of the evaluation clearly show a significant advantage of symbolic techniques over explicit-state
techniques currently provided by OCAS, in terms of performance.

The paper is organized as follows. In Section 2 we give a short overview of the Altarica syntax
and semantics. In Section 3 we present the design of the translation. In Section 4 we describe the
integration into OCAS. In Section 5 we discuss the experimental evaluation. Finally, in Section
6 we present some related work, and in Section 7 we conclude and discuss future work.

2 Overview of Altarica

In this section we briefly describe the syntax of the Altarica language (Dataflow dialect imple-
mented in Cecilia OCAS) and its semantics - we refer the reader to [Alt, AGPR00] for additional
details. A simple example of Altarica model is presented in Figure 1. It consists of two counters
modulo 4 and an adder. The base component of an Altarica model is called node. Its structure
may comprise the following sections:

• sub: used to describe the hierarchy of the Altarica nodes; in this section, it is possible to
instantiate the subnodes which are the children of the current node;

• state: this section is used to declare the state variables of the (basic) node; the value of these
variables may change only upon firing of an event; this implies that their value does not
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1 node main
2 event
3 t o t a l r e s e t ;
4 sub
5 c1 : counter ;
6 c2 : counter ;
7 add : adder ;
8 sync
9 <t o t a l r e s e t , c1 . reset , c2 . reset>;

10 assert
11 c1 . va lue ou t = add . input1 ,
12 c2 . va lue ou t = add . inpu t2 ;
13 edon

14 node counter
15 flow
16 va lue ou t : out : [ 0 , 3 ] ;
17 state
18 value : [ 0 , 3 ] ;
19 event
20 inc , rese t ;
21 trans
22 value < 3 |− i nc −> value := value + 1;
23 value = 3 |− rese t −> value := 0 ;
24 i n i t
25 value := 0 ;
26 assert
27 va lue ou t = value ;
28 extern
29 law <event inc> = exponent ia l ( 0 . 1 ) ;
30 edon

30 node adder
31 flow
32 i npu t1 : i n : [ 0 , 3 ] ;
33 i npu t2 : i n : [ 0 , 3 ] ;
34 va lue ou t : out : [ 0 , 7 ] ;
35 state
36 value : [ 0 , 7 ] ;
37 event
38 add ;
39 trans
40 value != inpu t1 + inpu t2 |− add −>
41 value := inpu t1 + inpu t2 ;
42 i n i t
43 output := 0 ;
44 assert
45 va lue ou t = value ;
46 extern
47 law <event add> = Dirac ( 0 ) ;
48 edon

Figure 1: An example Altarica model

change in between two consecutive event firings (while other components are executing);

• init: this section is used to specify the initial value of state variables;

• event: used for defining the events that can be fired and, thus, trigger a state transition;

• flow: this section declares flow variables, used to describe the connections with the other
components; flow variables are linked to state variables by means of assertions; there are
two types of flow variables, namely input or output flow variables;

• trans: this section is used to describe the transitions of the system; each transition consists
of a guard, the firing event, and a list of assignments; the assignments specify how the
system state changes when the corresponding event is fired; the guard is a precondition
that has to be satisfied for the transition to be taken;

• assert: used to establish links from a flow variable to a state variable or another flow
variable; more specifically, it declares a set of equalities either between an output flow
variable and an expression over input flow and state variables (internal assert), or between
an input flow of a subnode and the output flow of another subnode (in-out assert), or
between an input flow of the node and an input flow of a subnode (in-in assert), or between
an output flow of the node and an output flow of a subnode (out-out assert);

• sync: used to define the synchronizations; a synchronization associates an event of the
node to the events of the subnodes; there are three types of synchronizations, namely
strong sync, weak sync, and Common Cause Failure (CCF) (cf. end of this section);
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Figure 2: Altarica hierarchy

• extern: used to define priorities and associate events with optional laws; priorities and
some of the laws constrain permissible order of event firing.

An Altarica model is a hierarchical graph composed of nodes. At the same level of the hi-
erarchy, nodes communicate through flows and synchronizations. The hierarchy yields a tree
structure, where two types of nodes are possible:

• component: a component represents a single process of the system, it cannot contain defi-
nition of subnodes or synchronizations;

• equipment: an equipment node represents a container for nodes; it may contain declara-
tions of subnodes and synchronizations, but it cannot have state variables.

As shown in Figure 2, this structure imposes that the component nodes represent the leafs,
whereas the equipment nodes are containers for the components. Moreover, there is a special
equipment node called main, which represents the root of the full Altarica model.

The semantics of the Altarica model is defined in terms of Interfaced Transition Systems
(ITSs) (cf. [AGPR00, Mat11]). Intuitively, the ITS associated with a component is given straight-
forwardly by the state variables (that define the states), the initial condition, the transitions, the
events and flow variables (which define the observations) of the node. The ITS associated to an
equipment node is given by the composition of the ITSs associated with the subnodes taking into
account synchronizations. The mechanisms for the different synchronizations are illustrated in
Figs. 3a, 3b and 3c, and explained in more detail in the following:

• strong sync (see example in Figure 3a): if we have a strong sync between the events e1
and e2, the corresponding processes (components) p1 and p2 must move synchronously on
such events. This means that the transitions of p1 fired by e1 and the transitions of p2 fired
by the event e2 happens at the same time, and that e1 is fired if and only if e2 is fired; as
an example, the system in Figure 1 declares a strong synchronization, called total reset,
synchronizing the reset on the two counters;

• weak sync (see Figure 3b): this type of synchronization represents a broadcast; partici-
pating events happen synchronously as in the strong sync, but only if the corresponding
transitions are enabled; this means that if the event e1 of p1 is fired and there exists a tran-
sition t2 of p2 on the event e2 whose guard is true, then e2 is fired at the same time as e1;
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Figure 3: Synchronization examples

otherwise (if the guard is false) e1 is fired and p2 does not change state; similarly, if e2 is
fired and the guard on e1 is false, p1 does not change state;

• CCF sync (see Figure 3c): short for Common Cause Failure, this kind of synchronization
is similar to a weak synchronization, with the difference that individual processes are also
allowed to move on the events independently; this means that either we have a CCF sync
involving e1 and e2 (with the same rules of the weak sync) or e1 is fired or e2 is fired.

The evolution of an Altarica system can be further constrained by associating events with spe-
cial laws and priorities. By default, events are considered stochastic. These events are typically
used to model component failures and can be optionally associated with a probability distribution
law (e.g., Exponential(λ ) law). These laws are used to establish interoperability with commer-
cial RAMS analysis tools and do not affect qualitative behaviour of the system. However, a
special law – Dirac(x) – is used to mark instantaneous and temporal events (with x = 0 and
x > 0 respectively). These events fire deterministically x time steps after the guard of the cor-
respondent transition becomes true. Whenever more than one transition is possible at the same
time, instantaneous events take precedence. The precedence of transitions can be further con-
strained by events priorities (events with higher priority are fired first). For the sake of brevity,
we do not describe the semantics of priorities in detail – we refer to Section 3 for their encoding.

3 Translation

In this section we describe the encoding of the Altarica language into NuSMV. The formal trans-
lation [Mat11] has been designed using HyDI [CMT11] as an intermediate language. In the
following, we first introduce the HyDI language and then we focus on the translation of the main
characteristics of the Altarica language, that pose challenges at the encoding level. In particular,
we discuss the management of:

• hierarchy: unlike Altarica, HyDI does not support hierarchical process definitions;

• flow variables and assertions: these definitions cannot be directly mapped into HyDI;

• event priorities: HyDI does not support the definition of event priorities;
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• synchronizations: Altarica supports three kinds of synchronizations: strong, weak and
CCF, whereas HyDI supports only the first two.

Finally, we briefly discuss how to model the leaf nodes.

3.1 The HyDI language

HyDI is an extension of SMV [McM93] that supports the definition of networks of hybrid au-
tomata with different kinds of synchronizations. We restrict our presentation to the finite state
case, thus ignoring continuous variables and their evolution – see [CMT11] for a complete de-
scription. A HyDI program is given by a set of modules, a set of processes and a set of synchro-
nization constraints. A HyDI module extends SMV modules allowing one to specify synchro-
nization constraints. A module contains a set of declarations which define: a set of variables
(VAR); a set of input variables (IVAR); a set of initial constraints (INIT) defining the initial states;
a set of invariant conditions (INVAR) which restricts the valid assignments to the variables; a set
of transition constraints (TRANS), defining the state transitions. A module can be instantiated in
the VAR section of another module. The main module is the top-level module of a program and
cannot be instantiated. The HyDI language allows one to define a network of processes which
run asynchronously on private events while they synchronize on shared events. The processes
are instantiated in the main module. The network is not hierarchical, since the synchronizations
are declared between processes. However, the definition of a single process may be hierarchical,
since it can contain the instantiation of sub-modules. The module used to instantiate a process
contains the definition of the set of discrete events (EVENT section) used to define its synchro-
nization with other processes. In the HyDI language a synchronization declares that two events
of two processes must be fired at the same time. A variant of this type of synchronization, called
“weak” synchronization, allows one to specify a guard which forces the synchronization only if
the guard evaluates to true. Finally, the order of occurrence of events can be further constrained
with a scheduler, modeled in HyDI by variables and constraints in the main module.

3.2 Hierarchy translation

The network of processes defined by Altarica is hierarchical in that the synchronizations may
be specified at the different levels of the Altarica tree structure. Thus, in order to encode the
Altarica specification into HyDI we perform a flattening of the Altarica hierarchy as depicted in
Figure 4b. Each Altarica equipment node is split into several new instances in order to create a
hierarchy corresponding to the paths from the root to each leaf. This flattening is possible since
the instances of the equipment nodes cannot have definition of state variables.

For the flattening it is necessary to perform some additional transformations on the resulting
structure because of the constraints imposed by the HyDI language. In Altarica synchronization
definitions can be specified at all levels of the hierarchy (i.e., in the equipment nodes). In HyDI
they must be in the main module. Thus, we need to move all the synchronization definitions in
the top level HyDI main module. Another difference between HyDI and Altarica concerns the
definition of discrete events used in the synchronizations. In HyDI the declaration of discrete
events is done in the module definition of each instance and, thus, new events cannot be declared
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Figure 4: Hierarchy translation

in a submodule. Altarica, on the other hand, requires them to be specified within the leafs (i.e.,
in the component nodes). Our solution restructures the Altarica hierarchy in such a way all the
events present in the original Altarica structure are declared in the definition of an instance in
HyDI, and passed as parameters to the submodules. The drawback of this encoding consists
in the possible increase of the number of nodes that may affect the complexity of the resulting
model. However, this solution permits to greatly simplify the translation from Altarica to HyDI.

3.3 Variables and assertions translation

Altarica allows one to define two types of variables: state variables (which represent the internal
state of the system) and flow variables (used to expose the internal state and to link the different
components). The translation of the state variables is straightforward, as they also become state
variables in HyDI. The translation of the flow variables is carried out as follows:

• Internal assert: the link between output flow and state variables is expressed by an asser-
tion. In this case the flow variable is represented as a NuSMV define on the state variable;

• In-Out (Figure 5a): in this case we have a link connecting an input flow of one component
with an output flow of another component. In this case the direction is explicitly expressed
by the flow labels. This is translated by passing the state variable referred to by the output
flow as a parameter to the module translating the component with the input flow;

• In-In (Figure 5b): this situation is represented by the direct forwarding of an input flow
to a subcomponent. In this case the solution is analogous to the previous case, with the
difference that the external component plays the writer role;

• Out-Out (Figure 5b): this case is similar to the previous one with the difference that the
subcomponent plays the role of writer.
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Figure 5: Flow translation cases

3.4 Priority translation

Events priorities and Dirac(x) laws in Altarica impose a complete partial order on the firing of
the events. In particular, the events with Dirac(0) law have higher priority than any other events.
Moreover, events with the same law are ordered by the explicit definition of the priority expressed
by an integer number. HyDI does not support explicit definition of priorities. To circumvent this
problem, we defined a complete partial order among the set of discrete events, and encoded it as
a scheduler in the main module.

3.5 Synchronization translation

The Altarica language permits the definition of three possible kinds of synchronizations between
events: strong, weak, and CCF (see Figure 3 and Section 2). HyDI has native support for the
weak and strong synchronizations, while there is no support for the CCF synchronization. We
encode the CCF synchronization taking into account its semantics: a CCF involving two events
e1 and e2 is either a weak synchronization among e1 and e2, or simply event e1 or event e2 in
isolation. Thus, we duplicate events e1 and e2 in e′1 and e′2, respectively, to enable for the two
events to occur in isolation, and we add a new weak synchronization between e1 and e2.

3.6 Leaf node translation

The translation of the leaf nodes is straightforward. It maps to an SMV module. Each state
variable is encoded into an SMV state variable of the same type. The Altarica init and trans
sections directly translates into SMV INIT and TRANS formulas, respectively.

4 Tool Integration and Functionalities

In the following we describe the architecture of the NuSMV/OCAS plugin and its functionalities.

4.1 The NuSMV/OCAS Plugin

The NuSMV/OCAS plugin has been developed in Python. It is composed of four main compo-
nents, as illustrated in Figure 6:
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Figure 6: The NuSMV/OCAS plugin and its integration into OCAS

• Property: this component provides a GUI to specify the properties to be verified and the
analysis parameters, and to invoke the verification and safety assessment routines;

• Altarica2HyDI: this module is responsible for the translation of the Altarica model into
the equivalent HyDI specification to be given as input to the extended version of NuSMV
(the NuSMV model checker extended with the NuSMV-SA and HyDI plugins);

• HyDI/ NuSMV: the verification engine;

• HyDI2Altarica: this module is responsible for the back conversion of the results generated
by NuSMV to a format that can be visualized or executed within OCAS. In particular, it
is responsible for the conversion of the traces generated by NuSMV (corresponding to a
simulation or to a counterexample to a property) into the XML format accepted by OCAS.

The translation from Altarica to HyDI, provided by the Altarica2HyDI component, is per-
formed in three main steps (see Figure 7):

1. Parsing: this module generates an abstract syntax tree (AST) of the Altarica design. This
module relies on the ANTLR1 parser generator;

2. Preprocessing: this module analyzes the AST generated at parsing time to build a new AST
corresponding to the flattened Altarica model. Moreover, it collects common information
about the structure of the design, that is re-used in the following steps of the translation;

3. Translation: this module, based on the new AST and on the structural information pre-
viously gathered, generates an in-memory Python structure corresponding to the HyDI
model. This structure is then dumped into a textual file to be given as input to NuSMV.

The plugin calls NuSMV, waits for the results, and then converts them back into a format that can
be imported into OCAS (e.g., simulation traces to be given as input to the sequence generator).

1 ANother Tool for Language Recognition (ANTLR), http://www.antlr.org/
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Figure 7: The Altarica2HyDI component

4.2 Functionalities

The NuSMV/OCAS plugin relies on NuSMV, that provides standard BDD-based (CTL and LTL)
model checking techniques [McM93], and SAT-based LTL Bounded Model Checking (BMC)
techniques [BCCZ99]. It allows one to perform guided and random simulation, and to re-execute
partial traces. Moreover, it provides optimized model checking algorithms, developed in the
MISSA project, that aim at reducing the state explosion problem with techniques that combine
BDD and SAT for the verification of invariants. For formal safety assessment the NuSMV/O-
CAS plugin relies on an extended version of the NuSMV model checker, comprising NuSMV-
SA [BV07]. NuSMV-SA allows one to investigate the behavior of a system in degraded condi-
tions (that is, when some parts of the system are not working properly, due to malfunctioning).
Key techniques in this area are (dynamic) FTA (Fault Tree Analysis), (dynamic) FMEA (Failure
Modes and Effects Analysis), fault tolerance evaluation, and criticality analysis. NuSMV-SA
provides advanced and very optimized techniques for the generation of (dynamic) FT and of
(dynamic) FMEA tables. NuSMV-SA provides three main engines for safety assessment. The
first two are based on classical BDD-based or on SAT-based techniques. The BDD-based engine
is complete, but if the model is huge may not scale well. The SAT-based approach is incomplete
but allows one to handle very large domains. These two basic approaches are complemented
with a third complete approach, developed in the MISSA project, that combines BDD and SAT.
It first uses BMC techniques, up to a given depth, to prune the search space, and then it performs
an exhaustive analysis on the reduced model using BDD-based model checking algorithms.

5 Experimental Evaluation

5.1 Validation of the translation

As the formal semantics of the Altarica dialect used in OCAS is not fully documented, before
starting an experimental evaluation on realistic case studies, we were confronted with the issue
of validating the semantics we implemented with respect to the one implemented in OCAS. For
the validation we focused on trace simulation generation and trace execution functionalities that
are common to both tools. We used several small handcrafted models developed for checking
some specific conditions. Then, we used some realistic case studies developed within MISSA.

The validation of the tool was done using the possibility offered by OCAS to re-execute a sim-
ulation trace on the Altarica model, using the internal trace simulator. We generated a simulation
trace with the NuSMV/OCAS plugin, and then we re-executed it in the OCAS environment. The
validation flow we used can be summarized as follows (compare Figure 8):
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Figure 8: Trace-based validation

1. we translate the Altarica model provided by OCAS into HyDI, and then into SMV;

2. we either verify properties known to be not satisfied in the model, or we generate random
simulation traces in order to obtain an execution trace, that we save in XML format;

3. we translate the trace provided by NuSMV into the XML format compatible with OCAS;

4. we load the trace generated in the previous step into the trace simulator of OCAS;

5. we verify that the state reached at the and of the trace execution is compatible with the
property, and with the state reported as final in the simulation trace.

Whenever a discrepancy was detected, a thorough analysis of the simulation execution in OCAS
was carried out to identify the cause of the discrepancy, and possibly come up with a fix in the
translation to capture OCAS semantics. In a few cases, the behavior shown by OCAS was found
to be incorrect by the users, hence not reflected in the translator (cf. Section 1).

5.2 Verification and safety assessment on industrial case studies

In this section we discuss the comparison between the common functionalities provided by the
OCAS sequence generator and the NuSMV/OCAS plugin. The sequence generator of OCAS is
able to perform Fault Tree Analysis (generation of minimal sequences) up to a bounded depth.
For a fair comparison, we then compared this feature with the Fault Tree Analysis provided by
the extended version of NuSMV that relies on the SAT and the mixed BDD+SAT approaches2.

For the experimental evaluation we used four industrial models developed in MISSA. The
ELEC 1, ELEC 2, and ELEC 3 models describe a simplified electrical power distribution system
(that resembles that of the A320 aircraft), at different levels of detail. The BRSYS model is a
realistic model of the braking system of an aircraft. The properties to be analyzed formalize
different failure conditions (e.g., “Loss of deceleration capability during landing” for the BRSYS
model). The characteristics of the models are reported in Table 1. This table also shows the time

2 We also used the NuSMV/OCAS plugin to verify temporal properties of the Altarica design; as this functionality is
not available in OCAS, we do not report the results here.
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Model # States Altarica nodes Translation time
ELEC 1 1.49x105 41 1.127s
ELEC 2 2.64x105 44 2.782s
ELEC 3 2.0x107 51 2.811s
BRSYS 3.8x1025 135 9.820s

Table 1: Characteristics of the industrial case studies and translation time

needed to translate the model into an equivalent HyDI specification. Note that the translation
time increases with the model complexity (however, the translation is performed only once for
each given model, whenever several properties have to be verified).

The experimental results are presented in Figure 9. We executed the tests on an laptop
equipped with an Intel 3GHz CPU, and with 4GB of RAM running Windows 7. We used a
memory limit of 1GB and a timeout of 1000 seconds. The plots report the time needed by OCAS
and by the SAT (BMC) and BDD+SAT algorithms provided by the extended version of NuSMV
to perform an exhaustive search at increasing depths.

The results on the smallest model (ELEC 1) are reported in Figure 9a. The plots clearly show
that the sequence generator is not able to perform the verification with a bound greater than
9 while NuSMV has a behavior nearly independent of the depth of the verification. When the
complexity of the model grows (models ELEC 2 and ELEC 3, respectively reported in Figure 9b
and Figure 9c) OCAS shows a very fast degradation: the sequence generator is not able to
perform the verification with a depth bigger than 7 for the ELEC 2 model, and not bigger than
6 with the model ELEC 3. On the other hand, the degradation in performance of NuSMV with
increasing model complexity is not as evident as for OCAS. The plots also show that the sequence
generator performs better than NuSMV for sufficiently low depths. This is due to some internal
overhead NuSMV incurs in while reading and converting the HyDI model, and encoding the
verification problem. The results on the BRSYS model (Figure 9d) show a similar trend. NuSMV
is able to complete the verification, whereas OCAS timeouts at depth 3.

We remark that, in all the examples, the SAT BMC approach outperforms the OCAS explicit
state approach by orders of magnitude. This enables analyses that were out of the scope of the
previous version of OCAS without the NuSMV/OCAS plugin. Moreover, in all the examples,
we were able to run NuSMV to convergence, using the complete BDD+SAT approach, with
a running time which is only slightly worse than the SAT BMC approach. Being complete,
BDD+SAT is guaranteed not to miss cut sets, as a difference with OCAS sequence generator. We
also remark that, although not shown in the experimental evaluation, the BDD+SAT approach
performed consistently better than the pure BDD approach on these case studies.

6 Related Work

The original language of Altarica, developed by LaBRI, is based on the notion of interfaced con-
straint automata. A restricted dialect - Altarica Dataflow - was later developed to restrict the com-
plexity of the models and, under certain constraints, permit synthesis of the fault trees [BDRS06,
Rau02]. Dialects of Altarica are supported by a number of tools ranging from the academic
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(a) ELEC 1 (b) ELEC 2

(c) ELEC 3 (d) BRSYS

Figure 9: Performance comparison NuSMV vs OCAS

toolset developed and maintained at the University of Bordeaux [Alt] to SIMFIA [SIM], a mod-
elling, simulation and RAMS analysis environment developed by EADS APSYS - that supports
a Dataflow dialect similar to that implemented by OCAS. Another workbench, COMBAVA,
has been previously developed by ARBoost Technologies but is now obsolete. To our knowl-
edge, OCAS is the most industrially mature of existing toolsets. OCAS is tightly integrated
with Cecilia ARBOR - a Fault Tree Analysis software. Quantitative and Qualitative analysis of
fault trees performed in both Cecilia ARBOR and SIMFIA Safety modules are based on Aralia
[Rau01]. Whilst there also exists a plugin for synthesis of fault trees (implementing the algorithm
of [Rau02]), such functionality is only available for a very restricted subset of Altarica Dataflow.

There are other model checkers that support altarica, in particular MEC 5 [MEC] and Arc
[Arc]. MEC 5 is a somewhat outdated model checker that is now superseded by Arc. Arc is a
more recent, BDD-based model checker based on the Altarica language, which supports CTL*
temporal logics and µ-calculus. Arc is not currently linked to OCAS and the interoperability
with a MEC 5 plugin has not been supported in newer versions of OCAS. Moreover, neither Arc
nor its predecessor MEC support safety assessment functionalities. Altarica studio [GPV11] is a
prototypical toolset, based on Arc, for model-based formal analyses. To our knowledge, safety
assessment functionalities are not available in Altarica studio, yet. A thorough comparison of the
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model checking engines is hard because of differences in the dialects (and flavours thereof) of
Altarica supported by the different tools. This work has been focused on (a variant of) Altarica
Dataflow - a more extended comparison will be targeted for future work.

7 Conclusions and Future Work

In this work we have presented a novel encoding of Altarica models into NuSMV, which enables
verification and safety assessment of Altarica models using state-of-art symbolic model checking
and formal safety assessment techniques. We have integrated the encoder as a plugin into the
OCAS environment, and we have experimentally demonstrated the feasibility of the approach
by evaluating the plugin on a set of industrial case studies. As part of our future work, we
plan to address the semantics of Altarica temporal events, which was simplified in the current
implementation. Finally, we plan to investigate a temporal extension of Altarica, along the lines
of [CPR04]. This extension fits very naturally in our framework, given that the HyDI language
provides a native support for encoding networks of timed (more in general, hybrid) systems.

Acknowledgements: This work has been supported by the E.C. project MISSA, contract
no. ACP7-GA-2008-212088. We would like to thank Chris Papadopoulos (Airbus UK), Pierre
Bieber and Christel Seguin (Onera), Xavier Leduc and Valerie Sartor (Dassault Aviation), Lau-
rent Sagaspe (EADS APSYS) and Antonella Cavallo (Alenia Aeronautica) for their precious
support and advice for the development, integration and evaluation of the plugin. The ELEC
models used for evaluation have been originally developed by ONERA and, in some cases, ex-
panded by Alenia Aeronautica. The BRSYS model has been developed by EADS APSYS.

Bibliography
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